
HAL Id: hal-03106126
https://hal.science/hal-03106126v1

Submitted on 11 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bee+Cl@k: An Implementation of Lattice-Based Array
Contraction in the Source-to-Source Translator ROSE

Christophe Alias, Fabrice Baray, Alain Darte

To cite this version:
Christophe Alias, Fabrice Baray, Alain Darte. Bee+Cl@k: An Implementation of Lattice-Based Ar-
ray Contraction in the Source-to-Source Translator ROSE. ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’07), Jun 2007, San Diego, United
States. �10.1145/1273444.1254778�. �hal-03106126�

https://hal.science/hal-03106126v1
https://hal.archives-ouvertes.fr

Bee+Cl@k: An Implementation of Lattice-Based Array
Contraction in the Source-to-Source Translator ROSE

Christophe Alias Fabrice Baray Alain Darte

LIP, CNRS – ENS Lyon – UCB Lyon – INRIA, France

Firstname.Lastname@ens-lyon.fr

Abstract

We build on prior work on intra-array memory reuse, for
which a general theoretical framework was proposed based
on lattice theory. Intra-array memory reuse is a way of
reducing the size of a temporary array by folding, thanks
to affine mappings and modulo operations, reusing memory
locations when they contain a value not used later. We
describe the algorithms needed to implement such a strategy.
Our implementation has two parts. The first part, Bee, uses
the source-to-source transformer ROSE to extract from the
program all necessary information on the lifetime of array
elements and to generate the code after memory reduction.
The second part, Cl@k, is a stand-alone mathematical tool
dedicated to optimizations on polyhedra, in particular the
computation of successive minima and the computation of
good admissible lattices, which are the basis for lattice-based
memory reuse. Both tools are developed in C++ and use
linear programming and polyhedra manipulations. They can
be used either for embedded program optimizations, e.g.,
to limit memory expansion introduced for parallelization,
or in high-level synthesis, e.g., to design memories between
communicating hardware accelerators.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—Compilers, Optimization

General Terms Algorithms, Experimentation, Theory

Keywords Memory reduction, source-to-source transfor-
mations, program analysis, lattices

1. Introduction

The optimization of memory in multimedia applications for
embedded systems has received a lot of attention in the
past years, for reducing both memory transfers and memory
storage, which have a strong impact on power consumption,
performance, and chip area. In this paper, we focus on
memory storage reduction, which is important from both
an architecture and an application point of view.

On the architecture side, an important characteristic of
embedded systems is that the hardware, in particular mem-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’07 June 13–16, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

ories, can be customized. When designing and optimizing
a programmable embedded system, the designer wants to
select the adequate parameters for cache and scratch-pad
memories to achieve the smallest cost for the right perfor-
mance for a given application or set of applications. In high-
level synthesis, when designing non-programmable hardware
accelerators, the designer or synthesizer can even fully design
the memories (size, topology, connections between process-
ing elements) and customize them for a given application.
Embedded systems are thus good targets for memory op-
timizations. High-level synthesis projects such as [13, 27]
need to rely on powerful compile-time program and memory
analysis to be able to automatically or semi-automatically
generate a fully-customized circuit from a high-level C-like
description. For programmable embedded systems, run-time
memory reduction techniques are also possible (see for ex-
ample [28]), but it is not the topic of this paper.

On the application side, multi-media applications often
make intensive use of multi-dimensional arrays, in sequences
of loops, or even sequences of nested loops, which make them
good target for static program analysis. Before the final im-
plementations, the applications need to be rewritten sev-
eral times, either by the compiler or the developer, to go
from a high-level algorithmic description down to an opti-
mized and customized version. For memory optimizations,
the high-level description is where the largest gain can be
obtained because global program analysis and global code
transformations can be done. For this, it is therefore impor-
tant to analyze multi-media applications at the source level.

We present an implementation of intra-array memory
reuse based on lattice theory in the source-to-source trans-
former ROSE [20], developed at the Lawrence Livermore
National Labs. Intra-array memory reuse was first proposed
at Leuven/IMEC [1, 8], as a mean to reduce the size of
temporary arrays. Basically, their technique was to linearize
a temporary array in some canonical way and to fold it
with a modulo operation, thus reducing its size, so that a
memory cell can be reused when it contains a dead value,
i.e., a value no longer used. This problem was then consid-
ered by several authors, with different viewpoints and tech-
niques [14, 19, 24, 25], including some more work at Leu-
ven/IMEC [26], until a more general framework was pro-
posed in [6, 7] that tries to integrate all approaches into a
unique setting. We build on this theoretical work and we
bridge the gap between its formal description and the algo-
rithmic needs, both for program analysis and memory re-
duction, to really use such a framework in a compiler.

Related work Memory reduction has given rise to a large
amount of work recently. In addition to intra-array mem-

Author version - Published in Conference on Languages, Compilers, and Tools for Embedded Systems, 2007

ory reuse already mentioned previously, there are two other
important aspects in memory reduction: memory size esti-
mation and loop transformations for memory reuse.

The first aspect is to be able to give estimations on the
number of values live at a given time [31, 32, 2, 29, 3]. Such
estimations can be lower bounds or upper bounds. Lower
bounds give indications and guides for further loop transfor-
mations, while upper bounds can also be used for memory
reduction. Although some of these techniques can give para-
metric memory estimations, i.e., closed-form expressions in
the parameters of the program, they are of no use for build-
ing an appropriate memory mapping that can actually lead
to such a memory size. This is the main difference with intra-
array memory reuse, which leads to actual memory alloca-
tions. Note also that the memory allocations that we derive
are, by nature, upper bounds for memory size estimation.

The second aspect of memory reduction is to go beyond
memory optimization of an already-scheduled program and
to transform the program, i.e., to schedule it in another
way, so that it consumes less memory. Typically, the goal
is to reduce the lifetime of temporary values and increase
the temporal reuse of values. Array contraction (see for
example [23, 5]) is a form of memory reduction that can be
achieved with program transformation, in particular loop
fusion. All the classical work on loop transformations for
data locality, starting from [30], are also relevant here, even if
they do not exactly target memory reduction. We cannot cite
them all. An interesting recent work is [21], which studies the
effect of loop transformations on lifetimes of array variables.

2. Background Notations and Definitions

We use the classical notations used for describing, analyz-
ing, and transforming codes with nested loops and multi-
dimensional arrays, as introduced in [10] as static control
programs. Each particular execution of a statement S – an
operation – is represented by (S,~i) where ~i, the iteration
vector, represents the loop indices of the surrounding loops.
We make the standard assumption that loops are affine, i.e.,
a loop index takes all possible integer values from the loop
lower bound to the loop upper bound and these bounds are
max (resp. min) of affine expressions of surrounding indices.

In other words, for each statement S, the iteration vector ~i
spans, in lexicographic order, all integer points of an itera-
tion domain IS, which is a polyhedron. This affine frame-
work also accepts if-statements as long as conditions can be
analyzed as affine inequalities on loop indices. Similarly, we
assume that arrays are accessed with affine functions of loop
indices, otherwise some conservative approximations need to
be done, when analyzing the program, as done in [18, 4].

For memory reduction, we focus on temporary arrays, i.e.,
those used for intermediate computations in a procedure and
that are neither live-in, nor live-out. Only intra-procedural
information is needed to optimize them. We want to derive a
storage-saving mapping σ(~i) from the index space of a given
array A to a set of storage locations indexed by addresses,
with σ(~i) = M~i mod ~b, where M is a matrix, ~b is a vector,
and the modulo operation is applied component-wise. Such
a mapping σ is called a modular mapping and denoted by
(M,~b). The smallest the product of the components of ~b, the
smallest the required memory. To get an adequate matrix M
and an adequate vector ~b, our goal is to make practical the
formalism and techniques proposed by Darte, Schreiber, and
Villard in [6, 7]. This formalism generalizes the principles
of the previously-proposed techniques, in particular, by De

Input Program

Step 1. Lifetime Analysis of Array Elements

Step 3. Strictly Admissible Lattice Computation

Step 4. Allocation Computation

Step 5. Code Generation

Optimized Program

Set DS of conflicting index differences (~i −~j) with ~i ./ ~j

Strictly admissible lattice Λ for DS

Modular mapping σ such that ker σ = Λ

ROSE Library

Step 2. Conflicting Index Differences Computation

Relation ./ defining conflicting array indices

Figure 1. Overview of the method

Greef et al. [8], Lefebvre and Feautrier [14], Quilleré and
Rajopadhye [19], Strout et al. [24], Thies et al. [25]. Figure 1
depicts the main steps of our array contraction method.
These steps are described below.

Step 1 For deriving memory allocations with intra-array
reuse, a possibility is to first compute, in an abstract way,
for each array index, the first time it is written (first write)
and the last time it is read (last read). We will make sure
that, between the first write and the last read, the memory
location is not overwritten when using the modular map-
ping σ: we call this “interval” the lifetime of the array index.
As pointed out in [7], when a given array location is writ-
ten several times, we could be more accurate, distinguish the
different defined values, and work with a union of “intervals”
(between each write and its last corresponding read), instead
of a single one. But this would make everything more com-
plicated. Also, a pre-transformation of the code, renaming
arrays, is possible if needed to get the same effect. We do
not address this extension in our current implementation.

Step 2 Once the lifetime of array indices is analyzed, we
can define conflicting indices: two array indices ~i and ~j
conflict (denoted by ~i ./ ~j) if their lifetimes intersect. We
will make sure that such indices are not mapped to the same
memory location through σ, i.e., ~i ./ ~j,~i 6= ~j ⇒ σ(~i) 6= σ(~j).

If DS denotes the set of all ~d such that ~d =~i−~j, with~i ./ ~j,
the previous condition is equivalent to ~d ∈ DS, σ(~d) = 0 ⇒
~d = 0, i.e., ker(σ) ∩ DS = {0} where ker(σ) is the set of

all ~i such that σ(~i) = 0 (the kernel of σ). Step 2 consists
in building this set DS of conflicting index differences or an
over-approximation. Steps 1 and 2 are detailed in Section 3.

Step 3 The kernel of a modular mapping σ = (M,~b) from
Zn to Zp is a sublattice of Zn. A lattice Λ with Λ∩DS = {0}
is a strictly admissible lattice for DS. Given such an integer
lattice, it is easy to build a mapping (M,~b) whose kernel

is Λ and such that the product of the components of ~b (the
memory size) is equal to the determinant of Λ (Step 4).
In other words, the search for a good modular mapping is
reduced to the problem of determining a strictly admissible

integer lattice for DS with small determinant. Algorithms
and heuristics to find such a lattice are detailed in Section 4.

Steps 4 and 5 are straightforward and will not be detailed.
Step 4 consists in building, from a lattice Λ, a matrix M
and a vector ~b so that the kernel of (M,~b) is Λ. This may
need some standard matrix computations (Hermite or Smith
normal forms). Heuristics developed in Step 3 can also give
directly the modular mapping. See [7] for more details, we
just use what is explained there. Finally, Step 5 consists in
replacing each access A(f(~i)) to an optimized array A by
the reference A(σ(f(~i))). This, again, is done thanks to the
source-to-source transformer ROSE [20]. Some refinements
on σ can be done, which are mentioned in Sections 3 and 4.

Main example We will use, as running example, the clas-
sical Durbin’s kernel, which solves a Toeplitz system with N
unknowns. See its code in Figure 2.(a). The array r is an in-
put array, the array out is an output array, the arrays alpha,
beta, sum, and y are temporary arrays, thus subject to mem-
ory reduction. In this example, any sophisticated tool should
detect that arrays alpha, beta, and sum can be replaced by
scalars. For array sum, this check requires inter-loop analy-
sis. Our tool finds easily these complete memory reductions
because, for each of these arrays, the set of conflicting index
differences DS is reduced to {0}. More interesting is the case
of array y that can be optimized but not completely. It is
not too difficult to check that y can be folded into an array
of size N ×2, with the mapping σ(i1, i2) = (i1, i2 mod 2). In
other words, it is correct to replace, in the code, all occur-
rences y[c1][c2] by y[c1][c2 mod 2]. We will illustrate how to
use DS to find automatically such a mapping.

We point out that the best modular mapping for y is
σ(i1, i2) = 2i1 + i2 mod (2N − 3), with a slight memory size
improvement compared to the previous mapping. Being able
to derive automatically such a mapping, in a parametric way
and for a general situation, is, to our knowledge, an open
problem. However, for a fixed and small enough value of N ,
our implementation of the exhaustive search proposed in [7]
can find such a mapping. For this particular example, the
gain of 3 memory cells is certainly not worth the price of the
complicated modulo expression. However, for the purpose of
illustration, we give in Figure 2.(b) and (c) the set DS and
the transformed program with contracted arrays. �

3. Lifetime Analysis of Array Elements

This section describes the algorithms, used in our tool Bee
to compute the set DS of conflicting index differences,
needed to compute modular allocations. This amounts to
compute the conflict relation ./, which is done thanks to an
accurate lifetime analysis on array elements. We illustrate
this analysis with the array y of our main example.

3.1 Exact Lifetime Analysis

The lifetime of an array cell ~c is the “time interval” between
its initialization and its last read. Classical methods handle
arrays as scalar variables and make a too rough approxima-
tion of control flow to be used here. This section explains how
to compute the first operation writing ~c (its initialization)
and the last operation reading ~c, for static control programs.
Our method is similar on many aspects to exact instance-
wise dataflow analysis and revisit some ideas of [10].

3.1.1 First Write of an Array Element

Consider a statement S in a static control program writing
A[u(~i)] where ~i is the iteration vector of S and u an affine

function. Consider a cell ~c of A and WS(~c) the set of oper-

ations (S,~i) writing A[~c]. Each operation must be valid and
write A[~c], i.e., WS(~c) = {(S,~i) | ~i ∈ IS , u(~i) = ~c}. Writing
S1, . . . , Sn the statements assigning A and denoting by �
the execution order between operations, the first operation
writing A[~c] is FW(~c) = min�

S

i
WSi

(~c), rewritten as:

FW(~c) = min
�

{min
�

WS1
(~c), . . . , min

�
WSn(~c)} (1)

Following [10], the sequencing predicate between two opera-
tions (S,~i) and (T,~j) can be defined thanks to the strict lex-

icographic order <l between iteration vectors: (S,~i) ≺ (T,~j)
iff a) ~i[1..M] <l

~j[1..M] or b) ~i[1..M] = ~j[1..M] and S is
before T in the text order, where M is the depth of the
maximum common loop nest of S and T . In particular,
min� WS(~c) boils down to compute the lexicographic min-

imum of the polyhedron {~i | ~i ∈ IS , u(~i) = ~c}. When the
polyhedron depends on parameters (as ~c here), classical al-
gorithms of integer linear programming cannot be applied
and we need to use parametric integer programming tech-
niques [9]. The tool PIP [17] implements such techniques and
outputs a set of clauses, where each clause is a pair (polyhe-
dral domain, affine solution) that defines the lexicographic
minimum for a subset of the parameter space.

Main example (cont’d) By definition, the set WS3(~c) of
instances of S3 writing y[c1][c2], with ~c = (c1, c2), is:

{(S3, k, i) | 1 ≤ k ≤ N − 1, 0 ≤ i ≤ k − 1, i = c1, k = c2}

which is reduced to the operation (S3, c2, c1), whenever
(c2, c1) is a valid point of the iteration domain of S3. In
general, we use PIP to find the lexicographic minimum.
Here, since the access function u is one-to-one, we can just
use the iteration domain inequalities and get the solution:

min� WS3(c1, c2) =

8

<

:

N ≥ 2
1 ≤ c2 ≤ N − 1 (S3, c2, c1)
0 ≤ c1 ≤ c2 − 1

To make it simpler, here and in the rest of the paper, we
only give the clauses providing a solution. �

Once the different min� WSi
(~c) are computed, it remains

to combine them in order to find the global first FW(~c)
as precised in Equation 1. This is achieved thanks to the
combination rules given in [10].

Main example (cont’d) Applying our analysis on the
array y, we get the following clauses:

FW(c1, c2) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

c1 = 0, c2 = 0 (S1,)

0 ≤ c2 ≤ N − 1
0 ≤ c1 ≤ N − 2
c1 < c2

(S3, c2, c1)

0 ≤ c1 ≤ N − 1
0 ≤ c2 ≤ N − 1
c1 = c2

(S4, c1)

Here, the computation of the local first writes min� WSi
(~c)

is easy as y is in single assignment. In general, the main
difficulty is the combination of clauses to get the global first
write. This is also where the complexity of the analysis comes
from. One can also try to remove redundant constraints. �

3.1.2 Last Read of an Array Element

Similarly to the first write, the last operation reading an
array cell is derived from local reading sets. For each assign-

#define N 100

S1 y[0][0] = r[0];

beta[0] = 1;

alpha[0] = r[0];

for(k=1; k<=N-1; k++) {

beta[k]= beta[k-1] - beta[k-1]*(alpha[k-1])^2

sum[0][k]=r[k];

for(i=0; i<=k-1; i++)

S2 sum[i+1][k] = sum[i][k] + r[k-i-1]*y[i][k-1];

alpha[k] = -sum[k][k] * beta[k];

for(i=0; i<=k-1; i++)

S3 y[i][k] = y[i][k-1] + alpha[k]*y[k-i-1][k-1];

S4 y[k][k] = alpha[k];

}

for(i=0; i<=N-1; i++)

S5 out[i] = y[i][N-1];

1 N − 3 N − 2 N − 1−11 − N 2 − N 3 − N 0

1

−1

2

−2

N−N

Λ =

(

N − 2 −1
1 2

)

=⇒ σ(i, j) = (i mod 1, 2i + j mod 2N − 3)

d2 = ∆j

d1 = ∆i

#define N 100

#define M 197

S1 y[0] = r[0];

beta = 1;

alpha = r[0];

for(k=1; k<=N-1; k++) {

beta = beta - beta*(alpha)^2

sum = r[k];

for(i=0; i<=k-1; i++)

S2 sum = sum + r[k-i-1]*y[(2*i+k-1)%M];

alpha = -sum * beta;

for(i=0; i<=k-1; i++)

S3 y[(2*i+k)%M] = y[(2*i+(k-1))%M] +

alpha*y[(3*k-2*i-3)%M];

S4 y[(3*k)%M] = alpha;

}

for(i=0; i<=N-1; i++)

S5 out[i] = y[(2*i+N-1)%M];

(a) (b) (c)

Figure 2. (a) Durbin’s kernel, (b) Set DS of conflicting index differences for array y (polytope), an optimal integer lattice Λ
(grey points), and a corresponding mapping σ (all other temporary arrays are scalarizable), (c) Transformed program.

ment reading a given array cell, its last instance is computed,
then the results are combined to get the global last read.

Main example (cont’d) Our algorithm finds automati-
cally the following last read of y[c1][c2]:

LR(c1, c2) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 ≤ c1 ≤ N − 2
0 ≤ c2 ≤ N − 2
2c1 > c2

c1 ≤ c2

(S3, c2 + 1, c1)

0 ≤ c1 ≤ N − 2
0 ≤ c2 ≤ N − 2
2c1 ≤ c2

(S3, c2 + 1, c2 − c1)

0 ≤ c1 ≤ N − 1
c2 = N − 1

(S5, c1)

Let us explain this result intuitively. First, note that, for each
(k, i) ∈ IS2

, the read of y[i][k−1] in (S2, k, i) is then repeated
in (S3, k, i). Thus, none of the instances of S2 can be a last
read for y. Now, let us focus on S3. For each (k, i) ∈ IS3

,
k < N − 1, the array cell y[i][k] written by (S3, k, i) is read
twice, by (S3, k + 1, i) (for the reference y[i][k-1]) and
(S3, k+1, k− i) (for the reference y[k-i-1][k-1]). The last
read of y[i][k] is thus max�{(S3, k + 1, i), (S3, k + 1, k − i)},
which boils down to find the maximum of i and k − i, with
i < k, i.e., i when 2i > k (first clause) and k− i when 2i ≤ k
(second clause). Furthermore, with (k, i) ∈ IS3

, k = N − 1,
the array cell y[i][k] will be read in (S5, i) (last clause). �

3.2 Computing the Conflict Relation

As explained in Section 2, two array indices ~i and ~j con-
flict if their lifetimes [FW(~i),LR(~i)] and [FW(~j),LR(~j)]
intersect. In other words, the conflict relation ./ is:

~i ./ ~j ⇐⇒ FW(~i) ≺ LR(~j) and FW(~j) ≺ LR(~i)

With the clauses FW(~i) = (~i ∈ Dk : ωk(~i))k=1..p and
LR(~i) = (~i ∈ D′

k : ω′
k(~i))k=1..q, which define partitions of

the index set, we get the relation ./ through a union of sets.
We consider all p2q2 sets Ck,l,m,n (many are empty) defined
for k ∈ [1..p], l ∈ [1..q], m ∈ [1..p], n ∈ [1..q], by:

Ck,l,m,n = {(~i,~j) | ~i ∈ Dk ∩ D′
n, ~j ∈ D′

l ∩ Dm,

ωk(~i) ≺ ω′
l(~j), ωm(~j) ≺ ω′

n(~i)}

Then

~i ./ ~j ⇔ (~i,~j) ∈

p
[

k=1

q
[

l=1

p
[

m=1

q
[

n=1

Ck,l,m,n

Decomposing the predicate ≺ into affine inequalities, we can
write Ck,l,m,n itself as a union of sets, and more precisely of
polytopes. One can show that p and q are always finite non-
parametric values, of the same order than the number P of
statements of the program. This consequently provides an
O(P 4) algorithm to compute the conflict relation. Despite its
apparent complexity, this method is fast enough in practice
since it just performs constraint concatenations.

Once the set {(~i,~j) | ~i ./ ~j} is obtained as a union of
polytopes = ∪Qk, it remains to compute the set DS =
{~d | ~d = ~i − ~j ∧~i ./ ~j}. Adding the constraint ~d = ~i − ~j
to Qk, we obtain an integral polyhedron Pk in a vector space
of dimension dim~i + dim~j + dim ~d = 3 dim~i. It remains to
project each Pk on ~d to obtain DS, DS = ∪r

k=1 Pr(Pk, ~d). In
general, DS is not a polytope as required by the heuristics
described in Section 4. We thus compute its convex hull,
which is an over-approximation, thanks to Polylib [17].

Main example (cont’d) We automatically get the set DS

of conflicting differences ~d = (d1, d2) for array y depicted in
Figure 2.(b). It is defined by the following constraints:

8

>

<

>

:

−(N − 1) ≤ d1 + 2d2 ≤ N − 1
−(N − 1) ≤ d1 − d2 ≤ N − 1
−1 ≤ d2 ≤ 1
−(N − 1) ≤ 2d2 ≤ N − 1

It is possible to find this set by analyzing the program by
hand. However, even for such a simple example, the com-
putation of DS can be very tricky. Thus, even in the case
where the designer wants to choose the modular mapping
him/herself, instead of relying on heuristics, it is very useful
to be able to use an automated analysis to compute this fun-
damental (for lattice-based memory allocation) object DS.
This is what the first part of our tool provides. �

4. Deriving Strictly Admissible Lattices

This section describes the algorithms we use in our tool
Cl@k (Critical Lattice Allocation Kernel), a stand-alone pro-
gram devoted to the search for good admissible lattices for
a 0-symmetric polytope. We bridge the gap between the
abstract description of the heuristics given in [6, 7] and
an actual implementation. Currently, we use our program
not only to find good mappings automatically and evalu-
ate previously-proposed heuristics, but also to invent new
heuristics and help us finding optimal mappings in a semi-
automatic way. For example, we mentioned that the optimal
modular mapping for the array y in Section 2 has memory

size 2N − 3. Even if heuristics are good enough here (with
memory size 2N), finding the optimal in a parametric way is
harder: we used our tool to find the optimal for a few values
of N , then proved by hand that 2N −3 is optimal. The same
is true for triangular domains, see the example hereafter. In
other words, this tool should be viewed as a platform for the
development, understanding, and exploration of mappings.

As explained in Section 2, finding a valid modular map-
ping (M,~b), for a set of conflicting indices DS ⊆ Zn,
amounts to find a strictly admissible integral lattice Λ
for DS, i.e., a sublattice of Zn whose intersection with DS is
reduced to {0}. By construction, DS is 0-symmetric and is
described or over-approximated as the integer points within
a polyhedron K. This polyhedron K is described either by
its vertices or by a polyhedral representation {~x | A~x ≤ ~c}.
Currently, our tool has the following functionalities:

• Computation of optimal strictly admissible integer lattice
by exhaustive search with the approach suggested in [7].

• Computation of the successive minima and of a set of
corresponding minimum vectors.

• Computation of the gauge functions Fi and F ∗
i ;

• Implementation of the generalized basis reduction [15];

• Implementation of the different heuristics of [6].

We now explain the key algorithmic points underlying these
developments, focusing only on the non-obvious ones.

4.1 Rogers’ Heuristic

The first heuristic proposed in [6, 7] to get a strictly admis-
sible integer lattice is an adaptation of a mechanism due to
Rogers [12], for a 0-symmetric polytope K in dimension n.

Heuristic 1.

• Choose n positive integers ρi, s.t. ρi is a multiple of ρi+1,
and dim(Li) ≤ i − 1, where Li = Vect(K/ρi ∩ Zn).

• Choose a basis (~ai)1≤i≤n of Zn s.t. Li ⊆ Vect(~a1, . . . ,~ai−1).
• Define Λ the lattice generated by the vectors (ρi~ai)1≤i≤n.

The correctness and worse-case quality of such a strategy
are analyzed in [6, 7]. It gives a correct mapping when
ρiλi(K) > 1 with λi(K) the i-th successive minimum of K:

λi(K) = min{λ > 0 | dim(Vect(λK ∩ Z
n)) ≥ i}

We now explain how we compute the scaling factors ρi

and the basis (~ai)1≤i≤n. The first difficulty is to compute
the successive minima. These minima are also useful to get
the “dimension of the problem”, i.e., the dimension p ≤ n
of the vector space generated by the integer points in K.
Indeed, a complete memory folding can be done for the n−p
other dimensions (i.e., each modulus is 1), while the p “full”
dimensions may need a folding with modulus greater than 1.
This mechanism generalizes the projections used in [19].

4.1.1 Computing the Successive Minima

The first successive minimum λ1(K) is the smallest rational
number λ such that the polyhedron K/λ contains an integer
point ~x 6= 0, i.e., it is defined by:

λ1(K) = min{λ ∈ Q | ∃~x ∈ Z
n, ~x 6= 0, A~x ≤ λ~c}

The constraint ~x 6= 0 makes this system not linear. But, if
there exists such an ~x, then xi ≥ 1 or xi ≤ −1 for some i.
Moreover, as K is 0-symmetric, if ~x ∈ K, then −~x ∈ K, so
we can look only for ~x such that xi ≥ 1 for some i. In other

words, we can compute λ1(K) as the minimum over n values,
each computed by mixed integer linear programming:

λ1(K) = min
1≤i≤n

min{λ ∈ Q | ∃~x ∈ Z
n, xi ≥ 1, A~x ≤ λ~c}

This gives λ1(K) as well as a corresponding solution ~x1.

Main example (cont’d) We explained how DS can be
computed in an exact way, even when N is a parameter, as
the integer points within the polytope K (when N ≥ 3):

K = {(i1, i2) | − (N − 1) ≤ i1 + 2i2 ≤ (N − 1),
−(N − 1) ≤ i1 − i2 ≤ (N − 1), −1 ≤ i2 ≤ 1}

see Figure 2.(b). The first minimum of K is 1/(N − 1),
obtained when looking for a point ~x such that x1 ≥ 1.
Notice that, here, we give the solution in a parametric way
but, as we will explain, our current implementation for the
computation of successive minima assumes N is fixed. �

Now, suppose λ1(K), . . . , λi−1(K) have been computed,
with their corresponding ~x1, . . . , ~xi−1. The i-th minimum
is the smallest λ such that K/λ contains an integer point ~x,
linearly independent with ~x1, . . . , ~xi−1. To express this con-
dition, we first compute a basis of Zn whose first (i−1) vec-
tors span the same space as ~x1, . . . , ~xi−1. For that, we define
the n× (i− 1) matrix X with columns ~x1, . . . , ~xi−1, and we
compute the Hermite form [16] of X: X = QH where Q is a
n×n unimodular matrix and H is a n×(i−1) matrix whose
top (i − 1) × (i − 1) submatrix is nonnegative, upper trian-
gular, and the rest of H is zero. We then make the change
of basis ~x = Q~y. In this representation, ~x is linearly inde-
pendent with ~x1, . . . , ~xi−1 if and only if yj ≥ 1 or yj ≤ −1
for some j ≥ i. Again because K is 0-symmetric, we have:

λi(K) = min
i≤j≤n

min{λ ∈ Q | ∃~y ∈ Z
n, yj ≥ 1, AQ~y ≤ λ~c}

Solving this system, we get λi(K), a corresponding solu-
tion ~yi and, finally, ~xi = Q−1~yi. Continuing this way, we
obtain all successive minima λi(K), one after the other, by
solving n(n + 1)/2 mixed integer linear programs.

4.1.2 Mixed Integer Linear Programming

For computing the successive minima with mixed integer lin-
ear programming, we tried two implementations that work
for a non-parameterized 0-symmetric polytope K. Both
compute of course the same successive minima λi(K) but
possibly with different ~xi’s as these are not uniquely defined.

Our first implementation uses the public-domain tool
GLPK [11] and is easy to interface. The only problem
is that the rational numbers λi(K) are returned as float
numbers, and not as the quotient of two integers. However,
as each ~xi is an integer vector, we use a post-processing step
to compute λi(K) as a fraction: it is the smallest rational
number such that A~xi ≤ λ~c. We thus consider each equation
of this system to build λi(K) as the quotient of two integers.

Our second implementation uses PIP [9, 17], a paramet-
ric linear programming solver, which gives the lexicographic
minimum in a parameterized polyhedron {A~x ≤ B~n + ~c}
where ~x represents nonnegative unknowns and ~n nonnega-
tive integer parameters. Using PIP is a bit tricky as some
pre-processing must be done to cope with the fact that un-
knowns are nonnegative, but this is just a technical problem.
More important is that, here, we use PIP for mixed integer
linear programming. For that, as explained in [9], the first
step is to consider that integer unknowns (~x in our system)
are parameters and find, with parametric (rational) linear
programming, the minimum of λ as a function of ~x. The

solution is a set of clauses, where each clause u defines a so-
lution λ(u) as an affine expression f (u)(~x) of ~x, valid when ~x
belongs to some polyhedron P(u). The second step finds,
for each clause u, thanks to integer linear programming, the
minimum of f (u)(~x) over all integer elements ~x of P(u). The
minimum of these minima gives the desired minimum λ.

Main example (cont’d) Suppose N = 100 for example.
Our GLPK implementation first finds λ1(K) = 0.010101 . . .
with ~x1 = (1, 0), and λ1(K) is recomputed as 1/99. Then, it
finds λ2(K) = 1 with ~x2 = (0, 1). Our PIP implementation
finds λ1(K) directly as the fraction 1/99 for ~x1 = (1, 0).
Then, as PIP looks for the lexicographic minimum, it finds
~x2 = (−98, 1), λ2(K) = 1. Thus, the ~xi may not be the same
with GLPK or PIP, while the λi are uniquely defined. �

When none of the mixed integer linear programs solved
to get λi(K) has a solution, K is not full-dimensional and
we directly get, with no additional effort, the minimal vec-
tor space that contains all integer points of K. As previously
mentioned, this is important to find a good lattice/mapping
and not fall into traps due to skewed and flat polytopes K.
As for complexity, although integer linear programming is
NP-complete, the two implementations are very fast, at least
for the practical cases that arise in our memory allocation
problems, all of small dimensions. Compared to the time
needed to analyze the program and compute K itself, run-
ning times are not worth mentioning. This is maybe the most
important conclusion of our implementation study: the limit-
ing factor, in terms of complexity, for lattice-based memory
allocation is the required program analysis, not the search
for good admissible lattices. Thus, the apparently-heavy ma-
chinery proposed in [7] to get modular mappings is only
complicated mathematically, but it is not costly in practice.

What about parameterized polytopes? As mentioned, us-
ing PIP is bit more complicated than using GLPK. However,
it has some parametric capabilities that GLPK does not have
and our hope was to be able to derive λi(K) (or at least ~xi)
even if K is linearly parameterized as {A~x ≤ B~n + ~c}. Un-
fortunately, this does not work as λ is then a multiplicative
factor of the parameters ~n in the linear programs that need
to be solved. Looking for 1/λ instead of λ leads to the same
difficulty as 1/λ is now a multiplicative factor of ~x. Also,
even if we were able to compute λ1(K), our technique to
make sure that ~x2 and ~x1 are linearly independent would
fail if ~x1 is parameterized too, unless we can complete ~x1

into a basis in a parametric way. So, this seems difficult.
But λ1(nK) = λ1(K)/n, with the same minimum vector,
so there must be a way to express, at least in some cases
to be specified, each 1/λi(K) as a function of parameters.
Unfortunately, so far, we did not find a way to compute the
successive minima of a linearly parameterized polyhedron.

4.1.3 How to Choose the (ρi)1≤i≤n and (~ai)1≤i≤n

Once we get the successive minima, we can find the scaling
factors ρi and an adequate basis (~ai)1≤i≤n of Zn, as follows.

For the vectors (~ai)1≤i≤n, a possible choice, suggested
in [6], is to use the vectors ~xi associated with the successive
minima λi(K). Indeed, if ρiλi(K) > 1, then the vector
space Li = Vect(K/ρi ∩Zn) has at most (i− 1) dimensions.
Furthermore, Li ⊆ Vect(~x1, . . . , ~xi−1). However, the vectors
(~xi)1≤i≤n, although they form a basis of Qn, may not form a
basis of Zn. To get a basis of Zn, we apply the same Hermite
normal form trick that we used previously. We compute
X = QH and we define the vectors ~ai as the columns of Q.

For the scaling factors ρi, a possibility is to choose ρi to
be the smallest power of 2 strictly larger than 1/λi(K). It

turns out however that the divisibility condition for the ρi

in Heuristic 1 is often useless in practice. Most of the time,
especially in small dimensions, it is enough to choose ρi =
b1/λi(K)c + 1 to get a (smaller) strictly admissible integer
lattice. If not, our current implementation increments the ρi,
one at a time, in a round-robin fashion, and checks if this
gives a solution. We call this heuristic Heuristic 1.a. At each
step (in general one or two), we need to check whether
the selected lattice (ρi~ai)1≤i≤n is strictly admissible for
K = {A~x ≤ ~c}. This amounts to check that there is no
~x 6= 0 such that ~x =

Pn

i=1 xiρi~ai and A~x ≤ ~c, ~x 6= 0}, where
each xi is an integer. This can be done by solving n linear
programs, using the same technique we used to compute λ1.

Finally, it remains to compute a mapping whose kernel
is the selected lattice. If Q is the matrix whose columns are
(~ai)1≤i≤n and ~b the vector whose components are (ρi)1≤i≤n,

a suitable mapping is σ(~i) = M~i mod ~b where M = Q−1.

Main example (cont’d) Here, a good mapping is partic-
ularly simple to find by hand because the progress of uses
along the array y follows the canonical dimensions of the
array. Let us see what our implementation finds. Assume
that N = 100. With GLPK, we get λ1(K) = 1/99 and
λ2(K) = 1 for ~x1 = (1, 0) and ~x2 = (0, 1). With Heuris-
tic 1, we get ρ1 = 128 and ρ2 = 2 with the mapping
σ(i1, i2) = (i1 mod 128, i2 mod 2), which can be simplified
into σ(i1, i2) = (i1, i2 mod 2) as 0 ≤ i1 < N ≤ 128. With
Heuristic 1.a, we will select directly ρ1 = 99 + 1 = N , even
if the initial array size in the first dimension is larger. In
practice, Heuristic 1.a is more efficient. Going to the next
power of 2 as in Heuristic 1 can lead to a loss in memory. �

We point out that, in practice, one should pay attention
to the “complexity” of the derived lattice and of the result-
ing mapping. So far, the only optimizing criterion was the
size of the memory, i.e., all mappings leading to the same
memory size are considered equally good. But some can lead
to simpler access functions (without even mentioning cache
access). A possibility to get simple lattices is to minimize,
when looking for each ~xi, its components in absolute value.
One can also use, after all ~xi are computed, a form of basis
reduction to get a simpler basis. One example is the general-
ized basis reduction of Lovász and Scarf [15] that we imple-
mented. On random polytopes, we saw some improvements
but this was not convincing on polytopes arising from sim-
ple programs. For Heuristic 1.(a), to preserve the successive
vector spaces Li, one can limit the modifications to “upper
triangular” changes, i.e., simplifying ~xi with linear combi-
nations of the previous ~xj , j < i. But how to derive the
“simplest” mapping for a given lattice is still an issue.

Main example (cont’d) To illustrate these possible com-
plications, consider the basis found by our implementa-
tion with PIP: (1, 0) and (−98, 1). This basis leads to the
“dirty” mapping σ(i1, i2) = (i1 + 98i2 mod 100, i2 mod 2)
with Heuristic 1.a. It can be simplified into σ(i1, i2) = (i1 −
2i2 mod 100, i2 mod 2) but, still, this is more complicated
than the mapping found with GLPK. To get ~x2 = (0, 1) as
for GLPK instead of ~x2 = (−98, 1), we need to complete our
implementation so that it simplifies the basis. Looking for
~x2 with minimal components in absolute value would lead to
~x2 = (0, 1). One can also simplify ~x2 with ~x1: L2 is preserved
and this also leads to (0, 1) = (−98, 1) + 98(1, 0). �

4.2 Heuristics based on gauge functions

We tried different heuristics on thousands of 0-symmetric
polytopes that we randomly generated. Heuristic 1.a, the

variant of Heuristic 1 explained in the previous section, is,
on average (but not always), the one that leads to the small-
est lattices. However, as explained in the previous section,
it requires the computation of the successive minima – with
mixed integer linear programming – and the computation
of adequate scaling factors – with integer linear program-
ming – if we choose ρi in a more accurate way than just
the smallest acceptable power of 2. Although these compu-
tations may appear very expensive, for the practical cases
arising from programs, this can be done very quickly so using
Heuristic 1.a is possible in practice. However, as mentioned,
we do not know how to use this heuristic for parameterized
polytopes and this may be a problem for practical memory
reuse when optimizing programs. This is less true for high-
level synthesis where the parameters are in general known at
compile-time although using parametric techniques as late
as possible in the transformation process would be a plus.

Unlike Heuristics 1 and 1.a, the two heuristics that we
describe in this section can be easily parameterized. These
are the heuristics proposed in [6, 7] as generalizations of
the heuristic of Lefebvre and Feautrier [14]. They lead to

memory allocations of the form σ(~i) = M~i mod ~b where ~b
can be linearly parameterized if K itself is linearly parame-
terized. However, one needs to give them, as input, a non-
parameterized basis, or alternatively, a non-parameterized
matrix M . Before, let us recall some definitions from [6, 7].

The function F (~x) = min{λ > 0 | ~x ∈ λK} defines a
norm such that F (α~x) = |α|F (~x), called the gauge function
of K. Given some vectors (~ai)1≤i≤n, one can define Fi(~x) =
min{F (~y) | ~y ∈ ~x + Vect(~a1, . . . ,~ai−1)}, which is connected
to the gauge function of the projection of K along the vectors
~a1, . . . , ~ai−1. The next heuristic uses the functions Fi.

Heuristic 2.

• Choose n linearly independent integral vectors (~a1, . . . ,~an).
• Compute Fi(~ai) = min{F (~y) | ~y ∈ ~ai+Vect(~a1, . . . ,~ai−1)},

for 1 ≤ i ≤ n.
• Choose n integers ρi such that ρiFi(~ai) > 1.
• Define Λ the lattice generated by the vectors (ρi~ai)1≤i≤n.

Again, we refer to [6, 7] for the correctness and worse-case
quality of such a strategy. We focus here on the implementa-
tion details. The only algorithmic need is to compute Fi(~ai)
for all 1 ≤ i ≤ n. Here is how we proceed. We have:

Fi(~ai) = min{F (y) | ~y ∈ ~ai + Vect(~a1, . . . ,~ai−1)}

= min{λ > 0 | ~y ∈ λK, ~y = ~ai +
i−1
X

j=1

yj~aj}

= min{λ > 0 | A~y ≤ λ~c, ~y = ~ai +
i−1
X

j=1

yj~aj}

If K is not parameterized, the last expression can be
solved with (rational) linear programming. Otherwise, if
K = {A~x ≤ B~n + ~c}, then λ is a multiplicative factor of
the parameters and PIP cannot be directly used. But:

Fi(~ai) = min{λ > 0 | ~y ∈ λK, ~y = ~ai +
i−1
X

j=1

yj~aj}

and, with ρ = 1/λ and ~z = ρ~y, we have:

Fi(~ai) = min{1/ρ > 0 | ~z ∈ K, ~z = ρ~ai +
i−1
X

j=1

zj~aj}

= 1/ max{ρ > 0 | A~z ≤ B~n + ~c, ~z = ρ~ai +
i−1
X

j=1

zj~aj}

The last expression shows that, using PIP, we can find the
inverse of Fi(~ai) with rational parametric linear program-
ming, even for a linearly-parameterized polytope K.

Once all Fi(~ai) are computed, we let ρi = b1/Fi(~ai)c+1.
If (~ai)1≤i≤n defines a basis of Zn, again, the mapping is

σ(~i) = M~i mod ~b where M is the inverse of the matrix whose

columns are the ~ai and ~b is the vector defined by bi = ρi.

Main example (cont’d) For our running example, with
~a1 = (1, 0) and ~a2 = (0, 1), we find 1/F1(~a1) = N − 1 and
ρ1 = N , then F2(~a2) = 1 and ρ2 = 2, with the mapping
σ(i1, i2) = (i1 mod N, i2 mod 2). Also, as mentioned in [6],
with a slight basis change, we can also obtain a valid 1D
mapping as σ(i1, i2) = 2i1 + i2 mod 2N . For this particular
case, we are not far from the optimal σ(i1, i2) = 2i1+i2 mod
2N − 3. Picking the vectors in the opposite order leads to
ρ1 = 2, ρ2 = N and the mapping (i2 mod 2, i1 mod N). We
can also get the valid 1D mapping Ni2 + i1 mod 2N . �

An alternative view of Heuristic 2 is Heuristic 3 below,
which directly builds a valid mapping, instead of a strictly
admissible integer lattice. This is Lefebvre and Feautrier’s
approach, generalized to an arbitrary set of independent vec-
tors (~ci)1≤i≤n. The connection with Heuristic 2 is explained
in [6]. This is a dual view of the same approach. The func-
tion F ∗

i is the equivalent of Fi but for K∗, the polar recip-
rocal of K, i.e., K∗ = {~y | ~x.~y ≤ 1 for all ~x ∈ K}. For the
implementation, we use the alternative definition of F ∗

i (~ci)
as F ∗

i (~ci) = sup{~ci.~x | ~x ∈ K,~cj .~x = 0, ∀j < i}.

Heuristic 3.

• Choose n linearly independent integer vectors (~c1, . . . , ~cn).
• Compute F ∗

i (~ci) = sup{~ci.~x | ~x ∈ K,~cj .~x = 0, ∀j < i},
1 ≤ i ≤ n.

• Choose n integers ρi such that ρi > F ∗
i (~ci).

• Let M be the matrix with row vectors (~ci)1≤i≤n and ~b the
vector such that bi = ρi.

This time, it is easy to see that, with no additional trans-
formation, F ∗

i (~ci) can be computed with parametric (ra-
tional) linear programming if K is linearly parameterized.
In other words, as the function Fi and F ∗

i are the inverse
of each other (see [6] for more details), we can implement
Heuristics 2 and 3 if either K or K∗ is linearly parameter-
ized, for a non-parameterized basis. We implemented both
heuristics (which give, by nature, the same results for dual
basis (~ai)1≤i≤n and (~ci)1≤i≤n, when vectors are picked in
the opposite order), trying different basis as input: identity,
identity up to a permutation of rows or columns (this can
be viewed as a generalization of the technique of [8]), basis
given by the successive minima, basis given by generalized
basis reduction, etc. All these techniques are fast enough to
allow such attempts. We then pick the best solution.

5. Experiments

Our stand-alone mathematical tool Cl@k (Section 4) pro-
vides the heuristics of [6, 7] (and some other) while our
program analyzer tool Bee (Section 3) makes the link with
programs, i.e., computes the lifetime analysis of array ele-
ments required by the heuristics and generates the final C
program with the allocations. Several libraries are involved,
including ROSE [20], Polylib and PIP [17]. ROSE is a com-
piler framework providing simple mechanisms to read and
write a program abstract syntax tree. It uses the SAGE in-
termediate representation and exploits ideas of the Nestor
library [22]. We use ROSE to extract iteration domains IS

and array index functions from static control programs writ-
ten in C. Both AST traversals (top-down and bottom-up)
and rewrite facilities are consequently used in our tool. The

Kernel Array Storage mapping found Method Runtime (s)
Identifier Original Mapping Compressed H1 H2 H3 OPT DS OPT

durbin.c alpha 100 i 7→ i mod 1 1 × × × × 0.1 0.3
beta 100 i 7→ i mod 1 1 × × × × 0.1 0.002
sum 10000 (i, j) 7→ (i mod 1, j mod 1) 1 × × × × 0.5 0.003
y 10000 (i, j) 7→ (i mod 100, j mod 2) 200 × × × 1.8

(i, j) 7→ (i mod 1, 2i + j mod 197) 197 × 17
reg detect.c sum t 36 (i, j) 7→ (i mod 6, j mod 6) 36 × × × 0.1

(i, j) 7→ (i mod 3, i + j mod 9) 27 × 0.2
mean 36 (i, j) 7→ (i mod 6, j mod 6) 36 × × × 0.07

(i, j) 7→ (i mod 3, i + j mod 9) 27 × 0.3
diff 2304 (i, j, k) 7→ (i mod 6, j mod 6, k mod 64) 2304 × × × 0.1

(i, j, k) 7→ (i mod 3, i + j mod 9, k mod 64) 1728 × –
sum d 2304 (i, j, k) 7→ (i mod 1, j mod 1, k mod 1) 1 × × × × 0.7 0.004

dynprog.c c 100 (i, j) 7→ (i mod 9, j mod 9) 81 × × × 0.5
(i, j) 7→ (i mod 1, 13i + j mod 61) 61 × 0.6

sum c 1000 (i, j, k) 7→ (i mod 1, j mod 1, k mod 1) 1 × × × × 6.1 0.004
gauss.c g acc1 10000 (i, j, k) 7→ (i mod 1, j mod 1, k mod 1) 1 × × × × 0.7 0.01

g acc2 10000 (i, j, k) 7→ (i mod 1, j mod 1, k mod 1) 1 × × × × 0.9 0.007
g tmp 2500 (i, j) 7→ (j mod 50, i mod 48) 2400 × × 0.07 46 min

(i, j) 7→ (i mod 48, j mod 50) 2400 × × × |
(i, j) 7→ (j − i mod 2, 24j − 25i mod 1200) 2400 × |

mot detect kern.c Delta 68121 (i, j, k) 7→ (k mod 10, j mod 1, i mod 1) 10 × × 3.9 0.3
(i, j, k) 7→ (i mod 1, j mod 1, k mod 10) 10 × × × |

ODelta 842 i 7→ i mod 1 1 × × × × 0.4 0.002

Figure 3. Experimental results for the kernels given in Figure 4. The time spent in the lifetime analysis (DS) and in the
optimal method (OPT) are given for a Pentium III CPU 800Mhz with 256 MB RAM.

polyhedral operations (union, intersection, projection, and
convex hull) required by the different steps of our method
are computed thanks to the polyhedral library Polylib [17].
Finally, the lexicographic minima/maxima of integral poly-
topes are derived thanks to the PIP library [9, 17].

We applied our tools to contract temporary arrays of sev-
eral image processing kernels [32] 1. We chose these kernels
as they are used in all related papers and because they are
short enough to be given here (see Figure 4). Figure 3 gives
the results of our experiments. The benchmarks gather (1)
our main example with N = 100 (durbin.c), (2) a real-time
regularity detection used in robot vision, (3) a toy example
similar to dynamic programming, (4) a 2D Gaussian blur
filter used in image processing, (5) a motion detection algo-
rithm used in the transmission of real time videos on data
networks. The“Array”column gives the temporary arrays to
contract. The “Mapping” column shows the final allocation
σ found by the different methods. The mapping definitions
assume that the operator mod has the weakest priority, i.e.,
i + j mod 10 stands for (i + j) mod 10. The “Compressed”
column gives the array size after remapping, i.e., the prod-
uct of the moduli. The “Runtime” column gives, for each
array, the runtime for the computation of lifetime analysis
(DS) and the runtime for the exhaustive search leading to
size-optimal mappings (OPT). We now analyze these results
and draw some conclusions from this study.

In terms of complexity, we point out again that the main
factor of the complete strategy is the analysis itself. The
runtimes of the different heuristics are so small they are not
worth mentioning. The search for an optimal mapping is,
however, too costly for large sizes. Indeed, this search is not
optimized, it simply checks all determinants starting from a
pre-computed lower bound and the number of determinants
to consider can become very large. We also point out that,
although previous approaches do not use the concept of DS
(the search for the mapping is often combined with the
analysis itself), they all use a lifetime analysis that is not
cheaper than the computation of DS.

In terms of contraction, it appears that most temporary
arrays can be contracted, leading to a very good compression

1 Many thanks to Florin Balasa who gave us these code examples.

ratio. Our study also confirms that, for some practical cases,
the various heuristics give a similar (if not the same) result
and that one can even restrict to a simple basis such as
the identity matrix (or a permutation of it). This is because
the loop indices (the “schedule”) are often aligned with the
array indices. We also point out that the principles used
in Heuristics 2 and 3 are combinations of the principles of
the heuristics of [14] (to get the moduli) and of [19] (to get
the right projection when DS is not full-dimensional) and
that, again on simple examples, results can thus be similar.
But there is a fundamental difference: we can apply the
heuristics based on DS even if the initial program is not in
single-assignment form and even if there are more than one
statement writing a given array. For example, in [19], there
must be, by principle, a one-to-one correspondence between
arrays and statements. Indeed, the mapping is derived by a
matrix relation between the unique schedule and the unique
access function corresponding to an array. If the array is
written by several statements, even if each array element
is written once, the program needs to be changed so that
each statement writes in a separate memory. For example,
in Durbin’s kernel, S4 and S3 would need to write in two
different arrays, unless S4 is pushed into the previous loop
(inverse of loop peeling) and converted into an instance
of S3. This is possible here, but certainly not in general.
Therefore, a technique based on the set DS seems superior
because it can handle more programs (even parameterized
ones) and because it gives more freedom to compute the
mapping as the program analysis is decoupled from the
computation of the strictly admissible integer lattice.

A particular form of array contraction is array scalariza-
tion, when an array can be completely transformed into a
scalar. This is a particular case of our memory reduction
technique. Indeed, an array can be scalarized if and only
if its corresponding DS is reduced to {0}. Also a modu-
lus equal to 1 corresponds to a dimension removal. We let
the reader check that, for the codes given in the Figure 4,
many arrays have been scalarized. The only case we miss is
for the kernel (5). This is due to the fact that DS is over-
approximated due to integer divisions in the derived clauses,
which prevents us to see that DS is indeed equal to {0}. We

know how to handle such cases correctly though it is not
available yet in our current implementation.

Finally, the results in Figure 3 indicate that, although
the heuristics are quite good in order of magnitude, there is
still some space for improvement compared to the optimal,
especially when DS has a strange shape. We have already
mentioned the case of the array y in our running example,
but the difference between N , the size found by the heuris-
tics, and the optimal size 2N − 3 is not worth the price
of the complicated access function. However, consider the
kernel (2) and the different triangular-shaped arrays mean,
sum_t, and diff. Although these arrays could be removed
if some loop fusion was done, let us focus here on reducing
their size without changing the program schedule.

Consider the 2D array mean for example. Its size is N 2

but only N(N + 1)/2 ∼ N2/2 elements are live. They all
conflict since they are all written before any is read. This
defines the set DS = {(i, j) | |i| < N, |j| < N, |i − j| < N}.
Surprisingly, none of the heuristics proposed here and in
previous papers is able to find any reduction. But some
reduction is possible with a modular mapping, leading to
a memory size, not of order N2/2, but of order 3N2/4.
An optimal mapping is (i, j) 7→ (i + j mod 3m, j mod m)
if N = 2m and (i, j) 7→ (i− (3m+ 2)j) mod (3m2 +3m +1)
if N = 2m + 1. How can we find such a mapping? First, we
can use our exhaustive search to find optimal mappings for
small values of N . If some pattern appears, we can try to
generalize the mappings, then prove their optimality. This
how we proceeded here, thus in a semi-automatic process.

We can go further and use the same principle to automat-
ically derive good parametric mappings. Indeed, pick a small
value of N , for example 1. Find an optimal strictly admissi-
ble lattice for DS = {A~x ≤ ~b}. For the array mean, we get the
lattice Λ generated by (3, 0) and (1,−1), with determinant
3. Multiplying by λ, we get that λΛ is strictly admissible for
{A~x ≤ λ~b}. For the array mean and λ = N − 1, we get a
memory size 3(N − 1)2, which is not what we want. But we

can be more subtle: if Λ is strictly admissible for {A~x ≤ ~b},
it is weakly admissible (i.e., boundary intersection is accept-

able) for {A~x ≤ ~b+~1}, which is here {A~x ≤ 2~b}. Multiplying

by m, we get that mΛ is weakly admissible for {A~x ≤ 2m~b}

and thus strictly admissible for {A~x < N~b}. We retrieve the
optimal mapping for N = 2m with size 3m2. The same map-
ping is valid for N = 2m− 1 with size ∼ 3N2/4, though not
optimal. In future work, we plan to use such a generalization
principle to derive good parametric mappings.

6. Conclusion

We have presented a complete and effective compile-time
analysis to contract arrays. An element-wise lifetime analysis
for arrays has been proposed that computes the first (resp.
last) statement instance writing (resp. reading) a generic ar-
ray cell. We have shown how this algorithm can be used to
build the set of conflicting array cells required by the con-
traction methods described in [7], for which we proposed
a complete and efficient implementation. Experimental re-
sults on a few kernels are provided and show important com-
pression ratios, confirming the efficiency of the method. The
whole analysis takes a few seconds for each benchmark on a
Pentium III CPU 800MHz, with 256MB RAM, and most of
the execution time is spent in lifetime analysis. We point out
that computing last reads is more expensive that computing
first writes, as there are more reads than writes in general.
Some work needs to be done to accelerate this process.

Our method is however restricted to programs with affine
array index functions and loops. In future work, we plan to
address more general programs by providing a conservative
lifetime analysis (containing the real lifetime). Our lifetime
analysis is already able to provide lifetimes depending on a
parameter (typically, N in the running example). Unfortu-
nately, part of our current implementation is not yet able
to handle them. We also propose to address this point in
a future work. Finally, as mappings obtained from different
methods of [7] can impact on spatial data locality, it would
be good to have a method to select the best one.

References

[1] F. Balasa, F. Catthoor, and H. De Man. Exact evaluation of
memory size for multi-dimensional signal processing systems.
In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’93), Santa Clara, CA, USA, 1993.

[2] F. Balasa, P. G. Kjeldsberg, M. Palkovic, A. Vandecappelle,
and F. Catthoor. Loop transformation methodologies for
array-oriented memory management. In IEEE ASAP’06,
pp. 205–212, Washington, DC, USA, 2006.

[3] P. Clauss, F. J. Fernandez, D. Gabervetsky, and S. Ver-
doolaege. Symbolic polynomial maximization over convex
sets and its application to memory requirement estimation.
T.R. ICPS number 06-04, Université L. Pasteur, Oct. 2006.

[4] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array
dataflow analysis. In ACM SIGPLAN PLDI’95, Santa
Barbara, CA, July 1995.

[5] A. Darte and G. Huard. New complexity results on
array contraction and related problems. Journal of VLSI
Signal Processing-Systems for Signal, Image, and Video
Technology, 40(1):35–55, 2005.

[6] A. Darte, R. Schreiber, and G. Villard. Lattice-based
memory allocation. In ACM CASES’03, pp. 298–308, San
Jose, USA, Oct. 2003.

[7] A. Darte, R. Schreiber, and G. Villard. Lattice-based
memory allocation. IEEE Transactions on Computers,
54(10):1242–1257, Oct. 2005.

[8] E. De Greef, F. Catthoor, and H. De Man. Memory size
reduction through storage order optimization for embedded
parallel multimedia applications. Parallel Computing,
23:1811–1837, 1997.

[9] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22(3):243–268, 1988.

[10] P. Feautrier. Data flow analysis of scalar and array
references. International Journal of Parallel Programming,
20(1):23–53, 1991.

[11] GNU Free Software. GLPK (GNU Linear Programming
Kit). http://www.gnu.org/software/glpk.

[12] P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers.
North Holland, second edition, 1987.

[13] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C.
Cronquist, and M. Sivaraman. PICO: Automatically
designing custom computers. IEEE Computer, 35(9):39–
47, Sept. 2002.

[14] V. Lefebvre and P. Feautrier. Automatic storage manage-
ment for parallel programs. Parallel Computing, 24:649–671,
1998.

[15] L. Lovász and H. E. Scarf. The generalized basis reduction
algorithm. Mathematics of Operations Research, 17(3):751–
764, 1992.

[16] M. Newman. Integral Matrices. Academic Press, 1972.

[17] PIP/Polylib: http://www.piplib.org.

gauss.c
#define M 50
#define N 50

#define T 1
void main() {

int x, y, k, tot[4];
int in_image[N][M]; //live-in
int Gauss[4]; // live-in

int gauss_image[N][M]; // live-out
int g_tmp[N][M];

int g_acc1[N][M][4];
int g_acc2[N][M][4];

tot[0]=0;
for (k=T-1; k<=1+T; k++)

tot[k+2 - T] = tot[k+1 - T]
+ Gauss[k - T];

for (k=T-1; k<=1+T; k++)
tot[k+2 - T] = tot[k+1 - T]

+ Gauss[k - T];

for(x=1; x<N-1; x++)
for(y=0; y<M; y++) {

g_acc1[x][y][0]=0;
for(k=T-1; k<=1+T; k++) {

g_acc1[x][y][k+2-T] =
g_acc1[x][y][k+1-T]
+ in_image[x+k][y] * Gauss[k-T];

}
g_tmp[x][y] =

g_acc1[x][y][3]/tot[3];
}

for(x=1; x<N-1; x++)
for(y=1; y<M-1; y++) {

g_acc2[x][y][0]=0;

for(k=T-1; k<=1+T; k++) {
g_acc2[x][y][k+2-T] =

g_acc2[x][y][k+1-T]
+ g_tmp[x][y+k-T] * Gauss[k-T];

}

gauss_image[x][y] =
g_acc2[x][y][3]/tot[3];

}
}

reg detect.c
#define N 6
#define M 5

#define P 64
void main() {

int i, j, k;
int sum_t[N][N], mean[N][N];
int diff[N][N][P], sum_d[N][N][P];

int tangent[M]; // live-in
int path[N][N]; // live-out

for(j=0; j<=N-1; j++) {

sum_t[j][j] = tangent[(N+1)*j];
for(i=j+1; i<=N-1; i++)

sum_t[j][i] = sum_t[j][i-1]

+ tangent[i+N*j];
}

for(j=0; j<=N-1; j++)
for(i=j; i<=N-1; i++)

for(k=0; k<=P-1; k++)

diff[j][i][k] = sum_t[j][i];
for(j=0; j<=N-1; j++)

for(i=j; i<=N-1; i++)
sum_d[j][i][0] = diff[j][i][0];

for(k=1; k<=P-1; k++)
sum_d[j][i][k] =

sum_d[j][i][k-1]

+ diff[j][i][k];
mean[j][i] = sum_d[j][i][P-1];

for(j=0; j<=N-1; j++)
for(i=j; i<=N-1; i++)

if (j>0) path[j][i] =
path[j-1][i-1]
+ mean[j][i];

else path[j][i] = mean[j][i];
}

mot detect kern.c
#define m 4
#define n 4

#define M 32
#define N 32

void main() {
int i, j, k, l, ODelta[(M-m+1)*(N-n+1)+1];
int Delta[M-m+1][N-n+1][(2*m+1)*(2*n+1)];

int A[(m+1)*(m+1)][(n+1)*(n+1)]; // live-in
int opt[1]; // live-out

ODelta[0]=0;

for(i=m; i<=M; i++)
for(j=n; j<=N; j++) {

Delta[i][j][0]=0;

for(k=i-m; k<=i+m; k++)
for(l=j-n; l<=j+n; l++)

Delta[i][j][(2*n+1)*k-(2*n+1)*i
+l-j+(2*m*n+m+n+1)] =

A[i][j] - A[k][l] +

Delta[i][j][(2*n+1)*k-(2*n+1)*i
+l-j+(2*m*n+m+n)];

ODelta[(N-n+1)*i+j-(m*N-m*n+m+n+1)] =
Delta[i][j][(2*m+1)*(2*n+1)] +

ODelta[(N-n+1)*i+j-(m*N-m*n+m+n)];
}

opt[0] = ODelta[(M-m+1)*(N-n+1)];

}

dynprog.c

#define N 10
void main() {

int i, j, k;
int W[N][N], c[N][N]; // live-in

int sum_c[N][N][N];
int out[1]; // live-out

for(i=0; i<=N-2; i++)
for(j=i+1; j<=N-1; j++) {

sum_c[i][j][i] = 0;
for(k=i+1; k<=j-1; k++)

sum_c[i][j][k] = sum_c[i][j][k-1]
+ c[i][k] + c[k][j];

c[i][j] = sum_c[i][j][j-1] + W[i][j];

}
out[0] = c[0][N-1];

}

Figure 4. Source code of kernels.

[18] W. Pugh. The Omega test: A fast and practical integer
programming algorithm for dependence analysis. Commu-
nications of the ACM, 8:102–114, Aug. 1992.

[19] F. Quilleré and S. Rajopadhye. Optimizing memory usage in
the polyhedral model. ACM Transactions on Programming
Languages and Systems, 22(5):773–815, 2000.

[20] D. J. Quinlan. ROSE: Compiler support for object-oriented
frameworks. Parallel Proc. Letters, 10(2/3):215–226, 2000.

[21] J. Ramanujam, J. Hong, M. Kandemir, and A. Narayan. Re-
ducing memory requirements of nested loops for embedded
systems. In Design Automation (DAC), pp. 359–364, 2001.

[22] G.-A. Silber and A. Darte. The Nestor library: A tool for
implementing Fortran source to source transformations. In
HPCN’99, LNCS 1593, pp. 653–662. Springer Verlag, 1999.

[23] Y. Song, R. Xu, C. Wang, and Z. Li. Improving data locality
by array contraction. IEEE Transactions on Computers,
53(9):1073–1084, 2004.

[24] M. M. Strout, L. Carter, J. Ferrante, and B. Simon.
Schedule-independent storage mapping for loops. In ACM
ASPLOS’98, pp. 24–33, San Jose, USA, 1998.

[25] W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe. A
unified framework for schedule and storage optimization. In
ACM SIGPLAN PLDI’01, pp. 232–242, 2001.

[26] R. Tronçon, M. Bruynooghe, G. Janssens, and F. Catthoor.
Storage size reduction by in-place mapping of arrays. In
A. Cortesi, editor, VMCAI’02, LNCS 2294, pp. 167–181.
Springer Verlag, 2002.

[27] A. Turjan, B. Kienhuis, and E. Deprettere. Translating
affine nested-loop programs to process networks. In ACM
CASES’04, pp. 220–229, Washington DC, USA, Sept. 2004.

[28] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic
allocation for scratch-pad memory using compile-time
decisions. ACM Transactions on Embedded Computing
Systems, 5(2):472–511, 2006.

[29] S. Verdoolaege, H. Nikolov, and T. Stefanov. Improved
derivation of process networks. In Workshop on Opt. for
DSP and Embedded Systems (ODES-4), Mar. 2006.

[30] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In ACM SIGPLAN PLDI’91, pp. 30–44, 1991.

[31] Y. Zhao and S. Malik. Exact memory size estimation
for array computations without loop unrolling. In Design
automation (DAC), pp. 811–816, 1999.

[32] H. Zhu, I. I. Luican, and F. Balasa. Memory size computation
for multimedia processing applications. In ASP-DAC’06:
Asia South Pacific Design Automation, pp. 802–807, 2006.

