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Inside a Black Hole: the illusion of a Big Bang
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Institut dâĂŹEstudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
(Dated: February 10, 2021)

What is inside a Black Hole (BH) horizon R∗ = 2GM? We discuss two non-singular BH solutions, BH.fv
and BH.u., within General Relativity, which look like a singular Schwarzschild BH from the outside. BH.fv
corresponds to an false vacuum ∆ = 3R−2

∗ /8πG, while BH.u also has expanding or contracting matter and
radiation inside. For the inside comoving observer this BH.u solution looks like an homogeneous and isotropic
universe with Λ = 3/R2

∗ . For an outside observer our Universe looks like a regular BH with M ' 5.8× 1022M� .
Thus, the Big Bang model is an illusion of the comoving observer and could be much older than previously
estimated. Primordial inflation, themeasured cosmic acceleration, CMBanomalies and tensions inmeasurements
of cosmological parameters all provide independent observational support for such BH.u solution.

I. INTRODUCTION

A Schwarzschild Black Hole (BH) represents a singular
object of mass M . The horizon at R∗ ≡ 2GM prevent us from
seeing inside. This makes BHs good Dark Matter candidates.
But according to Buchdahl [1], BHs are more compact than
any form of matter. Here, we look for a physical BH solution
defined as a non singular object of size R∗which reproduces the
Schwarzschild (SCHW) metric for r > R∗ (in empty space).
This definition will guide us in our search: we want to find a
solution that extends the SCHW coordinate frame inside R∗.

For a perfect fluid the radial pressure inside a BH is nega-
tive [2]. Cosmologist are used to this type of fluids, which are
called Quintessence, Inflation or Dark Energy (DE). So, could
the inside of a BH be DE? Mazur and Mottola [3] argued that
the same DE repulsive force that causes cosmic acceleration
could also prevent the BH collapse, resulting in the so call
gravastar solution. The idea that the universe might be gener-
ated from the inside of a black hole is not new [4, 5], but such
models don’t contain matter and radiation, only scalar fields.
The simplest DE is the ground state V0(ψ) of a scalar field
ψ(x). In the expanding Big Bang, DE seems to be constant as
a function of space and time[6]. But here we look for a BH
solution which is not homogeneous but is defined by a spatial
discontinuity. We revisit these puzzles looking for non-static
solutions with radial fluid velocity u , 0 relative to the outside
SCHW observer. The two key questions we want to address
are: What are possible metrics for the inside of such a physical
BH? What is the meaning of the measured BH mass M?

II. HOMOGENEOUS SOLUTIONS

We will solve Einstein’s field equations [7]:

Gµν + Λgµν = 8πG Tµν ≡ −
16πG
√
−g

δ(
√
−gL)

δgµν
, (1)

where Gµν ≡ Rµν − 1
2gµνR and L is the matter Lagrangian.

For perfect fluid in spherical coordinates:

Tµν = (ρ + p)uµuν + pgµν (2)

where uν is the 4-velocity (uνuν = −1), ρ, and p are the
energy-matter density and pressure. This fluid is in general
made of several components, each with a different equation of
state p = ωρ. For a fluid moving with relative radial velocity
u with uν = (u0, u, 0, 0), we have u2

0 = −g00(1 + g11u2) and:

T0
0 = −ρ − u2(ρ + p)g11 ; T1

1 = p + u2(ρ + p)g11

T1
0 = (ρ + p) u0u ; T2

2 = T3
3 = p (3)

For an observer comoving with the fluid u = 0. Here we
want to consider a global (proper) coordinate frame that is not
moving with the fluid so that T1

0 , 0. This is necessary to
allow for solutions that are not static inside but look like a
(static) SCHW BH from outside.

A. Scalar field in curved space-time

Consider a minimally coupled scalar field ψ = ψ(xα) with:

L ≡ K − V = −
1
2
∂αψ∂

αψ − V(ψ) (4)

The Lagrange equations are: ∇̄2ψ = ∂V/∂ψ. We can estimate
Tµν(ψ) from its definition Eq.1 to find:

Tµν(ψ) = ∂µψ∂νψ + gµν(K − V) (5)

comparing to Eq.2 (see Eq.5 in [8] for details):

ρ = K + V ; p = |K | − V (6)

The stable solution corresponds to p = −ρ:

∇̄2ψ = ∂V/∂ψ = 0 ; ρ = −p = V(ψ) = Vi (7)

where ψ is trapped in the true minimum V0 or some false
vacuum (FV) stateVi = V0+∆, see Fig.1. The solution to Eq.1
for constant ρ = −p = Vi (without matter or radiation) for a
general metric with spherical symmetry in proper coordinates
(in Eq.11) is given by deSitter (deS) metric in Eq.13 with
H2
Λ
≡ 8πGρΛ/3 and ρΛ = Vi + Λ/8πG. This metric is static

in proper coordinates which also indicates that the vacuum
solution is in equilibrium.
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FIG. 1. A generic potential V(ψ) for a field ψ(x). A configuration
with total energy: ρ = K +V(ψ) (top line) can slowly loose its kinetic
energy K (e.g. via Hubble damping) and relax into a (trapped) false
ground state ρ = Vi ≡ V(ψi), i = 1, 2, 3, which we call false vacuum
(FV, red circles) with an energy excess ∆ ≡ Vi −V0. The true vacuum
is shown as a blue circle at V0 = V(ψ0). Note around V2 how we can
have a FV trapped inside other FV. ψ3 is an unstable (or slow rolling)
vacuum, similar to that which generated cosmic inflation. Quantum
tunneling (diagonal line) allows particles to escape from a FV.

B. The FLRW metric

The Friedmann-Lemaitre-Robertson-Walker (FLRW) met-
ric in spherical comoving coordinates ξα = (τ, χ, δ, θ), corre-
sponds to an homogeneous and isotropic space-time:

ds2 = hαβdξαdξβ = −dτ2 + a(τ)2
[
dχ2 + χ2dΩ2

k

]
(8)

where we have introduced: dΩ2
k
≡ sinc(

√
k χ)dΩ2 with dΩ2 =

cos2 δdθ2+dδ2 and k is the curvature constant k = {+1, 0,−1}.
For the flat case k = 0 we have dΩ2

k
= dΩ2. The scale factor,

a(τ), describes the expansion/contraction as a function of time.
For a comoving observer, under homogeneity and isotropy:(

T00 T10
T01 T11

)
=

(
ρ(τ) 0

0 p(τ)a2

)
(9)

i.e. u = 0 in Eq.3. The field equations Eq.1 are:

3H2 ≡

(
Ûa
a

)2
≡

(
∂τa
a

)2
= 8πG(ρ + ρΛ) (10)

3
Üa
a
≡ 3

∂2
τa
a
= −4πG(ρ + 3pR − 2ρΛ)

ρΛ ≡ ρvac +
Λ

8πG
; ρ = ρma−3 + ρRa−4 + ρka−2

Where ρm is the matter density today (a = 1), ρR is the radi-
ation (with pressure pR = ρRa−4/3). ρvac represents vacuum
energy: ρvac = −pvac = V(ψ) and ρΛ = −pΛ is the effective
cosmological constant density. Given ρ and p at some time,
we can use the above equations to find a = a(τ) and determine
the metric in Eq.8. During inflation, H was dominated by a
vacuum (slow rolling) field so that ρΛ ' V(ψ) ≡ 3H2

Λ
/8πG,

which results in a ' eτHΛ . Recent observations show that
the expansion rate today is also dominated by ρΛ[9]. This

indicates that the FLRW metric lives inside a trapped surface
1/HΛ = (8πGρΛ/3)−1/2, which [10] called our causal bound-
ary, and behaves like the interior of a BH.

III. PROPER COORDINATES

The most general shape for a metric with spherical symme-
try in proper coordinates (t, r, δ, θ) is [7]:

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2 (11)

Empty space ρ = p = Λ = 0 results in the SCHW metric:

ds2 = −[1 − 2GM/r] dt2 +
dr2

1 − 2GM/r
+ r2dΩ2 (12)

where M represents a singular point mass at r = 0. This is not
a realistic configuration but the horizon at R∗ = 2GM prevent
us from seeing such naked singularity. Outgoing null radial
geodesics cannot leave the interior of R∗, while incoming ones
can cross inside R∗. The solution to Eq.1 with the abovemetric
with ρ = p = M = 0, but Λ , 0 is the deSitter (deS) metric:

ds2 = −[1 − r2H2
Λ
] dt2 +

dr2

1 − r2H2
Λ

+ r2dΩ2 (13)

which is also static and has an trapped surface at r = 1/HΛ
where H2

Λ
≡ 8πGρΛ/3 and ρΛ = Λ/(8πG) + V . We have

included constant V in Eq.7 because it is degenerate with Λ.
Without lost of generality, we rewrite Eq.11 in form that is

closer to SCHW and deS metrics:

ds2 = gµνdxµdxν = −[1−2φ]1−2ϕ dt2+
dr2

1 − 2φ
+r2dΩ2

k (14)

where we have used dΩk introduced in Eq.8 to allow for non-
flat space. In general φ = φ(t, r) and ϕ = ϕ(t, r). The field
equations for this case are well known, e.g. see Eq.(7.51) in
[7]. The case p = −ρ results in G0

0 = G1
1, and the solutions are

ϕ = 0 and:

φ = G/r
∫ r

0
ρ(r) 4πr2dr + Λr2/6 + C1/r (15)

The remaining field equations, G2
2 = G3

3 provide the time
evolution and are equivalent to energy conservation∇µTµν = 0:

∂t ρ = −
ρ + p

1 − 2φ
∂tφ (16)

p′ = (ρ + p)
[
φ′

1 − 2ϕ
1 − 2φ

+ ϕ′ ln (1 − 2φ)
]

for u = 0. Note how ρ = −p results in constant ρ and p
everywhere, but with a discontinuity at r = R∗ corresponding
to 2φ = 1. This discontinuity is critical to understand a BH
solution. One way to address this discontinuity is to add
junction conditions [11].
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A. False Vacuum Black Hole (BH.fv)

We take C1 = 0 in Eq.15 to avoid singular solutions. The
simplest way to find a physical BH solution is:

ρ(r) = −p(r) =
{

V0 for r > R∗
V0 + ∆ for r < R∗

(17)

where V0 and ∆ > 0. We require the metric to be asymptoti-
cally flat [10] because particles should be free at spacial infinity
for a finite time of evolution [12]. This requires Λ = −8πGV0
and the solution (which we called BH.fv) to Eq.15 is:

1 − 2φ =
{

1 − R∗/r for r > R∗ ≡ 2GM
1 − r2H2

Λ
for r < R∗ = 1/HΛ

(18)

where: 3H2
Λ
≡ 8πGρΛ, ρΛ = ρM = ∆ and M = 4π

3 R3
∗ ∆. This

has no singularity at r = 0. Coordinates (t, r) remain time and
space as we cross inside R∗ [13]. In both sides of R∗ we have
constant values of p and ρ and energy conservation in Eq.16.
There is a discontinuity (ρ′ = ∞ and p′ = ∞) at 2φ = 1 where
r = R∗, in agreement with Eq.16. But the metric is static and
continuous at R∗. This only happens for R∗ = (8πG∆/3)−1/2.
The smaller ∆ the larger and more massive the BH. In the limit
∆⇒ 0, we have R∗ ⇒∞ and we recover Minkowski space.

Is this solution stable [2]? At a fixed location, the field
ψ inside the BH is trap in a stable configuration (ρ = V)
and can not evolve (K = 0). The same happens for the field
outside (see Fig.1). A FV in Eq.17 with equal ∆ but different
initial radius R < R∗ is subject to a pressure discontinuity at
r = R which is not balanced in Eq.16 and results in a bubble
growth [14]. Additional junction conditions [11] could be
added in such case, as in the gravastar [3] solution. But the
configuration should be stable when R is fixed to R∗ [4, 15].
This is because the inside of R∗ is causally disconnected, so the
pressure discontinuity does not act on R∗, which corresponds
to a trapped surface. Radial null events (ds2 = 0) connecting
(0, r0) with (t, r) follow:

r = R∗

(
R∗ + r0
R∗ − r0

e2t/R∗ − 1
)
/

(
R∗ + r0
R∗ − r0

e2t/R∗ + 1
)

(19)

so that it takes t = ∞ to reach r = R∗ from any point inside.
Quantum tunneling (see Fig.1) results in slow BH evaporation,
similar to the process of Hawking radiation.

The interior deS metric can be transformed into a FLRW
metric with constant H = HΛ [16]. This change of coordinates
provides a new interpretation for the BH.fv solution in Eq.18.
This is not only a solution for a BH inside a universe. The
inside comoving observer, sees this solution as an expanding
inflationary universe inside a BH, even when the metric is
static in proper coordinates and r = R∗ is fixed.
Note how we can have FVs inside other FVs (see Fig.1). So

we can have BHs inside other BHs. This is a simple solution,
but it is not realistic as it has no matter or radiation anywhere.

B. Black Hole Universe (BH.u)

Consider next solutions to Eq.14 where we also have matter
ρm = ρm(t, r) and radiation ρR = ρR(t, r) inside:

ρ(t, r) =
{

V0 for r > R∗
V0 + ∆ + ρm + ρR for r < R∗

(20)

p(t, r) =
{
−V0 for r > R∗
−V0 − ∆ + ρR/3 for r < R∗

so that p , −ρ inside. This means ∂tφ , 0 and u , 0: the
fluid inside has to move relative to proper frame of the outside
observer [17]. For r > R∗, the solution is the same as Eq.18.
For the interior we define: 2φ ≡ r2H2(t, r), so that:

1 − 2φ(t, r) =
{

1 − R∗/r for r > R∗ = 2GM
1 − r2H2(t, r) for r < R∗ = 1/HΛ

(21)

where R∗ = 2GM = 1/HΛ as before. We can find the interior
solution with a change of variables from xµ = [t, r, δ, θ] to
comoving coordinates ξν = [τ, χ, δ, θ], where r = a(τ)χ and

Λ
µ
ν ≡

∂xµ

∂ξν
=

(
∂τ t ∂χt
∂τr ∂χr

)
=

(
(1 − 2φ)ϕ−1 a

√
2φ

(1−2φ)1−ϕ√
2φ a

)
(22)

where angular variables (δ, θ) are unchanged. This transforms
gµν in Eq.14 into the FLRW metric hαβ in Eq.8: hαβ =
Λ
µ
αΛ

ν
βgµν with 2φ = r2H2(τ) and arbitrary ϕ. So the most

general spherically symmetric in-homogeneous metric inside
R∗ looks homogeneous in comoving coordinares (where R∗
is the FLRW trapped surface). Given some ρ(τ) and p(τ) in
comoving coordinates in the interior of a BHwe can use Eq.10
with ρΛ = ∆ = 3R−2

∗ /8πG to find H(τ) and a(τ). The solution
in Eq.21 is then just H(t, r) = H(τ). We call this a BH universe
(BH.u).
To find τ = τ(t, r) explicitly we need to solve Eq.22 with

2φ = r2H2(τ). For H(τ) = HΛ the solution is ϕ = 0 with

τ = τ(t, r) = t +
1

2HΛ
ln [1 − H2

Λ
r2] (23)

where r < R∗ = 1/HΛ. The flat FLRW metric with H = HΛ
becomes deS metric in Eq.13 as in the BH.fv solution. In
comoving coordinates, (τ, χ), the metric is expanding: a(τ) =
eτHΛ , while in proper coordinates, (t, r), it is static [16].
Given Tµν in Eq.9 we can find T̄αβ in the proper frame using

the inverse matrix of Eq.22: T̄αβ = (Λ−1)
µ
α(Λ

−1)νβTµν:

T̄0
0 = −

ρ + p2φ
1 − 2φ

; T̄1
1 =

p + ρ2φ
1 − 2φ

(24)

which is independent of ϕ. Comparing to Eq.3 gives u2 =
2φ = r2H2. The Lorentz factor is γ = (1−2φ)−1/2 so that γdr
gives the proper length, in agreement with Eq.14.
Solution H(t, r) = H(τ) in Eq.21 is valid for all r < R∗ =

1/HΛ because H(τ) > HΛ. We can see this by considering
outgoing radial null geodesic in the FLRW metric of Eq.8:

rout = a(τ)
∫ ∞

τ

dτ
a(τ)

= a
∫ ∞

a

da
aH(a)

<
1

HΛ
= R∗ (25)
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which shows that signals can not escape from the inside to
the outside of the BH.u. But incoming radial null geodesics
a(τ)

∫ τ
0

dτ
a(τ) can in fact be larger than R∗ if we look back in

time. This shows that inside observers are trap inside the BH.u
but they can nevertheless observe what happened outside.

C. Implications for ρΛ

Consider our universe as the interior of a BH.u. In Eq.18
we showed that ρΛ = ∆. But this assumed that the causal
boundary (where the metric becomes asymptotically flat) is at
infinity: Σ = ∞ (so that Λ = −8πGV0 [10]). For a universe of
finite age, the causal boundary Σ could be finite. This requires
a boundary term for the actionwhich fixesΛ = 4πG < ρ+3p >
where the average is over the light-cone inside Σ [10]. If the
causal boundary is set to Σ = ΣI + ΣO, where ΣI and ΣO are
the volumes inside and outside the BH, we find:
Λ

4πG
=< ρ + 3p >= −2V0 − 2∆

ΣI

Σ
+ < ρm + 2ρR > (26)

The effective ρΛ = V0 + ∆ + Λ/8πG is then:

ρM = ρΛ =

{
∆ for ΣO � ΣI

< ρm/2 + ρR > for ΣI � ΣO
(27)

The first case corresponds to a small BH inside a larger space
where < ρm/2+ρR >' 0 because the BH content is negligible
when average over a much larger (empty?) outside volume
ΣO. The second case corresponds to a BH.u that is causally
disconnected from the rest of space-time. The observational
fact that ρΛ ∼ ρm agrees with this second solution [10]. This
agreement (the coincidence problem) is therefore telling us
that the light-cone volume outside our BH.u is not very large.
Note that for inflationary models < ρm/2 + ρR >' ∆ because
matter and radiation are generated by reheating. DE, inflation
andBH interior are different aspects of the sameBH.u solution.

IV. DISCUSION & CONCLUSIONS

The SCHW metric in Eq.12 is well known and studied but
the interior solution is not realistic because it corresponds to a
singular point source of mass M at r = 0. Instead of ventur-
ing into Quantum-Gravity territory, here we look for classical
non-singular solutions for the BH interior. Our motivation is
to understand what is the physical meaning of M for the astro-
physical BHs that have already been observed. We find two
solutions for the BH interior which we label BH.fv and BH.u.
BH.fv corresponds to a space-time with a constant density dis-
continuity in Eq.17 and deS metric inside Eq.18. deS metric
has a trapped surface at r = R∗whichmatches the SCHWevent
horizon. A constant density corresponds to a centrifugal force,
2φ = (r/R∗)2 that opposes gravity, 2φ = R∗/r , i.e. Eq.15. The
equilibrium happens when both forces are equal, which fixes
R∗, and correspond to stable circular orbits. Similar solutions
for BH.fv are known [4, 5, 15, 18], such as the gravastar [3] or
bubble universes [14]. But they are not very realistic as they
don’t have matter or radiation.

FIG. 2. The Apollonial Universe: spatial distribution of False Vac-
uums (FV). Each color circle represents a region where the field ψ
has settled into a FV with energy excess ∆. The BH solution requires
R∗ = (8πG∆/3)−1/2. So the smaller the difference the larger and
more massive the BH. Our galaxy is depicted at the center of the
dashed circle which represents our observable universe.

The second solution is Eq.21, where the BH interior is the
FLRW metric. This BH.u solution is new, as far as we know.
We can have other BHs, matter and radiation inside a BH
within a larger space-time. The inside needs to be expanding
or contracting as in the FLRW metric of Eq.8, with the same
trapped surface given by ρΛ. This holds the expansion and
balance gravity at R∗. These solutions also work for non flat
k , 0 geometries: note dΩk in Eq.14. The exterior metric
could also be FLRW, as the SCHW metric can be considered
a perturbation within a FLRW background.
BothBH type solutions can be interpreted as aBHwithin our

universe or as an expanding universe inside a larger space-time.
For the FLRWmetric, the critical density ρc = 3H2/8πG cor-
responds to a BH inside a Hubble radius R = 1/H. Pathria
[19] noted that R∗ for a SCHW-deS metric behaves like Rmax

in a closed (k = +1) FLRW metric. Knutsen [20] argued that
these are just similarities, not solutions, and rightly pointed
out the inconsistencies in notation and interpretation. Knut-
sen [20] also argue that p and ρ in the homogeneous FLRW
solution is only a function of time (in comoving coordinates)
and can not change at r = R∗ to become zero in the exterior.
This is an important point which is broken by the presence of
ρΛ. Homogeneity is then an illusion of the comoving observer.
The FLRW metric is trapped inside r < R∗ =

√
3/Λ, and is

then equivalent to an inhomogeneous spherically simmetric
metric of Eq.11, as shown in Eq.22 [21].
The solutions to the field equations are independent of the

choice of coordinates but T̄µν(t, r) depends on the fluid motion
(see Eq.24). We used comoving coordinates (τ, χ), where
the fluid is homogeneous and comoving, to find the interior
solution. But we can then transform back to proper (t, r) to
find a full BH solution in Eq.21 that is continuous at R∗, like
in the BH.fv case. The BH mass density, ρM = M/(4πR3

∗/3)
is ρM = ρΛ which should be interpreted as a (FV) boundary
condition of Eq.27. As it happened in the singular SCHW
metric, outgoing radial null geodesics cannot escape the event
horizon, but incoming ones can enter (see discussion around
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Eq.19 and Eq.25).

We can picture the evolution of our universe with Fig.1. A
primordial field ψ settles into a false (or slow rolling vacuum)
which will create a BH.fv. The size R of this vacuum has
to grow to match R∗ in Eq.15. In comoving coordinates the
inside of this BH will be expanding exponentially. When this
inflation ends vacuum energy excess converts into matter and
radiation (reheating), which results in BH.u, where the rest
of the standard cosmic evolution can happened. As noted by
[4], the picture of standard inflation [22–25] is not necessary
to achieve such solution. In proper coordinates this solution
has no Big Bang (or bounce): it is not singular at r = 0 or
at t = 0, because we have a non-singular BH.fv before we
start the FLRW BH.u phase. The inside comoving observer is
trapped inside r < R∗ = 2GM = 1/HΛ and has the illusion of
a Big Bang. The space-time outside could be longer and larger
than the Big Bang prediction. In a more realistic situation we
could have a network of BH.u and there could be matter and
radiation in between (e.g. from quantum tunnelling). Fig.2
shows an illustration for such Apollonial universe.

We already have some observational evidence that the ex-
panding metric around us is inside a BH.u. We can recover the
Big Bang homogeneous solution in the limit ∆ ⇒ 0, where
we have R∗ ⇒ ∞ and ρΛ = 0. But we have measured ρΛ > 0

(ΩΛ ' 0.7) which implies M ' 5.8× 1022M� and R∗ ' c/H0,
as in the BH.u. This model also explains the observed coinci-
dence between ρΛ and ρm today in Eq.27. The BH horizon R∗
is what [10] called the primordial causal boundary r§. If we
look back to the CMB times, R∗ corresponds to 60 degrees in
the sky [10]. The observed anomalies in the CMB temperature
maps at larger scales [10, 26] provide additional evidence for
the BH.u model. There is also a window to see outside our
BH.u using the largest angular scales for z > 2 and measure-
ments of cosmological parameters from very different cosmic
times. Fosalba and Gaztanaga [26] found variations in cos-
mological parameters over large CMB regions. Their Fig.30
show that the size of these regions follow the BH.u relation
between R∗ and ρΛ. Such observations can therefore provide
new evidence for the initial conditions to our universe.
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