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Abstract

Gradient damage models used in phase-field approaches to brittle fracture are charac-
terised by material softening and instabilities. We present novel numerical techniques for
the bifurcation and stability analysis along quasi-static evolution paths as well as practical
tools to select stable evolutions. Our approach stems from the variational approach to
fracture and the theory of rate-independent irreversible processes whereby a quasi-static
evolution is formulated in terms of incremental energy minimisation under unilateral con-
straints. Focussing on the discrete setting obtained with finite elements techniques, we
discuss the links between bifurcation criteria for an evolution and stability of equilibrium
states. Key concepts are presented through the analytical solution of a two-degrees-
of-freedom model featuring a continuum family of bifurcation branches. We introduce
numerical methods to i) assess (second-order) stability conditions for time-discrete evo-
lutions subject to damage irreversibility, and ii) to select possible stable evolutions based
on an energetic criterion. Our approach is based on the solution of a coupled eigen-
value problem which accounts for the time-discrete irreversibility constraint on damage.
Several numerical examples illustrate that this approach allows us to filter out unstable
solutions provided by standard (first-order) minimisation algorithms as well as to effec-
tively compute stable evolution paths. We demonstrate our purpose on a multifissuration
problem featuring complex fracture patterns, to show how the eigenvalue analysis enables
to compute and retrieve morphological properties of emerging cracks.

1 Introduction

Fracture and damage are dissipative irreversible phenomena. Their models describe the cre-
ation of cracks in the form of sharp interfaces or the evolution damage as a diffuse reduction
of the material stiffness, associating these processes to a specific energy dissipation per unit
surface or per unit volume, respectively. Modern variational approaches formulate damage
and crack evolution problems as energy minimisation problems in the framework of the the-
ory of quasi-static rate-independent processes (Mielke and Roub́ıček, 2015; Pham and Marigo,
2010). They led to the establishment of a precise energetic link between a special class of
softening gradient-damage models and brittle fracture theories (Bourdin et al., 2000; Franc-
fort and Marigo, 1998; Marigo et al., 2016; Pham et al., 2011b). This special class of gradient
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damage models, commonly referred to as phase-field fracture models, are nowadays among
the most flexible and robust tools for the numerical simulation of brittle fracture phenomena.

Quasi-static evolution problems arising in fracture and the associated softening damage
models are strongly nonlinear. They can admit multiple solutions, or none. In this frame-
work, a stability and bifurcation analysis is important to select among the several possible
solutions, or evolution paths, the physically relevant ones (Bigoni, 2012). For irreversible
and non-smooth processes like damage, fracture, or plasticity, this analysis is subtler than in
the conservative elastic case. Similar problems of nonlinear continuum mechanics have been
largely studied in the past, leading to the formulation of specific criteria for non-bifurcation
and stability of solutions. The classical example of plastic buckling of a two-degrees-of-
freedom plastic structure, alias the ‘Shanley column’ (Shanley, 1947), illustrates the main
counter-intuitive phenomena that are possible in this setting. One can observe continuous
families of bifurcation points, the presence of special singularities, and the distinction be-
tween the loading threshold for the first primary bifurcation and that leading to the loss of
stability (Bazant and Tabbara, 1992; Benallal et al., 1993; Fedelich and Ehrlacher, 1997; Hill,
1957; Hutchinson, 1974; Nguyen, 1987; Nguyen, 2000; Petryk, 1993; Potier-Ferry, 1985). In
these problems, the non-smoothness renders the incremental problem intrinsically nonlinear.
A common solution for establishing sufficient conditions for uniqueness is to resort to the
analysis of the so-called linear comparison solid (Hill, 1957). Classical analyses based on local
continuum theories consider pointwise conditions for uniqueness and stability, like the loss of
ellipticity of the linear comparison solid or the loss of the complementing condition on the
boundary and material interfaces (Benallal et al., 1993). In gradient theories, like gradient-
damage or gradient-plasticity, the non-local nature of the incremental problem calls for global
(in space) uniqueness and stability conditions. The energetic theory of rate-independent pro-
cesses (see Mielke and Roub́ıček, 2015) provides a natural framework for their formulation.
Several recent works have performed analytical stability and bifurcation analyses of gradient
damage models in the one-dimensional (Benallal and Marigo, 2007; Pham et al., 2011a) or
the three-dimensional context (Pham and Marigo, 2012), providing theoretical tools for the
understanding of the nucleation of cracks (Tanné et al., 2018) or the morphogenesis of com-
plex patterns (Bourdin et al., 2014; Sicsic et al., 2014) in phase-field fracture. Numerical
techniques for stability and bifurcations analysis have been proposed for plasticity (Petryk
and Thermann, 1992). Yet, at the best of our knowledge, similar numerical tools are not
available for the numerical solution of gradient damage and phase-field fracture models.

The goal of this paper is to present a numerical method for the bifurcation and stability
analysis of gradient damage models used in phase-field fracture. We illustrate on several test
cases how it can improve the prediction of standard algorithms for the numerical solution
of the evolution problem. Differently from previous attempts (Beaurain, 2011; Beaurain et
al., 2011), we focus on the bifurcation and stability analysis in the time-discrete framework,
where the evolution problem is formulated as an incremental energy minimisation under an
irreversibility constraint on damage, bounded to be pointwise larger than its value at the
previous time-step. Hence, we apply standard methods of the theory of bound-constrained
optimisation (see e.g. Nocedal and Wright, 2006) to determine non-bifurcation and stability
criteria. In addition to classical algorithms used to solve phase-field fracture problems, we
explicitly test the second-order optimality conditions for the time-discrete energy minimisation
problem by solving a suitable eigenvalue problem on a reduced Hessian matrix. Hence, we
exploit the available information to improve the time-continuation of the numerical solution
of the evolution problem. We use standard finite element techniques for spatial discretisation,
but the approach is applicable to other methods.
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This paper is organized as follows. In Section 2, we formulate the evolution problem at
hand and give our definitions of stability in the time-continuous and time-discrete setting.
In Section 3, we treat in detail a simple model problem of a two-degree-of-freedom system
composed by two softening springs connected in series. This example allows us to highlight
the richness of possible phenomena that can be encountered even in such a simple setting
where analytical solutions are available. Section 4 presents the numerical algorithms used
for the bifurcation and stability analysis. Section 5 is devoted to the illustration of a series
of numerical experiments highlighting the main properties of stability and bifurcation in two
representative systems, namely the one dimensional bar in traction and a thin film bonded
onto a stiff substrate. Conclusions and perspectives are drawn in Section 6.

We briefly introduce the notation conventions adopted in this paper. We will indifferently
use a lower case letter for scalar-, vector-, or tensor-valued fields depending on the space
variable x. For example, u : x ∈ Rd → u(x) ∈ Rd and α : x ∈ Rd → α(x) ∈ R will
denote the displacement and damage fields, d being the dimension of the physical space. A
superposed dot will denote the time derivative, e.g. u̇t(x) = d

dtut(x, t), whilst a prime sign

will denote the derivative of a function with respect to its argument, e.g. w′(α) = dw(α)
dα . We

use boldface fonts for n-dimensional vectors of finite element coefficients for spatial fields, e.g.
u and α will denote the finite element coefficients of u and α. Matrices will be denoted by
capital letters, using a boldface font for finite element stiffness matrices. For example, a linear
system obtained after a finite element discretisation will read as Au = b. As usual, H1(Ω,Rd)
denotes the Sobolev space of functions with values in Rd which are square integrable with
square integrable first derivatives.

2 Formulation of the time-evolution problem and stability

We present here the variational formulation of the time evolution problem for gradient damage
models in the framework of quasi-static rate-independent processes and generalised standard
materials, following (Halphen and Nguyen, 1975; Mielke and Roub́ıček, 2015; Pham and
Marigo, 2010). We focus mainly on the time-discrete case, which is the setting adopted for the
numerical analysis presented in this paper. To avoid the technicalities related to the infinite-
dimensional nature of the continuum damage model, we quickly simplify the presentation
introducing the finite-dimensional space-discretization of the continuum problem. We define
the criteria for the stability and uniqueness of solutions, and illustrate them through the
analytical solution of a two-degree-of-freedom model problem.

2.1 The total energy functional of gradient damage models

Let be u the displacement field (possibly vector-valued), and α a scalar damage field defined
on the domain Ω. We will denote by e(u) = (∇u + ∇Tu)/2 the linearised strain field. We
consider the classical model of isotropic gradient damage in the small strain limit used in the
phase-field Ambrosio-Tortorelli (Ambrosio and Tortorelli, 1992) approximation of variational
brittle fracture (Francfort and Marigo, 1998). The bulk energy stored in the volume element
is of the form

W (e, α,∇α) =
1

2
a(α)Ae(u) · e(u) + w(α) + w1`

2∇α · ∇α, (1)

where a(α) and w(α) are two scalar functions representing the stiffness modulation and the
energy dissipation along an homogeneous damage process, respectively. We assume that a
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is a monotonically decreasing function from a(0) = 1 to a(1) = η` � `/L � 1 and w is a
monotonically increasing function from w(0) = 0 to 0 < w(1) = w1 < +∞, where we denote
by L the typical size of the domain Ω. We consider the case of isotropic elasticity where
the fourth-order elasticity tensor is such that Ae = λ tr(e) I + 2µ e, λ and µ being the Lamé
parameters and I the identity tensor. The constant w1 is the specific fracture energy and ` is
an internal length of the material. As shown in (Pham et al., 2011b; Tanné et al., 2018), for
brittle materials with stress softening and mode-I cracks, these parameters can be determined
from the knowledge of the toughness Gc and the critical stress σc. The analysis of the solutions
in the form of damage localisations, regarded as smeared versions of sharp cracks, gives the
following relation between the fracture toughness Gc and the specific fracture energy w1

Gc = 4cw w1`, where cw =

∫ 1

0

√
w(α)dα.

We consider a quasi-static rate-independent evolution parametrised by a “time” variable
t and introduce the total energy functional at time t

Et(u, α) :=

∫
Ω
W (e(u(x)), α(x),∇α(x)) dx−Ft(u(x)), (2)

where Ft is a linear functional of the displacement representing the work of conservative
external body forces and surface tractions applied at time t. We denote by

Vt :=
{
v ∈ H1(Ω,Rd), v = ūt on ∂uΩ

}
,

D(α−) :=
{
α ∈ H1(Ω) : α = 0 on ∂αΩ, α ≥ α−

}
,

the space of admissible displacements (compatible with non-homogeneous Dirichlet boundary
conditions ūt) and admissible damage fields (from a damaged state α−). Boundary conditions
are applied on the subsets ∂uΩ and ∂αΩ of the boundary ∂Ω. To simplify the presentation,
we assume that the Dirichlet boundary conditions on the damage field, if present, are homo-
geneous. Non-homogeneous boundary conditions, often used in practice to prescribe, e.g., the
presence of an initial crack, can be accounted for without any complication. Assuming an
existing state of damage α−(x) > 0, taking (u, α) in H1(Ω,Rd) × D(α−) guarantees a finite
value of the energy (2) and the irreversibility of damage with respect to the previous damage
level α−. Also, the irreversibility implies that w(α) represents a dissipative contribution to
the internal energy (1). The formulation and the basic ideas presented in the rest of this
paper can be extended without any major changes to more complex material models simply
by replacing the definition of the strain energy W . One can include, for example, traction-
compression asymmetry (Amor et al., 2009; Freddi and Royer-Carfagni, 2010), anisotropy
(Bleyer and Alessi, 2018; Li et al., 2015), or large deformations (Del Piero et al., 2007).

2.2 Finite-element discretisation in space

In the rest of this paper, we focus on the analysis of the space-discrete problem with nu
displacement degrees-of-freedom u = {u1, . . . , unu}T and nα damage degrees-of-freedom α =
{α1, . . . , αnα}T . A similar discrete problem is obtained from (2) after a finite element dis-
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cretisation of the displacement and damage field (u, α) ∈ Vt ×D(α−) in the form

u(x) ' u
(FE)
t (x) :=

nu∑
i=1

φ
(u)
h (x)uh +

n̄u∑
i=1

φ
(u)
nu+h(x) ūt,h, (3)

α(x) ' α
(FE)
t (x) :=

nα∑
i=1

φ
(α)
h (x)uh +

n̄α∑
i=1

φ
(α)
nα+h(x) ᾱt,h, (4)

where φ
(u)
h ∈ H1

0 (Ω,Rd) and φ
(α)
h ∈ H1

0 (Ω) are the finite element basis functions for the
displacement and damage fields respectively; the known coefficients {ūt,h}n̄uh=1, {ᾱt,h}n̄αh=1 are
calculated to satisfy the possible n̄u + n̄α Dirichlet boundary conditions in the finite element
approximation. We denote by y := (u,α) ∈ Rn, with n = nu+nα, the global vector describing
the unknowns of the discrete system.

We consider only the case of finite element discretisation adopting P1 finite elements with
linear Lagrange polynomials as basis functions for the damage variable, for which the point-
wise unilateral constraint α ≥ α− translates in the component-wise unilateral constraint on
the finite element coefficients α ≥ α−. Hence, we denote by

C(α−) = {y := (u,α) ∈ Rn ≡ Rnu × Rnα : α ≥ α−}
the convex cone of admissible states from the state with damage α− and by

C+ := C(0) = {z := (v,β) ∈ Rn ≡ Rnu × Rnα : β ≥ 0}
the cone of admissible variations such that, for any y ∈ C(α−), y + z ∈ C(α−) for all z ∈ C+.

The energy of the system in terms of the finite element coefficients u ∈ Rnu , α ∈ Rnα is
defined by

Et(y) = Et(u,α) := Et(u(FE)
t , α

(FE)
t ). (5)

We assume the energy to be sufficiently smooth to be expanded with the following second-
order Taylor series

Et(yt + ε z)− Et(yt) = εE′t(yt)(z) +
ε2

2
E′′t (yt)(z) + o(ε2), (6)

where

E′t(yt)(z) :=
d

dε
Et(yt + ε z)

∣∣∣∣
ε=0

= gt(yt) · z, gt(yt) :=
[
∂Et(yt)
∂u

∂Et(yt)
∂α

]
,

E′′t (yt)(z) :=
d2

dε2
Et(yt + ε z)

∣∣∣∣
ε=0

= Ht(yt) z · z, Ht(yt) :=

∂2Et(yt)∂u2
∂2Et(yt)
∂u∂α

∂2Et(yt)
∂α∂u

∂2Et(yt)
∂α2

 .
2.3 Time-continuous evolution problem

Following the modern energetic approach to quasi-static rate-independent evolution pro-
cesses (Mielke and Roub́ıček, 2015), a solution of the quasi-static process in the time in-
terval t ∈ (0, T ) is defined as a one-parameter family of states {(ut,αt)}t∈[0,T ] satisfying three
principles of irreversibility, stability, and energy balance. We present them under the strong
hypothesis that the solution is smooth in time so that the following time-derivatives

ẏt = (u̇t, α̇t) := lim
∆t→0+

yt+∆t − yt
∆t

, Ėt(yt) := lim
∆t→0+

Et+∆t(yt)− Et(yt)
∆t

are well-defined. For each t ∈ (0, T ), the three requirements read as follows
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1. Time-continuous irreversibility. The damage field t 7→ αt is non-decreasing in time

α̇t ≥ 0. (7)

2. Directional state-stability. The solution is a local minimiser of the energy

yt = (ut,αt) ∈ arg loc min
y∈C(αt)

Et(y), (8)

which means that yt ∈ C(αt) and

∀z ∈ C+, ∃ε̄ > 0 : ∀ε ∈ [0, ε̄], Et(yt + ε z)− Et(yt) ≥ 0. (9)

3. Energy balance. The power exerted by the internal forces should be equal to the power
exerted by the external forces. Because of the mechanical equilibrium, this condition
is tantamount to requiring that the power expended by the internal generalised forces
associated to the damage variable vanishes (Mielke and Roub́ıček, 2015; Pham and
Marigo, 2010):

∂Et
∂α

(yt) · α̇t = 0. (10)

Equilibrium paths. Retaining only the first-order term in the series expansion (6), one
can show that the stability condition (8) requires the following first-order local minimality (or
optimality) conditions

E′t(yt)(z) =
∂Et(yt)

∂u
· v +

∂Et(yt)

∂α
· β ≥ 0, ∀z ∈ C+ ⇔ ∂Et

∂u
(yt) = 0,

∂Et
∂α

(yt) ≥ 0,

(11)
which, together with the irreversibility (7) and the energy balance (10), form the following
system of variational inequalities that must be verified at each instant

∂Et
∂u

(yt) = 0,
∂Et
∂α

(yt) ≥ 0, α̇t ≥ 0,
∂Et
∂α

(yt) · α̇t = 0. (12)

The last complementary condition states that, for each degree-of-freedom, damage can evolve
only if the corresponding derivative of the energy vanishes, and that, vice-versa, the derivative
can be positive only if the damage variable hits the corresponding irreversibility constraint.
In the following, we will denote an equilibrium path a family of states {yt}t∈(t0,t1) respecting
the system of inequalities above in some time interval (t0, t1) and define an equilibrium each
single yt.

Active and inactive constraints. For a given equilibrium yt, let us define the subspace
of the state space Rn where the unilateral constraints due to irreversibility are inactive at
time t as

Nt(yt) :=

{
z = (v,β) ∈ Rn : E′t(yt)(z) = 0⇔ ∂Et

∂α
(yt) · β = 0

}
. (13)

This vector space includes all the displacement degrees-of-freedom and only the damage
degrees-of-freedom for which the derivative of the energy vanishes. It determines the index
set of inactive constraints as follows

Nt :=

{
k ∈ {0, n− 1} :

∂E

∂yk
(yt) = 0

}
. (14)

6



The restriction of a vector or a matrix to this index set corresponds to the projection on
the vector space of inactive constraints. We define the subspace of the state space where
the constraints are active as At(yt) := Rn \ Nt(yt), the associated index set being At :=
{0, . . . , n− 1} \ Nt. We further define the convex-cones of positive variations in the active and
nonactive subspaces as follows:

Nt+(yt) := Nt(yt) ∩ C+, At+(yt) := At(yt) ∩ C+. (15)

Second-order state-stability conditions. For variations z ∈ At+(yt), E
′
t(yt)(z) > 0 and

the first-order term in the series expansion (6) is sufficient to guarantee that the increment
of the energy is strictly positive. This immediately follows from the definition of At+(yt) and
the requirement that yt must respect the first-order optimality conditions (11). Vice-versa,
for z ∈ Nt+(yt) the first-order term vanishes. To assure the local minimality condition (8)
one must require the second derivative to be nonnegative for any non-vanishing admissible
variation z = (v,β) with β ≥ 0. This gives the following second order sufficient condition for
the directional state-stability of an equilibrium yt

0 < ρ+(t) := min

{
Ht(yt)z · z
‖z‖2 , z ∈ Nt+(yt), ‖z‖ 6= 0

}
. (16)

The loose inequality ρ+(t) ≥ 0 is a necessary condition for the directional stability. Hence,
we can mark an equilibrium as state-stable (S-stable) if ρ+(t) > 0 and as state-unstable
(S-unstable) if ρ+(t) < 0.

Rate-problem and bifurcation conditions. Taking the derivative of first-order condi-
tions (12) with respect to t gives the following rate problem to determine the rate ẏt at a
given equilibrium yt

∂2Et(yt)

∂u2
u̇t +

∂2Et(yt)

∂u ∂α
α̇t +

∂Ėt(yt)

∂u
= 0,

α̇t ≥ 0,
∂2Et(yt)

∂u ∂α
u̇t +

∂2Et(yt)

∂α2
α̇t +

∂Ėt(yt)

∂α
≥ 0,

α̇t ·
(
∂2Et(yt)

∂u ∂α
u̇t +

∂2Et(yt)

∂α2
α̇t +

∂Ėt(yt)

∂α

)
= 0.

If this problem has a unique solution ẏt, there is a single possible evolution path through the
equilibrium state yt; vice-versa bifurcations from a fundamental path {yt}t∈(t0,t1) are possible
when the rate problem admits multiple solutions. A sufficient condition for the uniqueness of
the solution of the rate problem is that the Hessian matrix is positive definite on the vector
space N (yt), i.e.:

0 < ρ(t) := min

{
Ht(yt)z · z
‖z‖2 , z ∈ Nt(yt), ‖z‖ 6= 0

}
. (17)

Indeed, when the above holds, the problem at hand is equivalent to the minimisation of
a convex quadratic functional over a convex cone (Nocedal and Wright, 2006). Hence, a
necessary condition for having a bifurcation at yt is that ρ(t) ≤ 0. Introducing the reduced
Hessian matrix H̃t(yt) as the restriction of the full Hessian Ht(yt) to the degrees of freedom
corresponding to inactive constraints and denoting by

{λ(k)
t , z̃

(k)
t }

dim(Ni)
k=1 , with λ

(k)
t ≤ λ

(k+1)
t and z̃

(k)
t := (v

(k)
t , β̃

(k)
t ), (18)
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its ordered pairs of real eigenvalues and eigenvectors, the bifurcation marker ρ(t) coincides

with the smallest eigenvalue λ
(1)
t . When λ

(1)
t = 0, a bifurcation is possible. The corresponding

bifurcation mode is given by z
(1)
i = (v

(1)
i ,β

(1)
i ), where we denote by z

(k)
i = (v

(k)
i ,β

(k)
i ) the

extension of z̃
(k)
i = (v

(k)
i , β̃

(k)
i ) to Rn obtained by setting the components of β

(k)
i = 0 for all

k ∈ At. If multiple eigenvalues vanish simultaneously, the possible bifurcation modes will be
in the space generated by the corresponding eigenvectors.

2.4 Time-discrete evolution problem

The numerical solution of the evolution problem requires a discretisation of the time variable.
We consider a finite-difference discretisation in N steps {ti}Ni=1 so that the time derivative

of a function f(t) is approximated by the elemental Euler expansion ḟ(ti) ' f(ti)−f(ti−1)
ti−ti−1

.
Numerical works on quasi-static variational approaches to fracture and phase-field fracture
models seek the state at time step ti as the solution of the following minimisation problem
for a discrete energy functional (5), that is

yi := (ui,αi) ∈ arg loc min
(u,α)∈C(αi−1)

Ei(u,α) (19)

where, here and henceforth, for any function of time ft, fi stands for evaluation at the dis-
crete time fti . We state the local minimality requirement (19) in the following directional form

Find yi ∈ C(αi−1) such that

∀y ∈ C(αi−1), ∃ε̄ > 0 : Ei(yi + ε(y − yi))− Ei(yi) ≥ 0 ∀ε ∈ [0, ε̄] . (20)

Time-discrete equilibrium paths. Retaining only the first-order term of the Taylor ex-
pansion (6) for the energy increment and denoting by z = (v,β) the variation ε (y−yi), (20)
implies that:

E′i(yi)(z) =
∂Ei
∂u

(yi) ·v+
∂Ei
∂α

(yi) ·β ≥ 0, ∀z = (v,β) : v ∈ Rnu , β ∈ Rnα , β ≥ αi−1−αi.
(21)

Differently from (11), admissible variations are not only in the form =(±v,β) with β ≥ 0.
Variations in the form (±v,±β) with ‖β‖ sufficiently small are admissible provided that the
damage variation is null wherever the damage does not evolve, i.e. β · (αi−1 −αi) = 0.
Selecting a similar class of variations in the optimality condition (21) shows that, in addition
to (11), the derivative of the energy with respect to the damage should vanish in the subspace
where the damage evolves, i.e. ∂Ei

∂α (yi)·(αi−αi−1). Hence, we have the following proposition,
which states the classical Karush-Kuhn-Tucker optimality conditions for a bound-constrained
minimisation problem. We refer the reader to classical text on convex optimisation for a
detailed proof, see e.g. (Nocedal and Wright, 2006).

Proposition 1 (First-order optimality conditions). A solution yi = (ui,αi) ∈ Rn of the local
minimisation problem (19) must respect the following conditions

∂Ei
∂u

(yi) = 0, (22a)

αi −αi−1 ≥ 0,
∂Ei
∂α

(yi) ≥ 0,
∂Ei
∂α

(yi) · (αi −αi−1) = 0. (22b)
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Conditions (22) can be interpreted as the discrete version of the equilibrium equation and
the damage criterion, respectively. The set of inequalities (22b) states that damage cannot
decrease (irreversibility), that the first derivative of the energy is nonnegative, and that,
for each component of the vector, either the damage does not evolve or the first derivative
vanishes. An equilibrium path in the time-discrete setting is defined as a sequence of equilibria
{yi}Ni=0 verifying (22) at each time step.

Incremental stability. Given an equilibrium yi and the corresponding spaces of inactive
and active constraints Ni(yi) and Ai(yi), any variation z can be decomposed in its orthogonal
projections zN ∈ Ni(yi) and zA ∈ Ai(yi) such that z = zN + zA. Because of the definition of
these spaces, E′i(yi)(zN ) = 0 and E′i(yi)(zA) > 0. Hence, the second-order Taylor expansion
of the energy increment in local minimality conditions (20) reads as

Ei(yi + ε z)− Ei(yi) =

εE′i(yi)(zA) +
ε2

2
(Hi(yi) zA · zA + Hi(yi) zN · zN + 2Hi(yi) zA · zN ) + o(ε2).

If zA 6= 0, the first-order term is strictly positive hence the variation is positive for ε sufficiently
small. If zA = 0, then the sign of the variation is given by the sign of the quadratic term in
zN . Hence, we can conclude that the local minimality condition (20) is verified if first order
conditions (22) are verified and the second derivative is (strictly) positive for all zN ∈ Ni(yi).
This result can be summarised in the following set of second order conditions for the solution
of the unilaterally constrained minimisation problem (19), see Nocedal and Wright, 2006.

Proposition 2 (Second-order conditions). An admissible state yi = (ui,αi) ∈ Rn is a solu-
tion of the local minimisation problem (19) if first-order conditions (22) are satisfied and if
the second derivative is positive definite on the subspace of inactive constraints Ni(yi), that is

0 < ρi = ρ(ti) := min

{
Hi(yi)z · z
‖z‖2 , z ∈ Ni(yi), ‖z‖ 6= 0

}
. (23)

Conversely, a necessary condition for yi to be a minimum is the positive semi-definiteness
of the quadratic form Hi, i.e. the loose inequality ρi ≥ 0.

In the following, we will denote these second-order conditions for local minimality in
the time-discrete setting as incremental stability criteria for an equilibrium. We will call
solutions yi of (22) an incremental equilibrium, and we will denote them as incrementally
stable (I-Stable) when ρi > 0.

2.5 Comments

The comparison of the notions of evolution, stability, and bifurcation in the time-continuous
and time-discrete evolution calls for several remarks.

• The system of inequalities given by the time-continuous first-order optimality condi-
tions (11) and the energy balance (10) is equivalent to the system of time-discrete
first-order optimality conditions (22) when replacing α̇t with its finite difference ap-
proximation (αi−αi−1)/(ti− ti−1). Indeed, for smooth-in-time evolutions, the solution
at each time step of the time-discrete first-order conditions (22) is a solution of the
time-continuous first-order optimality condition and energy balance.
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• The non-bifurcation criterion (17) for the time-continuous rate problem coincides with
the incremental stability condition (23) of the time-discrete setting.

• Since Nt+(yi) ⊂ Nt(yi),
ρi = ρ(ti) ≤ ρ+(ti) (24)

i.e. the incremental stability (or non-bifurcation) criterion, in the sense of (23)-(17), is
a sufficient (but not necessary) condition for the state-stability (16).

• Assuming all the required time-regularity so that the time-discrete evolution has a well-
defined smooth time-continuous limit as the time step goes to zero, the time-continuous
limit will be a solution of the time-continuous evolution problem, respecting the time-
continuous irreversibility, stability, and energy balance. The converse is not true, be-
cause a state-stable solution of the time-continuous evolution problem can be incremen-
tally unstable. The example of the next section will provide an explicit illustration of
this case.

3 A discrete model problem

3.1 Formulation

We discuss the solution of the evolution problem of a simple discrete system constituted by two
identical damageable springs connected in series, see the schematic in Figure 1. Both springs,
supposed undamaged at the beginning of the loading process, can undergo damage in the
sense that their stiffness decreases when the corresponding internal damage variable increases.
This is a minimal model problem, introduced in Lazarus et al., 2015, which unveils several
fundamental issues appearing in the evolution problem including softening elements. We

Figure 1: The model 2-dof system composed of two identical damaging springs in series. The
evolution problem associated to a monotonic traction experiment allows us to compute, in
closed form, bifurcation and stability limits for homogeneous (α1 = α2) as well as all possible
non-homogeneous (α1 6= α2) evolution paths.

assume that the system is fixed at one end and that a monotonically increasing displacement
ūt = t is prescribed at the other end by a hard loading device. The parameter t plays
here the role of the time-like variable of rate-independent process. We denote by u the
unknown displacement of the point connecting the two springs at time t and by α = (α1, α2) ∈
[0, 1] × [0, 1] the damage level of each of the two springs. For this discrete structure, the
equivalent of the total energy functional introduced in Section 2.1 is

Et(u, α) =
a0

2

(
a(α1)u2 + a(α2)(u− t)2

)
+ w1(w(α1) + w(α2)),

where a0 is the extensional stiffness of the undamaged spring and w1 is the dissipated energy
in the completely damaged state. We omit here the discrete equivalent of the gradient term in
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(1). In order to make the computations explicit, we specify the constitutive model by setting

a(α) :=
(1− α)

(k − 1)α+ 1
, w(α) := α, (25)

where k > 1 is a free parameter. The chosen one-parameter family of damage models is
constructed such that the global one-dimensional homogeneous response in a traction exper-
iment, as it will be seen in the following, gives raise to a piecewise-linear stress-strain curve
during both the elastic and softening phase.

The first order optimality conditions, given by (22) in the time discrete setting and by (11)
in the time continuous case, require that the first derivative of the energy with respect to
u vanishes at each t. This condition corresponds to mechanical equilibrium and allows to
determine the mid-point displacement u as a function of the damage variables and imposed
load. We compute

∂Et
∂u

= a0 a(α1)u− a0 a(α2)(t− u) = 0 ⇒ u =
a(α2)

a(α1) + a(α2)
t.

We can rewrite the energy in the terms of (α1, α2) only

Et(α) :=
a0 t

2

2

1

s(α1) + s(α2)
+ w1(w(α1) + w(α2)),

where s(α) := 1/a(α) is the compliance modulation function.
The solutions to the evolution problem must satisfy, at each time, the set of Karush-

Kuhn-Tucker conditions given by (7), (10), and (11) in the time-continuous case, namely

α̇1 ≥ 0,
∂Et
∂α1

≥ 0,
∂Et
∂α1

α̇1 = 0, (26a)

α̇2 ≥ 0,
∂Et
∂α2

≥ 0,
∂Et
∂α2

α̇2 = 0, (26b)

with

∂Et
∂α1

= −a0 t
2

2

s′(α1)

(s(α1) + s(α2))2
+ w1w

′(α1) =
s′(α1)

2a0

(
σ̄2(α1)− σ2

t (α1, α2)
)
,

∂Et
∂α2

= −a0 t
2

2

s′(α2)

(s(α1) + s(α2))2
+ w1w

′(α2) =
s′(α2)

2a0

(
σ̄2(α2)− σ2

t (α1, α2)
)
,

where

σt(α1, α2) :=
a0

s(α1) + s(α2)
t, σ̄(α) :=

√
2a0w1w

′(α)

s′(α)
,

define the stress and the maximum allowable stress as a function of the damage variables. For
the stress-strain piecewise-linear model (25), we have

s(α) =
(k − 1)α+ 1

(1− α)
, s′(α) =

k

(1− α)2
, w′(α) = 1, σ̄(α) = (1−α)σc, σc =

√
2a0w1

k
.
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3.2 Solutions to the evolution problem

Introducing the non-dimensional time variable τ defined by

τ =
t

tc
with tc =

√
8w1

a0k
,

possible solutions of the evolution problem starting from the undamaged state α1(0) = α2(0) =
0 at τ = 0, are as follows

• Purely elastic: For τ ∈ (0, τc = 1), ∂Eτ/∂α1 > 0 and ∂Eτ/∂α2 > 0. The damage
criterion (26) imposes that damage does not evolve, i.e. α̇1 = α̇2 = 0. The purely
elastic solution starting from the undamaged state at τ = 0 is the unique solution to
the evolution problem and is such that

α1,τ = 0, α2,τ = 0, στ = σc τ, σc := σ̄(0) =
√

2w1a0/k. (27)

At τ = τc = 1 the stress reaches the elastic limit σc at which ∂Eτ/∂α1 = ∂Eτ/∂α2 = 0.

• With homogeneous damage: For τ > τc, starting from the elastic solution, one can
look for solutions such that damage evolves at the same rate in both springs, i.e. with
α̇1 = α̇2 > 0. The complementarity conditions in (26) give the equations ∂Eτ/∂α1 =
∂Eτ/∂α2 = 0. Assuming that both springs are undamaged at τ = τc, one finds

α1,τ = α2,τ =
τ − 1

k − 1
, στ = σc

k − τ
k − 1

.

These solutions are valid for τ ∈ (τc, τf := k). At τ = τf the stress vanishes and the
damage reaches its upper bound1 α = 1.

• With localised damage: For τ ≥ τc, starting from a solution with homogeneous damage
α1 = α2 = α∗ := (τ∗ − 1)(k − 1) at time τ∗ > τc, one can look for solutions where
only one of the damage variables keeps evolving, i.e. for solutions of (26) with α̇1 = 0,
∂Eτ/∂α2 = 0, or with α̇2 = 0, ∂Eτ/∂α1 = 0. Modulo a permutation of the indices
(1, 2), these solutions are in the form

α1,τ = α∗ :=
τ∗ − 1

k − 1
, α2,τ = 1−

(
1− τ

τs

)
c∗,

στ
σc

=

(
1− τ

τs

)
c∗ . (28)

Here,

c∗ =
k(k − τ∗)

(k − 1)(k − 2τ∗)
=

k(1− α∗)
(k − 1)(1− 2α∗)− 1

, and τs :=
k

2
=
τf
2
,

can be interpreted as the (non-dimensional) rate at which damage increases and the
critical load at ultimate failure, respectively.

Figure 2 shows the global stress-strain diagram and the evolution of potential energy
corresponding to the three types of solutions above. Because of the irreversibility condition,
branches with evolving damage are one-way paths. In Figure 2, the arrows indicate the
admissible direction.

Identical solutions can be obtained in a time-discrete setting by imposing, at any discrete
time ti, first-order optimality conditions of the time-discrete evolution problem (22).

1To simplify the presentation, we do not explicitly include the upper bound on damage in the formulation
and assume a loading τ ∈ (0, τf .)
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Figure 2: Solutions of the discrete model problem in Figure 2. force-displacement diagram
(top-left) and evolution of the potential energy (top-right). The solutions is purely elastic for
τ < τc = 1 (in blue). For τ > τc there is a fundamental branch where the damage is evolving
equally in the two springs (in orange), showing a continuous family of possible bifurcated
branches (in green) where damage increases only in one of the two springs. The homogeneous
branch (in orange) is state-stable for τ < τs = k/2 (solid orange line) and state-unstable for
τ > τs (dashed orange line).

3.3 Uniqueness and stability

For τ ∈ (0, τc) the elastic solution is unique, all constraints are active and the solution is
both state-stable and incrementally-stable because the first derivative of the energy is strictly
positive.

For τ ∈ (τc, τs) the homogeneous solution is state-stable in the sense (16), although fails
to be unique and is incrementally unstable in the sense (17)-(23). Indeed, the first derivative
of the energy is zero and the stability is assessed by studying the sign of the Hessian matrix

H(hom)
τ =

[
H

(hom)
11 H

(hom)
12

H
(hom)
12 H

(hom)
11

]
,

with H
(hom)
11 = w1(k − 1)

k − 2τ

τ(k − τ)
, H

(hom)
12 = w1(k − 1)

k

τ(k − τ)
, (29)

on N (yτ ) ≡ R2 for the incremental-stability condition (23) and on N+(yτ ) ≡ R2
+ for the

state-stability condition (16). After straightforward calculations, we can show that

ρ(hom)(τ) = H
(hom)
11 −H(hom)

12 = −w1(k − 1)

(k − τ)
, ρ

(hom)
+ (τ) = H

(hom)
11 = w1(k−1)

k − 2τ

τ(k − τ)
. (30)

where ρ(hom) and ρ
(hom)
+ are respectively the markers on the homogeneous solution for the

incremental-stability and state-stability conditions (23) and (16), and 1 < τ∗ < τf is an
arbitrary bifurcation load. Hence, the homogeneous solution is state-stable for τ ∈ (1, τs)
but state-unstable for τ ∈ (τs, τf ), although it is incrementally-unstable and non unique for
any τ ∈ (τc, τf ). This is consistent with the existence of a continuous family of bifurcated
branches (28) departing from the homogeneous solution in the interval τ ∈ (τs, τf ). Figure 3
provides a graphical interpretation of the stability conditions, reporting the energy landscape
in the α1−α2 plane. For two homogeneous states (marked by white points) obtained for τ < τs
(left) and τ > τs (right), blue and green are regions with lower or larger energy than the current
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Figure 3: Energy landscape in the plane (α1, α2) for τ < τs (left) and τ > τs (right). The
current state is denoted by a white point. In blue and green, regions with lower and higher
energy than the current state, respectively. Shaded regions are inadmissible because of the
irreversibility constraint. For τ < τs, the homogeneous solution is stable because there are
no other admissible states with lower energy. For τ > τs instead, there exist admissible
inhomogeneous solutions with decreasing energy, hence the homogeneous state is unstable.

solution, respectively. Shaded regions are inaccessible because of the irreversibility constraint.
For τ < τs the current state is a local minimum of the energy among all the admissible
states and the solution is state-stable. For τ > τs, neighbouring states with lower energy
are admissible, hence the solution is state-unstable. According to the incremental stability
condition (23), the solution with τ < τs is unstable, because with the irreversibility constraints
given by the damage field at the previous time-step, there are admissible neighbouring lower
energy states.

On bifurcated branches where only one damage variable can evolve, the incremental-
stability and state-stability conditions coincide and depend on the sign of

ρ(loc)(t) = ρ
(loc)
+ (t) = H

(loc)
11 = w1(k − 1)

(k − 2τ∗)
τ(k − τ∗) , (31)

which, being k > 1 and τ∗ < τf = k, is positive for τ∗ < τs = k/2 and negative for τ∗ > k/2.
Hence, bifurcated branches originating at τ∗ ∈ (1, k/2) are stable, whilst branches obtained
for τ∗ ∈ (k/2, k) are unstable, as marked by solid and dashed lines in Figure 2, respectively.

3.4 Discussion

Figure 2 displays three subtle phenomena typical of the evolution of systems with damage:
(i) the presence of a continuous family of bifurcations along the homogeneous solution for
τ ∈ (τc, τs); (ii) the presence of bifurcation points along the fundamental path notwith-
standing its state-stability; (iii) distinct incremental-stability and state-stability thresholds.
Similar behaviours are largely documented in the literature (Bigoni, 2012; Nguyen, 1994;
Petryk, 1993) for other kind of inelastic systems. The paradigmatic example is the plastic
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buckling of the Shanley’s inelastic column (Shanley, 1947), where instabilities arise because
of the interaction between the irreversible nature of perfect plasticity and geometrical nonlin-
earities. In the case of damage models presented here, geometrical nonlinearities are absent
and instabilities are entirely due to the softening character of the its constitutive law and the
irreversibility constraint Benallal and Marigo, 2007.

A fundamental problem in this complex setting is to select among the infinite possible
evolution paths those observable in physical experiments. The homogeneous solution for
τ ∈ (τc, τs) in Figure 2 is an example of a state-stable solution of the time-continuous evolution
problem, which is not a solution of the time-discrete evolution problem, being incrementally
unstable. This solution will be hardly observable in an experiment because of the presence
of bifurcated branches with lower energy. This is intuitive when looking at the values of
the energy of each path reported in Figure 2-right. At the bifurcation point at the end of
the elastic phase, there are two possible solution paths, the homogeneous and the localised
solutions. Both paths are stable in the sense of the state-stability criterion (16). However,
the localised solution is the path with the steepest energy descent, and thus preferable from
the energetic point of view. On the basis of a similar reasoning, Petryk, 1993 introduced the
concept of path stability, providing an in-depth analysis of the relation between the energetic
stability concepts, the stability of evolution paths, and the dynamic definition of stability for
inelastic systems, see also Fedelich and Ehrlacher, 1997. The definition of path stability is
related to the property of the path to achieve, at each point, the steepest energy descent. The
homogeneous path will be unstable according to this definition, whilst the localised solution
will be stable. The incremental-stability condition (23), appears thus intimately related to
path-stability because it selects among all admissible increments at each time, the one with
minimal energy. Although state-stability is the appropriate definition for selecting observable
states, independently of the evolution, it fails to be helpful to select the minimal energy
direction at a bifurcation point and is unable to guarantee that a state-stable point can be
reached as the result of an evolution through a minimal energy path.

In the following, we present and test numerical tools to test the incremental stability
condition (23). This will allow us to detect bifurcation points and to select optimal evolution
paths according to a minimal energy criterion on systems with many degrees of freedom
encountered in the applications.

4 Numerical methods for stability and bifurcation analysis

Computational solvers for phase-field fracture models of the type (2) seek quasi-static evolu-
tions as solutions of the time-discrete evolution problem (19). However, most of the solvers
only impose first-order necessary conditions (22) without explicitly checking second-order local
minimality conditions. The solution at the time step ti of the system of nonlinear variational
inequalities (22) is typically performed iteratively by means of an energy-decreasing scheme,
in its simplest incarnation, an alternate minimisation exploiting separate directional convexity
of u 7→ E(u, ·) and α 7→ E(·,α), as summarised in Algorithm 1 in the Appendix.

Here, we devise a numerical tool that enriches the standard alternate minimisation algo-
rithm by performing the following tasks:

1. Given a solution yi of the first-order stability conditions (22), check the second-order
time-discrete local minimality condition (23) to evaluate if the solution is incrementally-
stable or unstable;
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2. Construct stable evolution paths by introducing a continuation algorithm that bifur-
cates from unstable states, in the direction of minimal energy curvature, as soon as the
evolution path ceases to be unique.

The numerical implementation of the stability assessment is summarised in Algorithm 2,
whilst the continuation procedure is outlined in Algorithm 3. Both algorithms are reported
in the Appendix to do not distract the reader. The basic ingredient of both algorithms is the
solution of the minimisation problem appearing in the incremental stability condition (23).
We compute stability in (23) by solving the eigenvalue problem (18) for the reduced Hessian

H̃i, the incremental stability indicator ρi being computed as the smallest eigenvalue λ
(1)
i of

H̃i. The stability-check Algorithm 2 takes as input a solution of the first-order optimality
conditions and the solution at the previous time-step defining the irreversibility constraint.
It returns the incremental-stability flag and the first eigenpair corresponding to the smallest
eigenvalue of the reduced Hessian matrix. The continuation Algorithm 3 uses this information
to provide a second-order stable solution yi at the i-th time-step (given yi−1). First, it
computes a tentative solution y∗ by alternate minimisation (Algorithm 1) with yi−1 as initial
guess. Hence, it checks its incremental-stability with Algorithm 2. If y∗ is stable, it is

accepted as solution at the i-th time-step. If not, the eigenvector z
(1)
∗ corresponding to the

smallest negative eigenvalue λ(1) is used to generate a perturbed initial guess y∗+h z
(1)
∗ for the

alternate minimisation algorithm. The optimal amplitude hopt of the perturbation is selected
through a bound constrained line-search procedure minimising the one-dimensional energy

E
(1)
i (h) := E(y∗+h z

(1)
∗ ) in the interval h ∈ [hmin, hmax], where the bounds hmin and hmax are

preliminarily computed to assure that αi−1 ≤ α∗ + hβ
(1)
∗ ≤ 1 for all h ∈ [hmin, hmax]. After

checking its incremental-stability, the new solution of the alternate minimisation algorithm,
if stable, is accepted as the solution at i-th time step. Possible failures to provide a stable
solution happen when hmin = hmax or when the newly calculated solution is unstable too. In
those cases, several strategies could be conceived. For example, one can accept the unstable
solution at the current time step, marking it as unstable, and proceed with the loading; if a
stable solution is found at one of the next time-steps, this stable solution can be continued
backward in time with a back-tracking strategy to provide a stable path at each loading step.
As an alternative to a simple reiteration of the procedure, one can repeat Algorithm 3 using
a different direction of negative curvature, as initial guess for the alternate minimisation,

e.g. z
(2)
∗ or z

(k,1)
∗ . We focus here on the presentation on the basic algorithm, leaving similar

additional developments for future works.
In practice, the finite element discretisation of the damage energy functional (2) is per-

formed using the finite-element framework FEniCS (Alnaes et al., 2015), which includes sym-
bolic differentiation tools to calculate the second derivative of the energy and to automatically
assemble finite element matrix and vector using PETSc (Balay et al., 2020) as the linear-
algebra back end. PETSc provides also efficient large-scale solvers (SNES,TAO) for the solution
of the elastic and the damage subproblems of the alternate minimisation Algorithm 1. The
reduced Hessian matrix H̃i is obtained by extracting from the full Hessian Hi the block
matrix corresponding to the index set Ni(yi), using PETSc’s index-set (IS) objects and the
related operators. The smallest eigenvalues and corresponding eigenvectors are computed
using the large-scale eigenvalue solvers provided by SLEPc (Hernandez et al., 2005). Namely,
we use the Krylov-Schur iterative algorithm with the shift-invert option and a small nega-
tive spectral shift (Roman et al., 2020). We also implement, as an alternative method to
check the time-discrete stability condition, a direct evaluation of the inertia of the matrix
H̃i through a Cholevsky factorisation, which yields the number of negative, vanishing, and
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Figure 4: Geometry and loading for the uniaxial traction test. We use unstructured simplicial
mesh of uniform mesh size h. For a give internal length `, we typically set h = `/5.

positive eigenvalues of the matrix. This information is returned directly by the parallel sparse
direct solver MUMPS (Amestoy et al., 2019) when activating the specific options INFOG(12)

and ICNTL(13)=1. If there is at least one negative eigenvalue, the state is marked as unsta-
ble. This achieves the task without explicitly computing the solution to the large and sparse
second-order eigenvalue problem.

5 Numerical experiments

We illustrate the concepts and numerical tools introduced in this paper through the solution
of two basic examples, focussing of the interplay of homogeneous and localised solutions and
their stability properties. While we found that in most of the situations the alternate minimi-
sation algorithm provides incrementally stable evolutions, we report in the following specific
counterexamples showing that this is not true in general and that the proposed stability-check
and continuation algorithms provide an useful addition to the existing numerical techniques.
To this end, we present (i) the traction test of a slender bar and (ii) the multifissuration of a
pre-stressed thin film. In these examples, we do not impose any Dirichlet boundary condition
on the damage field, in order to allow for non-vanishing homogeneous solutions of the damage
field.

For each of the following illustrative examples, at each time step, we determine the so-
lution of first order necessary conditions (22) with the alternate minimisation Algorithm 1
and we perform the stability check with Algorithm 2 to verify the incremental stability of the
computed critical states. This is done by checking the second order local minimality condi-
tion (23). Hence, we compare evolution obtained with or without activating the continuation
Algorithm 3.

5.1 Uniaxial traction test

Let Ω = (0, L)× (−H/2, H/2) be the reference configuration of a brittle bar of length L and
width H. The displacement in the axial direction is blocked on the left end and imposed to
ūt = t L at the right end, with a free sliding condition, see Figure 4. To eliminate rigid body
modes, we block both components of displacement at the lower-left corner. Conversely, we
leave damage free on the entire boundary to allow both homogeneous states of damage as well
as boundary cracks.

We consider the damage model described by the energy functional defined in (1)-(2) with
the constitutive choice a(α) = (1 − α)2 and w(α) = α, corresponding to a model which is
frequently adopted in phase-field fracture, referred to as AT1 in (Tanné et al., 2018). Setting
the elastic Lamé coefficients to reproduce plane-stress conditions, the energy functional (2)
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reads as

E(u, α) = E

∫
Ω

(1− α)2

(
ν tr(e(u))2

2(1− ν2)
+
‖e(u)‖2
2(1 + ν)

)
dx+ w1

∫
Ω

(
α+ `2|∇α|2

)
dx. (32)

The uniaxial traction test has been largely discussed in previous analytical (Pham et
al., 2011a) and numerical (Pham et al., 2011b) works, highlighting the competition between a
solution with homogeneous damage and a solution where damage localises in a band transverse
to the long axis. The width of the localisation band is proportional to the internal length
`. The localised solution can be regarded as the phase-field approximation of a crack, for
which the elastic energy and the stress vanish whilst the dissipated energy per unit length
is Gc = 8

3w1`, see (Pham et al., 2011b; Tanné et al., 2018). A one-dimensional bar model
allows for an analytical stability and bifurcation analysis of the homogeneous solution. As
reported in (Pham et al., 2011a), the homogeneous solution is purely elastic for an imposed
displacement t < tc and a stress σ < σc =

√
w1E. After this first critical threshold, the

damage level of the homogeneous solution monotonically grows with the loading t. Testing
the infinite dimensional version of the non-bifurcation and the state-stability criterion (17)-
(20), one can determine the loading intervals t ∈ (0, tb) and t ∈ (0, ts) with ts ≥ tb for
which the homogeneous solution is locally unique (i.e. incrementally-stable) and state-stable,
respectively. The critical loads are given by (see Pham et al., 2011a, Example 1 with p = 0,
q = 2):

tc =

√
w1

E
, σc =

√
w1E,

tb
tc

= min

{
1, π

√
2

3

`

L

}
ts
tc

= min

{
1,

4π

3

√
2

3

`

L

}
. (33)

With this parametrisation using the specific fracture energy w1 instead of the fracture tough-
ness Gc to represent the dissipative properties of the material, the critical load for the onset
of damage is independent of the internal length `. However, the stability threshold critically
depends upon the ratio between the internal length and the size of the specimen. The re-
sponse is characterized by a size effect distinguishing two different regimes, that of long and of
short bars, in relative terms with regards to the material internal length. We show that these
two regimes feature different qualitative properties in terms of stability of the homogeneous
response.

We perform a series of simulations varying the internal length `, with ` ∈ [L/5, L], setting
the aspect ratio H/L = 1/10 and the Poisson ratio ν = 0.3. The dependence upon other
material parameters is eliminated by rescaling the displacement by u0 = L

√
w1/E. For each

simulation, we monotonically increase the loading from an undamaged state at t = 0. Figure 5
shows the graph of the parametric stability diagram as a function of the relative length L/`
and the loading t. This diagram serves as a verification experiment for the numerical approach
against the analytic solution of (Pham et al., 2011a). Black curves represent the analytical
state-stability and non-bifurcation thresholds in Equation (33). These curves partition the
state space in regions where, according to the analytical prediction, the state is: (i) purely
elastic, in blue; (ii) with non vanishing damage and both incrementally- and stable-stable, in
orange; (iii) incrementally-unstable and state-stable, in white; (iv) both incrementally- and
state-unstable, in green. Each horizontal set of dots corresponds to an irreversible evolution
computed for a given value of L/` and each time step is represented with a dot: blue dots
for purely elastic states and orange dots for incrementally-stable states, i.e. such that ρi > 0
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Figure 5: Stability diagram for the uniaxial traction test of Figure 4 when increasing the
loading t as a function of the relative length of the bar L/`. Each horizontal array of symbols
represents the result of a numerical experiment at the different loading steps for a given value of
L/`. Dots indicate stable states and crosses indicate incrementally unstable states (ρi < 0).
The vertical line indicates the elastic limit load tc, the thick curve is the analytic limit of
stability ts, and the dash-dotted curve represents the incremental-stability threshold tb given
in Equation (33). These lines partition the diagram in four regions, whose colours indicate
the stability properties of the homogeneous solution according to the analytical predictions:
stable states in blue, both incrementally- and state-stable in orange, both incrementally- and
state-unstable states in green, incrementally-unstable but state-stable states in white.

within the numerical tolerance2. The simulation is halted upon encountering an incrementally
unstable state with ρi < 0, represented with a cross. Overall, the numerical results are in
very good agreement with the theoretical predictions.

Figure 6 reports the evolution of the stress, the energy, and the smallest eigenvalue of
the Hessian matrix for the case of a relatively short bar (L/` = 1.7). The left column shows
the solution obtained with by running the plain alternate minimisation algorithm at each
time-step. The presence of negative eigenvalues (in red in the bottom diagram) indicates
that the alternate minimisation returns an incrementally unstable solution for t > tb. The
corresponding solution is a stationary point of the energy which verifies first-order optimality
conditions, but fails to be a local energy minimizer in the sense of (19). This is a clear issue
of the plain alternate minimisation algorithm, commented also in (Bourdin, 2007), because
unstable solutions are physically unobservable. The diagrams in the right column report the
results of the same simulation obtained when activating the continuation Algorithm 3. In this
case, when the stability check detects an unstable state, we switch from the current evolution
path towards a stable state at the current time step. A new alternate minimisation solver is
launched, seeded by a perturbation obtained from the eigenmodes as detailed in Algorithm 3.
The proposed continuation algorithm improves the results of the plain alternate minimisation,
being able to retrieve an evolution made of incrementally-stable states.

2in practice, we get the smallest eigenvalue ρi from the solver with a numerical relative tolerance rtol =
10−8.
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Figure 7 shows the analogous results for the case of a long bar, where the theoretical
bifurcation threshold coincides with both the elastic limit and the state-stability threshold
(ts = tb = tc). This case is more interesting for phase-field fracture applications, where
typically L/`� 1. We report here the case L/` = 5, the qualitative behaviour being similar
for larger values of L/`. As for short bars, the plain alternate minimisation returns unstable
states, with a jump in the response, corresponding to a localisation of damage, only for a
loading significantly larger that the the theoretical stability threshold. Vice-versa, activating
the continuation algorithm, a bifurcation into the direction of minimal energy curvature allows
the algorithm to follow a stable evolution, as soon as the damage criterion is met.

Figure 8 summarises the key results, showing the evolution of the damage field in time
and space along the central axis for short and long bars, with and without the continuation
Algorithm. For the given boundary conditions (free damage at the ends), localisations and
instabilities are characterised by the appearance of one single boundary crack which can
indifferently be at the left or right end.

The mechanism of loss of stability is different in the case of short and long bars. For the
former (Figure 6), the instability happens at a loading strictly larger than the elastic limit,
when the smallest eigenvalue smoothly crosses zero in correspondence to a non-vanishing
homogeneous damage level. For long bars (Figure 7), the instability happens immediately after
the elastic limit, when one or more negative eigenvalues suddenly appear as the irreversibility
constraints become inactive and the corresponding space N (yi) in (23) suddenly changes.

Figure 9 illustrates some details of the stability-check and continuation algorithms for
the case of the long bar, for which several negative eigenvalues are detected immediately
after t = tc. Figure 9-left show the damage distribution along the bar longitudinal axis for

the two eigenmodes β
(1)
∗ , β

(2)
∗ associated with the two smallest negative eigenvalues. They

correspond to damage localisations at a boundary (in grey), at the centre of the bar (in black).

The boundary localisation β
(1)
∗ is associated with the smallest eigenvalue and is energetically

preferable, when admitted by boundary conditions. In this specific case, its corresponding
eigenspace is of multiplicity two, because of the possibility of localisations at both ends, due to
the symmetry of the system. Figure 9-right shows the optimal amplitude of the perturbation

for the damage along the minimal curvature direction β
(1)
∗ . This is determined through the

constrained line-search formulated in Algorithm 3. The inset shows the variation of energy

E
(1)
i (h) := Ei(y∗ + h z

(1)
∗ ) along the direction pointed by the first eigenmode, within the

corresponding admissible lower and upper bounds obtained from the constrained line-search
procedure. This perturbation technique allows us to construct evolutions composed by states
which are incrementally stable, in a way that is more pertinent from the physical point of view.
Still, the solution to the evolution problem is not necessarily unique. For example, we are
able to reach a different local energy minima perturbing the unstable homogeneous state with
the second eigenmode, leading to a fully developed crack in the centre of the specimen (not
reported here). As it can be checked analytically, the (optimal) profile of the boundary crack
is half the symmetric profile associated to a macroscopic crack in the bulk. Consequently,
the total energy of the state with one bulk crack in the bulk is twice that of the bar with a
boundary crack.
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(b) Continuation Algorithm 3

Figure 6: Traction experiment for a relatively short bar (L/` = 1.7). The plots report the
numerical evolution of the average axial stress σ across a cross-section (top), of the energy
(middle), and of the smallest eigenvalues (bottom) as a function of the loading, for t ∈ (0, 3).
The left column is obtained exploiting the plain alternate minimisation Algorithm 1, whilst
the right panel shows the solution provided by the continuation Algorithm 3. Eigenvalues
and stability of states are computed with Algorithm 2. The regions shaded in light blue,
orange, and green, indicate respectively purely elastic, homogeneously damaging and bifur-
cated (localised) regions, according to the analytical stability analysis; the white region covers
homogeneous states which are state-stable yet incrementally-unstable. In the bottom row we
mark in light green positive eigenvalues and in red negative ones, reporting also the maximum
value of damage (blue curve, right axis).
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(b) Continuation Algorithm 3

Figure 7: Traction experiment for a relatively long bar (L/` = 5.0). Legend as in Figure 6
For a long bar, the state of homogeneous damage is unstable (state-wise and incrementally)
as soon as the damage criterion is met. Multiple negative eigenvalues (cf. left panel, bottom)
correspond to potential directions of energy decrease. In the right panel, the continuation
Algorithm 3 delivers a second-order stable evolution featuring the emergence of one sudden
crack at t = tc = tb = ts.
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Figure 8: Bar in uniaxial traction: space-time evolution of damage along the longitudinal axis
of the bar for the short and long cases, both with and without continuation Algorithm 3. Only
the continuation algorithm is able to retrieve a stable evolution (see Figures 6-7). Colours
indicate the damage level form 0 (sound material, violet) to 1 (fully cracked, red).
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Figure 9: Perturbations and energy landscape for the traction problem of a long bar of
Figure 8d immediately after the elastic limit tc. Left: first two normalised eigenmodes asso-
ciated to negative eigenvalues. Right: optimal perturbation along the first eigenmode used
for seeding the alternate minimisation Algorithm 1 at the occurrence of an unstable solution,

according to Algorithm 3. The inset shows the energy E
(1)
i (h) := Ei(y∗ + h z

(1)
∗ ) along the

direction of the first mode, used to determine the optimal amplitude subject to the constraint

on h : αi−1 ≤ α∗ + hβ
(1)
∗ ≤ 1. We represent damage along the beam axis (y = 0), the damage

field being invariant in the transversal y-direction.

5.2 Multifissuration in thin films

We now consider a two-dimensional model of a thin film bonded to a substrate by the means
of a compliant layer, modelling this system as an effective two-dimensional membrane resting
onto a linearly elastic foundation. The film is brittle in the sense that it undergoes an irre-
versible damaging process under tensile stress, eventually leading to fracture. In this case,
the interplay between tensile membrane deformations, possibly released by transverse crack-
ing, and the energy stored in the foundation, produces a rich phenomenology leading to the
emergence of robust and variegated fracture patterns (Xia and Hutchinson, 2000). Indeed,
differently from the one-dimensional bar in traction, the system at hand features an additional
characteristic length scale of purely elastic origin which accounts for the interaction between
the membrane and the underlying substrate. We focus on the material regime in which the
elastic length scale is small compared to the size of the domain and large with respect to the
damage length. In this regime, the loss of stability of the sound state results in the emergence
of fracture patterns characterised by robust morphological properties (Leon Baldelli et al.,
2014).

Let Ω3d = Ω × [−T/2, T/2] ⊂ R3 be the reference configuration of a thin film of diame-
ter L := |Ω|1/2, mid-plane ω ⊂ R2, and thickness T . The film is in plane-stress conditions,
as indeed can be inferred via an asymptotic dimension-reduction procedure, and undergoes
in-plane displacements u : ω 7→ R2 which are elastically constrained on a rigid substrate.
Following (Leon Baldelli et al., 2014; Xia and Hutchinson, 2000), the elastic interaction be-
tween the thin film and the substrate is modelled as a linear elastic foundation of stiffness
K > 0, which introduces an additional elastic energy density K

2 |u|2. As common in thin film
applications, we suppose that the membrane is loaded by a given inelastic deformation tensor
ēt, that can model, for example, the differential thermal expansion between the thin-film and
the substrate. Adding to the plane-stress total energy functional (32) the contribution due
to the presence of the substrate, we associate to (u, α) ∈ H1(Ω,R2) × H1(Ω) the following
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non-dimensional energy per unit of thickness

F(u, α) = E

∫
Ω

(
(1− α)2

(
ν tr(e(u)− ēt)2

2(1− ν2)
+
|e(u)− ēt|2

2(1 + ν)

)
+

1

`2e

|u|2
2

)
dx

+ w1

∫
Ω

(
α+ `2|∇α|2

)
dx, (34)

where `e :=
√
E T/K is the relative weight of the elastic energy stored in the membrane

relative to the elastic foundation. We focus on the stability properties of the homogeneous
solution when the elastic internal length is small compared to the size of the structure, namely
`e � L, corresponding to a stiff interaction between the film and the substrate. Heuristically,
in this regime the displacement field u is close to zero in the entire domain (possibly up to a
boundary layer of size `e) because the foundation term in the energy has a large multiplicative
coefficient. As a consequence, the stress is approximately constant and the damage criterion
is met almost uniformly (up to a boundary layer). This, coupled with the existence of the
additional length scale `, is responsible for the appearance of structured crack patterns beyond
the elastic limit. As for (32), without loss of generality, one can set E = 1, w1 = 1. This is
equivalent to rescaling the displacement field by the scaling factor u0 = L

√
w1/E. Hence, the

relevant dimensionless material parameters appearing in (34) are the relative elastic length
scale `e/L, the relative internal length for the damage field `/L, and the Poisson ratio ν.

We report a first numerical experiment for a film in the form a thin strip Ω ≡ (−L/2, L/2)×
(−H/2, H/2), as in Figure 4, with L = 6 and H = 0.1, by setting material parameters to
`/L = 0.1, `e/L = 0.3, ν = 0. The thin-film strip has fixed, homogeneous, horizontal dis-
placements at the left and right ends x = ±L/2, is free on the top and bottom boundaries,
y = ±H/2, whilst no Dirichlet boundary conditions are imposed on the damage field, which
consequently satisfies natural homogeneous Neumann conditions. To focus on the almost
one-dimensional regime and simplify the interpretation of the results, we consider the case
of an uniaxial loading ēt = t ι̂x ⊗ ι̂x, where ι̂x stands for the unit vector in the axial direc-
tion of the bar. With this almost one-dimensional setting, the solution for the damage field
is invariant with respect to the transverse direction and depends only on the axial variable
x ∈ (−L/2, L/2). Figure 10 compares the results of the plain alternate minimization Algo-
rithm 1 (left) with those of the proposed continuation Algorithm 3 (right) for the evolution
problem obtained when monotonically increasing the loading t. In each column, from top to
bottom, we report the evolution in time of the space distribution of the damage field along
the axis of the strip, the energies, and the minimal eigenvalue of the reduced Hessian matrix
used as a stability marker. The plain alternate minimisation Algorithm 1 (left) delivers a
uniform state of damage beyond the critical load tc, which is unstable for t > tc =

√
w1/E,

from which multiple clustered negative eigenvalues appears. The associated eigenvectors are
functions oscillating along the axis of the thin-film strip with a specific wavelength, of the
order of `e. Figure 11-left shows the first of such modes provided by the stability check algo-
rithm. This mode is used by the continuation Algorithm to perturb the homogeneous solution
in the direction of energy descent. Following this path, it retrieves a stable solution which
shows equally spaced damage localisations, as shown in Figure 10-right. This localisation
pattern can be regarded as the phase-field approximation of a periodic crack array, which is
typical of thin-film systems (Leon Baldelli et al., 2013; Xia and Hutchinson, 2000). Interest-
ingly the spacing of this crack pattern is related to the wave-length of the unstable eigenmodes.
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Figure 10: Thin film strip with L = 6, H = 0.1, ` = 0.1, `e = 0.3. Solution of the evolu-
tion problem when monotonically increasing the pre-stress t, obtained with plain alternate
minimization (left column) and with the proposed path-selection Algorithm (right column).
Top: Damage field α along the central axis as a function of the space variable x and the time
t. Centre: energies. Bottom: minimal eigenvalues resulting from the stability analysis. The
critical load in the figures corresponds to the elastic limits tc =

√
w1/E. The plain alternate

minimisation retrieves an unstable homogeneously damaged solution for t > tc, whilst the
continuation algorithms triggers a sudden jump of the solution toward the stable branch at
t = tc.
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Figure 11: Left : Detail of the bifurcation at the onset of damage, showing showing the unsta-
ble homogeneous state α∗, the irreversibility lower bound αi−1 and the optimally perturbed
state α + hoptβ

(1), see Algorithm 3. Right: Fully localised solution for the damage field α
obtained at the end of the simulation.

The two-dimensional counterpart of the thin strip shows the emergence of complex two-
dimensional quasi-periodic crack patterns, stemming from a sound and homogeneous state
of damage. We consider a thin film occupying a disk of radius R loaded by a uniform equi-
biaxial ēt = t I. The displacement and the damage are left free on the boundary. The brittle
system is in its undamaged state for t < tc where, here, tc := (1−ν)

2

√
w1/E. For the given

boundary conditions, a solution with homogeneous non-vanishing damage respects the first-
order optimality conditions for t > tc. However, the stability of such state is conditional upon
the values of material parameters. In particular, the homogeneous solution is unstable in
the regime `e � R for t ≥ tc, in the sense that there exists a family of negative eigenvalues
solving (23) as soon as the damage criterion is attained. This is a challenging scenario from
the numerical standpoint because of the homogeneity of the solution, the existence of a large
number of local minima whose features span several length scales, and the large dimension of
the space generated by eigenvectors associated to negative eigenvalues. We report in Figure 12
the result of a simulation with R = 1, `e = 0.15, ` = 0.03, ν = 0.3, and a uniform mesh size
h = `/3. For t = tc, the stability-check Algorithm detects 189 negative eigenvalues, computing
the inertia of the reduced Hessian. The solution of the full second order eigenvalue problem
returns the smallest eigenvalues and the corresponding eigenvectors, see the spectrum in
Figure 12-left. The continuation algorithm 3 thus seeks a stable state departing, for t = tc,
from the homogeneous critical point obtained imposing first order optimality conditions. We
represent in Figure 12 (top-right) an elevated plot of the damage component of the first mode
at t ' tc, which is associated to the smallest negative eigenvalue −6.7× 10−5. Seeding a new
first order alternate minimisation with an optimal perturbation of the homogeneous state
in the direction of the first eigenmode leads to an energy decreasing path and a new, stable,
damaged state. The damage field at the end of the simulation (t ' 1.7 tc) is shown in Figure 12
(bottom-right). Damage, structured in bands (of the size of `), forms a quasi-periodic network
of intersecting fractures whose features are reminiscent of the eigenmodes at the bifurcation
point. We leave the quantitative analysis of fracture patterns in their relation to effective
unstable modes to a future work.
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Figure 12: Left. Energy diagram (top) and spectrum of the second derivative (bottom),
showing a stable irreversible evolution departing from the undamaged state. The small disks
on the top show few snapshots of the damage field during the evolution (α = 1 in black
and α = 0 in light grey). At the critical bifurcation point tc, the lowest negative eigenmode
(top-right) induces damage localisation on a scale correlated to the internal elastic length `e.
The continuation Algorithm 3 returns a stable evolution with a spectrum bounded away from
zero, along the imposed increasing load, showing further fracture nucleation and branching.
At the end of the loading program, the damage field shows a two-dimensional fracture pattern
(bottom-right). The unstructured computational mesh, with approximately 100K degrees of
freedom, is indicated in transparency. Parameters for this computation are R = 1, `e =
0.15, ` = 0.03,E = 1, ν = 0.3.

6 Conclusions

We have discussed the numerical detection of instabilities and possible bifurcations in quasi-
static evolutions of a class of softening damage models that is used in phase-field approach to
fracture. Our approach is based on the variational formulation of the evolution problem as
a rate-independent process. The stability of the solution is defined as an energy minimality
requirement of the damage energy functional under the irreversibility constraint on the dam-
age variable. We distinguished between the notion of state-stability and incremental-stability,
associated to the bound-constrained energy minimality condition in the time-continuous and
the time-discrete formulations of the evolution problem, respectively. We have shown that the
incremental-stability is a stronger requirement than the state-stability condition. For smooth
evolutions, the incremental-stability condition coincides with the non-bifurcation criterion of
the time-continuous rate-problem. The different concepts were illustrated through the analyti-
cal solution of a two degrees-of-freedom model problem. This example explicitly highlights the
possible presence of admissible energy decreasing evolution paths departing from state-stable
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solutions. This led us to suggest the incremental-stability condition as a more appropriate
criterion to select the evolution paths that are actually observable in physical experiments,
echoing previous works of (Petryk, 1993) for plasticity.

Hence, we discussed the numerical techniques to practically test the increment-stability by
checking the second-order optimality condition of a bound-constrained minimisation problem
for the total energy functional. This requires the numerical solution of a coupled eigenvalue
problem in the displacement and damage variables for a reduced Hessian matrix, which is
obtained by eliminating the degrees-of-freedom associated to active irreversibility constraints
on damage. The sign of the smallest eigenvalue determines the incremental stability condition.
Eigenvectors associated to negative eigenvalues are directions with negative curvature of the
energy and represent possible modes of instability. We have shown by explicit examples
that the standard alternate minimisation algorithm, testing only the first-order minimality
condition, can converge to incrementally unstable solutions. Hence, we proposed a basic path
selection algorithm that filters out unstable paths. When detecting unstable states, it re-
initialises the alternate minimisation solver with a perturbed seed, obtained by a line-search
procedure along the direction of minimal energy curvature.

The numerical framework has been tested on a classical traction bar problem and on a
more complex thin film multifissuration problem. The traction bar problem, for which explicit
analytical solutions are available, serves as a verification test-case. We have shown that the
presented algorithm allows the detection of unstable evolution paths retrieved with standard
first-order algorithms. Finally, the thin film problem illustrates the interest of the proposed
stability and bifurcation analysis on more complex problems, where the unstable eigenmodes
also provide useful information on the emerging crack pattern and on its mechanism of for-
mation.

We believe that the proposed techniques and concepts are useful for the solution of prac-
tical crack nucleation problems in a computational setting. Further developments should
include the improvement of the numerical stability check and path selection algorithms, cou-
pling the present algorithm to more advanced path following techniques (see e.g. Cochelin
et al., 2007; Haslinger et al., 2018; Lorentz and Godard, 2011).
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7 Appendix

We list here the three algorithms introduced in the article for the solution of the first-order
optimality condition (Algorithm 1), the numerical stability and bifurcation analysis (Algo-
rithm 2), and for the continuation procedure (Algorithm 3).

Algorithm 1: Alternate minimisation

Data: The irreversibility constraint αi−1 and the initial guess α0

Result: Solution yi = (ui,αi) of the first-order optimality conditions (22) at the
time step ti

k ← 1
while not converged do

uk ← arg minuEi(u,α
k−1)

αk ← arg minα≥αi−1
Ei(u

k,α)
k ← k + 1

end

yi = (ui, αi)← (uk, αk)

Algorithm 2: Incremental stability check (I-StabilityCheck)

Data: The critical state yi satisfying the first-order optimality conditions (22) and
the irreversibility constraint αi−1

Result: Time discrete stability of the state yi (I-Stable) and, if unstable, the first

neig smallest eigenpairs {λ(k)
i , z

(k)
i }

neig

k=1.
Compute the inactive index set Ni(yi)
if Ni(yi) = ∅ then

yi is purely elastic I-Stable ← True

else

/* assemble the Hessian Hi and extract the reduced Hessian H̃i */

/* calculate the number of negative (nneg) and vanishing (n0)

eigenvalues of H̃i via MUMPS’ Cholesky factorisation and

getInertia operator in the PETSc interface */

nneg, n0, npos ← getInertia(H̃i(yi));
if nneg = n0 = 0 then

I-Stable ← True

else if nneg > 0 or n0 > 0 then
I-Stable ← False;
/* solve the reduced eigenvalue problem (18) extending

eigenvectors by zero to the full space Rn */

{λ(k)
i , z

(k)
i }

neig

k=1 ← eigen(H̃i(yi))

end
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Algorithm 3: Time-discrete continuation algorithm seeking a second-order stable
evolution.
Result: yi = (ui,αi): A solution respecting the second-order optimality condition
Data: yi−1 = (ui−1,αi−1): The solution at the previous time step

/* Run the alternate minimisation with αi−1 as irreversibility

constraint and initial guess */

y∗ ← AltMin(αi−1,αi−1)

/* Calculate the time-discrete stability of yi with αi−1 as

irreversibility constraint */

I-Stable, {λ(k)
∗ , z

(k)
∗ }neig

k=1 ← I-StabilityCheck(y∗,αi−1)

if I-Stable = True then
yi ← y∗ /* accept y∗ as solution at the time step i */

else
/* Find the optimal amplitude of the perturbation by solving the

constrained line-search problem in the direction of minimal

curvature z
(1)
∗ = (v

(1)
∗ ,β

(1)
∗ ) */

repeat

hopt ← arg minh{E(1)
i (h) := Ei(y∗ + h z

(1)
∗ ), h : αi−1 ≤ α∗ + hβ

(1)
∗ ≤ 1}

if hopt 6= 0 then
/* Run the alternate minimisation with αi−1 as irreversibility

constraint and α∗ + hopt β
(1)
∗ as initial guess */

y
(1)
∗ ← AltMin(αi−1,α∗ + hopt β

(1)
∗ )

I-Stable, {λ(1,k)
∗ , z

(1,k)
∗ }neig

k=1 ← I-StabilityCheck(y
(1)
∗ ,αi−1)

if I-Stable = True then

yi ← y
(1)
∗ /* accept y

(1)
∗ as solution at the time step i */

else
/* Unable to get a stable solution, issue a warning and

return the minimal energy solution (alternatively,

restart the procedure with z
(1,k)
∗ ) */

yi ← arg min(Ei(y∗), Ei(y
(1)
∗ ))

end

else
/* unable to get a stable solution, issue a warning and return

y∗ (alternatively, restart the same procedure with y
(2)
∗ or

z
(1,k)
∗ , or use an infeasible solution as initial guess) */

yi ← y∗
end

until I-Stable = True;

end
i← i+ 1 /* update the time step */;
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