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We build on prior work on intra-array memory reuse, for which a general theoretical framework was proposed based on lattice theory. Intra-array memory reuse is a way of reducing the size of a temporary array by folding, thanks to affine mappings and modulo operations, reusing memory locations when they contain a value not used later. We describe the algorithms needed to implement such a strategy. Our implementation has two parts. The first part, Bee, uses the source-to-source transformer ROSE to extract from the program all necessary information on the lifetime of array elements and to generate the code after memory reduction. The second part, Cl@k, is a stand-alone mathematical tool dedicated to optimizations on polyhedra, in particular the computation of successive minima and the computation of good admissible lattices, which are the basis for lattice-based memory reuse. Both tools are developed in C++ and use linear programming and polyhedra manipulations. They can be used either for embedded program optimizations, e.g., to limit memory expansion introduced for parallelization, or in high-level synthesis, e.g., to design memories between communicating hardware accelerators.

Introduction

The optimization of memory in multimedia applications for embedded systems has received a lot of attention in the past years, for reducing both memory transfers and memory storage, which have a strong impact on power consumption, performance, and chip area. In this paper, we focus on memory storage reduction, which is important from both an architecture and an application point of view.

On the architecture side, an important characteristic of embedded systems is that the hardware, in particular mem-ories, can be customized. When designing and optimizing a programmable embedded system, the designer wants to select the adequate parameters for cache and scratch-pad memories to achieve the smallest cost for the right performance for a given application or set of applications. In highlevel synthesis, when designing non-programmable hardware accelerators, the designer or synthesizer can even fully design the memories (size, topology, connections between processing elements) and customize them for a given application. Embedded systems are thus good targets for memory optimizations. High-level synthesis projects such as [START_REF] Kathail | PICO: Automatically designing custom computers[END_REF][START_REF] Turjan | Translating affine nested-loop programs to process networks[END_REF] need to rely on powerful compile-time program and memory analysis to be able to automatically or semi-automatically generate a fully-customized circuit from a high-level C-like description. For programmable embedded systems, run-time memory reduction techniques are also possible (see for example [START_REF] Udayakumaran | Dynamic allocation for scratch-pad memory using compile-time decisions[END_REF]), but it is not the topic of this paper.

On the application side, multi-media applications often make intensive use of multi-dimensional arrays, in sequences of loops, or even sequences of nested loops, which make them good target for static program analysis. Before the final implementations, the applications need to be rewritten several times, either by the compiler or the developer, to go from a high-level algorithmic description down to an optimized and customized version. For memory optimizations, the high-level description is where the largest gain can be obtained because global program analysis and global code transformations can be done. For this, it is therefore important to analyze multi-media applications at the source level.

We present an implementation of intra-array memory reuse based on lattice theory in the source-to-source transformer ROSE [START_REF] Quinlan | ROSE: Compiler support for object-oriented frameworks[END_REF], developed at the Lawrence Livermore National Labs. Intra-array memory reuse was first proposed at Leuven/IMEC [START_REF] Balasa | Exact evaluation of memory size for multi-dimensional signal processing systems[END_REF][START_REF] De Greef | Memory size reduction through storage order optimization for embedded parallel multimedia applications[END_REF], as a mean to reduce the size of temporary arrays. Basically, their technique was to linearize a temporary array in some canonical way and to fold it with a modulo operation, thus reducing its size, so that a memory cell can be reused when it contains a dead value, i.e., a value no longer used. This problem was then considered by several authors, with different viewpoints and techniques [START_REF] Lefebvre | Automatic storage management for parallel programs[END_REF][START_REF] Quilleré | Optimizing memory usage in the polyhedral model[END_REF][START_REF] Strout | Schedule-independent storage mapping for loops[END_REF][START_REF] Thies | A unified framework for schedule and storage optimization[END_REF], including some more work at Leuven/IMEC [START_REF] Tronçon | Storage size reduction by in-place mapping of arrays[END_REF], until a more general framework was proposed in [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF] that tries to integrate all approaches into a unique setting. We build on this theoretical work and we bridge the gap between its formal description and the algorithmic needs, both for program analysis and memory reduction, to really use such a framework in a compiler.

Related work Memory reduction has given rise to a large amount of work recently. In addition to intra-array mem-

Author version -Published in Conference on Languages, Compilers, and Tools for Embedded Systems, 2007 ory reuse already mentioned previously, there are two other important aspects in memory reduction: memory size estimation and loop transformations for memory reuse.

The first aspect is to be able to give estimations on the number of values live at a given time [START_REF] Zhao | Exact memory size estimation for array computations without loop unrolling[END_REF][START_REF] Zhu | Memory size computation for multimedia processing applications[END_REF][START_REF] Balasa | Loop transformation methodologies for array-oriented memory management[END_REF][START_REF] Verdoolaege | Improved derivation of process networks[END_REF][START_REF] Clauss | Symbolic polynomial maximization over convex sets and its application to memory requirement estimation[END_REF]. Such estimations can be lower bounds or upper bounds. Lower bounds give indications and guides for further loop transformations, while upper bounds can also be used for memory reduction. Although some of these techniques can give parametric memory estimations, i.e., closed-form expressions in the parameters of the program, they are of no use for building an appropriate memory mapping that can actually lead to such a memory size. This is the main difference with intraarray memory reuse, which leads to actual memory allocations. Note also that the memory allocations that we derive are, by nature, upper bounds for memory size estimation.

The second aspect of memory reduction is to go beyond memory optimization of an already-scheduled program and to transform the program, i.e., to schedule it in another way, so that it consumes less memory. Typically, the goal is to reduce the lifetime of temporary values and increase the temporal reuse of values. Array contraction (see for example [START_REF] Song | Improving data locality by array contraction[END_REF][START_REF] Darte | New complexity results on array contraction and related problems[END_REF]) is a form of memory reduction that can be achieved with program transformation, in particular loop fusion. All the classical work on loop transformations for data locality, starting from [START_REF] Wolf | A data locality optimizing algorithm[END_REF], are also relevant here, even if they do not exactly target memory reduction. We cannot cite them all. An interesting recent work is [START_REF] Ramanujam | Reducing memory requirements of nested loops for embedded systems[END_REF], which studies the effect of loop transformations on lifetimes of array variables.

Background Notations and Definitions

We use the classical notations used for describing, analyzing, and transforming codes with nested loops and multidimensional arrays, as introduced in [START_REF] Feautrier | Data flow analysis of scalar and array references[END_REF] as static control programs. Each particular execution of a statement S -an operation -is represented by (S, i) where i, the iteration vector, represents the loop indices of the surrounding loops. We make the standard assumption that loops are affine, i.e., a loop index takes all possible integer values from the loop lower bound to the loop upper bound and these bounds are max (resp. min) of affine expressions of surrounding indices. In other words, for each statement S, the iteration vector i spans, in lexicographic order, all integer points of an iteration domain IS, which is a polyhedron. This affine framework also accepts if-statements as long as conditions can be analyzed as affine inequalities on loop indices. Similarly, we assume that arrays are accessed with affine functions of loop indices, otherwise some conservative approximations need to be done, when analyzing the program, as done in [18,[START_REF] Collard | Fuzzy array dataflow analysis[END_REF].

For memory reduction, we focus on temporary arrays, i.e., those used for intermediate computations in a procedure and that are neither live-in, nor live-out. Only intra-procedural information is needed to optimize them. We want to derive a storage-saving mapping σ( i) from the index space of a given array A to a set of storage locations indexed by addresses, with σ( i) = M i mod b, where M is a matrix, b is a vector, and the modulo operation is applied component-wise. Such a mapping σ is called a modular mapping and denoted by (M, b). The smallest the product of the components of b, the smallest the required memory. To get an adequate matrix M and an adequate vector b, our goal is to make practical the formalism and techniques proposed by Darte, Schreiber, and Villard in [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF]. This formalism generalizes the principles of the previously-proposed techniques, in particular, by De [START_REF] Thies | A unified framework for schedule and storage optimization[END_REF]. Figure 1 depicts the main steps of our array contraction method. These steps are described below.

Step 1 For deriving memory allocations with intra-array reuse, a possibility is to first compute, in an abstract way, for each array index, the first time it is written (first write) and the last time it is read (last read). We will make sure that, between the first write and the last read, the memory location is not overwritten when using the modular mapping σ: we call this "interval" the lifetime of the array index.

As pointed out in [START_REF] Darte | Lattice-based memory allocation[END_REF], when a given array location is written several times, we could be more accurate, distinguish the different defined values, and work with a union of "intervals" (between each write and its last corresponding read), instead of a single one. But this would make everything more complicated. Also, a pre-transformation of the code, renaming arrays, is possible if needed to get the same effect. We do not address this extension in our current implementation.

Step 2 Once the lifetime of array indices is analyzed, we can define conflicting indices: two array indices i and j conflict (denoted by i j) if their lifetimes intersect. We will make sure that such indices are not mapped to the same memory location through σ, i.e., i j, i = j ⇒ σ( i) = σ( j). If DS denotes the set of all d such that d = i -j, with i j, the previous condition is equivalent to d ∈ DS, σ( d) = 0 ⇒ d = 0, i.e., ker(σ) ∩ DS = {0} where ker(σ) is the set of all i such that σ( i) = 0 (the kernel of σ). Step 2 consists in building this set DS of conflicting index differences or an over-approximation. Steps 1 and 2 are detailed in Section 3.

Step 3 The kernel of a modular mapping σ = (M, b) from Z n to Z p is a sublattice of Z n . A lattice Λ with Λ∩DS = {0} is a strictly admissible lattice for DS. Given such an integer lattice, it is easy to build a mapping (M, b) whose kernel is Λ and such that the product of the components of b (the memory size) is equal to the determinant of Λ (Step 4). In other words, the search for a good modular mapping is reduced to the problem of determining a strictly admissible integer lattice for DS with small determinant. Algorithms and heuristics to find such a lattice are detailed in Section 4.

Steps 4 and 5 are straightforward and will not be detailed.

Step 4 consists in building, from a lattice Λ, a matrix M and a vector b so that the kernel of (M, b) is Λ. This may need some standard matrix computations (Hermite or Smith normal forms). Heuristics developed in Step 3 can also give directly the modular mapping. See [START_REF] Darte | Lattice-based memory allocation[END_REF] for more details, we just use what is explained there. Finally, Step 5 consists in replacing each access A(f ( i)) to an optimized array A by the reference A(σ(f ( i))). This, again, is done thanks to the source-to-source transformer ROSE [START_REF] Quinlan | ROSE: Compiler support for object-oriented frameworks[END_REF]. Some refinements on σ can be done, which are mentioned in Sections 3 and 4.

Main example We will use, as running example, the classical Durbin's kernel, which solves a Toeplitz system with N unknowns. See its code in Figure 2.(a). The array r is an input array, the array out is an output array, the arrays alpha, beta, sum, and y are temporary arrays, thus subject to memory reduction. In this example, any sophisticated tool should detect that arrays alpha, beta, and sum can be replaced by scalars. For array sum, this check requires inter-loop analysis. Our tool finds easily these complete memory reductions because, for each of these arrays, the set of conflicting index differences DS is reduced to {0}. More interesting is the case of array y that can be optimized but not completely. It is not too difficult to check that y can be folded into an array of size N × 2, with the mapping σ(i1, i2) = (i1, i2 mod 2). In other words, it is correct to replace, in the code, all occurrences y[c1][c2] by y[c1][c2 mod 2]. We will illustrate how to use DS to find automatically such a mapping.

We point out that the best modular mapping for y is σ(i1, i2) = 2i1 + i2 mod (2N -3), with a slight memory size improvement compared to the previous mapping. Being able to derive automatically such a mapping, in a parametric way and for a general situation, is, to our knowledge, an open problem. However, for a fixed and small enough value of N , our implementation of the exhaustive search proposed in [START_REF] Darte | Lattice-based memory allocation[END_REF] can find such a mapping. For this particular example, the gain of 3 memory cells is certainly not worth the price of the complicated modulo expression. However, for the purpose of illustration, we give in Figure 2.(b) and (c) the set DS and the transformed program with contracted arrays.

Lifetime Analysis of Array Elements

This section describes the algorithms, used in our tool Bee to compute the set DS of conflicting index differences, needed to compute modular allocations. This amounts to compute the conflict relation , which is done thanks to an accurate lifetime analysis on array elements. We illustrate this analysis with the array y of our main example.

Exact Lifetime Analysis

The lifetime of an array cell c is the "time interval" between its initialization and its last read. Classical methods handle arrays as scalar variables and make a too rough approximation of control flow to be used here. This section explains how to compute the first operation writing c (its initialization) and the last operation reading c, for static control programs. Our method is similar on many aspects to exact instancewise dataflow analysis and revisit some ideas of [START_REF] Feautrier | Data flow analysis of scalar and array references[END_REF]. 

First Write of an Array Element

c) = {(S, i) | i ∈ IS, u( i) = c}. Writing S1, . .

. , Sn the statements assigning A and denoting by the execution order between operations, the first operation writing

A[ c] is FW( c) = min S i WS i ( c), rewritten as: FW( c) = min {min WS 1 ( c), . . . , min WS n ( c)} (1) 
Following [START_REF] Feautrier | Data flow analysis of scalar and array references[END_REF], the sequencing predicate between two operations (S, i) and (T, j) can be defined thanks to the strict lexicographic order < l between iteration vectors: (S, i)

≺ (T, j) iff a) i[1..M ] < l j[1..M ] or b) i[1..M ] = j[1.
.M ] and S is before T in the text order, where M is the depth of the maximum common loop nest of S and T . In particular, min WS( c) boils down to compute the lexicographic minimum of the polyhedron

{ i | i ∈ IS, u( i) = c}.
When the polyhedron depends on parameters (as c here), classical algorithms of integer linear programming cannot be applied and we need to use parametric integer programming techniques [START_REF] Feautrier | Parametric integer programming[END_REF]. The tool PIP [17] implements such techniques and outputs a set of clauses, where each clause is a pair (polyhedral domain, affine solution) that defines the lexicographic minimum for a subset of the parameter space.

Main example (cont'd) By definition, the set

WS3( c) of instances of S3 writing y[c1][c2], with c = (c1, c2), is: {(S3, k, i) | 1 ≤ k ≤ N -1, 0 ≤ i ≤ k -1, i = c1, k = c2}
which is reduced to the operation (S3, c2, c1), whenever (c2, c1) is a valid point of the iteration domain of S3. In general, we use PIP to find the lexicographic minimum.

Here, since the access function u is one-to-one, we can just use the iteration domain inequalities and get the solution:

min WS3(c1, c2) = 8 < : N ≥ 2 1 ≤ c2 ≤ N -1 (S3, c2, c1) 0 ≤ c1 ≤ c2 -1
To make it simpler, here and in the rest of the paper, we only give the clauses providing a solution.

Once the different min WS i ( c) are computed, it remains to combine them in order to find the global first FW( c) as precised in Equation 1. This is achieved thanks to the combination rules given in [START_REF] Feautrier | Data flow analysis of scalar and array references[END_REF].

Main example (cont'd) Applying our analysis on the array y, we get the following clauses:

FW(c1, c2) = 8 > > > > > > > > > > < > > > > > > > > > > : c1 = 0, c2 = 0 (S1, ) 0 ≤ c2 ≤ N -1 0 ≤ c1 ≤ N -2 c1 < c2 (S3, c2, c1) 0 ≤ c1 ≤ N -1 0 ≤ c2 ≤ N -1 c1 = c2 (S4, c1)
Here, the computation of the local first writes min WS i ( c) is easy as y is in single assignment. In general, the main difficulty is the combination of clauses to get the global first write. This is also where the complexity of the analysis comes from. One can also try to remove redundant constraints.

Last Read of an Array Element

Similarly to the first write, the last operation reading an array cell is derived from local reading sets. For each assign- ment reading a given array cell, its last instance is computed, then the results are combined to get the global last read.

#define N 100 S1 y[0][0] = r[0]; beta[0] = 1; alpha[0] = r[0]; for(k=1; k<=N-1; k++) { beta[k]= beta[k-1] -beta[k-1]*(alpha[k-1])^2 sum[0][k]=r[k]; for(i=0; i<=k-1; i++) S2 sum[i+1][k] = sum[i][k] + r[k-i-1]*y[i][k-1]; alpha[k] = -sum[k][k] * beta[k]; for(i=0; i<=k-1; i++) S3 y[i][k] = y[i][k-1] + alpha[k]*y[k-i-1][k-1]; S4 y[k][k] = alpha[k]; } for(i=0; i<=N-1; i++) S5 out[i] = y[i][N-1]; 1 N -3 N -2 N -1 -1 1 -N 2 -N 3 -N 0 1 -1 2 -2 N -N Λ = N -2 -1 1 2 =⇒ σ(i, j) = (i mod 1, 2i + j mod 2N -3) d2 = ∆j d1 = ∆i #define N 100 #define M 197 S1 y[0] = r[0]; beta = 1; alpha = r[0]; for(k=1; k<=N-1; k++) { beta = beta -beta*(alpha)^2 sum = r[k]; for(i=0; i<=k-1; i++) S2 sum = sum + r[k-i-1]*y[(2*i+k-1)%M]; alpha = -sum * beta; for(i=0; i<=k-1; i++) S3 y[(2*i+k)%M] = y[(2*i+(k-1))%M] + alpha*y[(3*k-2*i-3)%M]; S4 y[(3*k)%M] = alpha; } for(i=0; i<=N-1; i++) S5 out[i] = y[(2*i+N-1)%M]; (a) (b) (c)
Main example (cont'd) Our algorithm finds automatically the following last read of y[c1][c2]:

LR(c1, c2) = 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : 0 ≤ c1 ≤ N -2 0 ≤ c2 ≤ N -2 2c1 > c2 c1 ≤ c2 (S3, c2 + 1, c1) 0 ≤ c1 ≤ N -2 0 ≤ c2 ≤ N -2 2c1 ≤ c2 (S3, c2 + 1, c2 -c1) 0 ≤ c1 ≤ N -1 c2 = N -1 (S5, c1)
Let us explain this result intuitively. First, note that, for each (k, i) ∈ IS 2 , the read of

y[i][k-1] in (S2, k, i) is then repeated in (S3, k, i).
Thus, none of the instances of S2 can be a last read for y. Now, let us focus on S3. For each (k, i)

∈ IS 3 , k < N -1, the array cell y[i][k] written by (S3, k, i) is read twice, by (S3, k + 1, i) (for the reference y[i][k-1]) and (S3, k + 1, k -i) (for the reference y[k-i-1][k-1]). The last read of y[i][k] is thus max {(S3, k + 1, i), (S3, k + 1, k -i)},
which boils down to find the maximum of i and k -i, with i < k, i.e., i when 2i > k (first clause) and k -i when 2i ≤ k (second clause). Furthermore, with (k, i) ∈ IS 3 , k = N -1, the array cell y[i][k] will be read in (S5, i) (last clause).

Computing the Conflict Relation

As explained in Section 2, two array indices i and j conflict if their lifetimes [FW( i), LR( i)] and [FW( j), LR( j)] intersect. In other words, the conflict relation is:

i j ⇐⇒ FW( i) ≺ LR( j) and FW( j) ≺ LR( i) With the clauses FW( i) = ( i ∈ D k : ω k ( i)) k=1..p and LR( i) = ( i ∈ D k : ω k ( i)) k=1.
.q , which define partitions of the index set, we get the relation through a union of sets. We consider all p 2 q 2 sets C k,l,m,n (many are empty) defined

for k ∈ [1..p], l ∈ [1..q], m ∈ [1..p], n ∈ [1.
.q], by:

C k,l,m,n = {( i, j) | i ∈ D k ∩ D n , j ∈ D l ∩ Dm, ω k ( i) ≺ ω l ( j), ωm( j) ≺ ω n ( i)} Then i j ⇔ ( i, j) ∈ p [ k=1 q [ l=1 p [ m=1 q [ n=1 C k,l,m,n
Decomposing the predicate ≺ into affine inequalities, we can write C k,l,m,n itself as a union of sets, and more precisely of polytopes. One can show that p and q are always finite nonparametric values, of the same order than the number P of statements of the program. This consequently provides an O(P 4 ) algorithm to compute the conflict relation. Despite its apparent complexity, this method is fast enough in practice since it just performs constraint concatenations. Once the set {( i, j) | i j} is obtained as a union of polytopes = ∪Q k , it remains to compute the set

DS = { d | d = i -j ∧ i j}. Adding the constraint d = i -j to Q k , we obtain an integral polyhedron P k in a vector space of dimension dim i + dim j + dim d = 3 dim i. It remains to project each P k on d to obtain DS, DS = ∪ r k=1 Pr(P k , d).
In general, DS is not a polytope as required by the heuristics described in Section 4. We thus compute its convex hull, which is an over-approximation, thanks to Polylib [17].

Main example (cont'd) We automatically get the set DS of conflicting differences d = (d1, d2) for array y depicted in Figure 2.(b). It is defined by the following constraints:

8 > < > : -(N -1) ≤ d1 + 2d2 ≤ N -1 -(N -1) ≤ d1 -d2 ≤ N -1 -1 ≤ d2 ≤ 1 -(N -1) ≤ 2d2 ≤ N -1
It is possible to find this set by analyzing the program by hand. However, even for such a simple example, the computation of DS can be very tricky. Thus, even in the case where the designer wants to choose the modular mapping him/herself, instead of relying on heuristics, it is very useful to be able to use an automated analysis to compute this fundamental (for lattice-based memory allocation) object DS. This is what the first part of our tool provides.

Deriving Strictly Admissible Lattices

This section describes the algorithms we use in our tool Cl@k (Critical Lattice Allocation Kernel), a stand-alone program devoted to the search for good admissible lattices for a 0-symmetric polytope. We bridge the gap between the abstract description of the heuristics given in [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF] and an actual implementation. Currently, we use our program not only to find good mappings automatically and evaluate previously-proposed heuristics, but also to invent new heuristics and help us finding optimal mappings in a semiautomatic way. For example, we mentioned that the optimal modular mapping for the array y in Section 2 has memory size 2N -3. Even if heuristics are good enough here (with memory size 2N ), finding the optimal in a parametric way is harder: we used our tool to find the optimal for a few values of N , then proved by hand that 2N -3 is optimal. The same is true for triangular domains, see the example hereafter. In other words, this tool should be viewed as a platform for the development, understanding, and exploration of mappings.

As explained in Section 2, finding a valid modular mapping (M, b), for a set of conflicting indices DS ⊆ Z n , amounts to find a strictly admissible integral lattice Λ for DS, i.e., a sublattice of Z n whose intersection with DS is reduced to {0}. By construction, DS is 0-symmetric and is described or over-approximated as the integer points within a polyhedron K. This polyhedron K is described either by its vertices or by a polyhedral representation { x | A x ≤ c}. Currently, our tool has the following functionalities:

• Computation of optimal strictly admissible integer lattice by exhaustive search with the approach suggested in [START_REF] Darte | Lattice-based memory allocation[END_REF].

• Computation of the successive minima and of a set of corresponding minimum vectors.

• Computation of the gauge functions Fi and F * i ; • Implementation of the generalized basis reduction [START_REF] Lovász | The generalized basis reduction algorithm[END_REF];

• Implementation of the different heuristics of [START_REF] Darte | Lattice-based memory allocation[END_REF]. We now explain the key algorithmic points underlying these developments, focusing only on the non-obvious ones.

Rogers' Heuristic

The first heuristic proposed in [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF] to get a strictly admissible integer lattice is an adaptation of a mechanism due to Rogers [START_REF] Gruber | Geometry of Numbers[END_REF], for a 0-symmetric polytope K in dimension n.

Heuristic 1.

• Choose n positive integers ρi, s.t. ρi is a multiple of ρi+1, and dim(Li) ≤ i -1, where Li = Vect(K/ρi ∩ Z n ). • Choose a basis ( ai) 1≤i≤n of Z n s.t. Li ⊆ Vect( a1, . . . , ai-1).

• Define Λ the lattice generated by the vectors (ρi ai) 1≤i≤n .

The correctness and worse-case quality of such a strategy are analyzed in [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF]. It gives a correct mapping when ρiλi(K) > 1 with λi(K) the i-th successive minimum of K:

λi(K) = min{λ > 0 | dim(Vect(λK ∩ Z n )) ≥ i}
We now explain how we compute the scaling factors ρi and the basis ( ai) 1≤i≤n . The first difficulty is to compute the successive minima. These minima are also useful to get the "dimension of the problem", i.e., the dimension p ≤ n of the vector space generated by the integer points in K. Indeed, a complete memory folding can be done for the n-p other dimensions (i.e., each modulus is 1), while the p "full" dimensions may need a folding with modulus greater than 1. This mechanism generalizes the projections used in [START_REF] Quilleré | Optimizing memory usage in the polyhedral model[END_REF].

Computing the Successive Minima

The first successive minimum λ1(K) is the smallest rational number λ such that the polyhedron K/λ contains an integer point x = 0, i.e., it is defined by:

λ1(K) = min{λ ∈ Q | ∃ x ∈ Z n , x = 0, A x ≤ λ c}
The constraint x = 0 makes this system not linear. But, if there exists such an x, then xi ≥ 1 or xi ≤ -1 for some i. Moreover, as K is 0-symmetric, if x ∈ K, then -x ∈ K, so we can look only for x such that xi ≥ 1 for some i. In other words, we can compute λ1(K) as the minimum over n values, each computed by mixed integer linear programming:

λ1(K) = min 1≤i≤n min{λ ∈ Q | ∃ x ∈ Z n , xi ≥ 1, A x ≤ λ c}
This gives λ1(K) as well as a corresponding solution x1.

Main example (cont'd) We explained how DS can be computed in an exact way, even when N is a parameter, as the integer points within the polytope K (when N ≥ 3):

K = {(i1, i2) | -(N -1) ≤ i1 + 2i2 ≤ (N -1), -(N -1) ≤ i1 -i2 ≤ (N -1), -1 ≤ i2 ≤ 1}
see Figure 2.(b). The first minimum of K is 1/(N -1), obtained when looking for a point x such that x1 ≥ 1.

Notice that, here, we give the solution in a parametric way but, as we will explain, our current implementation for the computation of successive minima assumes N is fixed. Now, suppose λ1(K), . . . , λi-1(K) have been computed, with their corresponding x1, . . . , xi-1. The i-th minimum is the smallest λ such that K/λ contains an integer point x, linearly independent with x1, . . . , xi-1. To express this condition, we first compute a basis of Z n whose first (i -1) vectors span the same space as x1, . . . , xi-1. For that, we define the n × (i -1) matrix X with columns x1, . . . , xi-1, and we compute the Hermite form [START_REF] Newman | Integral Matrices[END_REF] of X: X = QH where Q is a n × n unimodular matrix and H is a n × (i -1) matrix whose top (i -1) × (i -1) submatrix is nonnegative, upper triangular, and the rest of H is zero. We then make the change of basis x = Q y. In this representation, x is linearly independent with x1, . . . , xi-1 if and only if yj ≥ 1 or yj ≤ -1 for some j ≥ i. Again because K is 0-symmetric, we have:

λi(K) = min i≤j≤n min{λ ∈ Q | ∃ y ∈ Z n , yj ≥ 1, AQ y ≤ λ c}
Solving this system, we get λi(K), a corresponding solution yi and, finally, xi = Q -1 yi. Continuing this way, we obtain all successive minima λi(K), one after the other, by solving n(n + 1)/2 mixed integer linear programs.

Mixed Integer Linear Programming

For computing the successive minima with mixed integer linear programming, we tried two implementations that work for a non-parameterized 0-symmetric polytope K. Both compute of course the same successive minima λi(K) but possibly with different xi's as these are not uniquely defined.

Our first implementation uses the public-domain tool GLPK [START_REF]GLPK (GNU Linear Programming Kit[END_REF] and is easy to interface. The only problem is that the rational numbers λi(K) are returned as float numbers, and not as the quotient of two integers. However, as each xi is an integer vector, we use a post-processing step to compute λi(K) as a fraction: it is the smallest rational number such that A xi ≤ λ c. We thus consider each equation of this system to build λi(K) as the quotient of two integers.

Our second implementation uses PIP [START_REF] Feautrier | Parametric integer programming[END_REF]17], a parametric linear programming solver, which gives the lexicographic minimum in a parameterized polyhedron {A x ≤ B n + c} where x represents nonnegative unknowns and n nonnegative integer parameters. Using PIP is a bit tricky as some pre-processing must be done to cope with the fact that unknowns are nonnegative, but this is just a technical problem. More important is that, here, we use PIP for mixed integer linear programming. For that, as explained in [START_REF] Feautrier | Parametric integer programming[END_REF], the first step is to consider that integer unknowns ( x in our system) are parameters and find, with parametric (rational) linear programming, the minimum of λ as a function of x. The solution is a set of clauses, where each clause u defines a solution λ (u) as an affine expression f (u) ( x) of x, valid when x belongs to some polyhedron P (u) . The second step finds, for each clause u, thanks to integer linear programming, the minimum of f (u) ( x) over all integer elements x of P (u) . The minimum of these minima gives the desired minimum λ.

Main example (cont'd) Suppose N = 100 for example. Our GLPK implementation first finds λ1(K) = 0.010101 . . . with x1 = (1, 0), and λ1(K) is recomputed as 1/99. Then, it finds λ2(K) = 1 with x2 = (0, 1). Our PIP implementation finds λ1(K) directly as the fraction 1/99 for x1 = (1, 0). Then, as PIP looks for the lexicographic minimum, it finds x2 = (-98, 1), λ2(K) = 1. Thus, the xi may not be the same with GLPK or PIP, while the λi are uniquely defined.

When none of the mixed integer linear programs solved to get λi(K) has a solution, K is not full-dimensional and we directly get, with no additional effort, the minimal vector space that contains all integer points of K. As previously mentioned, this is important to find a good lattice/mapping and not fall into traps due to skewed and flat polytopes K. As for complexity, although integer linear programming is NP-complete, the two implementations are very fast, at least for the practical cases that arise in our memory allocation problems, all of small dimensions. Compared to the time needed to analyze the program and compute K itself, running times are not worth mentioning. This is maybe the most important conclusion of our implementation study: the limiting factor, in terms of complexity, for lattice-based memory allocation is the required program analysis, not the search for good admissible lattices. Thus, the apparently-heavy machinery proposed in [START_REF] Darte | Lattice-based memory allocation[END_REF] to get modular mappings is only complicated mathematically, but it is not costly in practice.

What about parameterized polytopes? As mentioned, using PIP is bit more complicated than using GLPK. However, it has some parametric capabilities that GLPK does not have and our hope was to be able to derive λi(K) (or at least xi) even if K is linearly parameterized as {A x ≤ B n + c}. Unfortunately, this does not work as λ is then a multiplicative factor of the parameters n in the linear programs that need to be solved. Looking for 1/λ instead of λ leads to the same difficulty as 1/λ is now a multiplicative factor of x. Also, even if we were able to compute λ1(K), our technique to make sure that x2 and x1 are linearly independent would fail if x1 is parameterized too, unless we can complete x1 into a basis in a parametric way. So, this seems difficult. But λ1(nK) = λ1(K)/n, with the same minimum vector, so there must be a way to express, at least in some cases to be specified, each 1/λi(K) as a function of parameters. Unfortunately, so far, we did not find a way to compute the successive minima of a linearly parameterized polyhedron.

How to Choose the (ρi) 1≤i≤n and ( ai) 1≤i≤n

Once we get the successive minima, we can find the scaling factors ρi and an adequate basis ( ai) 1≤i≤n of Z n , as follows.

For the vectors ( ai) 1≤i≤n , a possible choice, suggested in [START_REF] Darte | Lattice-based memory allocation[END_REF], is to use the vectors xi associated with the successive minima λi(K). Indeed, if ρiλi(K) > 1, then the vector space Li = Vect(K/ρi ∩ Z n ) has at most (i -1) dimensions. Furthermore, Li ⊆ Vect( x1, . . . , xi-1). However, the vectors ( xi) 1≤i≤n , although they form a basis of Q n , may not form a basis of Z n . To get a basis of Z n , we apply the same Hermite normal form trick that we used previously. We compute X = QH and we define the vectors ai as the columns of Q.

For the scaling factors ρi, a possibility is to choose ρi to be the smallest power of 2 strictly larger than 1/λi(K). It turns out however that the divisibility condition for the ρi in Heuristic 1 is often useless in practice. Most of the time, especially in small dimensions, it is enough to choose ρi = 1/λi(K) + 1 to get a (smaller) strictly admissible integer lattice. If not, our current implementation increments the ρi, one at a time, in a round-robin fashion, and checks if this gives a solution. We call this heuristic Heuristic 1.a. At each step (in general one or two), we need to check whether the selected lattice (ρi ai) 1≤i≤n is strictly admissible for K = {A x ≤ c}. This amounts to check that there is no x = 0 such that x = P n i=1 xiρi ai and A x ≤ c, x = 0}, where each xi is an integer. This can be done by solving n linear programs, using the same technique we used to compute λ1.

Finally, it remains to compute a mapping whose kernel is the selected lattice. If Q is the matrix whose columns are ( ai) 1≤i≤n and b the vector whose components are (ρi) 1≤i≤n , a suitable mapping is

σ( i) = M i mod b where M = Q -1 .
Main example (cont'd) Here, a good mapping is particularly simple to find by hand because the progress of uses along the array y follows the canonical dimensions of the array. Let us see what our implementation finds. Assume that N = 100. With GLPK, we get λ1(K) = 1/99 and λ2(K) = 1 for x1 = (1, 0) and x2 = (0, 1). With Heuristic 1, we get ρ1 = 128 and ρ2 = 2 with the mapping σ(i1, i2) = (i1 mod 128, i2 mod 2), which can be simplified into σ(i1, i2) = (i1, i2 mod 2) as 0 ≤ i1 < N ≤ 128. With Heuristic 1.a, we will select directly ρ1 = 99 + 1 = N , even if the initial array size in the first dimension is larger. In practice, Heuristic 1.a is more efficient. Going to the next power of 2 as in Heuristic 1 can lead to a loss in memory.

We point out that, in practice, one should pay attention to the "complexity" of the derived lattice and of the resulting mapping. So far, the only optimizing criterion was the size of the memory, i.e., all mappings leading to the same memory size are considered equally good. But some can lead to simpler access functions (without even mentioning cache access). A possibility to get simple lattices is to minimize, when looking for each xi, its components in absolute value. One can also use, after all xi are computed, a form of basis reduction to get a simpler basis. One example is the generalized basis reduction of Lovász and Scarf [START_REF] Lovász | The generalized basis reduction algorithm[END_REF] that we implemented. On random polytopes, we saw some improvements but this was not convincing on polytopes arising from simple programs. For Heuristic 1.(a), to preserve the successive vector spaces Li, one can limit the modifications to "upper triangular" changes, i.e., simplifying xi with linear combinations of the previous xj, j < i. But how to derive the "simplest" mapping for a given lattice is still an issue.

Main example (cont'd)

To illustrate these possible complications, consider the basis found by our implementation with PIP: (1, 0) and (-98, 1). This basis leads to the "dirty" mapping σ(i1, i2) = (i1 + 98i2 mod 100, i2 mod 2) with Heuristic 1.a. It can be simplified into σ(i1, i2) = (i1 -2i2 mod 100, i2 mod 2) but, still, this is more complicated than the mapping found with GLPK. To get x2 = (0, 1) as for GLPK instead of x2 = (-98, 1), we need to complete our implementation so that it simplifies the basis. Looking for x2 with minimal components in absolute value would lead to x2 = (0, 1). One can also simplify x2 with x1: L2 is preserved and this also leads to (0, 1) = (-98, 1) + 98(1, 0).

Heuristics based on gauge functions

We tried different heuristics on thousands of 0-symmetric polytopes that we randomly generated. Heuristic 1.a, the variant of Heuristic 1 explained in the previous section, is, on average (but not always), the one that leads to the smallest lattices. However, as explained in the previous section, it requires the computation of the successive minima -with mixed integer linear programming -and the computation of adequate scaling factors -with integer linear programming -if we choose ρi in a more accurate way than just the smallest acceptable power of 2. Although these computations may appear very expensive, for the practical cases arising from programs, this can be done very quickly so using Heuristic 1.a is possible in practice. However, as mentioned, we do not know how to use this heuristic for parameterized polytopes and this may be a problem for practical memory reuse when optimizing programs. This is less true for highlevel synthesis where the parameters are in general known at compile-time although using parametric techniques as late as possible in the transformation process would be a plus.

Unlike Heuristics 1 and 1.a, the two heuristics that we describe in this section can be easily parameterized. These are the heuristics proposed in [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF] as generalizations of the heuristic of Lefebvre and Feautrier [START_REF] Lefebvre | Automatic storage management for parallel programs[END_REF]. They lead to memory allocations of the form σ( i) = M i mod b where b can be linearly parameterized if K itself is linearly parameterized. However, one needs to give them, as input, a nonparameterized basis, or alternatively, a non-parameterized matrix M . Before, let us recall some definitions from [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF].

The function

F ( x) = min{λ > 0 | x ∈ λK} defines a norm such that F (α x) = |α|F ( x)
, called the gauge function of K. Given some vectors ( ai) 1≤i≤n , one can define Fi( x) = min{F ( y) | y ∈ x + Vect( a1, . . . , ai-1)}, which is connected to the gauge function of the projection of K along the vectors a1, . . . , ai-1. The next heuristic uses the functions Fi.

Heuristic 2.

• Choose n linearly independent integral vectors ( a1, . . . , an).

• Compute Fi( ai) = min{F ( y) | y ∈ ai+Vect( a1, . . . , ai-1)}, for 1 ≤ i ≤ n. • Choose n integers ρi such that ρiFi( ai) > 1.

• Define Λ the lattice generated by the vectors (ρi ai) 1≤i≤n .

Again, we refer to [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF] for the correctness and worse-case quality of such a strategy. We focus here on the implementation details. The only algorithmic need is to compute Fi( ai) for all 1 ≤ i ≤ n. Here is how we proceed. We have:

Fi( ai) = min{F (y) | y ∈ ai + Vect( a1, . . . , ai-1)} = min{λ > 0 | y ∈ λK, y = ai + i-1 X j=1 yj aj} = min{λ > 0 | A y ≤ λ c, y = ai + i-1 X j=1 yj aj}
If K is not parameterized, the last expression can be solved with (rational) linear programming. Otherwise, if K = {A x ≤ B n + c}, then λ is a multiplicative factor of the parameters and PIP cannot be directly used. But:

Fi( ai) = min{λ > 0 | y ∈ λK, y = ai + i-1 X j=1 yj aj}
and, with ρ = 1/λ and z = ρ y, we have:

Fi( ai) = min{1/ρ > 0 | z ∈ K, z = ρ ai + i-1 X j=1 zj aj} = 1/ max{ρ > 0 | A z ≤ B n + c, z = ρ ai + i-1 X j=1 zj aj }
The last expression shows that, using PIP, we can find the inverse of Fi( ai) with rational parametric linear programming, even for a linearly-parameterized polytope K.

Once all Fi( ai) are computed, we let ρi = 1/Fi( ai) + 1. If ( ai) 1≤i≤n defines a basis of Z n , again, the mapping is σ( i) = M i mod b where M is the inverse of the matrix whose columns are the ai and b is the vector defined by bi = ρi.

Main example (cont'd) For our running example, with a1 = (1, 0) and a2 = (0, 1), we find 1/F1( a1) = N -1 and ρ1 = N , then F2( a2) = 1 and ρ2 = 2, with the mapping σ(i1, i2) = (i1 mod N, i2 mod 2). Also, as mentioned in [START_REF] Darte | Lattice-based memory allocation[END_REF], with a slight basis change, we can also obtain a valid 1D mapping as σ(i1, i2) = 2i1 + i2 mod 2N . For this particular case, we are not far from the optimal σ(i1, i2) = 2i1 +i2 mod 2N -3. Picking the vectors in the opposite order leads to ρ1 = 2, ρ2 = N and the mapping (i2 mod 2, i1 mod N ). We can also get the valid 1D mapping N i2 + i1 mod 2N .

An alternative view of Heuristic 2 is Heuristic 3 below, which directly builds a valid mapping, instead of a strictly admissible integer lattice. This is Lefebvre and Feautrier's approach, generalized to an arbitrary set of independent vectors ( ci) 1≤i≤n . The connection with Heuristic 2 is explained in [START_REF] Darte | Lattice-based memory allocation[END_REF]. This is a dual view of the same approach. The function F * i is the equivalent of Fi but for K * , the polar reciprocal of K, i.e., K * = { y | x. y ≤ 1 for all x ∈ K}. For the implementation, we use the alternative definition of

F * i ( ci) as F * i ( ci) = sup{ ci. x | x ∈ K, cj . x = 0, ∀j < i}. Heuristic 3.
• Choose n linearly independent integer vectors ( c1, . . . , cn).

• Compute F * i ( ci) = sup{ ci. x | x ∈ K, cj. x = 0, ∀j < i}, 1 ≤ i ≤ n. • Choose n integers ρi such that ρi > F * i ( ci).
• Let M be the matrix with row vectors ( ci) 1≤i≤n and b the vector such that bi = ρi.

This time, it is easy to see that, with no additional transformation, F * i ( ci) can be computed with parametric (rational) linear programming if K is linearly parameterized. In other words, as the function Fi and F * i are the inverse of each other (see [START_REF] Darte | Lattice-based memory allocation[END_REF] for more details), we can implement Heuristics 2 and 3 if either K or K * is linearly parameterized, for a non-parameterized basis. We implemented both heuristics (which give, by nature, the same results for dual basis ( ai) 1≤i≤n and ( ci) 1≤i≤n , when vectors are picked in the opposite order), trying different basis as input: identity, identity up to a permutation of rows or columns (this can be viewed as a generalization of the technique of [START_REF] De Greef | Memory size reduction through storage order optimization for embedded parallel multimedia applications[END_REF]), basis given by the successive minima, basis given by generalized basis reduction, etc. All these techniques are fast enough to allow such attempts. We then pick the best solution.

Experiments

Our stand-alone mathematical tool Cl@k (Section 4) provides the heuristics of [START_REF] Darte | Lattice-based memory allocation[END_REF][START_REF] Darte | Lattice-based memory allocation[END_REF] (and some other) while our program analyzer tool Bee (Section 3) makes the link with programs, i.e., computes the lifetime analysis of array elements required by the heuristics and generates the final C program with the allocations. Several libraries are involved, including ROSE [START_REF] Quinlan | ROSE: Compiler support for object-oriented frameworks[END_REF], Polylib and PIP [17]. ROSE is a compiler framework providing simple mechanisms to read and write a program abstract syntax tree. It uses the SAGE intermediate representation and exploits ideas of the Nestor library [START_REF] Silber | The Nestor library: A tool for implementing Fortran source to source transformations[END_REF]. We use ROSE to extract iteration domains IS and array index functions from static control programs written in C. Both AST traversals (top-down and bottom-up) and rewrite facilities are consequently used in our tool. The Finally, the lexicographic minima/maxima of integral polytopes are derived thanks to the PIP library [START_REF] Feautrier | Parametric integer programming[END_REF]17]. We applied our tools to contract temporary arrays of several image processing kernels [START_REF] Zhu | Memory size computation for multimedia processing applications[END_REF] 1 . We chose these kernels as they are used in all related papers and because they are short enough to be given here (see Figure 4). Figure 3 gives the results of our experiments. The benchmarks gather (1) our main example with N = 100 (durbin.c), (2) a real-time regularity detection used in robot vision, (3) a toy example similar to dynamic programming, (4) a 2D Gaussian blur filter used in image processing, (5) a motion detection algorithm used in the transmission of real time videos on data networks. The "Array" column gives the temporary arrays to contract. The "Mapping" column shows the final allocation σ found by the different methods. The mapping definitions assume that the operator mod has the weakest priority, i.e., i + j mod 10 stands for (i + j) mod 10. The "Compressed" column gives the array size after remapping, i.e., the product of the moduli. The "Runtime" column gives, for each array, the runtime for the computation of lifetime analysis (DS) and the runtime for the exhaustive search leading to size-optimal mappings (OPT). We now analyze these results and draw some conclusions from this study.

In terms of complexity, we point out again that the main factor of the complete strategy is the analysis itself. The runtimes of the different heuristics are so small they are not worth mentioning. The search for an optimal mapping is, however, too costly for large sizes. Indeed, this search is not optimized, it simply checks all determinants starting from a pre-computed lower bound and the number of determinants to consider can become very large. We also point out that, although previous approaches do not use the concept of DS (the search for the mapping is often combined with the analysis itself), they all use a lifetime analysis that is not cheaper than the computation of DS.

In terms of contraction, it appears that most temporary arrays can be contracted, leading to a very good compression ratio. Our study also confirms that, for some practical cases, the various heuristics give a similar (if not the same) result and that one can even restrict to a simple basis such as the identity matrix (or a permutation of it). This is because the loop indices (the "schedule") are often aligned with the array indices. We also point out that the principles used in Heuristics 2 and 3 are combinations of the principles of the heuristics of [START_REF] Lefebvre | Automatic storage management for parallel programs[END_REF] (to get the moduli) and of [START_REF] Quilleré | Optimizing memory usage in the polyhedral model[END_REF] (to get the right projection when DS is not full-dimensional) and that, again on simple examples, results can thus be similar. But there is a fundamental difference: we can apply the heuristics based on DS even if the initial program is not in single-assignment form and even if there are more than one statement writing a given array. For example, in [START_REF] Quilleré | Optimizing memory usage in the polyhedral model[END_REF], there must be, by principle, a one-to-one correspondence between arrays and statements. Indeed, the mapping is derived by a matrix relation between the unique schedule and the unique access function corresponding to an array. If the array is written by several statements, even if each array element is written once, the program needs to be changed so that each statement writes in a separate memory. For example, in Durbin's kernel, S4 and S3 would need to write in two different arrays, unless S4 is pushed into the previous loop (inverse of loop peeling) and converted into an instance of S3. This is possible here, but certainly not in general. Therefore, a technique based on the set DS seems superior because it can handle more programs (even parameterized ones) and because it gives more freedom to compute the mapping as the program analysis is decoupled from the computation of the strictly admissible integer lattice.

A particular form of array contraction is array scalarization, when an array can be completely transformed into a scalar. This is a particular case of our memory reduction technique. Indeed, an array can be scalarized if and only if its corresponding DS is reduced to {0}. Also a modulus equal to 1 corresponds to a dimension removal. We let the reader check that, for the codes given in the Figure 4, many arrays have been scalarized. The only case we miss is for the kernel [START_REF] Darte | New complexity results on array contraction and related problems[END_REF]. This is due to the fact that DS is overapproximated due to integer divisions in the derived clauses, which prevents us to see that DS is indeed equal to {0}. We know how to handle such cases correctly though it is not available yet in our current implementation.

Finally, the results in Figure 3 indicate that, although the heuristics are quite good in order of magnitude, there is still some space for improvement compared to the optimal, especially when DS has a strange shape. We have already mentioned the case of the array y in our running example, but the difference between N , the size found by the heuristics, and the optimal size 2N -3 is not worth the price of the complicated access function. However, consider the kernel (2) and the different triangular-shaped arrays mean, sum_t, and diff. Although these arrays could be removed if some loop fusion was done, let us focus here on reducing their size without changing the program schedule.

Consider the 2D array mean for example. Its size is N 2 but only N (N + 1)/2 ∼ N 2 /2 elements are live. They all conflict since they are all written before any is read. This defines the set DS = {(i, j) | |i| < N, |j| < N, |i -j| < N }. Surprisingly, none of the heuristics proposed here and in previous papers is able to find any reduction. But some reduction is possible with a modular mapping, leading to a memory size, not of order N 2 /2, but of order 3N 2 /4. An optimal mapping is (i, j) → (i + j mod 3m, j mod m) if N = 2m and (i, j) → (i -(3m + 2)j) mod (3m 2 + 3m + 1) if N = 2m + 1. How can we find such a mapping? First, we can use our exhaustive search to find optimal mappings for small values of N . If some pattern appears, we can try to generalize the mappings, then prove their optimality. This how we proceeded here, thus in a semi-automatic process.

We can go further and use the same principle to automatically derive good parametric mappings. Indeed, pick a small value of N , for example 1. Find an optimal strictly admissible lattice for DS = {A x ≤ b}. For the array mean, we get the lattice Λ generated by [START_REF] Clauss | Symbolic polynomial maximization over convex sets and its application to memory requirement estimation[END_REF]0) and (1, -1), with determinant 3. Multiplying by λ, we get that λΛ is strictly admissible for {A x ≤ λ b}. For the array mean and λ = N -1, we get a memory size 3(N -1) 2 , which is not what we want. But we can be more subtle: if Λ is strictly admissible for {A x ≤ b}, it is weakly admissible (i.e., boundary intersection is acceptable) for {A x ≤ b+ 1}, which is here {A x ≤ 2 b}. Multiplying by m, we get that mΛ is weakly admissible for {A x ≤ 2m b} and thus strictly admissible for {A x < N b}. We retrieve the optimal mapping for N = 2m with size 3m 2 . The same mapping is valid for N = 2m -1 with size ∼ 3N 2 /4, though not optimal. In future work, we plan to use such a generalization principle to derive good parametric mappings.

Conclusion

We have presented a complete and effective compile-time analysis to contract arrays. An element-wise lifetime analysis for arrays has been proposed that computes the first (resp. last) statement instance writing (resp. reading) a generic array cell. We have shown how this algorithm can be used to build the set of conflicting array cells required by the contraction methods described in [START_REF] Darte | Lattice-based memory allocation[END_REF], for which we proposed a complete and efficient implementation. Experimental results on a few kernels are provided and show important compression ratios, confirming the efficiency of the method. The whole analysis takes a few seconds for each benchmark on a Pentium III CPU 800MHz, with 256MB RAM, and most of the execution time is spent in lifetime analysis. We point out that computing last reads is more expensive that computing first writes, as there are more reads than writes in general. Some work needs to be done to accelerate this process.

Our method is however restricted to programs with affine array index functions and loops. In future work, we plan to address more general programs by providing a conservative lifetime analysis (containing the real lifetime). Our lifetime analysis is already able to provide lifetimes depending on a parameter (typically, N in the running example). Unfortunately, part of our current implementation is not yet able to handle them. We also propose to address this point in a future work. Finally, as mappings obtained from different methods of [START_REF] Darte | Lattice-based memory allocation[END_REF] can impact on spatial data locality, it would be good to have a method to select the best one.

  Consider a statement S in a static control program writing A[u( i)] where i is the iteration vector of S and u an affine function. Consider a cell c of A and WS( c) the set of operations (S, i) writing A[ c ]. Each operation must be valid and write A[ c], i.e., WS(
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 2 Figure 2. (a) Durbin's kernel, (b) Set DS of conflicting index differences for array y (polytope), an optimal integer lattice Λ (grey points), and a corresponding mapping σ (all other temporary arrays are scalarizable), (c) Transformed program.

  Experimental results for the kernels given in Figure4. The time spent in the lifetime analysis (DS) and in the optimal method (OPT) are given for a Pentium III CPU 800Mhz with 256 MB RAM. polyhedral operations (union, intersection, projection, and convex hull) required by the different steps of our method are computed thanks to the polyhedral library Polylib [17].

	Kernel	Array	Storage mapping found		Method		Runtime (s)
		Identifier	Original	Mapping	Compressed	H1 H2 H3 OPT	DS	OPT
	durbin.c	alpha	100	i → i mod 1	1	× × × ×	0.1	0.3
		beta	100	i → i mod 1	1	× × × ×	0.1	0.002
		sum	10000	(i, j) → (i mod 1, j mod 1)	1	× × × ×	0.5	0.003
		y	10000	(i, j) → (i mod 100, j mod 2)	200	× × ×		1.8	
				(i, j) → (i mod 1, 2i + j mod 197)	197		×		17
	reg detect.c	sum t	36	(i, j) → (i mod 6, j mod 6)	36	× × ×		0.1	
				(i, j) → (i mod 3, i + j mod 9)	27		×		0.2
		mean	36	(i, j) → (i mod 6, j mod 6)	36	× × ×		0.07	
				(i, j) → (i mod 3, i + j mod 9)	27		×		0.3
		diff	2304	(i, j, k) → (i mod 6, j mod 6, k mod 64)	2304	× × ×		0.1	
				(i, j, k) → (i mod 3, i + j mod 9, k mod 64)	1728		×		-
		sum d	2304	(i, j, k) → (i mod 1, j mod 1, k mod 1)	1	× × × ×	0.7	0.004
	dynprog.c	c	100	(i, j) → (i mod 9, j mod 9)	81	× × ×		0.5	
				(i, j) → (i mod 1, 13i + j mod 61)	61		×		0.6
		sum c	1000	(i, j, k) → (i mod 1, j mod 1, k mod 1)	1	× × × ×	6.1	0.004
	gauss.c	g acc1	10000	(i, j, k) → (i mod 1, j mod 1, k mod 1)	1	× × × ×	0.7	0.01
		g acc2	10000	(i, j, k) → (i mod 1, j mod 1, k mod 1)	1	× × × ×	0.9	0.007
		g tmp	2500	(i, j) → (j mod 50, i mod 48)	2400	×	×	0.07	46 min
				(i, j) → (i mod 48, j mod 50)	2400	× × ×		|
				(i, j) → (j -i mod 2, 24j -25i mod 1200)	2400		×		|
	mot detect kern.c	Delta	68121	(i, j, k) → (k mod 10, j mod 1, i mod 1)	10	×	×	3.9	0.3
				(i, j, k) → (i mod 1, j mod 1, k mod 10)	10	× × ×		|
		ODelta	842	i → i mod 1	1	× × × ×	0.4	0.002
	Figure 3.								
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  Many thanks to Florin Balasa who gave us these code examples.

gauss.c

#define M 50 #define N 50 #define T 1 void main() { int x, y, k, tot [START_REF] Collard | Fuzzy array dataflow analysis[END_REF]; int in_image[N][M]; //live-in int Gauss [START_REF] Collard | Fuzzy array dataflow analysis[END_REF] [18] W. Pugh. The Omega test: A fast and practical integer programming algorithm for dependence analysis. Communications of the ACM, 8:102-114, Aug. 1992.