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ABSTRACT 

 

Normal Mode Analysis is a fast and inexpensive approach that is largely used to gain insight into                 

functional protein motions, and more recently to create conformations for further computational            

studies. However, when the protein structure is unknown, the use of computational models is              

necessary. Here, we analyze the capacity of normal mode analysis in internal coordinate space to               

predict protein motion, its intrinsic flexibility and atomic displacements, using protein models            

instead of native structures, and the possibility to use it for model refinement. Our results show                

that normal mode analysis is quite insensitive to modelling errors, but that calculations are              

strictly reliable only for very accurate models. Our study also suggests that internal normal mode               

analysis is a more suitable tool for the improvement of structural models, and for integrating               

them with experimental data or in other computational techniques, such as protein docking or              

more refined molecular dynamics simulations. 
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1. INTRODUCTION 

Normal Mode Analysis (NMA) is a computationally inexpensive method extensively used to            

predict large amplitude motions in proteins, which often relate to biologically relevant functions             

1–4​. In many cases, a few low-energy normal modes account for most of the structural differences                

between two conformational states ​5–8​. Moreover, the atomic fluctuations obtained by normal            

modes match experimental B-factors ​9, 10​, as well as those calculated based on molecular              

dynamics simulations ​3, 11–14​. For these reasons, NMA is widely applied to study important              

transition pathways of biomolecules ​15, 16​, so as to get insights into allosteric pathways ​17–19​. It can                 

also be applied to generate input conformations for molecular docking ​15, 20–24​, and even for               

structural refinement of X-ray diffraction data ​25, 26​, small angle X-ray scattering (SAXS) ​27 or               

cryo-electron microscopy (cryo-EM) ​28​. 

NMA can be performed following different approaches and algorithms ​29​. There are two             

main strategies for computing normal modes, depending on the description of the degrees of              

freedom: Cartesian Coordinate Space (CCS) and Internal Coordinate Space (ICS). The former is             

the most popular approach and is computationally simpler ​30–33​. In this approach, the Cartesian              

coordinates of all the atoms or a subset of them are used as variables. However, several works                 

showed the advantages of computing NMA in ICS, usually using dihedral angles as variables,              

though any other internal property (i.e. bonds and valence angles) could be also considered ​33–39​.               

First, normal mode analysis in ICS allows to extend the validity of the harmonic approximation               

of the conformational energy hypersurface ​40​. Second, this approach offers another advantage as             

it includes a reduced number of variables, which results in a reduced number of modes. In this                 
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way, while for NMA in CCS most of the relevant protein motions are located within the first                 

non-trivial 10-20 modes ​32​, this number can be reduced to 5 in NMA in ICS ​36 and fewer modes                   

contribute to the conformational change ​35, 36, 39​. Finally, this method provides a third, intrinsic               

advantage: the atom connectivity is conserved, allowing to model larger conformational changes.            

Indeed, our previous studies showed the better performance of NMA in ICS in generating protein               

conformations of the bound state, when starting from the unbound structure ​36​. 

NMA is typically used in conjunction with coarse-grained protein models in which the             

pseudoatoms are connected by springs if their distance is closer than a chosen cutoff distance.               

This strategy allows reducing the computational cost and using the starting structure as a              

reference for calculations ​33, 41​. Coarse-grained models represent proteins in a broad range of              

particle size, from a single particle per protein ​42, 43​, to several particles per residue ​35, 44–47​; but the                   

most common representation considers merely the alpha carbons ​33​. Nonetheless, all-atom           

calculations are also being applied, which often allow for more accurate frequency calculation ​29​.              

It has already been proven that both the protein representation and the variable system influence               

the number of low-energy modes needed to describe a relevant conformational change ​29, 35​. 

Several studies have demonstrated the conservation of large amplitude motions (and           

therefore low-energy modes) among homologous proteins ​48–52​, and even within a set of proteins              

that possess the same fold despite low sequence identity ​48, 53, 54​. Low energy modes have thus                 

proven to be robust to sequence variations ​14, 53, 55​. Along with this observation comes the                

question of whether or not normal mode analysis could be applied on protein structural models.               

Due to the lack of experimental data, it often happens that no structure is available for the protein                  

of interest, and molecular modeling is the only available tool for predicting it. When working               
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with molecular dynamics simulations, protein models usually deviate from the starting           

configuration, and therefore from the native structure, partly due to the limited accuracy of force               

fields ​56, 57​. On the other hand, normal mode calculations were presented as more robust ​53, 58​,                 

although no extensive analysis has been done in this regard. Hollup and co-worker showed, using               

computer-generated models of three proteins, that intrinsic dynamics are maintained when the            

main protein architecture is conserved ​53​. Nonetheless, to our knowledge, no study at large scale               

has been conducted till date to assess the reliability of mode calculation when we are working                

with models instead of with the native structure. 

To fill this gap, we herein thoroughly analyze the reliability of normal mode calculations              

performed on computational models. Due to its proven better performance, we used NMA in              

internal coordinate space to carry out our study, using the same protein representation as in our                

previous works ​35, 36​. Nonetheless, to compare with standard approaches, we also computed NMA              

in CCS considering only Cα atoms. We performed this work on a large scale, taking advantage                

of the available models of the Critical Assessment of protein Structure Prediction (CASP)             

experiment ​59, 60​, selecting 99 native structures and 420 models with values of Root Mean Square                

Deviation (RMSD) to the native structure up to 5 Å. We assessed the accuracy of normal modes                 

by analyzing the mode overlap, the global flexibility and residue fluctuations. Moreover, we             

checked whether or not we could use NMA as a tool to improve protein models. Our results                 

show that, for models with initial RMSD to the native structure smaller than 3 Å, results are                

reliable in terms of both motion prediction and flexibility, while the reliability decreases for less               

accurate models. Nonetheless, up to 5 Å, mode prediction could be still used to get a qualitative                 

idea of the native motions, with most Root Weighted Square Inner Product (RWSIP) values              
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native/model higher than 0.5. The prediction of flexible regions is accurate for models until 4 Å                

RMSD. Finally, we observed that NMA in internal coordinates was able to better refine models               

than NMA in CCS, while preserving structure valence.  

 

2. METHODS 

 

2.1 Data set  

 

The two last experiments available when this work started, CASP11 and CASP12, were used as               

a source of structural models ​60, 77​. ​In CASP, proteins are divided by domains, defined as                

“structurally compact evolutionary modules in proteins that serve as the basic units of folding”              

59​. On multi-domain structures, the lowest modes usually correspond to motions between            

domains. We thus excluded multi-domain targets from our analysis, in order to focus on              

intra-domain motions. Incomplete models (i.e. not presenting all residues resolved in the native             

structure) were discarded. We selected only models with Cα RMSD to the native structure lower               

than 5 Å, because above that value comparisons will tend not to be meaningful. After those                

filters, we finished with a very unequal number of models per target. In order not to enrich our                  

results by a particular protein; we selected a maximum of 5 models per target. For that, we                 

performed clustering with the gromos method of the ​g_cluster program of the gromacs v5.1              

package ​78​, so as to obtain 5 clusters at the maximum and select the center of each cluster. The                   

final benchmark comprises 99 native structures and a total of 420 models. They are here named                

according to their code in the respective CASP experiment. 
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2.1.1 Classification of native structures by properties 

 

The classification by oligomerization state was based on the biological subunit of the PDB entry,               

indicated on the CASP database. When this entry was not noted in CASP, we looked for it based                  

on the protein sequence, and checked that both structures were similar, though some minimal              

differences in loop refinement were found. Secondary structure was assigned using DSSP ​79, 80​.              

Residues with no DSSP assignment were classified loops. Proteins with more loop residues than              

the 3​rd quartile of the distribution were classified as loop-rich. Proteins with more than 5 times                

α-​helix residues than ​β-​sheet residues were classified as ​α​-rich. Proteins with more than 5 times               

β-​sheet residues than ​α-​helix residues were classified as ​β​-rich.  

 

 

2.2 Internal Normal Mode Calculation 

 

Normal mode analysis (NMA) is a technique to investigate the vibrational motion of a harmonic               

oscillating system around a minimum energy conformation. NMA are usually computed using            

Cartesian coordinate space ​81, 82​. In our study, we computed NMA in internal coordinate space               

(iNMA) since this approach allows to extend the validity of the harmonic approximation of the               

conformational energy hypersurface ​40​. Under a harmonic approximation in iNMA, Hessian and            

kinetic energy matrices can be diagonalized, allowing the analytic solution of the Lagrangian             

equations of motion. The eigenvectors of this matrix are the normal modes, and the eigenvalues               
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are related to the squares of the associated frequencies. The protein main conformational changes              

are usually represented by a combination of some of the lowest frequency modes, but the               

amplitude of this motion is not defined because it depends on several conditions such as               

temperature. 

 

2.2.1 Calculation protocol 

 

The calculation of internal normal modes was performed using a home-made program, which has              

been described and evaluated in our previous studies ​35, 36​. Briefly, an anisotropic elastic network               

model was used, with a modified Zacharias representation of the proteins ​35, 36, 47​. In this                

coarse-grained model, N, C′, and C​α are considered explicitly (rather than using a C​α              

pseudoatom), whereas the side chains (with the exception of Gly) are represented by either one               

or two pseudoatoms (SC1, SC2), each representing groups of atoms within the side chain ​36​. As                

internal variables we considered merely the backbone dihedral angles φ and ψ, as they usually               

change significantly more than the peptide group dihedral ω. NMA in Cartesian coordinates was              

performed using the Bio3D program ​83​, with Cα coordinates ​as variables (cNMA). For sake of               

comparison, we used similar parameters as those used for internal NMA (iNMA). In other              

words, an anisotropic elastic network model (ENM) ​41 was built considering a fixed force of 0.6                

kcal mol​-1​ for atoms under a cutoff of 15 Å. 
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2.2.2 Conversion from internal coordinates to Cartesian ones 

 

To allow a better comparison with cNMA, normal modes calculated in iNMA were converted to               

the Cartesian space. This conversion was performed considering all modes, using the Taylor             

expansion of the Cartesian coordinates to calculate atom displacements ​35​. Afterwards, the            

orthogonalization of the normal modes was achieved with the Gram-Schmidt process ​84​, via the              

gramSchmidt function of the pracma v1.9.9 R package        

(​https://www.rdocumentation.org/packages/pracma​). 

 

2.3 Evaluation of similarity of Normal Mode calculations 

 

2.3.1 Prediction of protein flexibility 

 

The intrinsic protein flexibility (IFlex) was predicted using the following equation ​15​:  

 

F lex  I =  √ 1
N ∑

N

i=1

1
wi

2 (1) 

where ​N is the number of non-trivial modes (3​n​-6 for cNMA and 2​n​-1 for iNMA, for a protein of                   

n​ residues) and ​w​i​ is the eigenvalue associated to mode ​i.  

The weighted difference in IFlex values between a structural model and the            

corresponding native structure (ΔIFlex) was calculated using the following equation: 
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IF lex 100  Δ = ( IF lexj

IF lex −IF lexi j ) *  (2) 

 

where ​IFlex​i and ​IFlex ​j are the IFlex values of model ​i and native structure ​j ​, respectively.                

Frequency units are expressed in 10THz.  

 

2.3.2 Root Mean Square Inner Product (RMSIP) and Root Weighted Square Inner Product             

(RWSIP) 

 

The RMSIP ​63 is a measure of the similarity between two sets of normal modes or principal                

components of the covariance matrix, defined as: 

 

MSIP  R =  √ N

∑
N

i=1
∑
N

j=1
U •V( i j)

2

(3) 

 

where ​U​i and ​V ​j are the set of eigenvectors of the NMA of model (​i ​) and native structure (​j ​),                   

respectively.  

The RWSIP ​63 is a similar measure, which also takes into account the eigenvalues. It is               

defined as: 

 

W SIP  R =  √ v∑
N

i=1
ui j

∑
N

i=1
∑
N

j=1
u v U •Vi j( i j)

2

(4) 
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where u​i and v​i are the eigenvalues of the covariance matrix corresponding to the eigenvectors U​i                

and V​j​, for model (​i ​) and native structure (​j ​), respectively.  

Unless otherwise stated, according to common practice, we considered the first 10            

non-trivial modes (​N​=10) for RMSIP calculation. For iNMA, the RMSIP/RWSIP was computed            

after conversion to the Cartesian Coordinate Space. 

  

2.3.3 Overlap  

 

The overlap (​O​i​) between a given eigenvector ​i and the difference vector between a model and its                 

corresponding native structure was calculated using the inner product: 

 

V · UOi =  i (5) 

 

where ​V is the difference vector between the initial structures native/model, and ​U​i is a particular                

eigenvector of the model (​i​). 

 

2.3.4 Root Mean Square Fluctuation (RMSF) 

 

The mean square fluctuation of the atomic positions (RMSF) along the internal normal modes              

was performed as described previously, after conversion to the Cartesian Coordinate space ​35​.             

For cNMA, the calculation was performed with the ​fluct.nma tool of the Bio3D package ​83​. From                
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RMSF calculations, temperature factors (B-factors) can be obtained by the following equation            

and compared with experimental ones ​85​: 

RMSFB = 3
8π2 2  (6) 

In X-ray experiments, B-factors (B) are usually defined as a measure of the spatial fluctuations               

of atoms around their average position, and their motion is described as an isotropic Gaussian               

distribution of displacements about this average position ​86​.  

 

2.4 Generation of modified conformations by NMA 

 

We generated modified conformations of native structures and structural models by applying a             

given amplitude and phase to them ​using normal modes. In order to study larger conformational               

changes, we used mode amplitudes beyond those corresponding to room temperature (termed            

scaled amplitudes), as already performed by others and us ​36, 87​. To note, the use of scaled                 

amplitudes has shown to relate better with experimental B-factors ​87​.  

In iNMA, we used separately the 5 first lowest frequency modes in each direction for               

generating sets of modified conformations ​36​. By increasing the amplitude, we obtained            

conformations differing from the initial structure with increasing RMSD values (0.5 to 5 Å) (see               

Figure S4). For cNMA, we used the Bio3D procedure (magnitude value of 50, step of 1) ​83​.                 

Structures with steric clashes (as defined later on) were removed. For the analysis of model               

refinement using NMA, we selected, from the pool of generated conformations, the one closest              

to the native structure. 
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2.4.1 Clash parameter 

 

The increase of the modified amplitude may, at some point, result in the creation of clashes, or                 

steric overlaps, on the generated conformations. The clash parameter between a pair of             

pseudoatoms ​i​ and ​j​ is defined as ​36​: 

  

r  r  d  clashij =  p,i +  p,j −  ij − c     (7) 

 

where ​d​ij is the distance between atoms ​i and ​j​, ​r​p,i and ​r​p,j are the radii for the pseudoatoms ​i and                     

j​, respectively, and ​c is a cutoff for the Van der Waals overlap. For iNMA, backbone atoms C​α​,                  

N and C were considered, and a value of 1.5 Å was used for ​c​. For cNMA, as we had only C​α                      

coordinates, ​c was set to a value of 1 Å. We selected these values to still allow for some soft                    

clashes but ensuring models that could be corrected by minimization. Positive values indicate the              

presence of strong steric overlaps, and therefore conformations presenting positive          clashij  

values were discarded.  

 

2.4.2 Structural deformation by bond stretching  

 

As it is well-known that cNMA deforms structures, for example by an overstretching of              

backbone bonds, we calculated the RMSD of the virtual Cα​i​-Cα​i+1 ​bonds as ​36​: 
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 RMSDCα −Cαi i+1
=  √ Nd

∑
Nd

i=1
(d −d )Cα −Cαi i+1

0
Cα −Cαi i+1

2

      (8) 

 

where ​N​d represents the number of C​α​i​-​C​α​i+1 ​virtual ​bonds ​and ​d and ​d​0 are, respectively, the                

length of each virtual bond in the generated conformation by NMA and in the initial structure. 

 

2.4.3 Root Mean Square Deviation (RMSD) calculation 

 

All structural fit and all RMSD calculations between two conformations were performed using             

the McLachlan algorithm ​88 as implemented in the program ProFit v3.1 ​89​, considering only the               

backbone atoms Cα, C and N. For modified conformations generated by cNMA, only Cα atoms               

were used.  

 

2.5 Evaluation of Model Quality  

 

As an alternative to RMSD, which requires the knowledge of the native structure, model quality               

was assessed with QMEAN ​90​, a well-established approach to estimate model quality in the              

absence of the native structure, based on a linear combination of six structural descriptors. Four               

descriptors are statistical and derived from known structures (solvent accessibility, backbone           

geometry, inter-atomic packing), and two descriptors evaluate the consistency of structural           

features with sequence-based predictions. Qmean6 score was computed by interactive access to            

the QMEAN server ​91​. The score ranges from 0 (low quality) to 1 (high quality). 
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2.6 Statistical approach 

 

All statistical treatment was performed using the R statistical environment ​92​. The Spearman             

correlation coefficient (ρ) was used for data with non gaussian distribution ​93​. Distributions were              

compared using the Wilcoxon test (two samples)​94 and Kruskal-Wallis test (more than two             

samples) ​95​. The area under the ROC curve (AUC) was computed with the pROC package ​96​. The                 

AUC were used for (i) quantifying the separation of IFlex distributions between two groups of               

proteins with different characteristics and (ii) quantifying the quality of the prediction of flexible              

regions using NMA-derived RMSF. In the latter case, in each native structure, residues with high               

experimental B-factor (value higher than the average + 1.5 standard deviation) were classified as              

flexible residues and NMA-derived RMSF were used to predict these flexible residues. AUC             

values vary between 0 (wrong prediction for all residues) and 1 (perfect prediction), where 0.5               

denotes a random prediction. The rationale to use AUC here instead of Spearman correlation is               

that the goal is to identify peaks in flexibility profiles, whereas correlation is influenced by the                

precise ranking of all residues, within and outside of the peaks. 

 

3. RESULTS 

 

To build up our dataset, we selected 99 targets of the Critical Assessment of protein Structure                

Prediction (CASP) experiment, with its 99 native structures and a total of 420 models (see               

section Methods for more details) ​61​. To clarify the naming scheme, a target means a particular                
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protein, the native structure (NS) is the experimental structure, and the model is a prediction of                

its tridimensional structure. CASP models have the advantage to cover a broad range of applied               

methodologies, from ​de novo to comparative modeling, from server to human generation.            

Moreover, the native structure is available and the quality of the models has been evaluated using                

standardized measurements ​62​. Also, CASP targets tend to be selected due to their difficulty,              

mostly in terms of absence of near homologues, making it an interesting source for studying               

normal mode applications outside straightforward cases ​59​. Finally, they include all kinds of             

proteins, with different secondary structures, either in a monomeric form or in complex with              

another biomolecule, representing an unbiased set for very general applications. We did not             

consider models with initial RMSD to their native structure higher than 5 Å, as we wanted to                 

focus in cases with no strong mistakes in the modeling. We recall that NMA was computed using                 

internal coordinates (hereby called iNMA), which preserves protein internal geometry, and in            

Cartesian coordinates using a Cα model (hereby called cNMA) for comparison, as this is still the                

most popular approach. 

 

3.1 Motions predicted by NMA are not strongly affected by modeling errors 

 

According to Fuglebakk and co-workers​, the Root Mean Square Inner Product (RMSIP) of the              

normal modes, defined in Equation (3) in subsection 2.3.2, so as the similar Root Weighted               

Square Inner Product (RWSIP), defined in Equation (4) in subsection 2.3.2, are some of the best                

known metrics to compare sets of protein motions ​63​. Here, we used these quantities to evaluate                

whether or not motions calculated from structural models resembled those predicted for their             
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native structures. It is important to stress that, in the case of iNMA, as several sets of torsions can                   

lead to the same final conformation, and, moreover, modes are not strictly orthogonal in the               

internal space, it is mandatory to convert results from the internal to the Cartesian space ​35 before                 

calculating the RMSIP/RWSIP. In Figure 1, we present the results for RWSIP defined as the sum                

of the overlaps between the first 10 modes, weighted by the eigenvalues (see the section Methods                

for more details). We used this number of modes since it is well known that they capture most of                   

the relevant motions in both iNMA and cNMA ​36​. Globally, NMA is able to capture the main                 

protein motions using structural models, in both ICS and CCS: average RWSIP is equal to 0.69                

for iNMA and 0.73 for cNMA. 

As shown in Figure 1, there is a clear trend of decreasing RWSIP values as RMSD                

increases. In other words, very accurate models, meaning those having less than 2 Å RMSD to                

their native structure, always presented high RWSIP values (RWSIP > 0.65 and > 0.80 for               

iNMA and cNMA respectively). This trend is less clear for iNMA (Figure 1A) than for cNMA                

(Figure 1B), suggesting that an accurate model in terms of RMSD to the native does not ensure a                  

correct (i.e. similar to the native) calculation of protein motions in the internal space. These               

results indicate that iNMA can be more sensitive to local details, as already observed in our                

previous studies ​35, 36​. Interestingly, for models of moderate quality (RMSD greater than 2.5 Å),               

iNMA produces fewer cases with low RWSIP values (<0.5) than cMNA. This suggests that              

iNMA could be more tolerant than cNMA to model inaccuracy for medium quality models. 

It is well-known that for iNMA only few modes are sufficient to model protein motions               

with respect to cNMA, as already observed for the prediction of large conformational changes in               

our previous studies ​35, 36​. In fact, when only the first 5 lowest modes are considered, a more                  
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pronounced decrease in RMSIP/RWSIP values is observed for cNMA than iNMA, with a larger              

number of outliers (see Figure S1). Finally, our results were not influenced by the existence of                

gaps in the native structure and in models (​i.e. missing residue(s) inside a given chain of the                 

structure), which occured in 25% of the proteins under investigation (see Figure S2).  

RWSIP results indicate that protein motions predicted from models are similar to those             

predicted from the native structures. We wanted to check if this means that they are sampling a                 

similar conformational space, that is, if we could obtain similar conformations by applying             

normal modes on either a native structure or a model. Indeed, for rigid proteins which at                

physiological conditions would not sample more than 1 Å RMSD, we cannot expect to obtain               

similar and meaningful conformations working with models with initial RMSD to the native             

higher than this value.  

Then, we selected four of the most flexible proteins in the dataset (based on the IFlex                

value as defined in the section Methods and analyzed below) and created normal mode modified               

conformations for native structures and models with RMSD about 3 Å, as explained in the              

section Methods. Figure 2 shows these examples of conformational sampling along the first             

normal mode obtained by iNMA and cNMA. For these proteins, both iNMA and cNMA predict               

similar motions either from the native or from the model. These results encourage using protein               

models in the case of flexible proteins for generating conformations, for example for protein              

docking. This is important since the conformational space of very flexible proteins is more              

difficult to explore by other approaches, such as standard molecular dynamics. We would like to               

stress that unrealistic overstretching of the flexible protein regions was observed for cNMA (for              

example targets T0783-D1 and T0805-D1 in Figure 2). 
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3.2 Prediction of protein intrinsic flexibility is not affected by NMA 

approaches  

 

Among the several methods published to estimate protein flexibility from NMA ​15, 64, 65​, Dobbins               

and co-workers proposed a function to predict the intrinsic flexibility of a protein based on the                

eigenvalues (herein termed IFlex, see Equation (1) in the subsection 2.3.1), and they observed an               

agreement with the observed RMSD between two functional protein states (bound-unbound) ​15​.            

Here, we used the same approach to compare the prediction of protein intrinsic flexibility              

obtained using iNMA (IFlex​i​) and cNMA (IFlex​c​) for native structures (NS). Figure 3            

summarizes our results. Proteins are similarly ranked by predicted flexibility independently of            

the approach used for NMA calculation (Spearman correlation coefficient ρ=0.86 for IFlex            

values calculated with either iNMA or cNMA).  

Some proteins have much higher values of IFlex compared to others. The most outlier              

target, T0865-D1, corresponds to the C-terminal coiled-coil domain of the SH3           

domain-containing kinase-binding protein 1 from human (PDB code 2N64) ​66​. Therefore, its high            

IFlex value is expected, as coiled-coils are known for their high flexibility. Protein target              

T0805-D1 is a bacterial nitroreductase, likely oligomeric (see Table S1). Protein T0865-D1 is             

also oligomeric ​(see Table S1). ​As we performed NMA on a single protomer, and not on the                 

oligomer, the missing interchain interactions and spatial constraints of the second protomer can             

easily justify the predicted high flexibility. Target T0820-D2 is an uncharacterized protein            

identified in marine metagenomic data, whose oligomer status is unknown. 
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To better explore the obtained differences in predicted flexibility, we classified our            

proteins based on some selected characteristics (presence of loops, missing regions, secondary            

structure and oligomeric state of the native structure; Table S1). No differences were observed in               

IFlex values related to the presence of gaps (i.e. missing regions) or secondary structure content               

(Table S2). However, a significant increase in IFlex values was obtained for oligomeric proteins              

and, when the calculations are done with iNMA, also for loop-rich proteins. To evaluate the               

separation between groups, we used AUC (area under the ROC curve) values, as explained in the                

section Methods. In all cases, the separation among groups was more marked for iNMA. The               

same differences among subgroups were obtained when the flexibility was predicted using the             

models instead of the native structures (Table S3), with greater significance in the case of iNMA.                

Therefore, iNMA is able to better capture flexibility differences related to structural aspects, both              

from the native structure and from protein models. 

 

3.3 Protein intrinsic flexibility can be well captured by structural models 

 

To evaluate our capability to predict protein intrinsic flexibility using structural models, we used              

IFlex to analyze the differences between intrinsic flexibility predicted for a given native structure              

and its models. To do so, we computed the weighted difference in IFlex values, calculated as the                 

difference between IFlex computed for each model and their native structure divided by the              

value obtained for the native structure and multiplied by 100 (∆IFlex) (see Equation (2) in the                

subsection 2.3.1). Positive values of ΔIFlex denote models which are more flexible than the              

corresponding native structure, while negative values denote the opposite. The results are shown             
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in Figure 4 as a function of the initial RMSD model/native. The median values of ΔIFlex are                 

0.86 for iNMA and 0.31 for cNMA, and the means are 3.70 and 1.87 respectively. Those positive                 

values indicate a slight tendency to create models with higher flexibility than the native protein               

structure. Outliers with negative values (i.e. under-estimated flexibility) correspond to very           

flexible proteins highlighted in Figure 3. 

Even more relevant is the fact that for models presenting up to 3 Å RMSD to the native                  

structure, 90% of the points are within the interval [-10,10] of ∆IFlex with both approaches,               

meaning an error lower than 10% compared to the native structure IFlex (see Figure 4). This                

shows that the calculation of IFlex is reliable in the case of small modelling errors. Even for                 

models with RMSD as high as 5 Å, 90% of the data points are within the [-19,26] interval of                  

∆IFlex for iNMA and [-20,38] for cNMA, showing that the calculation on structural models              

approximates well the flexibility of the native structure. To note, for models with RMSD higher               

than 3 Å, we observe that the ∆IFlex values are less spread (i.e. narrower empirical 90% interval)                 

in iNMA than cNMA, suggesting that iNMA is more tolerant to modelling errors in the case of                 

models with medium quality. 

Noteworthy, there is a good correlation between values of ΔIFlex calculated either by             

cNMA or iNMA (ρ = 0.77, data not shown). In addition, there is also a good correlation between                  

IFlex predicted from native structures and IFlex predicted from models, with ρ equal to 0.78 for                

iNMA and 0.80 for cNMA (see Figure S3). The above results suggest that structural errors have                

a similar impact on the flexibility prediction in spite of the NMA approach used. 

 

3.4 Flexible regions can be predicted from models  
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The atomic displacements predicted by NMA have been shown to well correlate with             

experimental B-factors ​41, 67​. In this study, we also verified if this correlation is still valid for                 

protein models. To do so, we computed the Root Mean Square Fluctuation (RMSF) along normal               

modes for each model, and compared it to the experimental B-factors of its respective native               

structure. We used AUC computation, as explained in the section Methods, to predict regions              

with high experimental B-factors using NMA-derived RMSF. 

The results are shown in Figure 5. Panel 5A illustrates the three comparisons that have               

been carried out: B-factors versus RMSF of native structures (dashed red line), B-factors versus              

RMSF of models (dashed blue line), and RMSF of native structures versus ​RMSF of models               

(dashed green line). As shown in Figure 5A, flexible regions are predicted with high accuracy               

from NMA-derived RMSF computed on native structures: average AUC is equal to 0.83 for both               

iNMA and cNMA. ​The small discrepancy observed could moreover be explained by the fact that               

B-factors are heavily influenced by non-thermal contributions ​68, 69 and do not reflect only the               

structural flexibility of proteins ​63​. When structural models are used instead of native structures,              

the prediction remains accurate: average AUC is equal to 0.79 for iNMA and 0.80 for cNMA. If                 

we now compare the RMSF values between native structures and models, we observe very high               

prediction success: average AUC is equal to 0.92 for iNMA and 0.93 for cNMA.  

As expected, the prediction of flexible regions from models (dashed blue line in Figure              

5A) is impacted by the model quality, see Figure 5B. We observe a clear decrease in prediction                

accuracy for models with RMSD greater than 4 Å, using both NMA approaches. Panel 5C shows                

an example of a pair native/model, where we can observe how flexible regions are well identified                
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using NMA, despite the medium accuracy of the model (RMSD to the native greater than 4 Å).                 

Our results suggest that NMA on structural models is capable of capturing the flexible regions of                

the native structure independently of the approach used. 

 

3.5 iNMA allows model refinement preserving the protein valence structure  

 

Although NMA has been mostly used for getting insights into the main protein motions, it is                

becoming more and more relevant in the generation of different conformations of a protein ​70​,               

and it has also been used for improving protein models ​71, 72​. Here, we aimed to analyze how                  

close we could move a model to its native structure by applying normal modes. To this aim, for                  

each model, we generated a set of conformations by applying a subset of normal modes               

computed by iNMA and cNMA, using different amplitudes (see the section Methods for more              

details). The modified conformation presenting the minimum RMSD to the native was selected             

(RMSD​NMA​), and compared to the initial RMSD between the model and its native structure (see               

Figure 6A-B). In Figure 6, to highlight the change in protein valence structure, the dots are                

colored based on the RMSD of C​α​i​-​C​α​i+1 ​virtual bonds between the n​ew conformation and the               

initial model (see the section Methods for details). ​For very accurate models (low RMSD              

values), the improvement in terms of RMSD to the native is very small for both iNMA and                 

cNMA. On the contrary, as the initial RMSD model/native increases, iNMA outperforms cNMA,             

with lower RMSD​NMA​ values while preserving protein connectivity.  

To quantify the best improvement in terms of native-likeness using a statistical approach,             

for each model we also computed the fractional RMSD, ∆RMSD%, defined as ∆RMSD% =              
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100(RMSD-RMSD​NMA​)/RMSD (Figure 6C-D). Large values of fractional RMSD mean that the           

model approaches the native structure by applying a specific normal mode and amplitude. By              

comparing the histograms in Figures 6C and 6D, one can see that iNMA represents a promising                

approach for model refinement. In fact, the mean ∆RMSD% value is 9.4 and 5.6 for iNMA and                 

cNMA, respectively while the median is equal to 7.0 and 3.9, respectively. Thus, iNMA is               

capable of refining models by reducing the initial RMSD value to the native by 10% on an                 

average (red line in Figure 6C). ​It is worth noticing that these results were obtained by                

considering only one mode, and therefore expected to improve when two or more modes are               

combined ​36​. 

Not only does iNMA improve the predictions compared to cNMA, but the latter can              

dramatically overextend flexible regions ​36​, by increasing Cα​i​−Cα​i+1 virtual bonds to unrealistic            

values. It is consequently understandable that when structures derived from cNMA modes are             

used in other computational approaches or in combination with experimental data ​73–75​, further             

structural refinement steps are necessary that can also lose most of the conformational change              

obtained by cNMA. On the contrary, iNMA allows to preserve the protein valence structure and               

it is a better candidate for integrative modelling and for improving computational models. 

 

4. DISCUSSION 

 

Internal normal mode analysis is a fast computational approach to predict large            

conformational changes without modifying protein connectivity. In this study, we investigated           

the capability of iNMA to predict protein motion, its intrinsic flexibility, atomic displacements             
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and conformational changes using protein models instead of native structures. This step is             

necessary if we would like to use structural models in computational studies when its native               

structure is unknown. To assess this approach, we compared the results obtained with either              

iNMA or cNMA. 

Our results show that, when working with models of medium quality (i.e. expected             

RMSD to the native structure lower than 5 Å), normal mode predictions do not diverge               

substantially with those of the native structure. The predicted motions do resemble (RWSIP             

above 0.5) and normal modes are able to locate the most flexible regions of the protein.                

Therefore, in most cases, we could use NMA to generate modified conformations of             

computational models. Nonetheless, calculations are only strictly reliable for very accurate           

models (RMSD to the native up to 2-3 Å). Above that cutoff, the biggest errors can be obtained                  

in the calculation of intrinsic flexibility, mostly for very flexible proteins.  

As expected, we observed that iNMA is more sensitive to structural characteristics            

related to flexibility, ranking as more flexible those proteins whose native structure corresponds             

to an oligomeric state, and also those presenting very long loops. Moreover, it is shown as a                 

better approach for creating modified conformations and for refining protein models while            

preserving the protein valence structure. Also, when applied for model refinement, it was able to               

get closer to the native structure than cNMA using only a single mode. These results are very                 

promising and we expect that modelling refinement will be further improved by combining at              

least 2 modes, as already observed in our previous study on protein conformational changes ​36​.  

Another important point is how to evaluate the expected accuracy of a model. There are               

several ways to assess it. For example, sequence identity template/target for homology            
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modelling, or confidence scores in ​de novo modeling, which depend on the significance of              

threading template alignments and the convergence parameters. Moreover, some approaches are           

being developed with the aim of predicting model accuracy based on quality assessment tools,              

such as QMEANDisCo ​76​. While those methods are promising, they are still under active              

development. Here, we observed no clear relationship between the models’ QMEAN scores and             

RWSIP values obtained from the comparison of NMA computed on models and native structures              

(see the section Methods for the details and Figure S5). This means that a good score for the                  

nativeness of a model does not ensure a native-like calculation of normal modes. Nonetheless,              

taking into account the expected RMSD of a model and the results presented here, it is possible                 

to get an idea of the reliability of NMA performed on that model, and therefore the usage that we                   

can make of any information coming from them. 

From another perspective, our study also contributes to a better understanding of protein             

dynamics. Earlier studies based on NMA computed on either proteins with similar fold or protein               

models (Tiwari and Reuter 2018) helped to better understand how protein intrinsic dynamics is              

guided by its global architecture, but it is also fine-tuned for a specific function. Our results also                 

support this picture: small modelling errors (up to 2-3 Å) do not strongly affect either protein                

flexibility or its dynamics, although some differences can be observed, which might be relevant              

in structures differing before the application of NMA by more than 3 Å.  

In summary, the outcome of our study suggests that iNMA is a more suitable tool than                

cNMA for improving structural models, and for integrating them with either experimental data             

(i.e. SAXs or Cryo-EM) or other computational techniques, such as protein docking.            

Nonetheless, doing so without prior knowledge of the native structure and/or its expected             
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conformational changes is still challenging. Some advances have been made in this field, such as               

the reduction in the number of modes that needs to be considered (Frezza and Lavery, 2019). To                 

further enhance iNMA as a predictive tool, we plan to conduct an analysis on a range of                 

biological and physicochemical properties, searching for potential indicators pointing to relevant           

modes and movements. 
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FIGURE LEGENDS 

 

Figure 1. ​Motions predicted by NMA are not strongly affected by modeling errors. ​(A)              

RWSIP values for the comparison of the first 10 lowest modes computed on either a model or its                  

respective native structure using iNMA. Results are presented as a function of the RMSD              

between this pair of structures. On the margin, the same values are shown as histograms. The                

horizontal grey line indicates RWSIP equal to 0.5 and the dashed broken red line indicates the                

empirical interval containing 90% of the data, for the intervals of RMSD native/model: 0-1,              

1-1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, 3.5-4, 4-4.5, 4.5-5. ​(B) Same as (A) but for modes calculated                

with cNMA.  

 

Figure 2​. ​iNMA allows native-like conformational sampling of protein models with           

structure preservation. Left column: superimposition of native structures (NS, red) and           

structural models (blue), with corresponding RMSD. Marked by two dashed rectangles (gold for             

iNMA and purple for cNMA) are the comparison of the conformations generated by NMA. From               

up to down, the models shown are: T0783TS169_2-D1, T0805TS277_1-D1, T0865TS407_2-D1,          

T0903TS467_1-D1, with their respective native structure. The black arrows show the direction            

of the motion. The thickness of the ribbon represents the extent of RMSD (Å) of Cα​i​-Cα​i+1 ​virtual                 

bonds between the new conformation and the starting structure. The scale is the same for all                

figures, from 0 to 3.6 Å.  
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Figure 3. Prediction of protein intrinsic flexibility is not affected by NMA approaches​. In              

the main image, we show the comparison of IFlex values predicted for the native structures (NS)                

using either iNMA (IFlex​I​NS​) or cNMA (IFlex​C​NS​), with the value of the Spearman correlation              

coefficient, ρ. The structures of the three most outliers are shown (1: T0865-D1, 2: T0820-D2, 3:                

T0805-D1). In the lookup, we show only targets with predicted IFlex​I​NS lower than 2. On the                

margins, the same IFlex​NS values are shown as histograms (purple for cNMA and yellow for               

iNMA). 

 

Figure 4. Protein intrinsic flexibility is well captured by structural models. ​The weighted             

difference between IFlex values calculated for a native structure and each model (ΔIFlex) is here               

compared to the RMSD between this pair of structures, and colored according to the IFlex value                

of the native structure (IFlex​NS​). The same ΔIFlex values are shown as histograms on the margin.                

Horizontal grey lines indicate ΔIFlex equal to -10 and 10; dashed broken black lines indicate the                

empirical interval containing 90% of the data, for the same intervals of RMSD native/model used               

in Figure 1. IFlex values are expressed in units of 10​13 s. ​(A) Predictions performed with iNMA.                 

(B) Predictions performed with cNMA. 

 

Figure 5​. ​Flexible regions can be predicted from models​. (A) Overview of the comparison              

scheme. (B) Comparison between experimental B-factors of native structures and NMA-derived           

RMSF computed on structural models (dashed blue line in panel A), using AUC values, as a                

function of the RMSD between this pair of structures. On the margin, the same values are shown                 

as histograms. Dashed lines indicate the empirical interval containing 90% of the data, for the               
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same intervals of RMSD native/model used in Figure 1. (C) Illustrative example of target              

T0786-D1 and model T0786TS436_1-D1 (RMSD=4.6 Å), with the superposition of B-factor          

profiles (black) and iNMA-derived RMSF profiles (red for native structure, blue for model). The              

structures of both native and model are colored according to either B-factors or squared RMSF.               

The region around index 230, where we observe low B-factors but high RMSF, is shadowed in                

grey in the plot, and shown by a dashed grey circle on the structure. This region is part of the                    

oligomerization interface (PDB structure 4QVU is a tetramer), justifying the discrepancy. 

 

Figure 6. iNMA allows model refinement preserving the protein valence structure​. (A)            

Minimum RMSD value to the native structure obtained by applying NMA on each structural              

model, compared to the original RMSD between this pair of structures. The color scale              

corresponds to the amount of bond stretching on the generated structures, calculated as the              

RMSD (Å) of C​α​i​-​C​α​i+1 ​virtual bonds between the new conformation and the initial model. Red               

dots represent values of ​RMSD (Å) of C​α​i​-​C​α​i+1 ​virtual bonds equal to or larger than 1 Å. In this                   

panel, results using iNMA. (B) Same as (A), but using cNMA. (C) ​Fractional RMSD              

(∆RMSD%= 100(RMSD-RMSD​NMA​)/RMSD) as a function of the original RMSD native/model.          

On the margins, the same values are shown as histograms. The same color scale of the previous                 

panels is used. The red line represents the mean value of ∆RMSD% for the same intervals of                 

RMSD native/model used in Figure 1. ​(D) Same as (C), but using cNMA. 
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FIGURES 

 

 

Figure 1.​ ​Motions predicted by NMA are not strongly affected by modeling errors.  
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Figure 2​. ​iNMA allows native-like conformational sampling of protein models with structure            

preservation. 
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Figure 3. Prediction of protein intrinsic flexibility is not affected by NMA approaches​.  
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Figure 4. Protein intrinsic flexibility is well captured by structural models. 
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Figure 5​. ​Flexible regions can be predicted from models​. 
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Figure 6. iNMA allows model refinement preserving the protein valence structure​. 
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SUPPORTING INFORMATION 
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Figure S1. Results of motion comparison are not impacted by considering either RMSIP or RWSIP, or by the                  

number of modes taken into account. ​(A) RMSIP values for the comparison of the first 10 modes calculated from                   

either a model or its respective native structure. Results are presented as a function of the RMSD between this pair                    

of structures. On the margin, the same values are shown as histograms. The horizontal grey line indicates RMSIP                  

equal to 0.5 and the dashed broken red line indicates the empirical interval containing 90% of the data, for the                    

intervals of RMSD native/model: 0-1, 1-1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, 3.5-4, 4-4.5, 4.5-5. (B) Same as (A) but for                   

modes calculated with cNMA. (C) Similar to (A) but RMSIP values for the comparison of the first 5 modes                   

calculated from either a model or its respective native structure.(D) Same as (C) but for modes calculated with                  

cNMA. (E) Similar to (A) but RWSIP values for the comparison of the first 5 modes calculated from either a model                     

or its respective native structure.(F) Same as (E) but for modes calculated with cNMA. 
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Figure S2. Gaps (i.e. missing regions) in structures have no impact on the mode reproduction​. (A) For                 

structures without gaps (71 of 99 targets, see Table S1), RWSIP values for the comparison of the first 10 modes                    

calculated from either a model or its respective native structure. Results are presented as a function of the RMSD                   

between this pair of structures. On the margin, the same values are shown as histograms. The horizontal grey line                   

indicates RWSIP equal to 0.5 and the dashed broken red line indicates the empirical interval containing 90% of the                   

data, for the same intervals of RMSD native/model as Figure S1. (B) Same as (A) but for modes calculated with                    

cNMA. (C) Similar to (A) but for structures with gaps (28 of 99 targets, see Table S1). (D) Sames as (C) but for                       

modes calculated with cNMA. 
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Figure S3. There is a good correlation between IFlex predicted from native structures and IFlex predicted                

from models. ​(A) Comparison between the IFlex values predicted for each model (IFlex​M​, y-axis) and its native                 

structure (IFlex​NS​, x-axis). The value of the Spearman ​ρ is shown. Values of native structure IFlex under the 90​th                   

percentile are shown by a dashed box. (B) Same as (A) but for modes calculated with cNMA. In (C) and (D), the                      

comparison was performed only for the pairs whose native structure presented IFlex value under the 90​th percentile                  

(dashed boxes in (A) and (B)). 
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Figure S4. Scheme of the methodology for creation of generated conformations by iNMA. ​For each original                

structure, 10 conformations were created along the two directions of the first 5 normal modes, till an RMSD of 0.5 Å                     

between the new conformation and the original one was reached (set shadowed in green). Then, the amplitude was                  

increased to generate similarly 10 conformations but with an RMSD of 1 Å to the original structure (set shadowed in                    

orange), and subsequently till an RMSD of 5 Å was obtained (not represented). The modes are indicated by the                   
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numbers 1-5, and the directions by a sign (+,-). The conformations with clashes, which were removed, are cancelled                  

by a cross. 

 

 

Figure S5. There is no clear relationship between RWSIP value model/native and the model's quality               

QMEAN score​. (A) The RWSIP values for the comparison of the first 10 modes calculated from either a model or                    

its respective native structure, presented in Figure 1, is here shown as a function of the QMEAN6 score of each                    

model. The horizontal grey line indicates RWSIP equal to 0.5 and the dashed broken red line indicates the empirical                   

interval containing 90% of the data, for bins of QMEAN6 score of 0.1. (B) Same as (A) but for modes calculated                     

with cNMA. Compared to Figure 1, where a clear trend of increasing RWSIP values was observed as the RMSD                   

model/native decreased, here this trend is absent, showing no relationship between QMEAN quality scores and               

normal modes similarity model/native.   
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Table S2. Analysis of the predicted flexibility for different subgroups of native structures, classified based on                

structural features (related to Table S1). ​Results for iNMA (IFlex​I​) and cNMA (IFlex​C​). ​Bold fonts indicate                

significant differences at the 5% threshold (p-value of the Mann-Whitney or Wilcoxon test). 

   

Feature Classification Number of  

structures in  

dataset 

Mean IFlex​I  

value 

(± standard  

deviation) 

Mean IFlex​C  

value 

(± standard  

deviation) 

Secondary 

structure 

Both 56 0.97 ± 0.48 1.39 ± 0.51 

Beta 27 0.93 ± 0.15 1.35 ± 0.22 

Alpha 16 1.15 ± 0.66 1.92 ± 1.71 

p-value     0.0846300 0.1314000 

AUC     0.611 0.582 

Oligomerization Monomer 56 0.89 ± 0.14 1.3 ± 0.21 

Oligomer 43 1.12 ± 0.65 1.67 ± 1.17 

p-value     0.0040640 0.0109300 

AUC     0.670 0.650 

Loops No 74 0.96 ± 0.43 1.47 ± 0.90 

Yes 25 1.06 ± 0.52 1.45 ± 0.41 
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p-value     0.0099590 0.0979100 

AUC     0.673 0.611 

Gaps No 71 0.98 ± 0.45 1.48 ± 0.88 

Yes 28 1.00 ± 0.47 1.43 ± 0.60 

p-value     0.5471000 0.8551000 

AUC     0.539 0.512 
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Table S3. Analysis of the predicted flexibility for different subgroups of models, classified based on the                

structural features or their native structures (related to Tables S1 and S2). ​Results for iNMA (IFlex​I​) and                 

cNMA (IFlex​C​). ​Bold fonts indicate significant differences at the 5% threshold (p-value of the Mann-Whitney or                

Wilcoxon test). 

  

Feature Classification Number of  

models in  

dataset 

Mean IFlex​I  

value 

(± standard  

deviation) 

Mean IFlex​C  

value 

(± standard  

deviation) 

Secondary 

structure 

Both 241 0.96 ± 0.34 1.44 ± 0.62 

Beta 108 0.95 ± 0.28 1.41 ± 0.35 

Alpha 70 1.16 ± 0.60 1.95 ± 1.73 

p-value     0.000984 0.001655 

AUC     0.600 0.594 

Oligomerization Monomer 234 0.91 ± 0.24 1.37 ± 0.35 

Oligomer 185 1.08 ± 0.51 1.71 ± 1.25 

p-value     5e-07 0.0015520 

AUC     0.643 0.590 

Loops No 316 2.21 ± 1.39 1.52 ± 0.98 
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Yes 103 0.96 ± 0.37 1.50 ± 0.48 

p-value     2.32e-05 0.0010890 

AUC     0.639 0.607 

Gaps No 305 0.99 ± 0.46 1.48 ± 0.85 

Yes 114 1.01 ± 0.51 1.44 ± 0.65 

p-value     0.8722000 0.6983000 

AUC     0.495 0.512 
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