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Abstract—This paper presents a pragma language to specify
a polyhedral program transformation directly in the code and
a verification algorithm able to check the correctness of the
specified transformation. Our language is general enough to
specify a loop tiling by an arbitrary polyhedral tile shape (e.g.,
hexagons, diamonds, trapezoids), and whose size may depend on
a scaling parameter (monoparametric tiling). Our verification
algorithm checks the legality of the proposed transformation,
and provides counterexamples of unsatisfied dependences when
it is incorrect. In addition, out tool infers the domain of scaling
parameters where the tiling is not legal. We developed a tool suite
implementing these concepts with a verification tool (MPPCHECK)
and a code generation tool (MPPCODEGEN), that are available
and may be downloaded together with a rich set of examples.
We evaluate the performance of the verification and the code
generation on kernels from the PolyBench suite.

Index Terms—Polyhedral model, tiling, scheduling, verification

I. INTRODUCTION

Loop tiling [19], [25] is an important program transfor-
mation which introduces granularity control in a loop nest.
It groups iterations of a loop into sets that to be executed
atomically (be that sequentially or in parallel) called tiles.
Among its many uses are expressing coarse-grain parallelism
across tiles, improving the locality or the operational intensity
of a program. Tiling can also be applied several times on
the same program, to create a hierarchy of tiles, where each
level usually corresponds to a level in the memory/network
hierarchy of the target architecture. For example, the matrix
multiplication implementation in BLIS [33] uses up to three
levels of tiling.

The tiling transformation has many variants, depending
on the nature of the tile sizes (constant, monoparamet-
ric [18] or parametric) and the tile shape. The most com-
monly used tile shape is the parallelogram (more precisely,
hyper-parallelepipeds), defined by their hyperplanes. Other tile
shapes include trapezoids [22] or hexagons [14], [15].

Due to the variation in the code structure, the tiling
transformation usually requires a separate implementation per
tile shape. The rectangular case is the easiest to implement
(using strip-mining and loop interchange), but some of them
are not so simple. To our knowledge, no compiler supports
simultaneously all of these tiles shapes, and the option of the
different tile sizes (fixed, or (mono) parametric). This prevents
the comparison of the efficiency of tiling using different tile
shapes, by restricting the available optimization space.

The basic conditions on the legality of tiling are well
understood. The fact that tiles are atomic implies that there
cannot be any circular dependences between tiles. When a
user proposes a tiling or other program transformation, an
automatic legality checker is crucial, because it is possible
that the proposed transformation is not legal and either violates
data dependences or introduces cycles among tiles.

In this paper, we present a way to specify a program
transformation directly in the code, through pragmas attached
to program statements. In particular, we may specify any fixed-
size and monoparametric tiling using any polyhedral shape
(e.g., hexagons, diamonds, trapezoids). We also allow prag-
mas to specify affine schedules and parallel dimensions. We
provide a verification algorithm that checks the validity of the
specified transformation. It also generates counterexamples to
help the debugging process when the proposed transformation
is incorrect, and the domain of invalid tile scaling parameter
values, when monoparametric tiling is specified. Our specific
contributions are as follows.
• We propose a pragma language able to specify any affine

schedule in a program. In particular, our language is
expressive enough to describe loop tilings using any
polyhedral tile shape. The tile size can either be constant,
or can depend on a scaling parameter [18].

• A verification algorithm to check the correctness of the
specified schedule. In case of failure, our algorithm lists
several instances of unsatisfied dependence instances to
help the debugging. Also, the set of incorrect values for
the scaling parameter is inferred, from which a validity
domain may be deduced by polyhedral subtraction.

• A complete tool suite for schedule verification (MP-
PCHECK1) and code generation (MPPCODEGEN2) from
our specification pragma language.

The remainder of this paper is structured as follows. Section
II introduces the polyhedral model. Section III describes how
polyhedral loop transformations are specified in our language.
Section IV presents our verification algorithm. Section V
gives the experimental results obtained on the kernels from
Polybench/C. Section VI discusses the related work. Finally,
Section VII concludes this paper and draws future research
directions.

1http://foobar.ens-lyon.fr/mppcheck
2http://foobar.ens-lyon.fr/mppcodegen
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II. PRELIMINARIES

This section outlines the concepts of polyhedral compilation
used in this paper. In particular, we recall monoparametric
tiling with general tile shapes, the main transformation ad-
dressed in this paper.

A. Polyhedral model

The polyhedral model [8]–[11], [29], [31] is a general
framework to design loop transformations, historically geared
towards source-level automatic parallelization [11] and data
locality improvement [5]. It abstracts loop iterations as a
union of convex polyhedra – hence the name – and data
accesses as affine functions. This way, precise – iteration-level
– compiler algorithms may be designed (dependence analysis
[8], scheduling [10] or loop tiling [5] to quote a few) . The
polyhedral model manipulates program fragments consisting
of nested for loops and conditionals manipulating arrays and
scalar variables, such that loop bounds, conditions, and array
access functions are affine expressions of surrounding loops
counters and structure parameters (input sizes, e.g., N )). Thus,
the control is static and may be analysed at compile-time. With
polyhedral programs, each iteration of a loop nest is uniquely
represented by the vector of enclosing loop counters ~i. The
execution of a program statement S at iteration ~i is denoted
by 〈S,~i〉. The set DS of iteration vectors is called the iteration
domain of S. Figure 2.(a) provides the iteration domains
DS = {i | 0 ≤ i < N} and DT = {(i, j) | 0 ≤ i, j < N} for
the matrix-vector kernel presented later.

B. Dependences

Given an operation (ie., an instance of some statement in
the program) ω, we write read(ω) (resp. write(ω)) the set of
addresses read (resp. written) by ω. There exists a dependence
from an operation s to an operation t iff s ≺seq t, both
operations access the same address and one access is a write.
When write(s) ∩ read(t) 6= ∅ (resp. read(s) ∩ write(t) 6= ∅,
write(s) ∩ write(t) 6= ∅), we have a flow dependence and
we write: s −→FLOW t (resp. anti: s −→ANTI t, output:
s −→OUTPUT t). Dependences are usually represented by
a reduced dependence graph G = (S,∆), whose nodes

are the program statements; and edges S
∆ST−−−→

`

T are
labelled by ∆ST = {(~i,~j) | 〈S,~i〉 →` 〈T,~j〉}, where
` ∈ {FLOW, ANTI, OUTPUT}. For convenience, the union of flow,
anti and output dependences is denoted by→. The dependence
relation of a program is transitively closed: if 〈→〉 denotes the
transitive closure of →, then 〈→〉 =→.

C. Scheduling & Tiling

A schedule θS assigns each operation 〈S,~i〉 with a times-
tamp θS(~i) ∈ (Zd,�). Intuitively, θS(~i) is the iteration of
〈S,~i〉 in the transformed program. A schedule is correct if
〈S,~i〉 → 〈T,~j〉 ⇒ θS(~i) � θT (~j), the lexicographic order
ensuring that the dependence is preserved. We also have sched-
ules where some dimensions are marked explicitly parallel.
We extend � to be strict equality in these dimensions. This

ensures that two iterations with identical outer timestamps are
executed by the same (virtual) processor.

Tiling is a reindexing transformation which groups iteration
into tiles to be executed atomically. There are many variants
of this transformation. In this paper, we consider affine tiling
with constant tile size and monoparametric tiling.

Rectangular tiling reindexes any iteration ~i ∈ DS to an
iteration (~iblock,~ilocal) such that ~i = TS(~iblock,~ilocal), with
TS(~iblock,~ilocal) = (diag~s) ~iblock + ~ilocal, 0 ≤ ~ilocal < ~s
where ~s is a vector collecting the tile size across each
dimension of the iteration domain. ~iblock is called the outer
tile iterator and ~ilocal is called the inner tile iterator. The
companion schedule associated to the tiling θS(~iblock,~ilocal)
orders~iblock first to to ensure the execution tile by tile. Figure
2.(b) gives an example of rectangular tiling with ~s = (2, 2).
To enforce the atomicity (avoid cross dependences between
two tiles), it is sometimes desirable to precede the tiling by
an injective affine mapping φS . The coordinates of φS(~i), for
~i ∈ DS are usually called tiling hyperplanes. In that case, the
transformation T −1

S ◦ φS for some statements S is called an
affine tiling. Note that rectangular tiling is a particular case of
affine tiling where φS is the identity mapping.

When ~s depends on a scaling parameter b ≥ 1,
TS(~iblock,~ilocal) = b.(diag~r).~iblock +~ilocal, where ~r is a con-
stant vector called the ratio, the tiling is said monoparametric
parallelepipedic. Finally, when the tile shape is an arbitrary
convex polyhedron b.P , whose size depends on a scaling
parameter b ≥ 1, the tiling is said monoparametric general.
In that case, TS(~iblock,~ilocal) = b.L~iblock + ~ilocal, where
~ilocal ∈ b.P and the matrix b.L defines a linear lattice spanning
the tile origins. In both cases, monoparametric tiling is a
polyhedral transformation [18]: the transformed domain and
index functions can still be expressed in Presburger arithmetic.

III. SPECIFYING A POLYHEDRAL TRANSFORMATION

This section outlines our pragma language to specify a poly-
hedral transformation directly in the code. First, we explain
how to specify a simple affine schedule. Then, we show how to
express loop tiling. Through examples, we describe the output
of our verification tool, MPPCHECK.

A. Affine scheduling

The program is enclosed with pragmas begin_scop and
end_scop. Then, we specify an affine schedule per statement
with the pragmas schedule, using an array-style syntax. On
the matrix-vector example, the parallel schedule θS(i) = 0 and
θT (i, j) = j + 1 would be specified as:

#pragma b e g i n s c o p
f o r ( i =0 ; i<N; i ++)
{

#pragma s c h e d u l e [ 0 ]
y [ i ] = 0 ; / / S
f o r ( j =0 ; j<N; j ++)

#pragma s c h e d u l e [ j +1]
y [ i ] = y [ i ] + a [ i ] [ j ]* x [ j ] ; / / T

}
#pragma end scop



On that example, MPPCHECK would simply say PASSED,
meaning that the schedule is correct. However, if we specify
θT (i, j) = j, the schedule is no longer correct, as the parallel
initializations 〈S, i〉 would overlap with the first parallel iter-
ations 〈T, i, 0〉, for 0 ≤ i < N .
In that case, MPPCHECK emits an error message with an
example of unsatisfied dependence:
ERROR: dependence not satisfied:
#0 --[FLOW]--> #1, read #1, depth 1
y[i]=(0) ---> y[i]=y[i]+(a[i][j]*x[j])
When
/
| -1+N >= 0
\

#0 i=0 --[FLOW]--> #1 i=0 j=0

B. Affine tiling

Tiling hyperplanes are specified with the pragma
tile_hyperplanes in the same way as schedules.
They are completed by the tile size across each hyperplane
in their specification order (pragma tile_size). Finally
the schedule is enhanced with outer tile iterators, denoted by
__T, again for each hyperplane in their specification order:
#pragma b e g i n s c o p

f o r ( i =0 ; i<N; i ++)
{

#pragma t i l e h y p e r p l a n e s [ i ] [ 0 ]
#pragma t i l e s i z e [ 8 ] [ 4 ]
#pragma s c h e d u l e [ T ] [ T ] [ 0 ] [ i ]

y [ i ] = 0 ; / / S

f o r ( j =0 ; j<N; j ++)
#pragma t i l e h y p e r p l a n e s [ i ] [ j ]
#pragma t i l e s i z e [ 8 ] [ 4 ]
#pragma s c h e d u l e [ T ] [ T ] [ 1 ] [ i ] [ j ]

y [ i ] = y [ i ] + a [ i ] [ j ]* x [ j ] ; / / T
}

#pragma end scop

Any complex loop tiling structure (e.g. mixing tiled/non-
tiled loops) may be expressed by preceding/interleaving __T
dimensions with non __T dimensions.

Again, if the schedule is incorrect, for instance if we specify
the tiling hyperplanes (i,−j) for the statement T , MPPCHECK
emits an error message and lists each unsatisfied dependence
together with a bad instance:
ERROR: dependence not satisfied:
#1 --[FLOW]--> #1, read #1, depth 1
y[i]=y[i]+(a[i][j]*x[j]) ---> y[i]=y[i]+(a[i][j]*x[j])
When
/
| -2+N >= 0
| -1+N >= 0
\

#1 i=0 j=0 tile_counter_0=0 tile_counter_1=0
--[FLOW]-->
#1 i=0 j=1 tile_counter_0=0 tile_counter_1=-1
[...]

Here, we clearly see that the dependence goes
backward across the second tiling hyperplane (−j), as
tile_counter_1 decreases (from 0 to −1). Hence we
may conclude that the hyperplane −j is faulty.

C. Monoparametric parallelepipedic tiling

The monoparametric parallelepipedic tiling (affine tiling
with tile sizes depending on a scaling parameter) is specified
in the same way as affine tiling with constant tile size. The
only difference is that the pragma tile_size is replaced by
a pragma tile_ratio specifying the tile ratio across each
tiling hyperplane:

#pragma b e g i n s c o p
f o r ( i =0 ; i<N; i ++)
{

#pragma t i l e h y p e r p l a n e s [ i ] [ 0 ]
#pragma t i l e r a t i o [ 2 ] [ 1 ]
#pragma s c h e d u l e [ T ] [ T ] [ 0 ] [ i ]

y [ i ] = 0 ;

f o r ( j =0 ; j<N; j ++)
#pragma t i l e h y p e r p l a n e s [ i ] [ j ]
#pragma t i l e r a t i o [ 2 ] [ 1 ]
#pragma s c h e d u l e [ T ] [ T ] [ 1 ] [ i ] [ j ]

y [ i ] = y [ i ] + a [ i ] [ j ]* x [ j ] ;
}

#pragma end scop

When the schedule is incorrect, MPPCHECK is able to infer
– in addition to unsatisfied dependence instances – the domain
of incorrect values for the tile size scaling parameter (denoted
by block_size).
Again, with the −j hyperplane, we get:

Tiling is incorrect when:
/
| -1+block_size >= 0
\

We can deduce a domain of correct scaling parameter from
this. Here, the tiling is definitely wrong: no block_size
value can lead to a correct tiling.

D. Monoparametric general tiling

An important feature is the ability to specify monoparamet-
ric tilings with general convex tile shape. Here is an example of
hexagonal tiling on the jacobi-1D (perfect) kernel, as depicted
on Figure 1:

#pragma b e g i n s c o p
f o r ( t = 1 ; t <= TSTEPS ; t ++)

f o r ( i = 1 ; i < N − 1 ; i ++)
#pragma t i l e l a t t i c e [ 1 ] [ 0 ] [ − 3 ] [ 6 ]
#pragma t i l e s h a p e c l o s e d [ i−t ] [ t + 1 ] [ t + i ]
#pragma t i l e s h a p e o p e n [− i + t +4][1− t ][4− t−i ]
#pragma s c h e d u l e [ T ] [ T ] [ t ] [ i ]

A[ t ] [ i ] = 0 . 3 * (A[ t −1][ i −1]
+ A[ t −1][ i ]
+ A[ t −1][ i + 1 ] ) ;

#pragma end scop

The tiling features are specified per statement, in the same
way as for parallelepipedic tiling. For each statement, the
following elements must be specified:
• The lattice L of tile origins (pragma tile_lattice)

given line by line, here L =

(
1 0
−3 6

)
. An

additional line may specify the divisors per column
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Fig. 1. Hexagonal tiling for the Jacobi 1D kernel. In blue are the hexagonal
tiles, dotted for the parts outside of the iteration space. The red arrows are
the two vectors of the lattice of tile origins. The black arrow in the center of
the figure are the dependences of the Jacobi1D kernel. In this example, we
took b = 1.

of L. For instance, appending [2][1] would specify

L =

(
1/2 0
−3/2 6

)
.

• The tile shape P , as a conjunction of closed constraints
(affine form ≥ 0, tile_shape_closed), here i− t ≥
0, t + 1 ≥ 0, t + i ≥ 0; and open constraints (affine
form > 0, tile_shape_open), here −i + t + 4 > 0,
1− t > 0, 4− t− i > 0.

• The schedule, in the same way as for affine tiling. Recall
that the tile counters ~iblock (outer) and ~ilocal (inner) for
an original iteration~i are such that:~i = b.L~iblock+~ilocal,
with~ilocal ∈ b.P and b the scaling parameter (denoted as
block_size above). Here the __T denotes the outer
tile counters~iblock, as constrained by the lattice of origins.
t and i are – as there name suggest – part of the original
iteration vector.

With that lattice, the tile origins verify:(
t0
i0

)
= b.

(
1
−3

)
iblock0 + b.

(
0
6

)
iblock1

Hence, the second outer tile counter (iblock1 , variable
tile_counter_1) will iterates through a layer of hexagons
along the i axis, while the first outer counter (iblock0 , variable
tile_counter_0) iterates through the layers along the
t axis. This makes possible to implement concurrent start
parallelism, provided a correct data privatization.

E. ... and composition thereof

All these constructions may coexist in a specification. For
instance, we can have together statements with parallelepi-
pedic tiling (and possibly different tile size/ratio), statements
with general tiling shapes, and non-tiled statements.

IV. VERIFYING A POLYHEDRAL TRANSFORMATION

This section describes our verification algorithm. We first
show how non-tiled affine scheduling and constant-size tiling
may be directly checked. Then we present a method to check
a monoparametric tiling.

A. Non-tiled programs

When the program is not tiled, it suffices to check the
satisfiability of:

C := ∀〈S,~i〉, 〈T,~j〉 : 〈S,~i〉 → 〈T,~j〉 ⇒ θS(~i)� θT (~j) (1)

We can get rid of the universal quantifier (∀) by checking the
the negation:

¬C := ∃〈S,~i〉, 〈T,~j〉 : 〈S,~i〉 → 〈T,~j〉 ∧ ¬
(
θS(~i)� θT (~j)

)
Which is an existentially quantified composition of conjunc-
tions and disjunctions (due to the lexicographic order �)
of affine constraints whose satisfiability may be checked
with state-of-the-art linear programming tools [7], [13]. When
UNSAT ¬C, the schedule is correct. When SAT ¬C, however,
the schedule is not correct and we may pick a counterexample
in ¬C.

B. Affine tiling

When the program is tiled, iteration domains are reindexed
(~i 7→ (~iblock,~ilocal)) and schedules are given on the reindexed
domain ((~iblock,~ilocal), sometimes (~iblock,~i)). Equation (1)
becomes:

C :=

∀〈S,~i〉, 〈T,~j〉 :

〈S,~i〉 → 〈T,~j〉 ∧
TS(~iblock,~ilocal) =~i ∧ TT (~jblock,~jlocal) = ~j

∧ 0 ≤~ilocal,~jlocal < ~s

⇒ θS(~iblock,~ilocal)� θT (~jblock,~jlocal)

(2)

When the tile size ~s is constant, T is affine per statement,
hence we may check ¬C in the same way as for non-tiled
statements. Note that neither tiled iteration domains nor tiled
dependence relations are involved in this formulation: the only
connection with the tiling world is the tiling function T .

C. Monoparametric tiling

As soon as a tile size depends on a parameter, TS is no
longer affine. On the monoparametric parallelepipedic case
we get stuck with the quadratic expression b.(diag~r).~iblock
in TS(~iblock,~ilocal) = b.(diag~r).~iblock + ~ilocal (recall that
~r is a constant vector and b ≥ 1 is a parameter). On the
monoparametric general case we get stuck with the quadratic
expression b.L~iblock in TS(~iblock,~ilocal) = b.L~iblock +~ilocal
(recall that L is a constant non-singular matrix).

Hence, we need to express the dependence relation directly
on the indexed domain. First, we show how to turn a reduced
dependence graph to an equivalent reduced dependence graph
where the dependence relations ∆XY are guarded affine
functions. We prove (Theorem 4.1) that the obtained reduced
dependence graph is equivalent to the original. Then, we show
how to tile these guarded functions.
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Fig. 2. Tiling the reduced dependence graph. The reduced dependence graph
(c) is normalized with guarded dependences functions (d). In turn, guards and
functions are tiled (e).

Step 1. Turn dependence relations to guarded functions:
For each type of dependence, we build guarded affine functions
in the following way. Flow-dependences are specified by a
function sourcek, mapping an operation 〈T,~j〉 to the last
operation executed before 〈T,~j〉, which writes its k-th read
address: sourcek(〈T,~j〉) −→FLOW 〈T,~j〉 for any ~j ∈ DT . The
source function is always computable, the result is a piece-
wise affine mapping [8] whose pieces are called branches.
Figure 2.(c) depicts the dependence graph for the matrix-
vector product. (d) is the same graph with the source function
source1(〈T, i, j〉) for the first read, y[i], defined by branch
〈S, i〉 when j = 0, and branch 〈T, i, j − 1〉 when j ≥ 1.

Similarly, output-dependences are specified by a func-
tion NextWrite, mapping an operation to the next oper-
ation writing the same address, in the original execution
order: 〈S,~i〉 −→OUTPUT NextWrite(〈S,~i〉) for any i ∈
DS . Finally, anti-dependences are specified by a function
NextWriteForReadk mapping an operation to the next write
to the address accessed by its kth read: 〈S,~i〉 −→ANTI

NextWriteForReadk(〈S,~i〉) for any i ∈ DS and any read
number k. The functions NextWrite and NextWriteForRead
may be computed with the same algorithm as that to compute
the source function, with a few modifications to seek a
next write instead of a previous read. Again, the result is
a piecewise affine mapping with possibly multiple branches.
Figure 2.(d) show the new reduced dependence graph with
these functions, similar to the source function on that example.
We end-up with 5 branches: three branches from T to T with
type labels FLOW, ANTI and OUTPUT ; and two branches from S to T

with type labels FLOW and OUTPUT. All theses dependences form
a subset of the dependence relation. Still, they are sufficient to
describe all the dependences by transitivity, as shown by the
following theorem.

Theorem 4.1: Consider a program and its dependence rela-
tion δ. Let δ′ be the smallest dependence relation such as:
• source〈S,~i〉 −→FLOW 〈S,~i〉 ∈ δ′, for any 〈S,~i〉 ∈

dom source
• 〈S,~i〉 −→OUTPUT NextWrite〈S,~i〉 ∈ δ′ for any ~i ∈ DS .
• 〈S,~i〉 −→ANTI NextWriteForReadk〈S,~i〉 ∈ δ′ for any
~i ∈ DS and any read k.

Then, the transitive closure of δ′ is δ, 〈δ′〉 = δ

Proof.
• Since δ′ ⊆ δ, we have 〈δ′〉 ⊆ 〈δ〉. Also, 〈δ〉 = δ, since the

dependence relation of a program is transitively closed.
Hence 〈δ′〉 ⊆ δ.

• We now prove that δ ⊆ 〈δ′〉
– Let W −→OUTPUT W ′ ∈ δ. Since W ≺seq W ′, W ′ =

NextWritep(W ) for some p. Hence W −→OUTPUT

W ′ ∈ 〈δ′〉.
– Let W −→FLOW R ∈ δ.

If W = sourcek R for some read k, W −→FLOW R ∈
δ′ ⊆ 〈δ′〉.
If W 6= sourcek R for any read k, let W0 be the
source for a read of R whose address is written
by W . W ≺seq W0, otherwise W0 would not be a
source for write(W ). Then: W −→OUTPUT W0 ∈ δ.
Hence the chain:
W

〈δ′〉−−→
OUTPUT

W0
δ′−→

FLOW

R.
Thus W −→FLOW R ∈ 〈δ′〉.

– Let R −→ANTI W ∈ δ.
Let W0 be the next write for the read of R whose
address is written by W .
If W = W0, then R −→ANTI W ∈ δ′ ⊆ 〈δ′〉.
If W 6= W0, then W0 ≺seq W , otherwise W0 would
not be the next write. Hence W0 −→OUTPUT W ∈ δ.
Hence the chain:
R

δ′−→
ANTI

W0
〈δ′〉−−→

OUTPUT

W .
Thus: R −→ANTI W ∈ 〈δ′〉 �

Step 2. Tile the obtained reduced dependence graph: We
transform each dependence branch to operate directly on the
reindexed tiled domain. Consider a flow dependence branch
〈S, u(~j)〉 −→FLOW 〈T,~j〉, when ~j ∈ D. If TS(~iblock,~ilocal) =~i
and TT (~jblock,~jlocal) = ~j, then the version of u operat-
ing in the tiled domain is û = T −1

S ◦ u ◦ TT and the
tiled guard is D̂ = T −1

T (D). Hence the tiled dependence
branch 〈S, û(~jblock,~jlocal)〉 −→FLOW 〈T,~jblock,~jlocal〉, when
(~jblock,~jlocal) ∈ D̂. We tile ANTI and OUTPUT dependence in the
same fashion.

We already proposed an algorithm, in the preprint [18], to
tile a polyhedron D 7→ D̂ and an affine function u 7→ û.
We also proved the polyhedral closure of parallelepipedic
and general monoparametric tiling: D̂ is always a union



of polyhedra and û is always a piecewise affine mapping,
both expressed in the Presburger arithmetic (affine without
parametric coefficients). That way, any dependence graph is
monoparametrically tilable.

Back to the matrix-vector example, D̂S is the set of itera-
tions (iblock, jblock, ilocal, jlocal) satisfying:

[jblock = jlocal = 0 ∧ iblock = Nblock ∧ 0 ≤ ilocal < Nlocal]
∨

[jblock = jlocal = 0 ∧ 0 ≤ iblock < Nblock ∧ 0 ≤ ilocal < b]

where N = b.Nblock + Nlocal, 0 ≤ Nlocal < b. The first
conjunction set represents the full tiles (e.g. iterations (0,1)
and (2,3) on Figure 2.(b)) while the second conjunction set
represents the border tiles (e.g. iteration 4). D̂T consists of
3 conjunction sets describing the corner cases (e.g. i = 4,
j = 4, and both) and 1 conjunction set describing the full
tiles. Finally, û is a piecewise affine mapping two branches
depending if the source belong to the same tile (e.g. blue
arrow) or not (e.g. yellow arrow).

Once the reduced dependence graph is tiled, we check the
correctness of the schedule by solving UNSAT ¬C. When the
schedule is wrong, we project ¬C on b to get the domain of
bad values for the scaling parameter, then we deduce the good
ones by a simple subtraction from {b | b ≥ 1}.

V. EXPERIMENTAL EVALUATION

This section presents the experimental results obtained on
the benchmarks of the polyhedral community.

A. Experimental Setup

We have implemented a tool, MPPCHECK3, with our veri-
fication algorithm. Also, we have implemented a tiling code
generator in a separate tool, MPPCODEGEN4. MPPCODEGEN
computes the tiling from the specification and uses iscc’s
code generator [35] to produce the final tiled code. We have
applied our verification algorithm and our code generator on
the kernels of PolyBench/C v3.2 [28], a benchmark suite with
compute-intensive linear algebra kernels from the polyhedral
compilation community. The experiments were run on a lap-
top with an Intel core i5 540M processor with 3GB DDR,
except for the kernels heat-3d and h3d-perf Hex ker-
nel (requiring more memory), where an AMD Opteron(TM)
Processor 6272 32GB RAM was used.

Table 3 depicts the results. By default, a monoparametric
parallelepipedic tiling was applied, except for the kernels
suffixed with Hex (resp. Diam) where an hexagonal (resp.
diamond) monoparametric general tiling was applied:
• j1d-perf Diam is a perfect loop nest variant of the
jacobi-1D kernel with a diamond tiling:

L =

(
1 0
1 2

)
P = {(t, i) | t+ i ≥ 0, t− i ≥ 0, 2− t− i > 0, 2+ i− t >
0}.

• j1d-perf Hex is the same jacobi-1D variant with an
hexagonal tiling:

3MPPCHECK is available at http://foobar.ens-lyon.fr/mppcheck
4MPPCODEGEN is available at http://foobar.ens-lyon.fr/mppcodegen

L =

(
1 0
−3 6

)
P = {(t, i) | i− t ≥ 0, t+ 1 ≥ 0, t+ i ≥ 0,−i+ t+ 4 >
0, 1− t > 0, 4− t− i > 0}.

• j2d-perf Hex is a perfect loop nest variant of the
jacobi-2D kernel with an hybrid hexagonal/paral-
lelepipedic tiling (tube with an hexagonal section along
(t, i), directed towards j and sliced with an hyperplane
t+ j):

L =

 1 0 0
−3 6 0
0 0 1


P = {(t, i, j) | i − t ≥ 0, t + 1 ≥ 0, t + i ≥ 0, t + j ≥
0,−i+ t+ 4 > 0, 1− t > 0, 4− t− i > 0, 1− t− j > 0}.

• h3d-perf Hex is a perfect loop nest variant of the
heat-3D kernel with an hybrid hexagonal/parallelepi-
pedic tiling (4D tube with an hexagonal section along
(t, i), directed towards j, k and sliced with hyperplanes
t+ j and t+ k):

L =


1 0 0 0
−3 6 0 0
0 0 1 0
0 0 0 1


P = {(t, i, j, k) | i− t ≥ 0, t+ 1 ≥ 0, t+ i ≥ 0, t+ j ≥
0, t + k ≥ 0,−i + t + 4 > 0, 1 − t > 0, 4 − t − i >
0, 1− t− j > 0, 1− t− k > 0}.

For each kernel, we provide the number of iteration domains
in the original program (column Domains (based)), the cumu-
lated number of polyhedra after tiling each iteration domain,∑
S card D̂S (column Domains (tiled)), and the time spent to

tile all the iteration domains (column Build time). Then, we
provide the number of branches and the build time for the
reduced dependence graph of the original program (columns
DG base) and after tiling (columns DG (tiled)). Note that the
number of branches for a tiled dependence is the number of
pieces of the tiled dependence function û. Moreover, we give
the time spent by our verification algorithm itself (checking
SAT C), and the total time. Finally, we get the total time spent
by MPPCODEGEN to generate the code, this includes iteration
domain tiling (column CodeGen). By default, the timings are
given in seconds.

B. Results

In most cases, our verification algorithm succeeds to passed
the kernels in a reasonable amount of time. Not surprisingly,
hexagonal tiling boils down to complex iteration domains and
dependence functions with many corner cases. This impacts
directly the checking time, as the computation of C involves,
for each tiled dependence S → T , the enumeration of all the
tuples (source polyhedron ∈ D̂S , dependence branch of û,
target polyhedron ∈ D̂T ). In particular, this explains the time
spent on the h3d-perf Hex kernel.

The same remarks apply to our code generator, MPPCODE-
GEN. We were able to generate the code for all the considered
kernels, the time spent is less than for verification, as code
generation does not require the tiling of dependence functions.



Kernel Domain tiling DG (base) DG (tiled) Verif CodeGen
Build Domains Domains Build Branches Build Branches Checking Total Total
time (base) (tiled) time time time time time

gemm 0.09 2 12 0.04 6 0.04 12 0.11 0.28 1.64
gemver 0.04 4 14 0.05 12 0.04 19 0.05 0.18 0.48
gesummv 0.04 5 14 0.04 14 0.04 22 0.05 0.17 0.38
symm 0.12 4 24 0.09 13 0.16 22 0.25 0.62 1.40
syr2k 0.06 2 12 0.04 6 0.04 9 0.08 0.22 0.79
syrk 0.06 2 12 0.04 6 0.04 9 0.08 0.22 0.74
trmm 0.06 2 12 0.05 8 0.05 13 0.14 0.30 0.76
2mm 0.23 4 36 0.09 13 0.10 27 0.46 0.88 1’3
3mm 0.68 6 78 0.14 19 0.17 58 2.71 3.70 1’24
atax 0.05 4 18 0.03 11 0.05 20 0.11 0.24 1.36
bicg 0.03 4 12 0.03 10 0.04 16 0.06 0.16 1.49
doitgen 0.43 3 32 0.10 7 0.04 11 0.18 0.74 4.29
mvt 0.02 2 8 0.02 6 0.03 12 0.03 0.09 0.24
cholesky 0.10 4 18 0.19 23 0.95 31 0.57 1.81 0.61
gramschmidt 0.18 7 32 0.15 24 0.22 39 0.27 0.82 2.08
lu 0.07 3 20 0.20 18 0.81 28 0.56 1.64 0.78
trisolv 0.02 3 8 0.03 14 0.11 18 0.10 0.26 0.27
correlation 0.34 15 48 0.32 45 0.33 57 0.34 1.33 3.66
covariance 0.18 8 32 0.23 35 0.38 43 0.35 1.15 1.47
floyd-warshall 0.04 1 8 0.07 23 0.23 38 0.54 0.87 1.60
fdtd-2d 1.51 4 160 0.18 27 2.27 132 9.63 13.59 11.18
heat-3d 9’23 2 940 0.81 42 4.57 199 3’1 12’29 22’22
h3d-perf Hex 45’2 1 1154 0.56 10 39.7 16038 4h44’6 5h29’49 59’44
jacobi-1d 0.15 2 42 0.04 14 0.14 38 0.82 1.15 1.69
j1d-perf Diam 0.83 1 37 0.02 3 0.10 48 1.72 2.67 25.39
j1d-perf Hex 1.28 1 54 0.02 3 0.21 60 2.41 3.92 44.34
jacobi-2d 3.75 2 134 0.14 22 0.50 112 8.94 13.33 16.59
j2d-perf Hex 41.70 1 273 0.07 5 1.24 918 2’2 2’45 4’10
seidel-2d 1.31 1 74 0.14 19 1.47 84 13.67 16.59 4.56

Fig. 3. Compilation time (in seconds) of the tiling transformation, the dependence graph construction (both on the non-tiled program, and the tiled program)
and tiling verification analysis. We also provide the number of branches of both dependence graphs. By default, a monoparametric parallelepipedic tiling is
used. ”Hex” means that a 45◦ hexagonal tiling was used and ”Diam” means that a diamond tiling was used. ”XXX-perf” indicates that we consider the
variant of the kernel with a perfect loop nest.

VI. RELATED WORK

Loop transformation languages: Classic loop transfor-
mations are already specified as directives for OpenMP [24],
Clang/LLVM [23], or OpenACC [6] in the context of kernel
offloading. Script languages [12] and DSLs [30] were also
proposed. Some of them ease the composition of transfor-
mations [12], [30], but none of them express general affine
transformations, nor general loop tiling, required to exploit
the full potential of polyhedral transformations.

Verification of program transformations: Several works
focus on verifying that a transformed program is still equiva-
lent to the original one. A first option is to formally prove
that the compiler transformation used are correct by con-
struction [26], [27]. Another option consists of proving the
equivalence between the original program and the transformed
program [3], [20], [32], [36]. Other approaches focus on a
specific property, such as the preservation of the dependences
of the program. Our contribution falls into this category.
Polycheck [2] dynamically checks the memory accesses and

ensure that they are performed in the same order than the
original code. In contrast, we statically prove the correctness of
the program transformation itself. In the context of automatic
correction of loop transformations, [34] checks the correctness
of an affine schedule using the affine form of farkas lemma.
Though this method performs better than a general SAT
checking, they cannot handled parametric tiling. Also, the
method used to remove redondant dependences is somehow
different to ours, as we want dependence functions, not general
relations.

Tiled code generation: When the tile sizes are constants
or depends on a single scaling parameter (monoparametric)
then the tiled program can be expressed inside the polyhedral
model, and a polyhedral code generator [4] can be used
to generate it. When the tile sizes are unknown during the
compilation, then the transformed program is not polyhedral
and a common solution to generate tiled code is to merge
the (parametric) tiling transformation with the code generation
pass [17], [21]. Another solution is to extend the polyhedral
model to express the tiled program [1], [16].



VII. CONCLUSION

In this paper, we have proposed a pragma language to
specify a polyhedral code transformation directly in the code, a
verification algorithm to check the correctness of the specified
transformation and a tool suite for checking and applying the
program transformation. With our formalism, different kinds
of loop tilings may be expressed and may coexist, including
general loop tiling with an arbitrary polyhedral tile shape,
which, for instance, enable the expression of monoparametric
hexagonal tiling. The tile size may be parametrized by means
of a scaling parameter, whose correct values may be inferred
by our verification algorithm.

In the future, we plan to improve the performance of the
verification algorithm. For instance, memoization may help
to cut the research space. Runtime verification, coupled with
static analysis, may also further improve the performance.
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mations de programme : modèle et outils. PhD thesis, Université de
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