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Abstract

Gradient damage models used in phase-field approaches to brittle fracture are charac-
terised by material softening and instabilities. We present novel numerical techniques for
the bifurcation and stability analysis along quasi-static evolution paths as well as practical
tools to select stable evolutions. Our approach stems from the variational approach to
fracture and the theory of rate-independent irreversible processes whereby a quasi-static
evolution is formulated in terms of incremental energy minimisation under unilateral con-
straints. Focussing on the discrete setting obtained with finite elements techniques, we
discuss the links between bifurcation criteria for an evolution and stability of equilibrium
states. Key concepts are presented through the analytical solution of a two-degrees-
of-freedom model featuring a continuum family of bifurcation branches. We introduce
numerical methods to i) assess (second-order) stability conditions for time-discrete evo-
lutions subject to damage irreversibility, and ii) to select possible stable evolutions based
on an energetic criterion. Our approach is based on the solution of a coupled eigen-
value problem which accounts for the time-discrete irreversibility constraint on damage.
Several numerical examples illustrate that this approach allows us to filter out unstable
solutions provided by standard (first-order) minimisation algorithms as well as to effec-
tively compute stable evolution paths. We demonstrate our purpose on a multifissuration
problem featuring complex fracture patterns, to show how the eigenvalue analysis enables
to compute and retrieve morphological properties of emerging cracks.

1 Introduction

Fracture and damage are dissipative irreversible phenomena. Their models describe the cre-
ation of cracks in the form of sharp interfaces or the evolution damage as a diffuse reduction
of the material stiffness, associating these processes to a specific energy dissipation per unit
surface or per unit volume, respectively. Modern variational approaches formulate damage
and crack evolution problems as energy minimisation problems in the framework of the the-
ory of quasi-static rate-independent processes (Mielke and Roubicek, 2015; Pham and Marigo,
2010). They led to the establishment of a precise energetic link between a special class of
softening gradient-damage models and brittle fracture theories (Bourdin et al., 2000; Franc-
fort and Marigo, [1998; Marigo et al., 2016; Pham et al.,2011b)). This special class of gradient



damage models, commonly referred to as phase-field fracture models, are nowadays among
the most flexible and robust tools for the numerical simulation of brittle fracture phenomena.

Quasi-static evolution problems arising in fracture and the associated softening damage
models are strongly nonlinear. They can admit multiple solutions, or none. In this frame-
work, a stability and bifurcation analysis is important to select among the several possible
solutions, or evolution paths, the physically relevant ones (Bigoni, [2012). For irreversible
and non-smooth processes like damage, fracture, or plasticity, this analysis is subtler than in
the conservative elastic case. Similar problems of nonlinear continuum mechanics have been
largely studied in the past, leading to the formulation of specific criteria for non-bifurcation
and stability of solutions. The classical example of plastic buckling of a two-degrees-of-freedom
plastic structure, alias the ‘Shanley column’ (Shanley, [1947) illustrates the main counter-
intuitive phenomena that are possible in this setting. One can observe continuous families of
bifurcation points, the presence of special singularities, and the distinction between the load-
ing threshold for the first primary bifurcation and that leading to the loss of stability (Bazant
and Tabbara, [1992; Benallal et al., [1993; Hill, [1957; Hutchinson, [1974; Nguyen, [1987; Nguyen,
2000; Petryk, 1993 Potier-Ferry, |1985). In these problems, the non-smoothness renders the
incremental problem intrinsically nonlinear. A common solution for establishing sufficient
conditions for uniqueness is to resort to the analysis of the so-called linear comparison solid
(Hill, |1957). Classical analyses based on local continuum theories consider pointwise condi-
tions for uniqueness and stability, like the loss of ellipticity of the linear comparison solid or
the loss of the complementing condition on the boundary and material interfaces (Benallal
et al., 1993)). In gradient theories, like gradient-damage or gradient-plasticity, the non-local
nature of the incremental problem calls for global (in space) uniqueness and stability condi-
tions. The energetic theory of rate-independent processes (see Mielke and Roubicek, 2015)
provides a natural framework for their formulation. Several recent works have performed an-
alytical stability and bifurcation analyses of gradient damage models in the one-dimensional
(Benallal and Marigo, |2007; Pham et al.,[2011a)) or the three-dimensional context (Pham and
Marigo, [2012)), providing theoretical tools for the understanding of the nucleation of cracks
(Tanné et al., |2018) or the morphogenesis of complex patterns (Bourdin et al., 2014} Sicsic
et al., 2014)) in phase-field fracture. Numerical techniques for stability and bifurcations anal-
ysis have been proposed for plasticity (Petryk and Thermann, 1992)). Yet, at the best of our
knowledge, similar numerical tools are not available for the numerical solution of gradient
damage and phase-field fracture models.

The goal of this paper is to present a numerical method for the bifurcation and stability
analysis of gradient damage models used in phase-field fracture. We illustrate on several test
cases how it can improve the prediction of standard algorithms for the numerical solution
of the evolution problem. Differently from previous attempts (Beaurain, 2011; Beaurain et
al., 2011)), we focus on the bifurcation and stability analysis in the time-discrete framework,
where the evolution problem is formulated as an incremental energy minimisation under an
irreversibility constraint on damage, bounded to be pointwise larger than its value at the
previous time-step. Hence, we apply standard methods of the theory of bound-constrained
optimisation (see e.g. Nocedal and Wright, 2006|) to determine non-bifurcation and stability
criteria. In addition to classical algorithms used to solve phase-field fracture problems, we
explicitly test the second-order optimality conditions for the time-discrete energy minimisation
problem by solving a suitable eigenvalue problem on a reduced Hessian matrix. Hence, we
exploit the available information to improve the time-continuation of the numerical solution
of the evolution problem. We use standard finite element techniques for spatial discretisation,
but the approach is applicable to other methods.



This paper is organized as follows. In Section [2] we formulate the evolution problem at
hand and give our definitions of stability in the time-continuous and time-discrete setting.
In Section 3| we treat in detail a simple model problem of a two-degree-of-freedom system
composed by two softening springs connected in series. This example allows us to highlight
the richness of possible phenomena that can be encountered even in such a simple setting
where analytical solutions are available. Section [4] presents the numerical algorithms used
for the bifurcation and stability analysis. Section [5]is devoted to the illustration of a series
of numerical experiments highlighting the main properties of stability and bifurcation in two
representative systems, namely the one dimensional bar in traction and a thin film bonded
onto a stiff substrate. Conclusions and perspectives are drawn in Section [0}

We briefly introduce the notation conventions adopted in this paper. We will indifferently
use a lower case letter for scalar-, vector-, or tensor-valued fields depending on the space
variable 2. For example, u : z € R? — u(z) € R and a : © € R? = a(z) € R will
denote the displacement and damage fields, d being the dimension of the physical space. A
superposed dot will denote the time derivative, e.g. () = %ut(a},t), whilst a prime sign

will denote the derivative of a function with respect to its argument, e.g. w'(a) = dlcul—((xo‘). We
use boldface fonts for n-dimensional vectors of finite element coefficients for spatial fields, e.g.
u and « will denote the finite element coefficients of v and «. Matrices will be denoted by
capital letters, using a boldface font for finite element stiffness matrices. For example, a linear
system obtained after a finite element discretisation will read as Au = b. As usual, H'(Q, R?)
denotes the Sobolev space of functions with values in R¢ which are square integrable with
square integrable first derivatives.

2 Formulation of the time-evolution problem and stability

We present here the variational formulation of the time evolution problem for gradient damage
models in the framework of quasi-static rate-independent processes and generalised standard
materials, following (Halphen and Nguyen, [1975; Mielke and Roubicek, 2015; Pham and
Marigo, [2010). We focus mainly on the time-discrete case, which is the setting adopted for the
numerical analysis presented in this paper. To avoid the technicalities related to the infinite-
dimensional nature of the continuum damage model, we quickly simplify the presentation
introducing the finite-dimensional space-discretization of the continuum problem. We define
the criteria for the stability and uniqueness of solutions, and illustrate them through the
analytical solution of a two-degree-of-freedom model problem.

2.1 The total energy functional of gradient damage models

Let be u the displacement field (possibly vector-valued), and a a scalar damage field defined
on the domain Q. We will denote by e(u) = (Vu + VTu)/2 the linearised strain field. We
consider the classical model of isotropic gradient damage in the small strain limit used in the
phase-field Ambrosio-Tortorelli (Ambrosio and Tortorelli, [1992) approximation of variational
brittle fracture (Francfort and Marigo, 1998)). The bulk energy stored in the volume element
is of the form

W(e,a,Va) = %a(a)A e(u) - e(u) + w(a) + w1f*Va - Va, (1)

where a(a) and w(«) are two scalar functions representing the stiffness modulation and the
energy dissipation along an homogeneous damage process, respectively. We assume that a



is a monotonically decreasing function from a(0) = 1 to a(l) = 7y < £ < 1 and w is a
monotonically increasing function from w(0) = 0 to 0 < w(1) = w; < +oo. We consider
the case of isotropic elasticity where the fourth-order elasticity tensor is such that Ae =
Atr(e) I +2pe, A and p being the Lamé parameters and I the identity tensor. The constant
wi is the specific fracture energy and ¢ is an internal length of the material. As shown
in (Pham et al., 2011b; Tanné et al., 2018)), for brittle materials with stress softening and
mode-I cracks, these parameters can be determined from the knowledge of the toughness G,
and the critical stress .. The analysis of the solutions in the form of damage localisations,
regarded as smeared versions of sharp cracks, gives the following relation between the fracture
toughness G. and the specific fracture energy w;

1
G. = 4c, wil, where cw:/ Vw(a)da.
0

We consider a quasi-static rate-independent evolution parametrised by a “time” variable
t and introduce the total energy functional at time ¢

E(u, o) = /QW(e(u(x)),a(x),Va(x))da: — Fi(u(x)), (2)

where F; is a linear functional of the displacement representing the work of conservative
external body forces and surface tractions applied at time t. We denote by

V= {veHl(Q,Rd),v:ﬂtonauQ},
D(a-) = {a€H(Q):a=00m0,2 a>a_},

the space of admissible displacements (compatible with non-homogeneous Dirichlet boundary
conditions ;) and admissible damage fields (from a damaged state «_). Boundary conditions
are applied on the subsets 0,2 and 0,82 of the boundary 0€2. To simplify the presentation,
we assume that the Dirichlet boundary conditions on the damage field, if present, are homo-
geneous. Non-homogeneous boundary conditions, often used in practice to prescribe, e.g., the
presence of an initial crack, can be accounted for without any complication. Assuming an
existing state of damage a_(x) > 0, taking (u,a) in H'(,R?) x D(a_) guarantees a finite
value of the energy and the irreversibility of damage with respect to the previous damage
level a_. Also, the irreversibility implies that w(«) represents a dissipative contribution to
the internal energy . The formulation and the basic ideas presented in the rest of this
paper can be extended without any major changes to more complex material models simply
by replacing the definition of the strain energy W. One can include, for example, traction-
compression asymmetry (Amor et al., |2009; Freddi and Royer-Carfagni, [2010|), anisotropy
(Bleyer and Alessi, 2018; Li et al., |2014), or large deformations (Del Piero et al., |[2007)).

2.2 Finite-element discretisation in space

In the rest of this paper, we focus on the analysis of the space-discrete problem with n,
displacement degrees-of-freedom u = {uy, ..., u,,}’ and n, damage degrees-of-freedom a =
{ag,...,an,}T. A similar discrete problem is obtained from after a finite element dis-



cretisation of the displacement and damage field (u, ) € V; x D(«_) in the form

FE . u i u _
u(w) = uf (@) = o @) un+ Y el (@) i, (3)
i=1 i=1
a(r) =~ aEFE) (z) := Z <p§f) (z) up + Z cpg)Jrh(m) Qyp, (4)
i=1 i=1

where gogu) € H}(Q,R?) and goga) € H}(Q) are the finite element basis functions for the
displacement and damage fields respectively; the known coefficients {u;,}7,, {Gp}}e, are
calculated to satisfy the possible n,, + 7 Dirichlet boundary conditions in the finite element
approximation. We denote by y := (u, &) € R", with n = n,+n,, the global vector describing
the unknowns of the discrete system.

We consider only the case of finite element discretisation adopting P, finite elements with
linear Lagrange polynomials as basis functions for the damage variable, for which the point-
wise unilateral constraint o > «_ translates in the component-wise unilateral constraint on
the finite element coefficients a > a_. Hence, we denote by

Clas)={y=(n,a) eR"=R"™ xR"™: a>a_}
the convex cone of admissible states from the state with damage a_ and by
Ci =C0)={z:=(v,B) e R"=R"™ xR": >0}

the cone of admissible variations such that, for any y € C(a_), y +z € C(a_) for all z € Cy.
The energy of the system in terms of the finite element coefficients u € R™, a € R™ is
defined by

Euy) = Ei(w, @) = &™), o). (5)

We assume the energy to be sufficiently smooth to be expanded with the following second-
order Taylor series

2
€
Ei(y: + €z) — Ei(y:) = € E{(y:)(2) + gEi’(Yt)(Z) + o(€?), (6)
where
d
Ei(yi)(z) = aEt(Yt +€2) = gi(yt) - 2, gt(yt) == [8E5751yt) 8%72%)] )
e=0
d2 8251&(2}%) 82@3&5%)
By = gablites)| =Hz e 00 =, pny,
e=0
dadu Oa?

2.3 Time-continuous evolution problem

Following the modern energetic approach to quasi-static rate-independent evolution pro-
cesses (Mielke and Roubicek, 2015), a solution of the quasi-static process in the time in-
terval t € (0,7) is defined as a one-parameter family of states {(us, a¢)}4epo,7) satisfying three
principles of irreversibility, stability, and energy balance. We present them under the strong
hypothesis that the solution is smooth in time so that the following time-derivatives

. .. . Yirat — Ye : . Et+At(Yt) - Et(Yt)
= = 1 = E = 1
Vo= (hode) = 00, Tar 0 Bl = i Al

are well-defined. For each ¢ € (0,7"), the three requirements read as follows



1. Time-continuous irreversibility. The damage field ¢ — «; is non-decreasing in time

a; > 0. (7)
2. Directional state-stability. The solution is a local minimiser of the energy
vt = (ug, o) € arglocmin E(y), (8)
veC(ay)

which means that y; € C(a;) and
Vz € C+, Je>0: Vee [O,E], Et(yt + EZ) — Et(yt) > 0. (9)

3. Energy balance. The power exerted by the internal forces should be equal to the power
exerted by the external forces. Because of the mechanical equilibrium, this condition
is tantamount to requiring that the power expended by the internal generalised forces
associated to the damage variable vanishes (Mielke and Roubicek, 2015, Pham and
Marigo, 2010):

0F,

%(yt) cay = 0. (10)

Equilibrium paths. Retaining only the first-order term in the series expansion @, one

can show that the stability condition requires the following first-order local minimality (or
optimality) conditions

Bi(y)(e) = 2500 | OBy

-B>0, Vze(C, < %(yt):ﬂ, %Z(Yt)zi),

ou
(11)
which, together with the irreversibility and the energy balance (10, form the following
system of variational inequalities that must be verified at each instant

iyn=0. yyzo azo Py a-o (12)
The last complementary condition states that, for each degree-of-freedom, damage can evolve
only if the corresponding derivative of the energy vanishes, and that, vice-versa, the derivative
can be positive only if the damage variable hits the corresponding irreversibility constraint.
In the following, we will denote an equilibrium path a family of states {yt}te(to,tl) respecting
the system of inequalities above in some time interval (tp,¢1) and define an equilibrium each

single yy.

Active and inactive constraints. For a given equilibrium yy, let us define the subspace
of the state space R™ where the unilateral constraints due to irreversibility are inactive at
time ¢ as O
t
Nl i= {2 = (v.) € B": Ef3i)(a) = 0 & 5 () - 8= 0. (13)
This vector space includes all the displacement degrees-of-freedom and only the damage
degrees-of-freedom for which the derivative of the energy vanishes, and determine the index
set of inactive constraints defined as follows

The restriction of a vector or a matrix on this index set corresponds to the projection on
the vector space of inactive constraints. We define the subspace of active constraints as
A(ye) := R\ M(y:), the associated index set being A; :={0,...,n— 1} \ N; .



Second-order state-stability conditions. For each z € A;(y;), it holds Ej(y¢)(z) > 0
and the first-order term in the series expansion (6] is sufficient to guarantee that the increment
of the energy is positive. Vice-versa, for z € N;(y;) the first-order term vanishes. To assure
the local minimality condition one must require the second derivative to be nonnegative
for any admissible variation z = (v,3) with 8 > 0. This gives the following second order
sufficient condition for the directional state-stability of an equilibrium y;

. Hyy)z- =
p+(t) == min ——F—
2eN+(y) |zl

> 07 N+(yt) = {Z = (V,ﬁ) € N(Yt), /6 > 0} . (15)

where NV (y;) is the convex cone of admissible variation at y;. The loose inequality p4(¢) > 0
is a necessary condition for the directional stability. Hence, we can mark an equilibrium as
state-stable (S-stable) if py(t) > 0 and as state-unstable (S—unstable) if p4(f) < 0.

Rate-problem and bifurcation conditions. Taking the derivative of first-order condi-
tions with respect to ¢ gives the following rate problem to determine the rate y; at a
given equilibrium yy

PE(y) .  *Ely) .  0F(y)
ouz ouda ot ou =0
. O?Ei(y:) . O’Ei(yr) . 3Et(}’t)
> A A — >
o =2 0, ouda U + oa? o+ oo =
= 0.

. [°E . O°F . OE
G - ) Gy t(QYt) g, + 22 )
Juda Ja oo
If this problem has a unique solution yy, there is a single possible evolution path through the
equilibrium state y;; vice-versa bifurcations from a fundamental path {Yt}te(to,tl) are possible
when the rate problem admits multiple solutions. A sufficient condition for the uniqueness of
the solution of the rate problem is that the Hessian matrix is positive definite on the vector
space N (y:), i.e.:

H .

t) = min dlye)z -2

— > (. 16
S i (16)

Indeed, when the above holds, the problem at hand is equivalent to the minimisation of
a convex quadratic functional over a convex cone (Nocedal and Wright, 2006). Hence, a
necessary condition for having a bifurcation at y; is that p(t) < 0. Introducing the reduced
Hessian matrix H;(y;) as the restriction of the full Hessian H;(y;) to the degrees of freedom
corresponding to inactive constraints and denoting by

P L

its ordered pairs of real eigenvalues and eigenvectors, the bifurcation marker p(t) coincides
with the smallest eigenvalue )\gl). When )\gl) = 0, a bifurcation is possible. The corresponding
bifurcation mode is given by zz(l) = (vgl),ﬁgl)), where we denote by zgk) = (ng),ﬁgk)) the
extension of igk) = (vgk),,égk)) to R™ obtained by setting the components of ,ng) = 0 for all
k € A;. If multiple eigenvalues vanish simultaneously, the possible bifurcation modes will be
in the space generated by the corresponding eigenvectors.



2.4 Time-discrete evolution problem

The numerical solution of the evolution problem requires a discretisation of the time variable.
We consider a finite-difference discretisation in N steps {t;}Y, so that the time derivative
of a function f(t) is approximated by the elemental Euler expansion f (t;) ~ %ﬂt;‘l)
Numerical works on quasi-static variational approaches to fracture and phase-ﬁeldlfralm_cture
models seek the state at time step ¢; as the solution of the following minimisation problem

for a discrete energy functional , that is

yvi:= (u;, ;) € arglocmin F;(u, ) (18)
(u,a)eC(ai—1)

where, here and henceforth, for any function of time f;, f; stands for evaluation at the dis-
crete time f;,. We state the local minimality requirement in the following directional form

Find y; € C(a—1) such that

Vy € C(ai_l), Jde>0: Ei(yi + e(y — yz)) — E,(yl) >0 Vee [0,6] . (19)

Time-discrete equilibrium paths. Retaining only the first-order term of the Taylor ex-
pansion @ for the energy increment and denoting by z = (v, 3) the variation € (y —y;), (19)
implies that:
Ei(yi)(z) = %(Yi) v+ %(yi) B>0, Vz=(v,B): vER™, BeR™, B> a;1—a.
(20)
Differently from , admissible variations are not only in the form =(+v,3) with 8 > 0.
Variations in the form (v, £8) with ||3|| sufficiently small are admissible provided that the
damage variation is null wherever the damage does not evolve, i.e. 8- (-1 —a;) = 0.
Selecting a similar class of variations in the optimality condition shows that, in addition
to , the derivative of the energy with respect to the damage should vanish in the subspace
where the damage evolves, i.e. %ﬁi (vi): (a;j—a—1). Hence, we have the following proposition,
which states the classical Karush-Kuhn-Tucker optimality conditions for a bound-constrained
minimisation problem. We refer the reader to classical text on convex optimisation for a
detailed proof, see e.g. (Nocedal and Wright, [2006).

Proposition 1 (First-order optimality conditions). A solution y; = (u;, ;) € R™ of the local
minimisation problem must respect the following conditions

oF;
8711(}’1) =0, (21a)
OF; oF;
a; —o;_1 >0, e (yi) >0, Yo (vi) - (s —aj—1) = 0. (21b)

Conditions can be interpreted as the discrete version of the equilibrium equation and
the damage criterion, respectively. The set of inequalities (21b|) states that damage cannot
decrease (irreversibility), that the first derivative of the energy is nonnegative, and that,
for each component of the vector, either the damage does not evolve or the first derivative
vanishes. An equilibrium path in the time-discrete setting is defined as a sequence of equilibria

{yi}}¥, verifying at each time step.



Incremental stability. Given an equilibrium y; and the corresponding spaces of inactive
and active constraints NV;(y;) and A;(y;), any variation z can be decomposed in its orthogonal
projections zy € N;(y;) and z4 € A;(y;) such that z = zy + z4. Because of the definition of
these spaces, E!(y;)(zy) = 0 and E!(y;)(z4) > 0. Hence, the second-order Taylor expansion
of energy increment in local minimality conditions reads as

62 62
Ei(yi+e€z) — Ei(yi) = € Ei(yi)(za) + §Hi(yz‘) ZA-ZA+ §Hz‘(yz') zy - zy + o(€?)

If zy # 0, the first-order term is strictly positive, then the variation is positive for € sufficiently
small. If zyy = 0, then the sign of the variation is given by the sign of the quadratic term in
zy. Hence, we can conclude that the local minimality condition is verified if first order
conditions are verified and the second derivative is (strictly) positive for all zy € N;(y;).
This result can be summarised in the following set of second order conditions for the solution
of the unilaterally constrained minimisation problem , see Nocedal and Wright, 2006.

Proposition 2 (Second-order conditions). An admissible state y; = (u;, ;) € R™ is a solu-
tion of the local minimisation problem if the first-order conditions are satisfied and
if the second derivative is positive definite on the subspace of inactive constraints N;(y;), that

18

> 0. 22
B (22)

Conversely, a necessary condition for y; to be a minimum is the positive semi-definiteness of
the quadratic form H;, i.e. the loose inequality p; > 0.

In the following, we will denote these second-order conditions for local minimality in
the time-discrete setting as incremental stability criteria for an equilibrium. We will call
solutions y; of an incremental equilibrium, and we will denote them as incrementally
stable (I-Stable) when p; > 0.

2.5 Comments

The comparison of the notions of evolution, stability, and bifurcation in the time-continuous
and time-discrete evolution calls for several remarks.

e The system of inequalities given by the time-continuous first-order optimality condi-
tions and the energy balance is equivalent to the system of time-discrete
first-order optimality conditions when replacing &y with its finite difference ap-
proximation (a; —a;—1)/(t; —t;—1). Indeed, for smooth-in-time evolutions, the solution
at each time step of the time-discrete first-order conditions is a solution of the
time-continuous first-order optimality condition and energy balance.

e The non-bifurcation criterion for the time-continuous rate problem coincides with
the incremental stability condition of the time-discrete setting.

e Since Vi (yi) C N (i),
pi = p(t:) < p+(ti) (23)

i.e. the incremental stability (or non-bifurcation) criterion, in the sense of —, is
a sufficient (but not necessary) condition for the state-stability (L5)).



e Assuming all the required time-regularity so that the time-discrete evolution has a well-
defined smooth time-continuous limit as the time step goes to zero, the time-continuous
limit will be a solution of the time-continuous evolution problem, respecting the time-
continuous irreversibility, stability, and energy balance. The converse is not true, be-
cause a state-stable solution of the time-continuous evolution problem can be incremen-
tally unstable. The example of the next section will provide an explicit illustration of
this case.

3 A discrete model problem

3.1 Formulation

We discuss the solution of the evolution problem of a simple discrete system constituted by
two identical damageable springs connected in series, see the schematic in Figure Both
springs, supposed undamaged at the beginning of the loading process, can undergo damage
in the sense that their stiffness decreases when the corresponding internal damage variable
increases. We assume that the system is fixed at one end and that a monotonically increasing

aUa(Oq) | aoa(ag)

Uy
|
|

| >

Figure 1: The model 2-dof system composed of two identical damaging springs in series. The
evolution problem associated to a monotonic traction experiment allows us to compute, in
closed form, bifurcation and stability limits for homogeneous (a; = a) as well as all possible
non-homogeneous (a; # ag) evolution paths.

displacement @; = t is prescribed at the other end by a hard loading device. The parameter
t plays here the role of the time-like variable of rate-independent process. We denote by u
the unknown displacement of the point connecting the two springs at time ¢ and by a =
(a1,a9) € 10,1] x [0, 1] the damage level of each of the two springs. For this discrete structure,
the equivalent of the total energy functional introduced in Section [2.1]is

Ex(u,0) = 5 (alar)u’ + al0z)(u — 0)°) +wiw(ar) + waw),

where ag is the extensional stiffness of the undamaged spring and w; is the dissipated energy
in the completely damaged state. We omit here the discrete equivalent of the gradient term in
. In order to make the computations explicit, we specify the constitutive model by setting

(1-a)

(F-Tas1 W= 20

a(a) =
where k > 1 is a free parameter. The chosen one-parameter family of damage models is
constructed such that the global one-dimensional homogeneous response in a traction exper-
iment, as it will be seen in the following, gives raise to a piecewise-linear stress-strain curve
during both the elastic and softening phase.

The first order optimality conditions, given by in the time discrete setting and by
in the time continuous case, require that the first derivative of the energy with respect to
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u vanishes at each t. This condition corresponds to mechanical equilibrium and allows to
determine the mid-point displacement v as a function of the damage variables and imposed
load. We compute

oF;
ou

_ _ _ a(o)
=agalar)u—ag alag)(t—u)=0 = wu= alon) + aloa)

We can rewrite the energy in the terms of (a1, a2) only
a0 t2 1

2 s(on) + s(a2)
where s(a) := 1/a(«) is the compliance modulation function.

The solutions to the evolution problem must satisfy, at each time, the set of Karush-
Kuhn-Tucker conditions given by , , and in the time-continuous case, namely

Ey(a) :=

+ wi(w(an) + w(az)),

. OFE; OFE; .
> — > — =
a1 =2 07 80[1 = O? aOé]_ a1 07 (258’)
. oF; oE; .
> — > —_— =
Qg ~ 07 80{2 - 07 80[2 (0%)] 07 (25b)
with
OE; apt? s' (1) / s'(a1) /o 2
dar 2 (s(ar)+s(az))? (o) = ao (7%(0) — e, 02))
OB, agt? s'(a2) / _ S(ag) o 2
Bar = 2 Golan) st )= Ty (7] el 02))
where
o ao _ L anwlw’(a)
or(ar, ag) == S+ s(ag)t7 g(a) = 78,@) ,

define the stress and the maximum allowable stress as a function of the damage variables. For
the stress-strain piecewise-linear model , we have

—w s'a:L w'(a) = ola) =(1l—-a)o Oc = 230w
S(CM)— (1-&) ) ( ) (1—04)27 ( ) 17 ( ) (1 ) Cy c .

k

3.2 Solutions to the evolution problem
Introducing the non-dimensional time variable 7 defined by

t 8
T=— with t.= oWy
c a0k

Y

possible solutions of the evolution problem starting from the undamaged state a;(0) = a2(0) =
0 at 7 = 0, are as follows

e Purely elastic: For 7 € (0,7. = 1), 0E;/0a; > 0 and OFE;/0az > 0. The damage
criterion imposes that damage does not evolve, i.e. a7 = as = 0. The purely
elastic solution starting from the undamaged state at 7 = 0 is the unique solution to
the evolution problem and is such that

A1,r = 07 a2, = 07 Or =0cT, Oc = 5-(0) =V 2W130/k' (26)

At 7 = 7. = 1 the stress reaches the elastic limit o, at which 0E;/da; = 0FE;/0as = 0.
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Figure 2: Solutions of the discrete model problem in Figure . force-displacement diagram
(top-left) and evolution of the potential energy (top-right). The solutions is purely elastic for
7 < 7. = 1 (in blue). For 7 > 7. there is a fundamental branch where the damage is evolving
equally in the two springs (in orange), showing a continuous family of possible bifurcated
branches (in green) where damage increases only in one of the two springs. The homogeneous
branch (in orange) is state-stable for 7 < 74 = k/2 (solid orange line) and state-unstable for
T > 75 (dashed orange line).

o With homogeneous damage: For T > 7., starting from the elastic solution, one can
look for solutions such that damage evolves at the same rate in both springs, .e. with
d1 = aig > 0. The complementarity conditions in give the equations 0F;/0a; =
OE;/0ay = 0. Assuming that both springs are undamaged at 7 = 7, one finds

T—1 k—r1
k—1’ '

a1 r = Q25 =

These solutions are valid for 7 € (7., 7 := k). At 7 = 74 the stress vanishes and the
damage reaches its upper boundE| a=1.

o With localised damage: For T > 7., starting from a solution with homogeneous damage
a1 = ag = a* := (7* = 1)(k—1) at time 7% > 7., one can look for solutions where
only one of the damage variables keeps evolving, i.e. for solutions of with & = 0,
OE;/0ay = 0, or with &g = 0, 0E;/0a; = 0. Modulo a permutation of the indices
(1,2), these solutions are in the form

-1
al,T:a*::Tk T 042,7—1—<1—T)C*, UT_<1—T)C*- (27)

Ts Oc Ts
Here,
. k(k — ) k(1 — o) koo
= = drgi==—=-+=
ST - Dk—2r) (k-D1-2a7)_1 MTT T

can be interpreted as the (non-dimensional) rate at which damage increases and the
critical load at ultimate failure, respectively.

Figure [2| shows the global stress-strain diagram and the evolution of potential energy
corresponding to the three types of solutions above. Because of the irreversibility condition,

!To simplify the presentation, we do not explicitly include the upper bound on damage in the formulation
and assume a loading 7 € (0, 7¢.)
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branches with evolving damage are one-way paths. In Figure the arrows indicate the
admissible direction.

Identical solutions can be obtained in a time-discrete setting by imposing, at any discrete
time t;, first-order optimality conditions of the time-discrete evolution problem .

3.3 Uniqueness and stability

For 7 € (0,7.) the elastic solution is unique, all constraints are active and the solution is
both state-stable and incrementally-stable because the first derivative of the energy is strictly
positive.

For 7 € (7, 7s) the homogeneous solution is state-stable in the sense , although fails
to be unique and is incrementally unstable in the sense —. Indeed, the first derivative
of the energy is zero and the stability is assessed by studying the sign of the Hessian matrix

H(hom) _ [Hﬁ‘om) Hl(;om)] |

hom hom
H™  H

k— 27 h k
ith H"°™ — wy (k= 1)———— HE™ —wy (k= 1)———
Wi 11 wl( )T(k—T)7 12 wl( )T(ki—T)7
on N(y,;) = R? for the incremental-stability condition and on Ny (y.) = R2 for the
state-stability condition . After straightforward calculations, we can show that

(28)

h _ pythom) _ pythom) _ wi(k— 1) hom) \ _ yr(hom) _ k—2r
ptrom (r) = Hyy*™ — Hyy™™ = ko pi () = Hy™ = wl(’f—l)m- (29)
where p(hem and p$‘°m) are respectively the markers on the homogeneous solution for the

incremental-stability and state-stability conditions and , and 1 < 7% < 74 is an
arbitrary bifurcation load. Hence, the homogeneous solution is state-stable for 7 € (1,7s)
but state-unstable for 7 € (74, 7), although it is incrementally-unstable and non unique for
any 7 € (7., 7¢). This is consistent with the existence of a continuous family of bifurcated
branches departing from the homogeneous solution in the interval 7 € (7,,7y). Figure
provides a graphical interpretation of the stability conditions, reporting the energy landscape
in the oy — g plane. For two homogeneous states (marked by white points) obtained for 7 < 74
(left) and 7 > 74 (right), blue and green are regions with lower or larger energy than the current
solution, respectively. Shaded regions are inaccessible because of the irreversibility constraint.
For 7 < 75 the current state is a local minimum of the energy among all the admissible
states and the solution is state-stable. For 7 > 74, neighbouring states with lower energy
are admissible, hence the solution is state-unstable. According to the incremental stability
condition , the solution with 7 < 74 is unstable, because with the irreversibility constraints
given by the damage field at the previous time-step, there are admissible neighbouring lower
energy states.

On bifurcated branches where only one damage variable can evolve, the incremental-
stability and state-stability conditions coincide and depend on the sign of

(k —271%)

(loc) _ (loc) _ (loc) _ .
P (t) p+ (t) Hll wl(k 1)7_(]{:_7_*)7

(30)
which, being k > 1 and 7* < 77 = k, is positive for 7* < 7, = k/2 and negative for 7* > k/2.

Hence, bifurcated branches originating at 7 € (1,k/2) are stable, whilst branches obtained
for 7" € (k/2, k) are unstable, as marked by solid and dashed lines in Figure [2| respectively.
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Figure 3: Energy landscape in the plane (aq, ag) for 7 < 75 (left) and 7 > 75 (right). The
current state is denoted by a white point. In blue and green, regions with lower and higher
energy than the current state, respectively. Shaded regions are inadmissible because of the
irreversibility constraint. For 7 < 75, the homogeneous solution is stable because there are
no other admissible states with lower energy. For 7 > 7, instead, there exist admissible
inhomogeneous solutions with decreasing energy, hence the homogeneous state is unstable.

3.4 Discussion

Figure [2| displays three subtle phenomena typical of the evolution of systems with damage:
(i) the presence of a continuous family of bifurcations along the homogeneous solution for
T € (7¢,7s); (i) the presence of bifurcation points along the fundamental path notwith-
standing its state-stability; (iii) distinct incremental-stability and state-stability thresholds.
Similar behaviours are largely documented in the literature (Bigoni, Nguyen,
Petryk, for other kind of inelastic systems. The paradigmatic example is the plastic
buckling of the Shanley’s inelastic column (Shanley, , where instabilities arise because
of the interaction between the irreversible nature of perfect plasticity and geometrical nonlin-
earities. In the case of damage models presented here, geometrical nonlinearities are absent
and instabilities are entirely due to the softening character of the its constitutive law and the
irreversibility constraint Benallal and Marigo,

A fundamental problem in this complex setting is to select among the infinite possible
evolution paths those observable in physical experiments. The homogeneous solution for
T € (7¢, 75) in Figure[2]is an example of a state-stable solution of the time-continuous evolution
problem, which is not a solution of the time-discrete evolution problem, being incrementally
unstable. This solution will be hardly observable in an experiment because of the presence
of bifurcated branches with lower energy. This is intuitive when looking at the values of
the energy of each path reported in Figure [2lright. At the bifurcation point at the end of
the elastic phase, there are two possible solution paths, the homogeneous and the localised
solutions. Both paths are stable in the sense of the state-stability criterion (15)). However,
the localised solution is the path with the steepest energy descent, and thus preferable from
the energetic point of view. On the basis of a similar reasoning, Petryk, introduced the
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concept of path stability, providing an in-depth analysis of the relation between the energetic
stability concepts, the stability of evolution paths, and the dynamic definition of stability for
inelastic systems. The definition of path stability is related to the property of the path to
realise, at each point, the steepest energy descent. The homogeneous path will be unstable
according to this definition, whilst the localised solution will be stable. The incremental-
stability condition , appears thus intimately related to path-stability because it selects
among all admissible increments at each time, the one with minimal energy. Although state-
stability is the appropriate definition for selecting observable states, independently of the
evolution, it fails to be helpful to select the minimal energy direction at a bifurcation point
and is unable to guarantee that a state-stable point can be reached as the result of an evolution
through a minimal energy path.

In the following, we present and test numerical tools to test the incremental stability
condition . This will allow us to detect bifurcation points and to select optimal evolution
paths according to a minimal energy criterion on systems with many degrees of freedom
encountered in the applications.

4 Numerical methods for stability and bifurcation analysis

Computational solvers for phase-field fracture models of the type seek quasi-static evolu-
tions as solutions of the time-discrete evolution problem . However, most of the solvers
only impose first-order necessary conditions without explicitly checking second-order local
minimality conditions. The solution at the time step t¢; of the system of nonlinear variational
inequalities is typically performed iteratively by means of an energy-decreasing scheme,
in its simplest incarnation, an alternate minimisation exploiting separate directional convexity
of u— E(u,-) and a — E(-, @), as summarised in Algorithm

Algorithm 1: Alternate minimisation

Data: The irreversibility constraint a;—; and the initial guess al

Result: Solution y; = (u;, a;) of the first-order optimality conditions at the
time step t;

k+1

while not converged do
u” < argmin, F;(u, a
a¥ < arg min CEi(u”, a)
k+—k+1

end

k—l)

a>o;—

yi = (uiﬂai) — (ukvak)

Here, we devise a numerical tool that enriches the standard alternate minimisation algo-
rithm by performing the following tasks:

1. Given a solution y; of the first-order stability conditions , check the second-order
time-discrete local minimality condition to evaluate if the solution is incrementally-
stable or unstable;

2. Construct stable evolution paths by introducing a continuation algorithm that bifur-
cates from unstable states, in the direction of minimal energy curvature, as soon as the
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evolution path ceases to be unique.

The numerical implementation of the stability assessment is summarised in Algorithm
whilst the continuation procedure is outlined in Algorithm

Algorithm 2: Incremental stability check (I-StabilityCheck)

Data: The critical state y; satisfying the first-order optimality conditions and
the irreversibility constraint a;_1
Result: Time discrete stability of the state y; (I-Stable) and, if unstable, the first
Neig smallest eigenpairs {/\Z(.k),zf;k) e

Compute the inactive index set N;(y;)
if Ni(}’i) = Q) then

| y; is purely elastic I-Stable <— True
else

/* assemble the Hessian H; and extract the reduced Hessian I;TZ */

/* calculate the number of negative (nne) and vanishing (ng)
eigenvalues of H; via MUMPS’ Cholesky factorisation and
getInertia operator in the PETSc interface x/

Tneg, 10, Npos <— getInertia(H;(y;));

if nyeg = no = 0 then

| I-Stable < True

else if nyee >0 or ng > 0 then
I-Stable < False;
/* solve the reduced eigenvalue problem extending
eigenvectors by zero to the full space R" x/

{)\gk)yzz(k)}zigl + eigen(H;(yi))

end

The basic ingredient of both algorithms is the solution of the minimisation problem ap-
pearing in the incremental stability condition . We compute stability in by solving
the eigenvalue problem for the reduced Hessian H;, the incremental stability indicator p;

(2
as input a solution of the first-order optimality conditions and the solution at the previous
time-step defining the irreversibility constraint. It returns the incremental-stability flag and
the first eigenpair corresponding to the smallest eigenvalue of the reduced Hessian matrix. The
continuation Algorithm [3| uses this information to provide a second-order stable solution y; at
the i-th time-step (given y;—1). First, it computes a tentative solution y, by alternate minimi-
sation (Algorithm with y;_1 as initial guess. Hence, it checks its incremental-stability with
Algorithm[2] If y. is stable, it is accepted as solution at the i-th time-step. If not, the eigenvec-

being computed as the smallest eigenvalue AD of H;. The stability-check Algorithm [2f takes

tor szl) corresponding to the smallest negative eigenvalue A(!) is used to generate a perturbed
initial guess y. + th}) for the alternate minimisation algorithm. The optimal amplitude hqpt
of the perturbation is selected through a bound constrained line-search procedure minimising

the one-dimensional energy Ei(l)(h) = E(y.«+ hszl)) in the interval h € [Amin, Amax], Where

the bounds Ay, and hpyax are preliminarily computed to assure that a;—1 < i + h,@&l) <1
for all A € [hmin, hmax)- After checking its incremental-stability, the new solution of the alter-
nate minimisation algorithm, if stable, is accepted as the solution at i-th time step. Possible
failures to provide a stable solution happen when Ay, = Amax or when the newly calculated
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solution is unstable too. In those cases, several strategies could be conceived. For example,
one can accept the unstable solution at the current time step, marking it as unstable, and
proceed with the loading; if a stable solution is found at one of the next time-steps, this stable
solution can be continued backward in time with a back-tracking strategy to provide a stable
path at each loading step. As an alternative to a simple reiteration of the procedure, one can
repeat Algorithm (3| using a different direction of negative curvature, as initial guess for the
alternate minimisation, e.g. z5<2) or zik’l). We focus here on the presentation on the basic
algorithm, leaving similar additional developments for future works.

In practice, the finite element discretisation of the damage energy functional is per-
formed using the finite-element framework FEniCS (Alnaes et al., [2015]), which includes sym-
bolic differentiation tools to calculate the second derivative of the energy and to automatically
assemble finite element matrix and vector using PETSc (Balay et al., 2020) as the linear-
algebra back end. PETSc provides also efficient large-scale solvers (SNES,TAQ) for the solution
of the elastic and the damage subproblems of the alternate minimisation Algorithm [I| The
reduced Hessian matrix H; is obtained by extracting from the full Hessian H; the block
matrix corresponding to the index set N;(y;), using PETSc’s index-set (IS) objects and the
related operators. The smallest eigenvalues and corresponding eigenvectors are computed
using the large-scale eigenvalue solvers provided by SLEPc (Hernandez et al., 2005). Namely,
we use the Krylov-Schur iterative algorithm with the shift-invert option and a small nega-
tive spectral shift (Roman et al., [2020). We also implement, as an alternative method to
check the time-discrete stability condition, a direct evaluation of the inertia of the matrix
H; through a Cholevsky factorisation, which yields the number of negative, vanishing, and
positive eigenvalues of the matrix. This information is returned directly by the parallel sparse
direct solver MUMPS (Amestoy et al., |2019) when activating the specific options INFOG(12)
and ICNTL(13)=1. If there is at least one negative eigenvalue, the state is marked as unsta-
ble. This achieves the task without explicitly computing the solution to the large and sparse
second-order eigenvalue problem.

5 Numerical experiments

We illustrate the concepts and numerical tools introduced in this paper through the solution
of two basic examples, focussing of the interplay of homogeneous and localised solutions and
their stability properties. While we found that in most of the situations the alternate minimi-
sation algorithm provides incrementally stable evolutions, we report in the following specific
counterexamples showing that this is not true in general and that the proposed stability-check
and continuation algorithms provide an useful addition to the existing numerical techniques.
To this end, we present (i) the traction test of a slender bar and (ii) the multifissuration of a
pre-stressed thin film. In these examples, we do not impose any Dirichlet boundary condition
on the damage field, in order to allow for non-vanishing homogeneous solutions of the damage
field.

For each of the following illustrative examples, at each time step, we determine the so-
lution of first order necessary conditions (21)) with the alternate minimisation Algorithm
and we perform the stability check with Algorithm [2|to verify the incremental stability of the
computed critical states. This is done by checking the second order local minimality condi-
tion . Hence, we compare evolution obtained with or without activating the continuation
Algorithm
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Algorithm 3: Time-discrete continuation algorithm seeking a second-order stable
evolution.

Result: y; = (u;, ;): A solution respecting the second-order optimality condition
Data: y;—1 = (u;—1, a;—1): The solution at the previous time step

/* Run the alternate minimisation with «;_; as irreversibility
constraint and initial guess x/
Vi AltMin(ai_l, C\’—z‘—l)

/* Calculate the time-discrete stability of y; with o;_; as
irreversibility constraint */

1-Stable, {A" 2V }79% « 1-StabilityCheck(y., i 1)

if I-Stable = True then
‘ Yi < Y« /* accept y. as solution at the time step ¢ x/

else

end

/* Find the optimal amplitude of the perturbation by solving the

constrained line-search problem in the direction of minimal
curvature z&l) = (vﬁl),,ﬁgl)) */

repeat

hopt < argminh{EZ-(l)(h) = Ei(ys + hzg))y h:oi 1 <o+ hﬁg) <1}
if hopt # 0 then

/* Run the alternate minimisation with «;_; as irreversibility
. 1 .
constraint and a*—i—hopt ,85‘) as initial guess */

1 . 1
y5< ) — AltMll’l(aZ’_l, o, + hopt /6>(k ))
(Lk) (1K) eig r (1)
I-Stable, {\."7, 2z, 7}, 29 < I-StabilityCheck(y. ', o 1)
if I-Stable = True then
‘ Vi %yg) /* accept y,(kl) as solution at the time step ¢ x/
else
/* Unable to get a stable solution, issue a warning and
return the minimal energy solution (alternatively,

restart the procedure with zS}”“)) */

yi ¢ argmin(E;(y.), Ei(y\"))
end
else

/* unable to get a stable solution, issue a warning and return

y« (alternatively, restart the same procedure with yiQ) or

1,k . . . .
zi ’ ), or use an infeasible solution as initial guess) */

Vi < Y«
end

until I-Stable = True;

141+ 1 /* update the time step */;
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Figure 4: Geometry and loading for the uniaxial traction test. We use unstructured simplicial
mesh of uniform mesh size h. For a give internal length ¢, we typically set h = £/5.

5.1 Uniaxial traction test

Let Q = (0,L) x (—H/2, H/2) be the reference configuration of a brittle bar of length L and
width H. The displacement in the axial direction is blocked on the left end and imposed to
Uy =t L at the right end, with a free sliding condition, see Figure [d] To eliminate rigid body
modes, we block both components of displacement at the lower-left corner. Conversely, we
leave damage free on the entire boundary to allow both homogeneous states of damage as well
as boundary cracks.

We consider the damage model described by the energy functional defined in — with
the constitutive choice a(a) = (1 — «)? and w(a) = «, corresponding to a model which is
frequently adopted in phase-field fracture, referred to as ATy in (Tanné et al., . Setting
the elastic Lamé coefficients to reproduce plane-stress conditions, the energy functional
reads as

£(u,a) :E/Q(l—oz)z (Vtr(e(U))2 N ||6(U)|]2> d:1:+w1/9(04+52|va|2) de.  (31)

2(1 —v?) 2(1+v)

The uniaxial traction test has been largely discussed in previous analytical (Pham et
al., and numerical (Pham et al., works, highlighting the competition between a
solution with homogeneous damage and a solution where damage localises in a band transverse
to the long axis. The width of the localisation band is proportional to the internal length
£. The localised solution can be regarded as the phase-field approximation of a crack, for
which the elastic energy and the stress vanish whilst the dissipated energy per unit length
is G, = %wlﬁ, see (Pham et al., ; Tanné et al., . A one-dimensional bar model
allows for an analytical stability and bifurcation analysis of the homogeneous solution. As
reported in (Pham et al., , the homogeneous solution is purely elastic for an imposed
displacement ¢ < t. and a stress o < 0. = w1 E. After this first critical threshold, the
damage level of the homogeneous solution monotonically grows with the loading ¢. Testing
the infinite dimensional version of the non-bifurcation and the state-stability criterion —
(19), one can determine the loading intervals ¢ € (0,t;) and ¢t € (0,t) with t; > ¢, for
which the homogeneous solution is locally unique (i.e. incrementally-stable) and state-stable,
respectively. The critical loads are given by (see Pham et al., Example 1 with p = 0,

q=2):

w t . 2/ ts . 4 |24
te = fl, 0. =\ w FE, tz:mm{l,ﬂ\/gL} tczmln{l,g\/;L}. (32)

With this parametrisation using the specific fracture energy w; instead of the fracture tough-
ness G. to represent the dissipative properties of the material, the critical load for the onset
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Figure 5: Stability diagram for the uniaxial traction test of Figure 4| when increasing the
loading t as a function of the relative length of the bar L/¢. Each horizontal array of symbols
represents the result of a numerical experiment at the different loading steps for a given value of
L/¢. Dots indicate stable states and crosses indicate incrementally unstable states (p; < 0).
The vertical line indicates the elastic limit load t., the thick curve is the analytic limit of
stability ts, and the dash-dotted curve represents the incremental-stability threshold ¢, given
in Equation (32)). These lines partition the diagram in four regions, whose colours indicate
the stability properties of the homogeneous solution according to the analytical predictions:
stable states in blue, both incrementally- and state-stable in orange, both incrementally- and
state-unstable states in green, incrementally-unstable but state-stable states in white.

of damage is independent of the internal length £. However, the stability threshold critically
depends upon the ratio between the internal length and the size of the specimen. The re-
sponse is characterized by a size effect distinguishing two different regimes, that of long and of
short bars, in relative terms with regards to the material internal length. We show that these
two regimes feature different qualitative properties in terms of stability of the homogeneous
response.

We perform a series of simulations varying the internal length ¢, with ¢ € [L/5, L], setting
the aspect ratio H/L = 1/10 and the Poisson ratio v = 0.3. The dependence upon other
material parameters is eliminated by rescaling the displacement by uy = Ly/w1/E. For each
simulation, we monotonically increase the loading from an undamaged state at ¢t = 0. Figurel[]
shows the graph of the parametric stability diagram as a function of the relative length L /¢
and the loading ¢. This diagram serves as a verification experiment for the numerical approach
against the analytic solution of (Pham et al., [2011a). Black curves represent the analytical
state-stability and non-bifurcation thresholds in Equation (32). These curves partition the
state space in regions where, according to the analytical prediction, the state is: (i) purely
elastic, in blue; (ii) with non vanishing damage and both incrementally- and stable-stable, in
orange; (iii) incrementally-unstable and state-stable, in white; (iv) both incrementally- and
state-unstable, in green. Each horizontal set of dots corresponds to an irreversible evolution
computed for a given value of L/¢ and each time step is represented with a dot: blue dots
for purely elastic states and orange dots for incrementally-stable states, i.e. such that p; > 0
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within the numerical toleranceﬂ The simulation is halted upon encountering an incrementally
unstable state with p; < 0, represented with a cross. Overall, the numerical results are in
very good agreement with the theoretical predictions.

Figure [6] reports the evolution of the stress, the energy, and the smallest eigenvalue of
the Hessian matrix for the case of a relatively short bar (L/¢ = 1.7). The left column shows
the solution obtained with by running the plain alternate minimisation algorithm at each
time-step. The presence of negative eigenvalues (in red in the bottom diagram) indicates
that the alternate minimisation returns an incrementally unstable solution for ¢t > t;. The
corresponding solution is a stationary point of the energy which verifies first-order optimality
conditions, but fails to be a local energy minimizer in the sense of . This is a clear issue
of the plain alternate minimisation algorithm, commented also in (Bourdin, 2007)), because
unstable solutions are physically unobservable. The diagrams in the right column report the
results of the same simulation obtained when activating the continuation Algorithm [3] In this
case, when the stability check detects an unstable state, we switch from the current evolution
path towards a stable state at the current time step. A new alternate minimisation solver is
launched, seeded by a perturbation obtained from the eigenmodes as detailed in Algorithm [3}
The proposed continuation algorithm improves the results of the plain alternate minimisation,
being able to retrieve an evolution made of incrementally-stable states.

Figure [7] shows the analogous results for the case of a long bar, where the theoretical
bifurcation threshold coincides with both the elastic limit and the state-stability threshold
(ts = tp = tc). This case is more interesting for phase-field fracture applications, where
typically L/¢ > 1. We report here the case L/¢ = 5, the qualitative behaviour being similar
for larger values of L/¢. As for short bars, the plain alternate minimisation returns unstable
states, with a jump in the response, corresponding to a localisation of damage, only for a
loading significantly larger that the the theoretical stability threshold. Vice-versa, activating
the continuation algorithm, a bifurcation into the direction of minimal energy curvature allows
the algorithm to follow a stable evolution, as soon as the damage criterion is met.

Figure |8 summarises the key results, showing the evolution of the damage field in time
and space along the central axis for short and long bars, with and without the continuation
Algorithm. For the given boundary conditions (free damage at the ends), localisations and
instabilities are characterised by the appearance of one single boundary crack which can
indifferently be at the left or right end.

The mechanism of loss of stability is different in the case of short and long bars. For the
former (Figure @, the instability happens at a loading strictly larger than the elastic limit,
when the smallest eigenvalue smoothly crosses zero in correspondence to a non-vanishing
homogeneous damage level. For long bars (Figure, the instability happens immediately after
the elastic limit, when one or more negative eigenvalues suddenly appear as the irreversibility
constraints become inactive and the corresponding space N (y;) in suddenly changes.

Figure [J illustrates some details of the stability-check and continuation algorithms for
the case of the long bar, for which several negative eigenvalues are detected immediately
after ¢t = t.. Figure OHeft show the damage distribution along the bar longitudinal axis for
the two eigenmodes 69), BQ) associated with the two smallest negative eigenvalues. They
correspond to damage localisations at a boundary (in grey), at the centre of the bar (in black).

The boundary localisation ﬂil) is associated with the smallest eigenvalue and is energetically
preferable, when admitted by boundary conditions. In this specific case, its corresponding

%in practice, we get the smallest eigenvalue p; from the solver with a numerical relative tolerance rtol =
1075,
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(a) Plain alternate minization Algorithm (b) Continuation Algorithm

Figure 6: Traction experiment for a relatively short bar (L/¢ = 1.7). The plots report the
numerical evolution of the average axial stress o across a cross-section (top), of the energy
(middle), and of the smallest eigenvalues (bottom) as a function of the loading, for ¢ € (0, 3).
The left column is obtained exploiting the plain alternate minimisation Algorithm [1}, whilst
the right panel shows the solution provided by the continuation Algorithm Eigenvalues
and stability of states are computed with Algorithm The regions shaded in light blue,
orange, and green, indicate respectively purely elastic, homogeneously damaging and bifur-
cated (localised) regions, according to the analytical stability analysis; the white region covers
homogeneous states which are state-stable yet incrementally-unstable. In the bottom row we
mark in light green positive eigenvalues and in red negative ones, reporting also the maximum
value of damage (blue curve, right axis).
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Figure 7: Traction experiment for a relatively long bar (L/¢ = 5.0). Legend as in Figure |§|
For a long bar, the state of homogeneous damage is unstable (state-wise and incrementally)
as soon as the damage criterion is met. Multiple negative eigenvalues (cf. left panel, bottom)
correspond to potential directions of energy decrease. In the right panel, the continuation
Algorithm [3] delivers a second-order stable evolution featuring the emergence of one sudden
crack at t = t, =t = ts.
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(c) Long bar - plain alternate minimisation (d) Long bar - Continuation algorithm.

Figure 8: Bar in uniaxial traction: space-time evolution of damage along the longitudinal axis
of the bar for the short and long cases, both with and without continuation Algorithm[3} Only
the continuation algorithm is able to retrieve a stable evolution (see Figures @-@ Colours
indicate the damage level form 0 (sound material, violet) to 1 (fully cracked, red).
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Figure 9: Perturbations and energy landscape for the traction problem of a long bar of
Figure Bd] immediately after the elastic limit ¢.. Left: first two normalised eigenmodes asso-
ciated to negative eigenvalues. Right: optimal perturbation along the first eigenmode used
for seeding the alternate minimisation Algorithm [I] at the occurrence of an unstable solution,
according to Algorithm [3| The inset shows the energy Ei(l)(h) = Ei(y« + hzgﬁl)) along the
direction of the first mode, which is used to determine the optimal amplitude subject to the
constraint on h : a;—1 < i + h,[i(kl) < 1. We represent damage along the beam axis (y = 0),
the damage field being invariant in the transversal y-direction.

eigenspace is of multiplicity two, because of the possibility of localisations at both ends, due to
the symmetry of the system. Figure [O}right shows the optimal amplitude of the perturbation
for the damage along the minimal curvature direction ﬁ*l). This is determined through the
constrained line-search formulated in Algorithm The inset shows the variation of energy
EZ»(l)(h) = Ei(ys. + hzgﬁl)) along the direction pointed by the first eigenmode, within the
corresponding admissible lower and upper bounds obtained from the constrained line-search
procedure. This perturbation technique allows us to construct evolutions composed by states
which are incrementally stable, in a way that is more pertinent from the physical point of view.
Still, the solution to the evolution problem is not necessarily unique. For example, we are
able to reach a different local energy minima perturbing the unstable homogeneous state with
the second eigenmode, leading to a fully developed crack in the centre of the specimen (not
reported here). As it can be checked analytically, the (optimal) profile of the boundary crack
is half the symmetric profile associated to a macroscopic crack in the bulk. Consequently,
the total energy of the state with one bulk crack in the bulk is twice that of the bar with a
boundary crack.

5.2 Multifissuration in thin films

We now consider a two-dimensional model of a thin film bonded to a substrate by the means
of a compliant layer, modelling this system as an effective two-dimensional membrane resting
onto a linearly elastic foundation. The film is brittle in the sense that it undergoes an irre-
versible damaging process under tensile stress, eventually leading to fracture. In this case,
the interplay between tensile membrane deformations, possibly released by transverse crack-
ing, and the energy stored in the foundation, produces a rich phenomenology leading to the
emergence of robust and variegated fracture patterns (Xia and Hutchinson, 2000)). Indeed,
differently from the one-dimensional bar in traction, the system at hand features an additional
characteristic length scale of purely elastic origin which accounts for the interaction between
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the membrane and the underlying substrate. We focus on the material regime in which the
elastic length scale is small compared to the size of the domain and large with respect to the
damage length. In this regime, the loss of stability of the sound state results in the emergence
of fracture patterns characterised by robust morphological properties (Leon Baldelli et al.,
2014).

Let Q3q = Q x [-T/2,T/2] C R? be the reference configuration of a thin film of diame-
ter L := |Q|1/ 2 mid-plane w C R?, and thickness 7. The film is in plane-stress conditions,
as indeed can be inferred via an asymptotic dimension-reduction procedure, and undergoes
in-plane displacements u : w — R? which are elastically constrained on a rigid substrate.
Following (Leon Baldelli et al., |2014; Xia and Hutchinson, [2000), the elastic interaction be-
tween the thin film and the substrate is modelled as a linear elastic foundation of stiffness
K > 0, which introduces an additional elastic energy density %]u|2 As common in thin film
applications, we suppose that the membrane is loaded by a given inelastic deformation tensor
é:, that can model, for example, the differential thermal expansion between the thin-film and
the substrate. Adding to the plane-stress total energy functional the contribution due
to the presence of the substrate, we associate to (u,a) € H'(2,R?) x H(Q) the following
non-dimensional energy per unit of thickness

yreu—ét2 e(u) — &/ 1 [uf?
f(u,a):E/Q((l—oz)2< tQ((l(_)y2)) +|2((1)+1/)’ >+€§|2’> dr

—I—w1/ (a+€2\Va|2) dz, (33)
Q

where ¢, := \/ET/K is the relative weight of the elastic energy stored in the membrane
relative to the elastic foundation. We focus on the stability properties of the homogeneous
solution when the elastic internal length is small compared to the size of the structure, namely
L. < L, corresponding to a stiff interaction between the film and the substrate. Heuristically,
in this regime the displacement field u is close to zero in the entire domain (possibly up to a
boundary layer of size £.) because the foundation term in the energy has a large multiplicative
coeflicient. As a consequence, the stress is approximately constant and the damage criterion
is met almost uniformly (up to a boundary layer). This, coupled with the existence of the
additional length scale ¢, is responsible for the appearance of structured crack patterns beyond
the elastic limit. As for , without loss of generality, one can set £ = 1, wy = 1. This is
equivalent to rescaling the displacement field by the scaling factor ug = Ly/w;/E. Hence, the
relevant dimensionless material parameters appearing in are the relative elastic length
scale ¢,/ L, the relative internal length for the damage field ¢/L, and the Poisson ratio v.

We report a first numerical experiment for a film in the form a thin strip Q = (—L/2, L/2)x
(—=H/2,H/2), as in Figure 4} with L = 6 and H = 0.1, by setting material parameters to
(/L = 0.1, /L = 0.3, v = 0. The thin-film strip has fixed, homogeneous, horizontal dis-
placements at the left and right ends # = +L/2, is free on the top and bottom boundaries,
y = £H /2, whilst no Dirichlet boundary conditions are imposed on the damage field, which
consequently satisfies natural homogeneous Neumann conditions. To focus on the almost
one-dimensional regime and simplify the interpretation of the results, we consider the case
of an uniaxial loading é; = ti, ® i, where i, stands for the unit vector in the axial direc-
tion of the bar. With this almost one-dimensional setting, the solution for the damage field
is invariant with respect to the transverse direction and depends only on the axial variable
x € (—L/2,L/2). Figure 10| compares the results of the plain alternate minimization Algo-
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Figure 10: Thin film strip with L = 6, H = 0.1, £ = 0.1, ¢, = 0.3. Solution of the evolu-
tion problem when monotonically increasing the pre-stress ¢, obtained with plain alternate
minimization (left column) and with the proposed path-selection Algorithm (right column).
Top: Damage field v along the central axis as a function of the space variable z and the time
t. Centre: energies. Bottom: minimal eigenvalues resulting from the stability analysis. The
critical load in the figures corresponds to the elastic limits ¢, = y/w;/E. The plain alternate
minimisation retrieves an unstable homogeneously damaged solution for ¢ > t., whilst the
continuation algorithms triggers a sudden jump of the solution toward the stable branch at
t =t
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Figure 11: Left : Detail of the bifurcation at the onset of damage, showing showing the unsta-
ble homogeneous state a, the irreversibility lower bound «;_; and the optimally perturbed
state o + hoptﬂ(l), see Algorithm Right: Fully localised solution for the damage field «
obtained at the end of the simulation.

rithm (1] (left) with those of the proposed continuation Algorithm 3| (right) for the evolution
problem obtained when monotonically increasing the loading ¢. In each column, from top to
bottom, we report the evolution in time of the space distribution of the damage field along
the axis of the strip, the energies, and the minimal eigenvalue of the reduced Hessian matrix
used as a stability marker. The plain alternate minimisation Algorithm [1| (left) delivers a
uniform state of damage beyond the critical load t., which is unstable for t > t. = \/w;/E,
from which multiple clustered negative eigenvalues appears. The associated eigenvectors are
functions oscillating along the axis of the thin-film strip with a specific wavelength, of the
order of £.. Figure [[THeft shows the first of such modes provided by the stability check algo-
rithm. This mode is used by the continuation Algorithm to perturb the homogeneous solution
in the direction of energy descent. Following this path, it retrieves a stable solution which
shows equally spaced damage localisations, as shown in Figure [[0}right. This localisation
pattern can be regarded as the phase-field approximation of a periodic crack array, which is
typical of thin-film systems (Leon Baldelli et al., 2013; Xia and Hutchinson, 2000)). Interest-
ingly the spacing of this crack pattern is related to the wave-length of the unstable eigenmodes.

The two-dimensional counterpart of the thin strip shows the emergence of complex two-
dimensional quasi-periodic crack patterns, stemming from a sound and homogeneous state
of damage. We consider a thin film occupying a disk of radius R loaded by a uniform equi-
biaxial e, = ¢t I. The displacement and the damage are left free on the boundary. The brittle
system is in its undamaged state for t < t. where, here, t. := %\/wl /E. For the given
boundary conditions, a solution with homogeneous non-vanishing damage respects the first-
order optimality conditions for ¢t > t.. However, the stability of such state is conditional upon
the values of material parameters. In particular, the homogeneous solution is unstable in
the regime ¢, < R for t > t., in the sense that there exists a family of negative eigenvalues
solving as soon as the damage criterion is attained. This is a challenging scenario from
the numerical standpoint because of the homogeneity of the solution, the existence of a large
number of local minima whose features span several length scales, and the large dimension of
the space generated by eigenvectors associated to negative eigenvalues. We report in Figure
the result of a simulation with R =1, £, = 0.15, £ = 0.03, v = 0.3, and a uniform mesh size
h =£/3. For t = t., the stability-check Algorithm detects 189 negative eigenvalues, computing
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Figure 12: Left. Energy diagram (top) and spectrum of the second derivative (bottom),
showing a stable irreversible evolution departing from the undamaged state. The small disks
on the top show few snapshots of the damage field during the evolution (v = 1 in black
and o = 0 in light grey). At the critical bifurcation point t., the lowest negative eigenmode
(top-right) induces damage localisation on a scale correlated to the internal elastic length /.
The continuation Algorithm [3]returns a stable evolution with a spectrum bounded away from
zero, along the imposed increasing load, showing further fracture nucleation and branching.
At the end of the loading program, the damage field shows a two-dimensional fracture pattern
(bottom-right). The unstructured computational mesh, with approximately 100K degrees of
freedom, is indicated in transparency. Parameters for this computation are R = 1, £, =
0.15,£=0.03,E=1,vr =0.3.

the inertia of the reduced Hessian. The solution of the full second order eigenvalue problem
returns the smallest eigenvalues and the corresponding eigenvectors, see the spectrum in
Figure [I2}left. The continuation algorithm [3] thus seeks a stable state departing, for ¢ = ¢,
from the homogeneous critical point obtained imposing first order optimality conditions. We
represent in Figure |12 (top-right) an elevated plot of the damage component of the first mode
at t ~ t,., which is associated to the smallest negative eigenvalue —6.7 x 1075, Seeding a new
first order alternate minimisation with an optimal perturbation of the homogeneous state
in the direction of the first eigenmode leads to an energy decreasing path and a new, stable,
damaged state. The damage field at the end of the simulation (¢t ~ 1.7¢.) is shown in Figure
(bottom-right). Damage, structured in bands (of the size of £), forms a quasi-periodic network
of intersecting fractures whose features are reminiscent of the eigenmodes at the bifurcation
point. We leave the quantitative analysis of fracture patterns in their relation to effective
unstable modes to a future work.
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6 Conclusions

We have discussed the numerical detection of instabilities and possible bifurcations in quasi-
static evolutions of a class of softening damage models that is used in phase-field approach to
fracture. Our approach is based on the variational formulation of the evolution problem as
a rate-independent process. The stability of the solution is defined as an energy minimality
requirement of the damage energy functional under the irreversibility constraint on the dam-
age variable. We distinguished between the notion of state-stability and incremental-stability,
associated to the bound-constrained energy minimality condition in the time-continuous and
the time-discrete formulations of the evolution problem, respectively. We have shown that the
incremental-stability is a stronger requirement than the state-stability condition. For smooth
evolutions, the incremental-stability condition coincides with the non-bifurcation criterion of
the time-continuous rate-problem. The different concepts were illustrated through the analyti-
cal solution of a two degrees-of-freedom model problem. This example explicitly highlights the
possible presence of admissible energy decreasing evolution paths departing from state-stable
solutions. This led us to suggest the incremental-stability condition as a more appropriate
criterion to select the evolution paths that are actually observable in physical experiments,
echoing previous works of (Petryk, [1993)) for plasticity.

Hence, we discussed the numerical techniques to practically test the increment-stability by
checking the second-order optimality condition of a bound-constrained minimisation problem
for the total energy functional. This requires the numerical solution of a coupled eigenvalue
problem in the displacement and damage variables for a reduced Hessian matrix, which is
obtained by eliminating the degrees-of-freedom associated to active irreversibility constraints
on damage. The sign of the smallest eigenvalue determines the incremental stability condition.
Eigenvectors associated to negative eigenvalues are directions with negative curvature of the
energy and represent possible modes of instability. We have shown by explicit examples
that the standard alternate minimisation algorithm, testing only the first-order minimality
condition, can converge to incrementally unstable solutions. Hence, we proposed a basic path
selection algorithm that filters out unstable paths. When detecting unstable states, it re-
initialises the alternate minimisation solver with a perturbed seed, obtained by a line-search
procedure along the direction of minimal energy curvature.

The numerical framework has been tested on a classical traction bar problem and on a
more complex thin film multifissuration problem. The traction bar problem, for which explicit
analytical solutions are available, serves as a verification test-case. We have shown that the
presented algorithm allows the detection of unstable evolution paths retrieved with standard
first-order algorithms. Finally, the thin film problem illustrates the interest of the proposed
stability and bifurcation analysis on more complex problems, where the unstable eigenmodes
also provide useful information on the emerging crack pattern and on its mechanism of for-
mation.

We believe that the proposed techniques and concepts are useful for the solution of prac-
tical crack nucleation problems in a computational setting. Further developments should
include the improvement of the numerical stability check and path selection algorithms, cou-
pling the present algorithm to more advanced path following techniques (see e.g. Cochelin
et al., 2007; Haslinger et al., 2018; Lorentz and Godard, [2011)).
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