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Inside a Black Hole: the illusion of a Big Bang

Enrique Gaztañaga
Institute of Space Sciences (ICE, CSIC), 08193 Barcelona, Spain

Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
(Dated: March 17, 2021)

What is inside a Black Hole (BH) horizon A∗ = 2�"? We discuss two non-singular BH solutions, BH.fv
and BH.u., within General Relativity, which look like a singular Schwarzschild BH from the outside. BH.fv
corresponds to an false vacuum energy Δ = 3A−2

∗ /8c�, while BH.u also has expanding or contracting matter and
radiation inside. For the inside comoving observer this BH.u solution looks like an homogeneous and isotropic
universe with Λ = 3/A2

∗ . For an outside observer our Universe looks like a regular BH with " ' 5.8× 1022"� .
Thus, the Big Bang model is an illusion of the comoving observer and could be much older than previously
estimated. Primordial inflation, themeasured cosmic acceleration, CMBanomalies and tensions inmeasurements
of cosmological parameters all provide independent observational support for such BH.u solution.

I. INTRODUCTION

A Schwarzschild Black Hole (BH) represents a singular
object of mass " . The horizon at A∗ ≡ 2�" prevent us from
seeing inside. This makes BHs good Dark Matter candidates.
But according to Buchdahl [1], BHs are more compact than
any form of matter. Here, we look for a physical BH solution
defined as a non singular object of size A∗ which reproduces
the Schwarzschild (SCHW)metric for A > A∗ (in empty space).
This definition will guide us in our search: we want to find a
solution that extends the SCHW coordinate frame inside A∗.

For a perfect fluid the radial pressure inside a BH is nega-
tive [2]. Cosmologist are used to this type of fluids, which are
called Quintessence, Inflation or Dark Energy (DE). So, could
the inside of a BH be DE? Mazur and Mottola [3] argued that
the same DE repulsive force that causes cosmic acceleration
could also prevent the BH collapse, resulting in the so call
gravastar solution. The idea that the universe might be gen-
erated from the inside of a black hole is not new [4–9]. The
simplest DE is the ground state +0 (k) of a scalar field k(G).
In the expanding Big Bang, DE is assumed to be constant as a
function of space and time [10]. Here we look for a classical
BH solution defined by a spatial discontinuity and an event
horizon. We revisit these puzzles looking for non-static so-
lutions with radial fluid velocity D ≠ 0 relative to the outside
SCHW observer. The two key questions we want to address
are: What are possible metrics for the inside of such a physical
BH? What is the meaning of the measured BH mass "?

II. HOMOGENEOUS SOLUTIONS

We will solve Einstein’s field equations [11]:

�`a + Λ6`a = 8c� )`a ≡ −
16c�
√−6

X(√−6L)
X6`a

, (1)

where �`a ≡ '`a − 1
26`a' and L is the matter Lagrangian.

For perfect fluid in spherical coordinates:

)`a = (d + ?)D`Da + ?6`a (2)

where Da is the 4-velocity (DaDa = −1), d, and ? are the
energy-matter density and pressure. This fluid is in general

made of several components, each with a different equation of
state ? = ld. For a fluid moving with relative radial velocity
D with Da = (D0, D, 0, 0), we have D2

0 = −600 (1 + 611D
2) and:

)0
0 = −d − D

2 (d + ?)611 ; )1
1 = ? + D

2 (d + ?)611

)1
0 = (d + ?) D0D ; )2

2 = )
3
3 = ? (3)

For an observer comoving with the fluid D = 0. Here we
want to consider a global (proper) coordinate frame that is not
moving with the fluid so that )1

0 ≠ 0. This is necessary to
allow for solutions that are not static inside but look like a
(static) SCHW BH from outside.

A. Scalar field in curved space-time

Consider a minimally coupled scalar field k = k(GU) with:

L ≡  −+ = −1
2
mUkm

Uk −+ (k) (4)

The Lagrange equations are: ∇̄2k = m+/mk. We can estimate
)`a (k) from its definition Eq.1 to find:

)`a (k) = m`kmak + 6`a ( −+) (5)

comparing to Eq.2 (see Eq.5 in [12] for details):

d =  ++ ; ? = | | −+ (6)

The stable solution corresponds to ? = −d:

∇̄2k = m+/mk = 0 ; d = −? = + (k) = +8 (7)

where k is trapped in the true minimum +0 or some false
vacuum (FV) state+8 = +0 +Δ, see Fig.1. The solution to Eq.1
for constant d = −? = +8 (without matter or radiation) for a
general metric with spherical symmetry in proper coordinates
(in Eq.11) is given by deSitter (deS) metric in Eq.13 with
�2
Λ
≡ 8c�dΛ/3 and dΛ = +8 + Λ/8c�. This metric is static

in proper coordinates which also indicates that the vacuum
solution is in equilibrium.
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Figure 1. A generic potential + (k) for a field k(G). A configuration
with total energy: d =  ++ (k) (top line) can slowly loose its kinetic
energy  (e.g. via Hubble damping) and relax into a (trapped) false
ground state d = +8 ≡ + (k8), 8 = 1, 2, 3, which we call false vacuum
(FV, red circles) with an energy excess Δ ≡ +8 −+0. The true vacuum
is shown as a blue circle at +0 = + (k0). Note around +2 how we can
have a FV trapped inside other FV. k3 is an unstable (or slow rolling)
vacuum, similar to that which generated cosmic inflation. Quantum
tunneling (diagonal line) allows particles to escape from a FV.

B. The FLRW metric

The Friedmann-Lemaitre-Robertson-Walker (FLRW) met-
ric in spherical comoving coordinates bU = (g, j, X, \), corre-
sponds to an homogeneous and isotropic space-time:

3B2 = 5UV3b
U3bV = −3g2 + 0(g)2

[
3j2 + j23Ω2

:

]
(8)

wherewe have introduced: 3Ω2
:
≡ sinc(

√
: j)3Ω2 with 3Ω2 =

cos2 X3\2+3X2 and : is the curvature constant : = {+1, 0,−1}.
For the flat case : = 0 we have 3Ω2

:
= 3Ω2. The scale factor,

0(g), describes the expansion/contraction as a function of time.
For a comoving observer, under homogeneity and isotropy:(

)00 )10
)01 )11

)
=

(
d(g) 0

0 ?(g)02

)
(9)

i.e. D = 0 in Eq.3. The field equations Eq.1 are:

3�2 ≡
(
¤0
0

)2
≡

(
mg0

0

)2
= 8c� (d + dΛ) (10)

3
¥0
0
≡ 3

m2
g0

0
= −4c� (d + 3?' − 2dΛ)

dΛ ≡ dvac +
Λ

8c�
; d = d<0−3 + d'0−4 + d:0−2

Where d< is the matter density today (0 = 1), d' is the radi-
ation (with pressure ?' = d'0−4/3). dvac represents vacuum
energy: dvac = −?vac = + (k) and dΛ = −?Λ is the effective
cosmological constant density. Given d and ? at some time,
we can use the above equations to find 0 = 0(g) and determine
the metric in Eq.8. During inflation, � was dominated by a
vacuum (slow rolling) field so that dΛ ' + (k) ≡ 3�2

Λ
/8c�,

which results in 0 ' 4g�Λ . Recent observations show that
the expansion rate today is also dominated by dΛ This in-
dicates that the FLRW metric lives inside a trapped surface

1/�Λ = (8c�dΛ/3)−1/2, which [13] called our causal bound-
ary, and behaves like the interior of a BH.

III. PROPER COORDINATES

The most general shape for a metric with spherical symme-
try in proper coordinates (C, A, X, \) is [11]:

3B2 = −�(C, A)3C2 + �(C, A)3A2 + A23Ω2 (11)

Empty space d = ? = Λ = 0 results in the SCHW metric:

3B2 = −[1 − 2�"/A] 3C2 + 3A2

1 − 2�"/A + A
23Ω2 (12)

where " represents a singular point mass at A = 0. This is not
a realistic configuration but the horizon at A∗ = 2�" prevent
us from seeing such naked singularity. Outgoing null radial
geodesics cannot leave the interior of A∗, while incoming ones
can cross inside A∗. The solution to Eq.1 with the above metric
with d = ? = " = 0, but Λ ≠ 0 is the deSitter (deS) metric:

3B2 = −[1 − A2�2
Λ] 3C

2 + 3A2

1 − A2�2
Λ

+ A23Ω2 (13)

which is also static and has an trapped surface at A = 1/�Λ
where �2

Λ
≡ 8c�dΛ/3 and dΛ = Λ/(8c�) + + . We have

included constant + in Eq.7 because it is degenerate with Λ.
Without lost of generality, we rewrite Eq.11 in form that is

closer to SCHW and deS metrics:

3B2 = 6`a3G
`3Ga = −[1−2q]1−2i 3C2+ 3A2

1 − 2q
+A23Ω2

: (14)

where we have used 3Ω: introduced in Eq.8 to allow for non-
flat space. In general q = q(C, A) and i = i(C, A). The field
equations for this case are well known, e.g. see Eq.(7.51) in
[11]. The case ? = −d results in �0

0 = �
1
1, and the solutions

are i = 0 and:

q = �/A
∫ A

0
d(A) 4cA23A + ΛA2/6 + �1/A (15)

The remaining field equations, �2
2 = �3

3 provide the time
evolution and are equivalent to energy conservation∇`) `a = 0:

mC d = −
d + ?

1 − 2q
mCq (16)

?′ = (d + ?)
[
q′

1 − 2i
1 − 2q

+ i′ ln (1 − 2q)
]

for D = 0. Note how d = −? results in constant d and ?

everywhere, but with a discontinuity at A = A∗ corresponding
to 2q = 1. This discontinuity is critical to understand a BH
solution. One way to address this discontinuity is to study
junction conditions (see §III C).
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A. False Vacuum Black Hole (BH.fv)

We take �1 = 0 in Eq.15 to avoid singular solutions. The
simplest way to find a physical BH solution is:

d(A) = −?(A) =
{
+0 for A > A∗
+0 + Δ for A < A∗

(17)

where +0 and Δ > 0. We require the metric to be asymptoti-
cally flat [13] because particles should be free at spacial infinity
for a finite time of evolution [14]. This requires Λ = −8c�+0
and the solution (which we called BH.fv) to Eq.15 is:

1 − 2q =
{

1 − A∗/A for A > A∗ ≡ 2�"
1 − A2�2

Λ
for A < A∗ = 1/�Λ

(18)

where: 3�2
Λ
≡ 8c�dΛ, dΛ = d" = Δ and " = 4c

3 A
3
∗ Δ. This

has no singularity at A = 0. Coordinates (C, A) don’t change
sign as we cross inside A∗. In both sides of A∗ we have constant
values of ? and d and energy conservation in Eq.16. There is a
discontinuity (d′ = ∞ and ?′ = ∞) at 2q = 1 where A = A∗, in
agreement with Eq.16. But the metric is static and continuous
at A∗. This only happens for A∗ = (8c�Δ/3)−1/2. The smaller
Δ the larger and more massive the BH. In the limit Δ⇒ 0, we
have A∗ ⇒∞ and we recover Minkowski space.

Is this solution stable [2]? At a fixed location, the field k
inside the BH is trap in a stable configuration (d = +) and can
not evolve ( = 0). The same happens for the field outside
(see Fig.1). A FV in Eq.17 with equal Δ but different initial
radius ' < A∗ is subject to a pressure discontinuity at A = '
which is not balanced in Eq.16 and results in a bubble growth
[15]. As show in Eq.30 below this junction is stable and
asymptotically reaches ' = A∗. . The inside of A∗ is causally
disconnected, so the pressure discontinuity does not act on A∗,
which corresponds to a trapped surface. Radial null events
(3B2 = 0) connecting (0, A0) with (C, A) follow:

A = A∗

(
A∗ + A0
A∗ − A0

42C/A∗ − 1
)
/
(
A∗ + A0
A∗ − A0

42C/A∗ + 1
)

(19)

so that it takes C = ∞ to reach A = A∗ from any point inside
(this also happens from outside, see Eq.31)

The interior deS metric can be transformed into a FLRW
metric with constant � = �Λ [16]. This change of coordinates
provides a new interpretation for the BH.fv solution in Eq.18.
This is not only a solution for a BH inside a universe. The
inside comoving observer, sees this solution as an expanding
inflationary universe inside a BH, even when the metric is
static in proper coordinates and A = A∗ is fixed.
Note how we can have FVs inside other FVs (see Fig.1). So

we can have BHs inside other BHs. This is a simple solution,
but it is not realistic as it has no matter or radiation anywhere.

B. Black Hole Universe (BH.u)

Consider solutions to the metric of Eq.14 where we also
have matter d< = d< (C, A) and radiation d' = d' (C, A) inside:

d(C, A) =
{
−? = +0 for A > A∗
+0 + Δ + d< + d' for A < A∗

(20)

with ? = −+0 − Δ + d'/3 ≠ −d inside. This means mCq ≠ 0
and D ≠ 0: the fluid inside has to move relative to proper frame
of the outside observer [17]. For A > A∗, the solution is the
same as Eq.18. For the interior we define: 2q ≡ A2�2 (C, A),
so that:

1 − 2q(C, A) =
{

1 − A∗/A for A > A∗ = 2�"
1 − A2�2 (C, A) for A < A∗ = 1/�Λ

(21)

where A∗ = 2�" = 1/�Λ as before. We can find the interior
solution with a change of variables from G` = [C, A, X, \] to
comoving coordinates ba = [g, j, X, \], where A = 0(g)j and

Λ
`
a ≡

mG`

mba
=

(
mg C mjC

mgA mjA

)
=

(
(1 − 2q)i−1 0

√
2q

(1−2q)1−i√
2q 0

)
(22)

where angular variables (X, \) are unchanged. This transforms
6`a in Eq.14 into the FLRW metric 5UV in Eq.8: 5UV =

Λ
`
UΛ

a
V
6`a with 2q = A2�2 (g) and arbitrary i. So the most

general spherically symmetric in-homogeneous metric inside
A∗ looks homogeneous in comoving coordinares (where A∗
is the FLRW trapped surface). Given some d(g) and ?(g)
in comoving coordinates in the interior of a BH we can use
Eq.10 with dΛ = Δ = 3A−2

∗ /8c� to find � (g) and 0(g). The
solution in Eq.21 is then just � (C, A) = � (g). We call this a
BH universe (BH.u).
To find g = g(C, A) explicitly we need to solve Eq.22 with

2q = A2�2 (g). For � (g) = �Λ the solution is i = 0 with

g = g(C, A) = C + 1
2�Λ

ln [1 − �2
ΛA

2] (23)

where A < A∗ = 1/�Λ. The flat FLRW metric with � = �Λ
becomes deS metric in Eq.13 as in the BH.fv solution. In
comoving coordinates, (g, j), the metric is expanding: 0(g) =
4g�Λ , while in proper coordinates, (C, A), it is static [16].
Given)`a in Eq.9 we can find )̄UV in the proper frame using

the inverse matrix of Eq.22: )̄UV = (Λ−1)`U (Λ−1)a
V
)`a:

)̄0
0 = −

d + ?2q
1 − 2q

; )̄1
1 =

? + d2q
1 − 2q

(24)

which is independent of i. Comparing to Eq.3 gives D2 =
2q = A2�2.
Solution � (C, A) = � (g) in Eq.21 is valid for all A < A∗ =

1/�Λ because � (g) > �Λ. We can see this by considering
outgoing radial null geodesic in the FLRW metric of Eq.8:

A>DC = 0(g)
∫ ∞

g

3g

0(g) = 0
∫ ∞

0

30

02� (0)
<

1
�Λ

= A∗ (25)

which shows that signals can not escape from the inside to
the outside of the BH.u. But incoming radial null geodesics
0(g)

∫ g
0

3g
0 (g) can in fact be larger than A∗ if we look back in

time. This shows that inside observers are trap inside the BH.u
but they can nevertheless observe what happened outside.
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C. Junction conditions

We can arrive at the same BH.u and BH.fv solutions using
junction conditions. Here we follow closely the notation in
§12.5 of [11]. We will combine two solutions to the field
equations with different energy content, as in Eq.20, on two
sides of a hypersurface Σ. The inside 6− is FLRW metric
(or deS metric for � = �Λ) and the outside 6+ is SCHW
metric. This is similar to the case §12.5.1 in [11] with the
difference that we use : = 0 (instead of : = 1) and consider
a general FLRW solution 0(g) with Λ, d< and d' (instead
of a pressure-free dust model without Λ.). We define Σ to
be fixed in comoving coordinates j = j§, where j§ is the
causal boundary in the FLRWM metric [13]. For the SCHW
coordinate system, Σ is described by A = '(g) and C = ) (g),
where g is the comoving time in the FLRW metric. This is
just a particular case of the change of variables in Eq.22. The
induced metric ℎ− on the inside of Σ− with H0 = (g, X, \) and
fixed j:

3B2
Σ−
= ℎ−013H

03H1 = −3g2 + 02 (g)j2
§3Ω

2 (26)

has to agree with ℎ+, the SCHW outside at Σ+:

−�3C2+�−13A2+A23Ω2 = −(� ¤)2− ¤'2/�)3g2+'23Ω2 (27)

where � = 1 − 2�"
'

. The matching condition ℎ− = ℎ+ is:

'(g) = 0(g)j§ ; � ¤) =
√
¤'2 + � ≡ V(', ¤') (28)

For a given FLRW solution 0(g) we know both ' and V. The
extrinsic curvature  ± normal to Σ± from each side is:

 g−g = 0 ;  \−\ =  
X
−X = −

1
0j§

 g+g =
¤V
¤'

;  \+\ =  
X
+X = −

V

'
(29)

Thus, the second matching condition  − =  + requires V = 1,
which using Eq.28 results in:

¤'2 = '2�2 =
'∗
'

(30)

) =

∫
3'

�'(1 − �2'2)
(31)

where '∗ ≡ 2�" . Staring from small 0, as we increase g,
both ' and ¤' = �' grow until we reach �' = 2 = 1 which
corresponds to the event horizon '∗ = 2�" = 1/�Λ. It takes
) = ∞ in the SCHW time of Eq.31 to asymptotically reach
'∗. In this limit, Eq.30 reproduces the BH.u solution of Eq.21
and the BH.fv solution of Eq.18 for constant � = �Λ.
This proofs that the join metric is also a solution to the

Einstein’s field equations and there are no surface terms in the
junction. There is no discontinuity in the two metrics when
we join them with the timelike hypersurface of Σ. The Λ term
corresponds to a trapped surface '∗ = 1/�Λ in the FLRW
metric which matches the horizon of a BH in empty space.

IV. DISCUSION & CONCLUSIONS

The SCHW metric in Eq.12 is well known and studied but
the interior solution is not physical because it corresponds to
a singular point source of mass " at A = 0. Instead of ventur-
ing into Quantum-Gravity territory, here we look for classical
non-singular solutions for the BH interior. Our motivation is
to understand what is the physical meaning of " for BHs that
have already been observed. We find two solutions for the BH
interior which we label BH.fv and BH.u. BH.fv corresponds
to a space-time with a constant density discontinuity in Eq.17
and deS metric inside Eq.18. deS metric has a trapped surface
at A = A∗ which matches the SCHW event horizon. A con-
stant density corresponds to a centrifugal force, 2q = (A/A∗)2
that opposes gravity, 2q = A∗/A , i.e. Eq.15. The equilibrium
happens when both forces are equal, which fixes A∗, and corre-
spond to stable circular orbits. Similar solutions for BH.fv are
known [4, 18–20], such as the gravastar [3] or bubble universes
[15]. But they are not very realistic as they don’t have matter
or radiation.
The second solution is Eq.21, where the BH interior is

the FLRW metric. This BH.u solution is new, as far as we
know. We can have other BHs, matter and radiation inside
a BH within a larger space-time. The inside needs to be
expanding or contracting as in the FLRWmetric of Eq.8, with
the same trapped surface given by dΛ. This holds the expansion
and balance gravity at A∗. The join solution Eq.21 is also a
solution to Einstein’s field equations as the two metrics reduce
to the same form on a junction of constant j in Eq.26, and the
extrinsic curvature in Eq.29 is the same in both sides. Non flat
: ≠ 0 junctions were also considered in [7], but only for the
pressure-free dust model withoutΛ. The exterior metric could
also be FLRW, as the SCHWmetric can be considered a local
perturbation within a larger FLRW background.
BothBH type solutions can be interpreted as aBHwithin our

universe or as an expanding universe inside a larger space-time.
The idea that the universe might be generated from the inside
of a BH is not new [4, 6–8, 18]. Knutsen [21] rightly pointed
out the inconsistencies in notation and interpretation in Pathria
[6]. For the FLRWmetric, the critical density d2 = 3�2/8c�
corresponds to a BH inside a Hubble radius ' = 1/�. The
FLRW metric is trapped inside A < A∗ =

√
3/Λ, and is then

equivalent to an inhomogeneous spherically simmetric metric
of Eq.11, as shown by the change of variables in Eq.22 [22].
The solutions to the field equations are independent of the

choice of coordinates but )̄`a (C, A) depends on the fluidmotion
(see Eq.24). We used comoving coordinates (g, j), where
the fluid is homogeneous and comoving, to find the interior
solution. But we can then transform back to proper (C, A) to
find a full BH solution in Eq.21 that is continuous at A∗, like
in the BH.fv case. The BH mass density, d" = "/(4cA3

∗/3)
is d" = dΛ which should be interpreted as a (FV) boundary
condition dΛ =< d</2 + d' > [13]. As it happened in the
singular SCHW metric, outgoing radial null geodesics cannot
escape the event horizon, but incoming ones can enter (see
discussion around Eq.19 and Eq.25).

We can sketch the evolution of our universe with this model.
A primordial field k settles or fluctuates into a false (or slow
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rolling) vacuum which will create a BH.fv with a junction Σ in
Eq.26 where the causal boundary is fixed in comoving coordi-
nates and corresponds to the particle horizon during inflation
j§ = 2/(08�8) or the Hubble horizon when inflation begins.
The size ' = 0(g)j§ of this vacuum grows and asymptoti-
cally tends to A∗ in Eq.18 following Eq.30 with � = �8 . The
inside of this BH will be expanding exponentially 0 = 4g�8

while the comoving Hubble horizon decreases as 2/(0�8).
When this inflation ends [23–26] vacuum energy excess con-
verts into matter and radiation (reheating). This results in
BH.u, where an infinitesimal comoving Hubble horizon grows
again following the standard Big Bang evolution (see Fig.1 in
[13]). The junction condition remains fixed at j§ throughout
and ' = 0(g)j§ asymptotically tends to A∗ in Eq.21 follow-
ing Eq.30. In proper coordinates this solution has no Big
Bang (or bounce): it is not singular at A = 0 or at g = 0, be-
cause we have a non-singular BH.fv before we start the FLRW
BH.u phase. The inside comoving observer is trapped inside
A < A∗ = 2�" = 1/�Λ and has the illusion of a Big Bang.
The space-time outside (C, A) could be longer and larger than
the Big Bang prediction. In a more realistic situation we could
have a network of BH.u and there could bematter and radiation
in between (e.g. from quantum tunnelling).

We already have some observational evidence that the ex-
panding metric around us is inside a BH.u. We can recover the

Big Bang homogeneous solution in the limit Δ ⇒ 0, where
we have A∗ ⇒ ∞ and dΛ = 0. But we have measured dΛ > 0
(ΩΛ ' 0.7) which implies " ' 5.8 × 1022"� and A∗ ' 2/�0,
as in the BH.u. This model also explains the observed coinci-
dence between dΛ and d< today. The BH horizon A∗ is what
[13] called the primordial causal boundary A§. If we look back
to the CMB times, A∗ corresponds to 60 degrees in the sky
[13]. The observed anomalies in the CMB temperature maps
at larger scales [13, 27] provide additional evidence for the
BH.u model. There is also a window to see outside our BH.u
using the largest angular scales for I > 2 and measurements
of cosmological parameters from very different cosmic times.
Fosalba and Gaztanaga [27] found variations in cosmological
parameters over large CMB regions. Their Fig.30 show that
the size of these regions follow the BH.u relation between A∗
and dΛ. Such observations can therefore provide new evidence
for the initial conditions to our universe.
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