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Abstract—Hydrodynamic models are increasingly used in 

operational industrial contexts for prediction and analysis 

purposes, including risk assessment and design optimization. In 

the modelling phase, expertly made choices can have 

consequences on either computational cost (i.e. mesh resolution, 

domain size, etc.), or closures to unknowns and their parameters 

(friction, turbulence, etc.). These choices are examples of 

epistemic uncertainty in hydrodynamic applications. 

Simultaneously, in the last few years, field measurements have 

become more accessible, giving the opportunity to deepen 

validation processes, and to challenge standard modelling 

practices based on expert judgement. 

In this study, a sensitivity analysis to modelling choices such as 

domain extent and friction closure formulas is assessed in the 

context of tidal forcing in a coastal area. Comparison to field 

measurements of free surface and velocity components is 

performed using Dimensionality Reduction (DR), by means of 

Proper Orthogonal Decomposition (POD).  

Firstly, numerical simulations with small, medium and large 

scale computational domains and two different friction 

parameterizations (i.e. Strickler and Colebrook-White), are 

performed and statistically compared. For this purpose, Monte 

Carlo (MC) simulations are launched for each modelling 

configuration, using samples of uncertain friction parameters 

and tidal boundary conditions. The different behaviors are 

therefore analyzed using comparative statistics on the available 

measurement points (average, confidence intervals, etc.). 

Secondly, using POD, the behavior of each configuration, over 

the space of all possible events, is reduced to few representative 

components, commonly called modes or patterns. These modes 

are mutually compared for the different configurations, as well 

as to POD modes deduced from a distinct analysis on field 

measurements. A sensitivity analysis on POD modes using Sobol’ 

indices shows that the chosen configurations can have different 

sensitivities to the same uncertain input parameters. This 

suggests that a calibration procedure might respond to different 

control parameters depending on the modelling choices. 

Consequently, the optimal estimates found from one 

configuration to the other, may differ.  

 

I. INTRODUCTION 

Shallow Water Equations (SWE) are commonly used in 
coastal applications as good compromise between precision 
and computational cost. However, modelling a real case 
application is not always trivial. For example, the influence of 
the computation domain extension on the results is in general 
poorly evaluated, and the uncertainty implied by source terms 
closures, for example friction, is often overlooked. In the 
absence of alternatives, these choices are determined by expert 
opinion. In particular, calibration of the model on 
measurements is used to justify the model’s capacity to 
provide physically coherent information, and therefore its 
predictive capability. The fitted model is then used to analyze 
the flow between calibration points. However, the equivalence 
between good-fit and accuracy can be questioned. For 
example, friction is often calibrated to fit measurements at 
different stream points, spatially or temporally distributed, as 
in [4, 10]. It is then assumed that the bed and the flow 
characteristics are uniformly distributed between the 
calibration points, and that the model is trusted for the other 
choices, namely domain size. This of course is a strong 
assumption. 

The goal of the present study is to analyze the uncertainty 
resulting from common modeling choices: domain size and 
friction closure. For this purpose, four domain extents are 
compared, and two friction formulas are confronted. Different 
challenges are however encountered. Firstly, realistic 
hydrodynamic cases are high dimensional, i.e. they involve 
numerous parameters, and the response is spatio-temporal, 
which makes pointwise analysis difficult. Secondly, 
measurements are also spatio-temporal fields and are 
sometimes noisy. Proper Orthogonal Decomposition (POD) 
is therefore used to reduce the dimensionality of the 
numerical output on one hand, and to reduce and smoothen 
the observation on the other hand. This makes the comparison 
of uncertainties resulting from different model choices easier. 
Indeed, POD is respectively applied on the numerical model 
results and on observations. The resulting patterns are 
confronted. Then, the coefficients associated to the numerical 
POD patterns are learned using PCE (Polynomial Chaos 
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Expansion), to provide a meta-model that helps perform low 
cost Sensitivity Analysis (SA) [13, 14], and can be used to 
replace the model for fast calibration.  

Last, besides patterns comparison, the most influencing 
parameters for each modeling configuration are optimally 
calibrated and compared. A 3DVAR algorithm is used [15], 
even though measurements are distributed in time. This is 
made possible thanks to POD that reduces the temporal 
behavior over the simulation window to few scalars instead 
of a high dimensional time series. 

 An example of a power plant’s cooling intake, located in 
a coastal area is studied as an application case. The intake 
provides the plant with water via a pumping system. The 
study of the intakes hydrodynamics is of industrial interest, 
but the external currents should be trustworthy. 
Hydrodynamic uncertainty should therefore be quantified. 
Five measurement points are available off the coast, and 48 
hours simulations are launched for the uncertainties 
investigation.   

This paper is organized as follows. Firstly, theoretical 
background on hydrodynamic modeling, Uncertainty 
Quantification (UQ), using PCE, POD, SA and 3DVAR are 
shortly described in Section II. Secondly, modeling 
uncertainties are investigated in Section III, using four 
domain extents and two friction closures. Thirdly, optimal 
calibration results are compared for the modeling settings in 
Section IV. Lastly, a conclusion is given in Section IV. 

II. MATERIALS 

A. Shallow Water Equations 

Shallow Water Equations (SWE) are obtained by depth-
averaging the three-dimensional Reynolds-averaged free-
surface Navier-Stokes equations, allowing the representation 
of almost-horizontal, two-dimensional (2D), shallow flows 
[1]. The mass and momentum conservation equations are 
defined in (1), where the system unknowns are the velocity 
components 𝒖 = (𝑢, 𝑣)𝑇  along the Cartesian 
coordinates (𝑥,𝑦) and the free surface elevation 𝜂 ≔ ℎ + 𝑏, 
with ℎ the water depth and 𝑏 the bottom elevation. The 
gravitational acceleration 𝑔 and the water density 𝜌 are 
considered constant. Vector 𝝉𝒃 denotes the bottom shear 
stress, vector 𝑭 represents external forces (Coriolis, surface 
tension, wave radiation, etc.), and  𝜈𝑒 is the effective viscosity 
accounting for kinematic, eddy and “dispersion” viscosity, the 
latter resulting from the vertical integration.  

{

𝜕ℎ

𝜕𝑡
+ ∇. (ℎ𝒖) = 0

𝜕(ℎ𝒖)

𝜕𝑡
+ ∇. (ℎ𝒖 ⊗ 𝒖) = −𝑔∇𝜂 −

𝝉𝒃

𝜌
 +

ℎ𝑭

𝜌
 +  ∇. (ℎ𝜈𝑒∇𝒖)



In this work, the external forces are omitted and the 
effective viscosity is set to water’s kinematic viscosity for 
simplicity. While this is practical for a first investigation of the 
model’s behaviour in a UQ framework, it is worth mentioning 
that the omitted terms are physically important and must, in 
principle, be considered. The bottom shear stress and the 
hydrodynamic Boundary Conditions (BC) need closure. 

Physical parameterizations are generally used, here considered 
uncertain, and discussed in the following in Subsection B. 

B. Uncertain friction and boundary conditions 

1) Friction: Bed shear stress is unknown and needs 

closure. It is capital for environmental applications, as it has 

considerable influence on the flow because of the energy 

dissipation it induces [2]. Its exact formulation remains 

unknown, but many formulas can be found in literature, with 

specific calibration parameters. It is generally expressed as in 

(2), where 𝐶𝑓 is a dimensionless friction coefficient. 

 𝝉𝒃 =
1

2
𝜌𝐶𝑓|𝒖|𝒖 

Literature formulas for 𝐶𝑓 are either empirical or semi-

empirical [2]. One of the most widely used empirical formulas 
is Strickler’s model (3) (or Manning-Strickler in the Anglo-
Saxon terminology, as explained in [3]). Coefficient B takes 

values in the range [21.1, 26.613] 𝑚1/2𝑠−1 and 𝑘𝑠 is the bed 
roughness height, often set to the median bed grain size [3]. 
The formula is usually written as a function of the so-called 

Strickler coefficient 𝐾 ≔ 𝐵/𝑘𝑠
1/6

. It can be noted that 
equivalence with Nikuradse is assured for the particular 

value 
𝑘𝑠

ℎ
= 0.037, if and only if B=26.613 (developments in 

[19]). 

 𝐶𝑓 =  
2𝑔

𝐵²
(

𝑘𝑠

ℎ
)1/3 

Semi-empirical formulas express the impact of near-bed 
turbulence on bed resistance to the flow. Indeed, not only 
turbulence modifies the currents in the water column, but the 
turbulence regime also changes the bed resistance [3]. For 
example, Colebrook-White’s implicit formula (4) can be used, 
where 𝐵1, 𝐵2 and 𝐵3 are dimensionless, with values 
respectively in the ranges [2, 2.14], [0, 7.17] and                
[8.888, 14.83], as reported by Yen [5].  

 𝐶𝑓 =  
𝜆

4
=

1

4  (−𝐵1log (
1

𝐵2

𝑘𝑠
ℎ

+
𝐵3

𝑅𝑒√𝜆
))²

 

For both formulas, 𝑘𝑠 must be defined. This variable is 
often adopted as a calibration parameter, although being 
physically complex to describe, as it results from different 
contributions (e.g. skin friction, bed forms dissipation, etc.) 
[6]. For coastal applications, van Rijn [6] proposes the 

formula 𝑘𝑠 = √(𝑘𝑠
𝑐)² + (𝑘𝑠

𝑚𝑟)² + (𝑘𝑠
𝑑)², where the total 

roughness 𝑘𝑠 is induced by ripples 𝑘𝑠
𝑐 , mega-ripples 𝑘𝑠

𝑚𝑟
and 

dunes 𝑘𝑠
𝑑

. Using the bounds reported in [6] for each 
component, the variation interval 𝑘𝑠 ∈ [0.00064, 1.023] 𝑚 is 
obtained. 

2) Tidal Boundary Conditions: Tidal forcing are usually 

imposed as BC in coastal applications. In this study, the 

TPXO data-base is used [7], particularly the European Shelf 

(ES) local model within TELEMAC-2D [8]. The 

hydrodynamic unknowns at the boundary are modelled as a 

superposition of harmonic components, as in (5) and (6),  

 𝐹(𝒑, 𝑡) =  ∑ 𝐹𝑖(𝒑, 𝑡) 

𝐹𝑖(𝒑, 𝑡) =  𝑓𝑖(𝑡) 𝐴𝐹𝑖
(𝒑)𝑐𝑜𝑠(

2𝜋𝑡

𝑇𝑖
− 𝜙𝐹𝑖

(𝒑)  + 𝑢𝑖
0 + 𝑣𝑖(𝑡)) 
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where the term F at point p and time t represents the unknown 
(velocity component and/or water depth), 𝐹𝑖 a harmonic  
component with constant period 𝑇𝑖 , amplitude 𝐴𝐹𝑖

, phase 𝜙𝐹𝑖
, 

phase at origin of times 𝑢𝑖
0, and temporal nodal factors 𝑓𝑖(𝑡) 

and 𝑣𝑖(t). Thompson’s method is then used to prescribe BC 
[9], and three parameters, denoted CTL (Coefficient of Tidal 
Level), MTL (Mean Tidal Level) and CTV (Coefficient of 
Tidal Velocity), can be used to calibrate the BC on 
measurements, as in (7) and (8). For example, MTL allows to 
account for seasonal variability (effect of thermal expansion, 
salinity variations, air pressure, etc.) in addition to long-term 
sea level rise resulting from climate change [17]. 

 ℎ(𝒑, 𝑡) =  𝐶𝑇𝐿 × ∑ ℎ𝑖(𝒑, 𝑡) − 𝑧𝑓 + 𝑀𝑇𝐿 

 𝒖(𝒑, 𝑡) =  𝐶𝑇𝑉 × ∑ 𝒖𝑖(𝒑, 𝑡) 

In this study, MTL variation interval is deduced from 
measurements (Section III.A) as [4.0 m CM, 6.0 m CM], 
whereas the non-dimensional parameters CTL and CTV are 
expertly determined and respectively set to [0.8, 1.2] and [0.8, 
3.0]. Using these bounds, the measurements fall within the 
simulated min-max interval (see Fig. 3).  Coefficients MTL, 
CTL and CTV can be used to compensate the effects of storm 
and surge (atmospheric and wave setup), as the latter are not 
modelled and not taken into consideration in the TPXO data-
base.  

C. Uncertainty Quantification 

The objective of UQ studies is to determine the impact of 
uncertain inputs or model on the uncertainty of simulated 
output. Firstly, an identification and quantification of 
uncertainty sources should be performed, as done in 
Subsection B. Here, in the absence of other information, 
Uniform densities are deduced from literature value ranges for 
each variable (Subsection B). Secondly, Monte Carlo (MC) 
simulations are realized. A random sample of the uncertain 
inputs of size 1000 is generated with the Uniform laws, and 
corresponding calculations are launched. Thirdly, MC outputs 
are analysed. Statistics such as mean and standard deviation 
can be calculated, and the overall behaviour can be analysed, 
for example by reducing the output’s space to representative 
components using Proper Orthogonal Decomposition (POD), 
described in Subsection D.1. Additionally, Sensitivity 
Analysis (SA) is performed to rank the uncertain inputs by 
their influence on the output. For this purpose, Polynomial 
Chaos Expansion (PCE) can be used to calculate Sobol’ 
indices, as explained in Subsections D.2 and D.3.  

Lastly, once the most influencing parameters are 
identified, they can be used to fit the model on measurements. 
For example, optimal methods like 3DVAR, shortly described 
in Subsection D.4, can be used. This gives a best estimation 
for parameters as well as associated confidence intervals. The 
latter are generally much narrower than the initial UQ 
intervals, which reduces uncertainty.  

1) Proper Orthogonal Decomposition: The goal of POD 

is to extract patterns of a continuous bi-variate function. 

These patterns, when added and multiplied by adequate 

coefficients, explain the main dynamics. Let 𝒖: Ω × 𝕋 →
 𝔻 = 𝐼𝑚(𝑢)  be a continuous function of two 

variables 𝜖 , 𝛿 𝜖  Ω × 𝕋. The following relationships and 

properties hold for any Ω × 𝕋 and Hilbert space 𝔻 

characterized by its scalar product (. , . )𝔻 and induced 

norm ‖ . ‖𝔻. For example, this could concern the reduction of 

a temporal series, controlled by stochastic parameters (𝜖 =
{𝑡1, … , 𝑡𝑛} and 𝛿 = {𝜃1, … , 𝜃𝑉}), where 𝔻 is a set of scalar 

real values or vector real values (e.g. ℝ or ℝ2).  POD consists 

then in an approximation of 𝒖(𝜖, 𝛿) at a given order  𝑑 ∈ ℕ∗ 

[11] as in (9), 

          𝒖(𝜖, 𝛿) ≈  ∑ 𝑣𝑘(𝛿)𝜎𝑘𝝋𝒌(𝜖)𝑑
𝑘=1 ,        (9) 

where {𝒗𝑘(𝛿)}𝑘=1
𝑑 ⊆ 𝒞(𝕋, ℝ) and {𝝋𝒌(𝜖)}𝑘=1

𝑑 𝒞(Ω, 𝔻), with 
𝒞(𝔸, 𝔹) denoting the space of continuous functions defined 

over 𝔸 and arriving at 𝔹, and {𝜎𝑘}𝑘=1
𝑑 ⊆ ℝ. The objective is 

to identify {𝝋𝒌(. )}𝑘=1
𝑑  that minimizes the distance of the 

approximation to the true value 𝒖(. , . ), over the whole Ω × 𝕋 

domain, with an orthonormality constraint for {𝝋𝒌(. )}𝑘=1
𝑑  

using the scalar product (. , . )𝔻. This can be defined, in the 
least-squares sense, as a minimization problem. 

The minimization problem is defined for all orders 𝑑 ∈
ℕ∗, so that the members 𝝋𝑘 are ordered according to their 

importance. The family {𝝋𝑘(𝜖)}𝑘=1
𝑑  is called the POD basis. 

The solution to this problem is well established [11, 12]: the 
POD basis of 𝔻 of order 𝑑 is the set of orthonormal 
eigenvectors of an operator ℜ: 𝔻 →  𝔻 defined as ℜ(𝝋) =
〈(𝒖, 𝝋)𝔻 × 𝒖〉𝕋, if the eigenvectors are taken in decreasing 

order of corresponding eigenvalues, which are {𝜆𝑘 = 𝜎𝑘²}𝑘=1
𝑑 .  

An accuracy rate, also called Explained Variance Rate (EVR), 
can be calculated as ∑ 𝝀𝒌𝒌≤𝒅 / ∑ 𝝀𝒌

+∞
𝒌=𝟏 , which tends to 1 

(perfect approximation) when d tends to +∞. Each 𝝀𝒌 
represents the variance proportion carried by mode k. When a 
given 𝑑 ≪ min (dim (𝔻), dim (𝕋)) corresponds to a high 
accuracy rate, we speak of dimensionality reduction.  

2) Polynomial Chaos Expansion: The idea behind 

Polynomial Chaos Expansion (PCE) is to formulate an 

explicit model that links a variable (output) to conditioning 

parameters (inputs), both living in a probability space. The 

interest variable denoted 𝒀 and the input parameters denoted 

𝛉 =  (θ1, θ2, … , θ𝑉) are characterized by a given density. The 

models response can be approximated as in (10),      

    𝒚 =  ℳ(𝛉) = ℳ0 + ∑ ℳ𝑖(θ𝑖)
𝑉
𝑖=1 +

 ∑ ℳ𝑖,𝑗(θ𝑖 , θ𝑗)1≤𝑖<𝑗≤𝑉 + ⋯ +  ℳ1,…,𝑉(θ1, θ2, … , θ𝑉) , (10) 

where ℳ0 is the mean of  𝒚 and ℳ𝐼⊆{1,…,𝑉} is the common 

contribution of variables 𝐼 ⊆ {1, … , 𝑉} to 𝒚. For PCE, these 
contributions have a polynomial form, as in (11), 

  𝒚 =  ℳ(𝛉) =  ∑ 𝑐𝛼𝜁𝛼(θ1, θ2, … , θ𝑉)|𝛼|≤𝑃  ,       (11) 

with 𝛼 =  {𝛼1, … , 𝛼𝑉} and |𝛼| = ∑ 𝛼𝑖
𝑉
𝑖=1 , defining a 

multivariate polynomial basis {𝜁𝛼 , 𝛼  ∈ ℕ𝑉 𝑎𝑛𝑑 |𝛼| ∈

{0, … , 𝑃}} as 𝜁𝛼(θ1, θ2, … , θ𝑉) =  ∏ 𝜉𝛼𝑖

(𝑖)
(θ𝑖)

𝑉
𝑖=1 . For each 

parameter θ𝑖, {𝜉𝛼𝑖

(𝑖)
, 𝛼𝑖 ∈ {0, … , 𝑃}} is an orthonormal 

polynomial basis, and 𝑃 ∈ ℕ is a chosen polynomial degree.  

𝑐𝛼 are deterministic coefficients that can be estimated using 

different methods. In this work, the Least Angle Regression 
Stagewise method (LARS) is used to construct an adaptive 
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sparse PCE. Further details on PCE in general and LARS in 
particular can be found in [20].  

3) Sensitivity Analysis: PCE can be used with variance 

decomposition [13, 14] to analyse the influence of the inputs 

variances on the output’s variance [14]. For the general case 

of a multivariate model written as in (10), the contribution of 

the polynomial indexed by 𝛼 , to the output y can be 

computed in terms of variance, as in (12), 

𝑆𝛼 =
𝑉𝑎𝑟[𝑐𝛼𝜁𝛼]

𝑉𝑎𝑟[𝒚]
=  

𝑐𝛼²

∑ 𝑐𝛽²
|𝛽|≤𝑃

 ,       (12) 

where 𝑆𝛼 are the well-known Sobol’ indices [14]. Adding 

them for all the polynomials that contribute to y equals 1. They 
allow to rank all terms by their relative contribution to y. The 
contributions can either be: (i) analysed for each polynomial; 
(ii) used to compute the 1st order contribution of a variable θ 𝑖 
alone (1st Sobol’ index denoted 𝑆𝑖) by adding the monomial 
contributions only; (iii) or used to compute the total 

contribution of θ 𝑖  (total Sobol’ index denoted 𝑆𝑖
𝑇)  by adding 

the contributions of all polynomials involving θ 𝑖. 

4) Optimal Calibration using 3DVAR: An automatic 

algorithm is here used for inverse parameters estimation from 

observations and a numerical model. On the first hand, 

observations are not perfect. On the other hand, one may have 

a first guess for the parameters (physical knowledge, previous 

simulations, etc.), but the latter is uncertain. In order to find 

the best compromise between measurements errors and 

parameters first guess errors, the optimization takes the form 

of a minimization problem, for the function defined in (13), 

𝐽(𝜽) =
1

2
(𝜽 − 𝜽𝒃)𝑇𝑩−1(𝜽 − 𝜽𝒃) + 

           
1

2
(𝒚 − ℋ(ℳ(𝜽)))𝑇𝑹−1(𝒚 − ℋ(ℳ(𝜽))) ,    (13) 

where y is the observation, ℳ the numerical model, ℋ an 
operator from the simulation to the observation space, 𝜽 the 
set of unknown parameters and 𝜽𝒃 a background knowledge 
(or first guess) of the parameters. The background and 
observation errors are represented by error covariance 
matrices, respectively denoted 𝑩 and 𝑹. This is commonly 
known as a data assimilation variational problem, where 𝐽 is 
called cost function, and minimizing it is referred to as 
3DVAR [15, 16].  

Here, the observation and simulation are the same 
variables expressed on the same locations and times, i.e. ℋ is 
identity. The observation can be POD reduced and 
approximated as a matrix product 𝒚 ≈ 𝚽𝒀𝚺𝒀𝒚̃, where a finite 
number of POD modes is stored in 𝚽𝒀, the corresponding 
square roots of eigenvalues are stored in 𝚺𝒀 and 𝒚̃ contains the 
multiplicative coefficients, which are a reduced form of 𝒚. 
Next, the simulation result ℳ(𝜽) can be POD reduced and the 
coefficients learned using PCE as a function of 𝜽, which is 

written as ℳ(𝜽) ≈ 𝚽𝑿𝚺𝑿ℳ̃(𝜽), where ℳ̃(𝜽) is a vector 
storing PCE models for the reduced version of simulation 
result. The cost function can then be approximated as in (14). 

 

𝐽(𝜽) ≈
1

2
(𝜽 − 𝜽𝒃)𝑇𝑩−1(𝜽 − 𝜽𝒃) + 

                          
1

2
(𝒚̃ − 𝑯̃ℳ̃(𝜽))

𝑇
𝑹̃−1(𝒚̃ − 𝑯̃ℳ̃(𝜽)) ,    (14) 

where 𝑯̃ = (𝚽𝒀𝚺𝒀)−𝟏𝚽𝑿𝚺𝑿 is a new linear operator (matrix) 
that links the reduced observation to the PCE model of reduced 

simulation ℳ̃(𝜽), and 𝑹̃−1 = (𝚽𝒀𝚺𝒀)𝑻𝑹−1(𝚽𝒀𝚺𝒀). The new 
minimization problem is an approximation of the original, but 
is less costly. Indeed, reduction implies that the dimension of  

𝒚̃ is much lower than the full observation′𝑠, and that of ℳ̃(𝜽) 

is much lower than the numerical model′𝑠. Additionally, PCE 
performs in seconds while the numerical model needs hours, 
making the model evaluation time negligible.   

In the following, the uncertainties resulting from modelling 
choices (domain extension, friction closure) are investigated 
using the previously described theoretical elements. 

III. UNCERTAINTIES RELATED TO MODELING 

CHOICES 

Firstly, a description of the study case and available data is 
given in Subsection A. The case is used to investigate the 
differences that come from domain extent choice in 
Subsection B, and friction formula choice in Subsection C.  

A. Case study 

The study site is located on the eastern English Channel 
coast in northern France. The study zone is mega-tidal and 
dominated by a semi-diurnal circulation, with moderate wave 
activity. In particular, a power plant’s cooling intake is of 
interest. Its upstream boundary is connected to the sea, and a 
pumping system ensures the plant’s cooling. Hydrodynamic 
models of different extents, as shown in Fig. 1-a, can be used 
to represent the flow in the intake. The choice of domain extent 
and other simulation parameters (Section II) is considered 
uncertain. Consequently, four domain extensions are 
compared in Subsection B and two friction formulas 
confronted in Subsection C. For validation, five measurement 
points (indicated in Fig. 1-a) of (𝑢, 𝑣)𝑇 and 𝜂 over a two-
month period are available. In addition to tidal effects, possible 
occurrence of storms, surges and resulting non-linear 
interactions with the tides influence these measurements. 
However, it is difficult to isolate their effect in the measured 
quantities as highlighted in [17]. The tidal BC coefficients 
introduced in Subsection B.2 will therefore be used to calibrate 
the total signal. 

Firstly, domains of different sizes, centred on the cooling 
intake, are created. Four domains in particular, of sizes 800 m, 
2 km, 7 km and 8 km, are compared in Section B. These 
denominations correspond to the distance from the intake 
entrance to the offshore, and equal distance on either side of 
the intake, to the east and to the west alongshore. Secondly, 
mesh convergence is assessed on the 2 km domain, and results 
in elements of size 50 m at the sea, 2.5 m at the intake walls 
and 0.5 m at the intake pumps. This configuration is kept for 
all domain sizes, and the resulting geometries share the same 
mesh in the common zones. The mesh is shown in Fig. 1-b, 
where the intake is coloured in red, and the growth of elements 
size from the intake to the sea is visible. The corresponding 
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meshes contain 28 188, 31 814, 74 079 and 87 617 nodes for 
the four domain extensions respectively. Thirdly, bathymetries 
are retrieved from different sources: a Digital Elevation Model 
(DEM) composed of global and local bathymetries [18], an 
interpolation of topographic beach profiles and a nearshore 
multi-beam bathymetry inside the intake and at its vicinity. 
The same bathymetries are applied for all domain sizes, and 
the resulting geometries share the same bathymetry in the 
common zones. It should be mentioned that the used data are 
not necessarily available at measurement date, and are 
spatially interpolated. This results in an epistemic uncertainty. 
Additional sources of uncertainty, namely measurement errors 
should be noted. However, this is not explicitly dealt with. For 
the sake of simplicity, calibrating friction is considered to 
compensate, in average, for the uncertainty in the right hand 
side terms of SWE.  

Lastly, for all domain extensions, the BC are directly 
interpolated from the TPXO data-based. As all domain sizes 
keep smaller than a TPXO element size, the differences in the 
BC only result from linear interpolation due to the distance of 
boundary elements from the TPXO nodes. The idea is to 
evaluate the sensitivity of the simulations to pure extension of 
the calculation domains and not to changes in the BC nature. 
For the same reasons, BC of the smaller domains are not 
interpolated from larger domains because this would 
compensate for the difference of extension, which is exactly 
what we want to analyse. 

                    

                          (a) Domain extents                        (b) Mesh view 

Figure 1- Examples of domain extents with representation of measurement 

points outside the intake and view of the mesh. 

Measurements of tidal periods are extracted and 
superposed as in Fig. 2.  

                      
      (a) Free surface                  (b) X-velocity u 

Figure 2- Superposition of field measurements in front of the intake on point 

1, for two hydrodynamic variables. 

The different periods are considered as realizations of a 
temporal series, and POD is performed. The behaviour over 
two months is therefore reduced to a few components. The 
associated EVR are shown in Fig. 3. Velocity components u 
and v show the same behaviour. The two-months 
measurements, from which 38 periods were extracted for each 

variable, can therefore be reduced to 2 components, giving 
99% of captured variance for free surface, and over 96% for 
the velocity components. 

 

                             (a) Free surface                        (b) X-velocity u 

Figure 3- EVR for the free surface and X-velocity u after measurement 

based POD reduction on Point 1. 

B. Domain size implications 

As introduced in Section I and represented in Fig. 1, the 
comparison of hydrodynamic computations with domains of 
different sizes, centred on the cooling intake, is attempted. The 
four domains of sizes respectively denoted 800 m, 2 km, 7 km 
and 8 km, presented in Subsection A, are compared.  

In this section the Strickler formula is used for all domain 
extensions. The following uncertain parameters are considered 
for UQ: three for BC calibration (MTL, CLT, CTV) and two 
Strickler coefficients at the intake (𝐾1, red zone in Fig. 1-b) 
and at sea (𝐾2). The inputs bounds are described in Section 
II.B. In particular, the exact calculation for 𝐾1 and 𝐾2 using 

the formula 𝐾 = 𝐵/𝑘𝑠
1/6

 and the bounds from Section II.B 

for 𝐵 and 𝑘𝑠 gives the interval [21.02 , 90.66 ] 𝑚1/3𝑠−1.  

A number of 1000 MC simulations is launched on each 
domain. The min-max values of velocity u and examples of 
MC realizations are shown in Fig. 4 for two domains. The 2 
km domain reaches higher velocities than the 7 km domain, 
with the same uncertain parameters and bounds. Simulation 
examples (plots in colours in Fig. 4) show abrupt variations at 
low tides with the 2 km domain. Conversely, the 7 km one 
shows a smoother behaviour. For both domains, 
measurements fall within the modelled interval. Last, 
whatever the modelling domain, a slight time-lag between 
measurements and numerical simulations is observed. 

 
 

 

                       (a) 2 km domain                             (b) 7 km domain 

Figure 4- MC min-max envelope of x-velocity u extracted at Point 5, for 

domains of size 2 km and 7 km, and examples of MC realizations in colours.  

Investigation of the 2 km domain shows the presence of 
tidal flats at BC, which might be the cause of velocity 
oscillations. Indeed, an extraction of the hydrodynamic 
variables on the 2 km contour at low tide is performed in Fig. 
5. It shows that the velocity extremums are much higher for 
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the 2 km domain (Fig. 5-b) than for bigger extents. These 
higher velocities are due to the negligible water depths on the 
same locations (Fig. 5-a). Indeed, the velocity BC provided by 
the TPXO data base are not directly (𝑢, 𝑣)𝑇, but transport 
fluxes (𝑢ℎ, 𝑣ℎ)𝑇. Division by water depth ℎ causes the 
velocity BC to be infinite when ℎ is negligible. An often used 
practical engineering solution is to deepen the bathymetry at 
BC. Nevertheless, this solution is not used to avoid additional 
uncertainties and the impact of- propagation of this error at BC 
is studied and compared to other domains. 

 

   
(a) Water depth                  (b) X-velocity u 

Figure 5- Hydrodynamic variables extracted on the 2 km sea BC at low tide 

for three different domain extents.  

POD is used in order to analyse the full time series 
variations at a given point. The EVR is shown for example on 
Point 1 in Fig. 6. The problem is highly reducible. Free surface 
elevation reaches 99% variance with two modes, for all 
domain sizes. The relative RMSE (Root Mean Squared Error) 
between the simulation results and a 2-Mode POD reduction, 
averaged over the MC sample, is around 0.3%. Velocity 
components show different behaviours for different domains. 
For example, the y-velocity v is much less reducible for the 2 
km domain, probably linked to the numerical error at the BC. 
The average relative RMSE, between the simulations and a 2-
Mode POD, is around 5.8% with the 8 km domain, while it 
reaches 8.4% with the 800 m domain. It can also be noticed 
that the 800 m, 7 km and 8 km domains EVRs are ordered by 
domain size and 99% of the variance is captured with 2 modes, 
except for 2 km. 

 

                       
(a) Free surface                  (b) Y-velocity v 

Figure 6- EVR for two hydrodynamic variables after MC simulations POD 

reduction on Point 1. 

Next, free surface modes are shown in Fig. 7 for Point 1, 
where numerical and measurements modes are compared. 
Both modes are identical for all domains, and their shapes are 
comparable to measurement modes. However, the amplitudes 
of numerical Mode 1 are smaller than measurements. This 
difference can be explained by the represented information. 
Measurements Mode 1 is characterized by larger amplitudes, 
because measurements tidal coefficient varies, whereas the 
numerical Mode 1 only represents MC stochastic variation 
around the same tide. Furthermore, Mode 1 is always strictly 

positive, be it for the numerical or real mode. When multiplied 
by a positive coefficient (corresponding to a given MC 
realization or a given measurement period), it stays positive 
and translates vertically, i.e. the mean tidal level changes. 
Mode 2 oscillates from negative to positive, but not 
symmetrically. Adding it to Mode 1 corrects both tidal range 
and mean. It can be noticed that the periods of Mode 1 and 2 
are approximately semi-diurnal, which can for example be 
compared to the principal lunar and solar semidiurnal tidal 
components (M2 and S2). It should be noted however that 
POD modes have no theoretical reason to recover the tidal 
harmonics, as would be the case with a Fourier decomposition. 
This is rather related to the statistical importance of such 
harmonics in the global variance of the system. Lastly, a phase 
shift is observed between simulations and reality, for both 
modes. This phase is more important at ebb than at flood. It 
may correspond to the un-modelled effect of tide-surge 
interactions. Indeed, as explained in [17], the latter can lead to 
more surge at low than at high tide, resulting in a phase lag 
where the surge precedes the high water by few hours. 

 

                        
                            (a) Mode 1                                       (b) Mode 2 

Figure 7- Comparison of the first two modes of free surface to reality, after 

reduction on point 1, for all tested domain sizes.  

Comparison of X-velocity modes is shown in Fig. 8. First, 
differences between domains can be observed, and are bigger 
in Mode 2 than in Mode 1. Once again, the domain of size 2 
km behaves differently even for Mode 1 (oscillations). This is 
a numerical artefact, as no oscillations are noticed in the 
measurements.  

 

                  
                            (a) Mode 1                                        (b) Mode 2 

Figure 8- Comparison of the first two modes of x-velocity u to reality, after 

reduction on point 1, for all tested domain sizes.  

Secondly, no model succeeds in reproducing the 
asymmetry observed at the extremums of measurements for 
Mode 1. Something is missing in the modelling that cannot be 
corrected by domain extent (Coriolis force, turbulence, waves, 
storm and atmospheric surges, non-linear interactions of tides 
with the latter, more precise bathymetry, etc.). For Mode 2, the 
overall numerical behaviour is comparable to the real one. It 
seems however that the domain of size 2 km fails at 
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reproducing the sharp minimal peaks (for example at Hour 40 
in Fig. 8-b) that the other models capture better. The same 
conclusions hold for Y-velocity v, with oscillations at the 
minimum noticed with the numerical simulations, and not 
present in the real mode. For modes of higher rank, no 
similarity between the numerical results and the measurements 
is observed.  

Next, Sobol’ indices of the inputs are compared for all 
domain sizes. They are calculated using degree 3 PCE models 
of the POD temporal coefficients, as explained in Section 
II.C.3. The MC sample is separated to a training set (80%) and 
a test set (20%) and PCE models are learned on the training 
set.  For example, with the 8 km model, it can be noted that 
the 90th percentile of the relative RMSE, between the 
simulations and a 2-Mode POD-PCE meta-model, calculated 
on the test set, remains below 0.3% for the free surface, and 
below 6.1% for the velocities. Sobol’ indices results for free 
surface and X-velocity u are shown in Fig. 9. For free surface, 
the only influencing variable for Mode 1 is MTL (Mean Tidal 
Level). For Mode 2, the influence of coefficient CTL is 
dominant, and MTL is in second position. This is coherent with 
previous interpretation of free surface modes. No differences 
between domain sizes are noticed. For the velocity 
components, influences change with domain sizes. For Mode 
1, the most influencing variable is CTV for all domain extents, 
followed by the Strickler coefficient 𝐾2. This tendency is 
inversed for Mode 2. However, CTV is more important for the 
smallest domain of 800 m, whereas 𝐾2 is less important, 
probably due to the spatial proximity of the BC to the analysed 
Point 1. For the 2 km domain, 𝐾2 is much more important than 
for the other extents for both modes. This can be explained by 
the higher velocity values, as 𝐾2 interacts with velocity in the 
shear stress formula (2). An interaction between 𝐾2 and CTV 
is noticed (undashed portion), also explained by the shear 
stress formula. 

 

 
     (a) Free-surface - Mode 1               (b) Free-surface - Mode 2 

 
    (c) X-velocity u - Mode 1             (d) X-velocity u - Mode 2 

Figure 9- Sobol’ indices for the two first modes of free surface and x-

velocity u on Point 1, with the different domain sizes. Full bar plot 

represents total Sobol’ indices. The dashed portion corresponds to the 1st 
order Sobol’ index, and the remaining to the interaction with other 

variables. 

Slight differences are observed between the 7 km and 8 km 
domains, namely more importance in Mode 1 for 𝐾2 and CTV 
with 7 km, which could be explained by higher proximity of 
the BC. The differences are larger for Mode 2, but the latter is 
associated to less variance percentage. Moreover, the Strickler 
coefficient dominance for Mode 2 means that the observed 
velocity peaks in Fig. 8 can be moderated by friction, except 
for the smallest domain, where BC is dominant. The smallest 
the domain, the more controllable it is with BC only. Last, 
intake’s friction 𝐾1 has no influence outside. Calibration 
outside can hence be performed without controlling 𝐾1.  

C. Friction closure influence 

The same analysis strategy is adopted to study the Strickler 
and Colebrook friction formulas, introduced in Section II.B. 
The same domain of size 8 km with the bathymetry and mesh 
described in Subsection III.A are used. Eight uncertain 
parameters are used for Colebrook’s UQ: three for BC (MTL, 

CLT, CTV), roughness heights at the intake (𝑘𝑠
1
) and at sea 

(𝑘𝑠
2
) and three structural uncertainty parameters (𝐵1 , 𝐵2 and 

𝐵3). With the Strickler formula, six uncertain parameters are 
used: three for BC, two roughness heights, and one structural 
parameter 𝐵. All inputs and corresponding bounds are 
described in Section II.B. Temporal responses at the five 
measurement points are reduced using POD. No differences 
can be observed in terms of EVR, all variables can be reduced 
to 2 modes for over 99% of variance. The modes shapes are 
compared, and no differences are observed in the free surface 
first two modes. Slight differences can be seen in the velocity 
modes, as shown in Fig. 10, particularly for Mode 2 for which 
small oscillations appear with Strickler’s model and not with 
Colebrook’s. No formula succeeds however in reproducing 
the observed asymmetry of measurements Mode 1, and a 
phase can be noticed for both modes. Apparently, this lack of 
asymmetry representation cannot be corrected with friction 
closure modification either.  

 

 
             (a) Mode 1                                      (b) Mode 2 

Figure 10- Comparison of the first two modes of x-velocity u to reality, after 

reduction on point 1, for two friction formulas. 

SA is performed and no differences are observed for the 
free surface modes. Sobol’ indices of the X-velocity u modes 
are shown in Fig. 11. Naturally, Sobol’ indices of 𝐵 are plotted 
only for Strickler’s model, and those of 𝐵1, 𝐵2 and 𝐵3 are 
plotted only for Colebrook’s. Slight differences are observed 
in Fig. 11.  
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                                 (c) Mode 1                                       (d) Mode 2  

Figure 11- Sobol’ indices for the two first modes of free surface and x-

velocity u on Point 1, with different friction formulas. Full bar plot 

represents total Sobol’ indices. The dashed portion corresponds to the 1st 
order Sobol’ index, and the remaining to the interaction with other 

variables. 

 

For Mode 1 there is a slight influence of the structural 
parameter B for the Strickler model, whereas the parameters 
of Colebrook’s model show no influence. Additionally, the 
velocity BC correction denoted CTV gains influence with 

Colebrook, whereas the sea rugosity 𝑘𝑠
2
 loses impact. The 

increase of influence for CTV with Colebrook’s model is more 
important for Mode 2. The ranking of variables is however the 
same, even though the proportion of influence changed. 

IV. IMPLICATIONS OF EXPERTLY MADE CHOICES 

ON OPTIMAL CALIBRATION 

An example of the uncertainty of optimal calibration is 
shown on the domain extents variation. A 3DVAR algorithm 
is used, with the same configurations, parameters and bounds, 
for all domains. The measurement is reduced to 2 modes, and 
the calibration is performed on the learned 2-modes POD-PCE 
meta-models for each numerical simulation, by minimizing 
the cost function in (14). This allows the observation to be 
simpler (smoothing) and the problem dimension to be lower 
(2 coefficients per each variable, instead of 48 hours temporal 
series). The observation’s error covariance matrix 𝑹 is 
considered diagonal (no error correlations) and calculated 
from measurement errors (5 cm for free surface and 1 cm/s for 
velocity). The background of each input parameter is set to the 
average of its variation interval, and the background’s error 
covariance matrix 𝑩, also considered diagonal, is estimated 
from the interval’s variance (squared maximum distance from 
mean).  Calibration results are shown in Fig. 12.  

 
Firstly, it can be noticed that while oscillations are slight 

with the domain of size 2 km at point 4, they become more and 
more important when approaching the intake, at Point 3 where 
they gain amplitude and at Point 1 when the response becomes 
completely uncontrolled. Without specific correction, this 
domain is therefore of no interest in operational conditions. 
Secondly, the velocities represented with size 800 m are of 
lower amplitudes than with the largest domains of sizes 7 and 
8 km.  For Point 3 for example in Fig. 12-b, the 800 m domain 
fits better the minimum velocities than the biggest domains, 
and vice-versa at the maximum velocities. However, it can be 
seen in Fig. 12-c that the velocity shapes and amplitudes 
modelled by the biggest domains are more realistic than with 
the smallest ones. Lastly, even though domains of sizes 7 and 
8 km show similar behaviour, slight differences can be 
observed. For Point 3 for example in Fig. 12-b, the extrema 

reached by domain of size 8 km are higher than with the 7 km 
domain. Hence, even with similar choices for domain extent 
(7 and 8 km), the best fit could be uncertain. Physical analysis 
and prediction are therefore also uncertain.   

 

 
         (a) Point 1 

 
         (b) Point 3 

 
        (c) Point 4 

Figure 12- Example of optimal calibration with the tested domain extents, 

for x-velocity u at points 1, 3 and 4. 

In particular, a comparison of X-velocity u profile at the 
intake’s entrance for domains of sizes 7 and 8 km, at half ebb 
tide, is given in Fig. 13, after 3DVAR calibration. As a 
reminder, no calibration point is available on this profile. It can 
be noticed that differences are bigger and analysis is even 
more uncertain in locations where no measurement is 
available, even though both domains were calibrated.  

 

(c) Point 4 

Figure 13- Intake’s entrance cross-sectional profile of x-velocity at half ebb 

tide after 3DVAR calibration. 

Last, the optimal parameterizations are different with the 
four domain sizes. For example, the Strickler coefficient at the 

sea equals 33.9 𝑚1/3𝑠−1 for the domain of size 8 km whereas 

it is equal to 55.85 𝑚1/3𝑠−1 for the domain of size 800 m, 
when CTV equals 4.16 for the 8 km domain and 4.38 for the 
800 m domain. This shows that, in a coastal configuration, the 
generalization of such parameters, friction coefficient for 
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example, is hardly possible, without further investigations 
about their meaning, as optimal values are strongly related to 
the numerical choices that precede calibration. Additionally, 
the optimal values for such parameters (e.g. friction 
coefficient) can be time-varying. Therefore, a dynamic 
optimal-fitting procedure may be necessary. 
 

V. CONCLUSION 

In this study, uncertainties resulting from standard 
modelling choices in hydrodynamics, i.e. domain size and 
closure choice for friction were studied.   

Firstly, measurements were POD reduced, and their 
patterns compared to numerical POD patterns resulting from 
different modelling configurations in a UQ framework. While 
similarities between observations and simulations are 
identified, some particularities present in the measurements, 
such as tidal velocity asymmetry, could not be modelled with 
the chosen configurations. This emphasizes the need of 
additional physics to be incorporated into the model, for 
example the Coriolis force, turbulence, waves, storm and 
atmospheric surges, non-linear interactions of tides with surge, 
or more precise bathymetric information. Noticing the lack of 
accord between the numerical and measurement-based 
patterns might help saving High Performance Computing 
resources: it is vain to try calibrating these configurations to 
capture particularities of the measurements when their modes 
behave differently, i.e. when the corresponding physical 
process in missing in the model.  

Secondly, SA was performed on each modelling 
configuration. Differences were noticed, in terms of 
importance ordering and influence magnitude. It also indicates 
that the smaller the domain, the more important BC are, which 
is a coherent conclusion. This could have consequences on 
calibration processes. Indeed, as a last investigation, a 3DVAR 
algorithm was tested, using the same parameters, on all 
modelling configurations. In this context, POD reduction on 
both measurements and simulations along with PCE meta-
models were used to dramatically reduce the computational 
time required by the 3DVAR algorithm. The results show that 
the obtained optimal states and associated optimal parameters 
may differ, even with close modelling choices (e.g close 
domain extents), which highlights on uncertainties inherent to 
common modelling choices.  
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