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Abstract

The XAI concept was launched by the DARPA in 2016 in the
context of model learning from data with deep learning meth-
ods. Although the machine learning community quickly took
up on the topic, other communities have also included expla-
nation in their research agenda (e.g. Case Based Reasoning,
Planning, Decision Support, Emerging Systems, Robotics,
Internet of Things). The question of explanation, which is at
the center of philosophical research works, has been revisited
during the last decades. The humanities community insists
on the fact that explanation is above all a process that devel-
ops in the context of the search for explanation and cannot
be completely defined a priori. In this contribution, we pro-
pose 1) to broaden the question of explanation to any type
of situation in which users exploit the possibilities of deci-
sion support agents for their own decisions, in the context of
their task, and within the framework of their activities and re-
sponsibilities and 2) to consider an instrumentation of digital
devices, able to manage dynamic explanation agents associ-
ated to corresponding decision support agents. We denote this
evolution "UXAI” (User eXplainable Artificial Intelligence)
because we consider that users should be the main actors in
the dynamics of any explanation process.

Introduction

The international research movement on “Explainable Arti-
ficial Intelligence” (XAI) has grown considerably over the
last years. Literature on the subject is abundant. See, for ex-
ample, (Mueller et al. 2019; Anjomshoae et al. 2019). The
urgency of this research is revealed with the extraordinary
impact in society of “artificial intelligence” and even more
so when these “AI” are the result of learning from massive
data, and even more so, if possible, when the learning ex-
ploits so-called “deep learning” techniques. This demand for
explanation by society can be explained by:

¢ Ethical reasons (Bird et al. 2020),

* Reasons related to the establishment of responsibilities:
the question arises, for example, with the use of COMPAS
in the USA,

* Reasons related to the semantics of models produced by
data analysis to discover laws of the world (van der Schaar
2020),
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* Economic reasons as outlined in the MIT report (Gunning
and Aha 2019).

The kick-off for a specific research field has been made by
the Defense Advanced Research Projects Agency (DARPA),
when publishing, in 2016, an announcement focusing on nu-
merical machine learning (Gunning and Aha 2019). This re-
port explains the issues with a situational scenario which un-
folds as follows (sic.).

* Today: the users of a function learned from data asks
themselves questions to which there are no possible an-
swers: Why did you do this? Why not something else?
When do you succeed? When do you fail? When can I
trust you? How do I correct an error?

e Tomorrow: the user with an explanation interface: I un-
derstand why. I understand why not. I know when you
succeed. I know when you fail. I know when to trust you.
I know why you erred.

The XAI machine learning community completed the
specifications by listing the involved audiences (Barredo Ar-
rieta et al. 2020): experts in the field so that they can evalu-
ate the model and acquire scientific knowledge; regulatory
institutions and agencies so that they can certify compli-
ance with legislation, regulations, audits, etc.; managers and
board members to assess the model’s compliance with their
regulations and understand their company’s Al applications,
etc.; scientific data specialists, developers, product owners
so they can verify and improve the effectiveness of products,
research, add new features, etc.; users affected by decision
models to understand their situation, verify the fairness of
decisions, etc.

In this article we posit that these questions arise regard-
less of the technologies used for the development of digital
devices intended to “help the decision”.

Classical technologies, with the notable exception of web
technologies, encapsulate regulations in closed boxes, with-
out any real possibility of sharing the associated knowledge
with the end user. We posit that artificial intelligence tech-
nologies should rather be a chance to facilitate explanatory
processes by designing agents in this way. The case of model
learning by deep learning raises the question in a new way
since even the designers developing the algorithms generat-
ing the learned models do not have access to the semantics
of the decisions that these models will support.



We also raise the fact that if numerous research works
take into account the end users, the goal is most often to
establish and integrate their profile to adapt pre-constructed
explanations. The fact that the user can be the main actor
and co-constructor of the explanation is seldom thought of.
Only a few research works in the field of the humanities and
social sciences really address this question (Miller 2019).
Humans introduce explanatory biases (de Graaf and Malle
2017) as they project their own explanatory patterns on ar-
tificial agents, whether materialized or not. The explanation
process must reduce these biases by providing formal and
non-emotional explanatory patterns.

Finally, we posit that an explanation is a complex process
that is co-constructed with the users in the context of their
tasks, their responsibilities, their knowledge, their abilities
to deliberate decisions alone or with others. We propose to
explore a new research perspective, UXAI (User Explained
Artificial Intelligence), grounded on these claims.

In this article, we questions different artificial intelligence
technologies on their capacities to facilitate an explanation
process for end users in a contextualized decision situation.
This article ends by opening avenues to answer the question
of how to manage the process of explanation, by facilitat-
ing the interaction between humans and digital device, when
these devices are used for decision support and must make it
possible to reveal the actual working regulations.

Explanation: what does it mean for humans?

Philosophy questions the notion of explanation through a
theory of explanation. This theory first focused on how to
establish causes to phenomena and observed things. How to
answer to the question WHY? The causal approach remains
a lively one when establishing scientific laws from massive
collected data. At the beginning of the 20th century, ma-
jor scientific progresses, particularly in physics, were made
without calling into question the principle of establishing
causality based on direct observation. Physicists would for-
malize laws that explain macroscopic or microscopic effects
impossible to observe in isolation, and also explains effects
whose causality could be established by observation. So for-
malized laws describe a reality that goes beyond what is
observable by the usual methods. The study of the theory
of explanation is then declined according to a realistic (em-
pirical) or epistemic orientation (Galavotti 2018). For a re-
alistic (empirical) approach, an explanation is a literal de-
scription of an external reality. For an epistemic approach,
the explanation is used to facilitate the construction of a
coherent empirical model as stated by Bas van Fraassen'.
Explanation theory also integrates the study of the process
of explanation. For example, the philosophy of language
focuses on understanding between individuals (Achinstein
1985), while cognitive sciences assert that explanation is
above all cognitive and results from a mental representa-
tion linked to the activity and helping this activity (Mayes
2020; Holland et al. 1987; Horne, Muradoglu, and Cimpian
2019). The interested reader can find detailed elements in

"For details, see:
Fraassen

https://fr.wikipedia.org/wiki/Bas_van_

the long-term study conducted by Robert R-Hoffman in a
series called Explaining Explanation (Hoffman and Klein
2017; Hoffman, Mueller, and Klein 2017; Hoffman et al.
2018) which ends with a specific study of machine learn-
ing by G. Klein (Klein 2018). In Explaining Explanation for
“Explainable AI” (Robert R. Hoffman, Klein, and Mueller
2018), the authors point out the elements that make “a good
explanation” within the framework of devices such as Ar-
tificial Intelligence. These elements constitute a theoretical
contextualization to the series of articles presented above.
According to Hoffman, the key observations to study the
notion of explanation for humans are the following. (1) Ex-
plaining is a continuous process: Humans are motivated to
“understand the goals, the intention, the awareness of the
context, the limitations of the task, [and] the basis for ana-
lyzing the system to see if it can be trusted” (Lyons et al.
2017); (2) Explaining is a co-adaptive process: “Explana-
tions improve cooperation, cooperation allows the produc-
tion of relevant explanations” (Brezillon and Pomerol 1997);
(3) Explanation must be triggered: think about what triggers
the need for an explanation, which can be based on the phe-
nomenon of “surprise” in the face of an unfulfilled expecta-
tion, for example; (4) We should facilitate self-explanation:
self-explanation is the fact of finding the explanation with
or without help; (5) Explanation is an exploration: the ac-
count of the exploration is part of the explanation, showing
the path of questions, answers, and the completion of infor-
mation to answer the questions (Mueller and Klein 2011);
(6) Contrast situations can be explained differently (Miller,
Howe, and Sonenberg 2017).

Explanation for AI based machines?

In this section, beyond the specific explanatory capabilities
of an Al agent, we address the requirements of an explana-
tion process that includes the user in its unfolding. We point
out the strengths and weaknesses of different types of Al
agents when contributing to such a process.

Explanation and symbolic based expert systems

Expert systems represent knowledge, rules and facts in a
symbolic form. Reasoning uses rules to infer new facts from
established facts. Reasoning is traceable, and would there-
fore, by its nature, be explainable. However, after the eu-
phoria, expert systems have left the limelight. (Swartout and
Moore 1985) analyzed the reasons for this failure. The ex-
plainability of these systems was judged to be weak and con-
stituted a significant reason for their abandonment. Mycin
(Shortlife et al. 1975), a famous medical diagnostic system,
demonstrated superior decision-making qualities to physi-
cians and even to groups of physicians. The inability of
physician users to integrate their own knowledge and con-
textual knowledge into the system distanced them from the
benefit of diagnostic quality, which, indeed, they did not dis-
pute. Case-Based Reasoning (CBR), in which the learning
loop integrates users, organizes knowledge into cases, a rep-
resentation similar to users’ practices. CBR is more effective
and has played an important role in the management of prac-
tical knowledge in companies. This no doubt explains why



the Case-Based Reasoning community is particularly active
in the XAI domain. Since Alan Newell’s proposal (Newell
1982) to separate the representation of knowledge from its
exploitation mechanisms, an important research community
has developed around ontologies and knowledge engineer-
ing in general (and more recently, around the semantic web).
With ontologies, many hoped that we had found the absolute
tool to explain the knowledge mobilized in a decision. How-
ever, the construction of these knowledge graphs is difficult
and normalizing. Knowledge graphs are often created from
available corpora, especially on the web (Biemann 2005).
Many decision-support devices are still based on explicit and
symbolic knowledge, with or without probabilistic, fuzzy or
possibilistic moderators. Different modalities of logics have
been experimented to improve the adaptation to real situa-
tions, without any better explanatory success. To our knowl-
edge, no research has been published that considers the ex-
planation of expert systems as a process that requires giving
the user the central role for learning to explain by integrating
the contextual elements of the decision to be supported.

(Chakraborti, Sreedharan, and Kambhampati 2020) is one
of the first papers to express the concept of explanation pro-
cess within the community of Planning and Decision Help-
ing. They use the term of emerging landscape for having to
explain its decision can be folded into an agent’s reasoning
stage itself. A number of recent papers demonstrate a very
high interest for XA/ in the classical scope of planning and
decision helping (Magazzeni et al. 2018; Chakraborti et al.
2019).

Explanation and machine learning based systems

Machine Learning (ML) based systems intend to learn a nu-
meric model from a large quantity of data; the model is later
used to predict new data or to act in an environment. Recent
works in ML, and particularly in Deep Learning (DL) have
shown remarkable results, sometimes exceeding human per-
formance (for example on image recognition tasks (Zhang
et al. 2018)). However, ML models can also make trivial
mistakes, such as labeling an axe as a screwdriver (Hoffman
et al. 2018).

As such, an explanation process may serve two main ob-
jectives: first, to allow end users who use learned models to
understand the “reasoning” which led to a decision so as to
accept the decision or not; and secondly, to allow designers
or regulators to understand the underlying causes of a mis-
take so as to refine and correct the model.

The wide diversity of existing ML methods calls for a va-
riety of mechanisms to produce explanations, which can be
placed along three axes. First, the mechanism can produce
post-hoc explanation after the learning occurred, or an in-
trinsic explainable capability of the learning algorithm. Sec-
ondly, the explanations can be either global, i.e. focusing all
instances of the dataset, or local, focusing only a specific
instance. And finally, they can rely on the model’s internal
characteristics (model-specific) or not (model-agnostic).

We detail below a categorization of 4 commonly used
types of problems (Guidotti et al. 2018).

Model Explanation Considering a non-easily understand-
able model, named the “black-box™, and a set of test in-
stances for which we do not have access to a ground truth,
the Model Explanation problem aims at learning a second,
“transparent” model for the testing data using the inputs and
outputs of the black-box model. This type of method pro-
vides post-hoc, global explanations and, more often than
not, in a model-agnostic fashion. As the resulting “transpar-
ent” model must be easily understandable by humans, sev-
eral authors recommend using Decision Trees; however, one
can wonder to which extent this model provides a satisfying
explanation process. Indeed, when the “transparent” model
is model-agnostic, the explanation may not be coherent with
the actual “reasoning” of the black-box model (i.e., there is
no fidelity). Moreover, this assumes that the audience will
be able to understand such “transparent” models; this de-
pends on the size of the generated Decision Tree for exam-
ple, and the expertise of the audience. Finally, this method
only provides an explanation, and not a complete explana-
tion process; in other terms, the user cannot interact with the
explanation and ask for more details.

Outcome Explanation Contrary to the first problem, the
Outcome Explanation problem focuses on providing an ex-
planation for a single instance, also called “local explana-
tion” (Barredo Arrieta et al. 2020). This problem may use a
similar method to the first problem, by generating a “trans-
parent” predictor, specific to this instance; it is also possible
to generate counterfactuals, i.e., foil data that differs slightly
with the real input data but for which the output is different
to allow the user to compare. However, such explanations
suffer from the same criticisms as the first problem: the fi-
delity to the black-box’s actual algorithm is not guaranteed,
and this does not constitute an explanation process.

Model Inspection The Model Inspection problem focuses
on the internal characteristics of the model and of the
dataset. As such, it pertains to intrinsic explanations instead
of post-hoc as previously; both global and local explanations
can be generated. Methods that purely rely on the dataset,
e.g. Principal Component Analysis, are model-agnostic but
other methods may explain characteristics of the model and
therefore are classified as model-specific. While this prob-
lem allows understanding which variables affect the model’s
prediction and to which extent, one cannot understand the
reasons of this influence.

Transparent Box Design The Transparent Box Design
problem is fundamentally different from the first three, as
it focuses on intrinsic explanations. Instead of providing ex-
planations for a black-box model, the goal is to directly pro-
duce a “transparent” model from the dataset. A part of the
XAI community is increasingly putting this type of meth-
ods forth, in particular for applications with important stakes
(Rudin 2019). Although “transparent” models have advan-
tages, such as allowing one to easily detect bias in the pro-
duced rules, the result is not a satisfying explanation pro-
cess, as there is no real explanation and no construction of
the explanation with a given user.



Toolkits Following the upsurge of Explainable Al articles
focusing on Deep Learning models, industries recently pro-
posed toolkits to help developers easily integrate elements of
explanation into their applications. However, these solutions
are (for the time being) still limited in terms of adaptation to
the audience and interaction.

We briefly describe two of the proposed toolkits: Tensor-
Flow What-If Tool?> (WIT) and IBM AI Explainability 3603
(AIX 360).

The TensorFlow WIT allows to explore the dataset and to
visualize the importance of variables. It is also possible to
temporarily change a variable from a datapoint to create a
counterfactual; the user is therefore able to interact with the
model to create its own mental representation. This interac-
tion capability is the main advantage of WIT, however, the
tool lacks adaptation to the audience. Indeed, the datapoints
are displayed as raw variables and are therefore targeted to-
wards Al developers, data scientists or potentially domain
experts; it seems unlikely that end users may benefit from
such an interface.

On the other hand, IBM AIX360 offers a multitude of
methods to produce explanations, each of them targeting a
different goal. For example, the toolkit proposes methods for
local or global explanations, using an interpretable model
or post-hoc explanations. Multiple types of audience can
be targeted; as such, it is possible to adapt the explanation
by implementing several methods. However, the demonstra-
tion show little to no interaction: for example, a bank client
may see which variables are important to get its loan file ac-
cepted, but cannot simulate foil data to observe the effect of
changing a specific variable.

Explanation and robotics/IoT based systems

Although Al is a discipline that is almost 70 years old, it
looks like the concerns about explanations are only very re-
cent. If we take a step back, and look at the phenomenon not
only from a scientific point of view, but also from a societal
point of view, this observation justifies itself quite easily. Of
course, we can consider the willingness to make explainable
Als as a kind of response to the myth of the black box of
the machine learning, but this is not the only reason (and
Machine Learning does not imply black boxes, it implies
models whose explanation is possible, but not accessible to
humans). The need for explanation is way more important
than that: understandable explanations are the absolute con-
dition for the acceptance of artificial intelligence. Without
actionable explanations, humans won’t trust Als, and more
importantly, won’t be able to use them wisely.

This need for explanations grows fast because, it is not
anymore to prove, Al has become incredibly present in al-
most all business areas. Companies, consultants, analysts,
journalists, and even institutions (like the European Com-
mission) are all advocating for better explanations, each of
them providing different, but converging, arguments.

Zhttps://www.tensorflow.org/tensorboard/what_if _tool
3https://www.ibm.com/blogs/research/2019/08/ai-
explainability-360/

However, most of the explanations that we are currently
able to provide do not really resemble the explanations that
a human would give to justify their choices. When humans
explain things to each other, they have a natural tendency to
align themselves with each other, according to their knowl-
edge, the vocabulary they are used to using, etc. They rarely
(if never) describe, step by step, the different phases of rea-
soning they followed in reaching their decisions or conclu-
sions.

In the field of robotics (de Graaf and Malle 2017),
and more precisely in social robotics and of collaborative
robotics, the need for explanation is usually a main concern.
Indeed, robots are designed to interact with human beings in
a professional context, and everything must therefore be im-
plemented to ensure that humans trust robots they are work-
ing with, and to make sure that the robots can operate safely.

As an example, we can cite several European projects that
stand out in these areas and who have established work-
ing groups or expert committees to deepen the topics re-
lated to explanations. The Crowdbot project* for example,
whose objective is to allow robots to freely navigate among
humans, places the issues of security and robustness at the
heart of their design.

To give another example in robotics, the Inbots project’,
which aims at providing inclusive robots for a better society,
has set up a number of committees of experts to study the
societal and socio-economic uptake of the work they carry
out.

In the field of Internet of Things (IoT), the explainability
of systems is also a frequently observed issue. However, it
takes a different dimension. Whereas many people express
concerns about safety, security, data privacy and resilience
of IoT devices, fewer are those who understand that the dif-
ficulty in explaining IoT systems comes from the complexity
that emerges from a vast network of simple devices.

Explanation is not only a matter of providing details on
how a single device works, but it also means being able to
explain the interactions between the devices, and the chain
of decisions.

For example, the paper (Garcia-Magarino, Muttukrish-
nan, and Lloret 2019) describes a use case inspired from the
everyday life (a connected kitchen) to demonstrate how IoT
and Al can be combined to provide explanations. In a com-
pletely different field, the paper (Tsakiridis et al. 2020) de-
scribes an explainable approach to Al in the field of farming.

Explanation and bio-inspired systems

Bio-inspired and emergent systems (Bonabeau, Dessalles,
and Grumbach 1995; Darwish 2018) are a class of mech-
anisms studied to solve optimization problems by simu-
lating behaviors models observed in nature. Building nu-
merical models from observed behaviors is a difficult task
even though a number of meta-models have been described
for types of behaviors (Ferber and Gutknecht 1998). Many
of these systems are dedicated to optimization research or

“http://crowdbot.eu/
Shttp://inbots.eu/



to the discovery of potential behaviors according to spe-
cific meta-heuristics. These models are sometimes consid-
ered simplistic and more radical approaches are proposed
to better account for natural emergence models (Di Paolo
and Lizuka 2008). For the past two years, the international
reference conference AAMAS has been hosting an Extraa-
mas workshop around XAI (Calvaresi et al. 2019, 2020).
The objectives of the workshop are indeed broad: “(i) to
strengthen the common ground for the study and develop-
ment of explainable and understandable autonomous agents,
robots and Multi-Agent Systems (MAS), (ii) to investigate
the potential of agent-based systems in the development
of personalized user-aware explainable Al, (iii) to assess
the impact of transparent and explained solutions on the
user/agent behaviors, (iv) to discuss motivating examples
and concrete applications in which the lack of explainability
leads to problems, which would be resolved by explainabil-
ity, and (v) to assess and discuss the first demonstrators and
proof of concepts paving the way for the next generation sys-
tems.” The contributions mainly concern (ii) and (iii) with
some exceptions on (i) (Alzetta et al. 2020) but the question
of the transparency of a device for the end user is also ad-
dressed in its complexity (Tulli et al. 2019). From a certain
point of view, it is indeed a question of using an artificial in-
telligence technique to facilitate an explanation process. The
focus of the research seems targeted at the process of elab-
orating an explanation in a complex situation, with multiple
models and associating both artificial and human agents.

Towards an UXAI model for dynamic
explanation processes?

The detailed study of the state of the art shows the weakness
of the consideration of explanatory processes in XAl, and
that these explanatory processes are important to consider
in the different fields of Artificial Intelligence, not only for
deep learning based approaches. This leads us to affirm that:
1) even if deep learning raises specific problems, the ques-
tion of explanation arises for any numerical form of deci-
sion support agent. Actually, the fact that digital agents rely
on artificial intelligence techniques should facilitate the im-
plementation of a dynamic explanation process whose main
actors are user in their contexts of use. 2) It is possible to
design a dynamic explanation process based on explanatory
agents that are sufficiently “intelligent” to learn with users
how to explain the behavior of a numerical decision sup-
port agent. We propose a scenario for the use of such an
approach that we call UXAI (User Explained Artificial In-
telligence), and compare today’s and tomorrow’s situations
from this perspective. We make some hypotheses on how to
achieve this.

Today

Research Level Researchers build decision models. They
do this from their expert knowledge and from collected data.
The collected data is used to check the validity of the models
but also, and dramatically, to learn the models. It is within
the framework of the automatic learning of models from data
that the research called XAI was launched and is giving its

first results. We call General Model (GM) a model as pub-
lished at this level. These are algorithms for building applied
models or generic application models trained specifically for
families of applications (for example: Convolutional Neural
Networks for Computer Vision).

Production Level Application design and deployment use
published general models to build applied models, which
are operationalized in the context of an activity with spe-
cific objectives for the deployment of applications on real-
world digital devices (as Face Recognition). Producers (de-
velopers, designers, marketing people, etc.) mobilize spe-
cific knowledge for their objectives and specialize the gen-
eral models to their context of use. The user experience they
seek to satisfy or they would like to propose is part of the
mobilized knowledge. The information that feeds their mod-
els comes from ad hoc data collection (Mechanical Turk for
example) or from the work of the designers (use cases). We
call Applied Model (AM) a model designed at this level. The
AM is implemented in the form of encapsulated functions in
the applications as specified by the designers.

Usage level Users are using the application as a support
for their activity under their responsibility. Users mobilize
their own knowledge to use the application in order to carry
out their task in a real context. Interaction traces provide data
that can be used to specialize the functioning of the applied
model, but also, and increasingly, to provide information to
producers to evolve the applied model itself. There is already
a loop with the producer level. Researchers can also collect
data from the implementation of applied models to build the
data corpuses that feed into their own model design or model
learning activity.

Tomorrow, with UXAI

Research level Researchers associate general models of
explanation (UXAI-GM) with their general models (GM),
gradually incorporating the necessary knowledge to be dis-
closed as an explanation so that the explanation process with
users can take place in a more informed manner. To achieve
this, they can work with feedback from designers in the
form of specifications of explanations to be produced to-
gether with the models they build and, in a more upstream
approach, they can anticipate and include potential users in
action research sequences on the field of usage. They de-
rive from this research the necessary concepts to propose
general user oriented explanation. They focus specifically
on producing general explanation-oriented models with the
user (UXAI-GM). One research challenge is to join the pro-
duction of a GM model with its corresponding UXAI-GM.
Research methods and protocols are impacted, including in
the editorial charts of publications, such as ethical require-
ments for publishing research works.

Production level Designers consider users not only when
producing the explanation models (UX approach) that they
deploy, but integrate in these models the possibility of co-
constructing the explanations with the users themselves. A
first UXAI-AM is designed from a UXAI-GM considered by
the designers. It will be installed at the same time as the AM.



However, this model has to be customizable by the users in
their own contexts. More precisely, UXAI-AM type mod-
els could be designed as “intelligent” agents with associ-
ated knowledge and explanatory inference mechanisms. For
example, studies show (Wortham, Theodorou, and Bryson
2016), including to understand the behavior of robots (Po-
tochnik 2011), that it was necessary to provide users seeking
to understand what is going on, a form of trace of the internal
states of the artificial intelligence they use. This UXAI dy-
namic is directly related to the ability to conduct research to
study the architecture and knowledge learning mechanisms
for these models. This research closely involves designers.
One research challenge is to make the evolution of an AM
and the corresponding UXAI-AM synchronous. Application
production chains are concerned by this requirement. The
validation of an AM is linked to the validation of the corre-
sponding UXAI-AM.

Usage level It is at the user level that change is most evi-
dent. The user has not only an application but also an expla-
nation agent associated with it: the UXAI-AM model and
its explanation knowledge. The user can then learn to un-
derstand the behavior of the application with the help of the
associated explanation agent. This explanation agent capi-
talizes the explanation processes in the form of an explana-
tion learning memory. This memory associates the contribu-
tions of the users explaining in their own way and their own
contexts with more generic explanatory knowledge provided
with the explanation models. A situated explanation of the
application is then possible and the explanation agent can
follow this new way for reusing in comparable situations
or for sharing with other users. If desired, users can easily
share with designers to evolve their models. In turn, design-
ers can share their knowledge with researchers to evolve ex-
isting general models of explanation. At this level, UXAI re-
search mobilizes a wide variety of disciplines, in particular
cognitive sciences, cognitive psychology, human-computer
interactions, etc.

A simple example Today, let us imagine an application
for risk assessment of bank loans. Researchers have pro-
posed various decision models (decision trees, Deep Learn-
ing methods, etc.) which can be implemented by the bank.
The bank’s developers also add explanations for two differ-
ent, specific audiences: their employees (who are domain
experts), and the lay user; explanations tailored for these au-
diences have been also proposed by researchers, let us sup-
pose for example that developers implemented a certain sort
of variable explanation. When giving a user profile to the
model, the result could be, e.g., “Rejected - The salary is
not sufficient”, or even “If the salary was 1500 instead of
1200, the result would be Accepted”. This is an explana-
tion, specialized for a given audience, however, it is possible
that the users are not satisfied by this explanation. Perhaps
they would like to know why does the model use 1500 as a
threshold? The current explanations, although thought with
the user in mind and made for users, are not made with the
users. Tomorrow, let us imagine the same application, us-
ing our UXAI model: the UXAI-AM still provides explana-

tions to the users, but also accepts explanations from users
in some sort of interactive dialog. E.g., users could rephrase
according to their own comprehension “So, I am too poor
to be given a loan?”, and the UXAI-AM could answer “No,
but there is much more negative examples, where loans were
not fully reimbursed, than positive examples. Therefore, the
risk was deemed too high for the specified regulations.” By
allowing users to self-explain, and the UXAI-AM to correct
these explanations, we can help users having a clear mental
model of the decision.

Conclusion

The main reasons for the need for a process of explanation
of digital decision support agents are mainly related to: the
ethics of their use, the question of the respective responsi-
bilities of the digital agent and its direct user; the economic
question that could emerge if, unable to explain the deci-
sion, the user would prefer not to use these agents and even
could consider it would be prudent to strictly regulate their
use. The statement of these issues demonstrates that the user
is at the center of the decision. It is the users’ own ability
to understand the workings of decision support that is re-
quired to enable their to evaluate and explain their own de-
cisions in the context of their own context and responsibil-
ities. After having explored the state of the art by opening
it up to all types of artificial intelligence and having ques-
tioned more conceptually the notion of explanation as a pro-
cess rather than as an element of information, we conclude
by proposing to extend the research to the process of expla-
nation and to unify it around a principle involving the user as
the main and indisputable actor. We have named this orien-
tation UXAI (User Explained Artificial Intelligence) to put
the user at the start of any explanation process and to study
what types of explanation assistance agents can then be de-
veloped to propose a concrete response to the requirement
of mastering the human user’s freedom of decision.
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