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Abstract

A theoretical framework is proposed for simultaneous reconstruction of the three-dimensional grain
shapes, intragranular strain and orientation fields inside polycrystals from near-field X-ray diffrac-
tion images, using box beam illumination. The approach, named Iterative Tensor Field (ITF)
reconstruction, uses a tensor field representation and a kinematical forward simulation model to
reproduce the measured diffraction signal from individual grains. The framework establishes a link
between the local deformation components inside the grains and the intensities of the diffraction
signal in the measured images by forming a local linear problem. This is solved using a large scale
linear optimisation method in every main iteration of the underlying non-linear problem. The
optimisation enforces smooth gradients and the objective function may include regularisation con-
straints of static equilibrium or input from a Crystal Plasticity FEM simulation. The method has
modest computational requirements and enables efficient scanning of millimetre or sub-millimetre
sized specimens. Results on experimental data measured on a Gum metal specimen are presented,
which demonstrate convergence and the feasibility of the approach. The mathematical formulation,
data representation and challenges in the reconstruction and validation are discussed. The physical
aspects of the contrast phenomenon, the deformation sensitivity of the technique, and potential
means of error assessment are described. A number of alternative concepts for a polycrystalline

deformation model and potential solvers are also presented.

1. Introduction

1.1. Relevance of mesoscale characterisation of polycrystals

In order to gain a better understanding of the multiscale processes involved in the plastic de-
formation and failure of polycrystalline structural materials, a variety of advanced experimental
characterisation tools, primarily electron and X-ray microscopy, are deployed. These experimental
observations are then often coupled to modelling efforts (dislocation dynamics, crystal plasticity)
carried out on realistic microstructure instantiations, for a recent detailed review see (Shade et

al.,2019)[1] and references therein. As pointed out by Sangid (Sangid, 2019)[2], the comparison
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between experiment and simulation using emerging machine learning and optimisation techniques
offer powerful leverage for improving materials models and can be expected to advance our capa-
bilities for predictive modelling of this kind of processes.

The mesoscale is of high relevance when studying the effects of crystallography, grain inter-
actions and grain boundaries on elasticity, plasticity, damage initiation, propagation, and phase
transformations. Our experimental focus is on the scale of millimetre to sub-millimetre sized poly-
crystalline specimens consisting of 100s or 1000s of grains. This is a length scale which delivers
a wealth of information and unites a series of advantages: (1) the investigated microstructures -
typically tens of grains across the specimen width - are representative for bulk behaviour and ex-
hibit grain to grain interactions; (2) micromechanical experiments with well controlled macroscopic
loading conditions are fairly easily implemented; (3) X-rays have the capability to provide high-
resolution non-destructive crystallographic information of the bulk; (4) Crystal Plasticity FEM
simulations are well adapted to this scale. Therefore, it is an outstanding opportunity to directly
compare in-situ experimental data with simulations on a fully detailed three-dimensional mechan-
ical model, i.e. a “digital twin” of the real specimen. For a complete mechanical model, highly
detailed three-dimensional information on the crystal phases, crystal boundaries, local crystal ori-

entations and the full local strain tensors are required.

1.2. 8D strain mapping methods

The experimental determination of local strains (and stresses derived thereof) can be divided
into the following categories, reflecting the length scale and resolution of the measurement with
respect to the grain size. While the rest of the article describes new opportunities for intragranular
strain retrieval, in this overview we cover recent advances in experimental and theoretical abilities
to characterise the deformation state, i.e. the orientation and strain distributions, of the crystalline
lattice in 3D in the bulk of polycrystalline materials by means of synchrotron X-ray diffraction
techniques. As more sophisticated tools are being developed, mapping grain structures in 3D via
X-ray diffraction has been providing data sets with increasingly rich information content. While
diffraction is sensitive to the actual elastic strain state of the crystal lattice, digital image correlation
can track the overall (elastic and plastic) deformation between two or more measured states at
various scales when suitable markers are present within the material (Maire & Withers, 2014;

Sutton & Hild, 2015; Mao, 2019)[3}, 4 [5].

1.2.1. Ensemble average strain (Type I stresses)

In a far-field powder diffraction type experiment (using monochromatic X-rays or neutrons) the
detector is far from the sample (e.g. 50mm+) and the pixel size is much larger than the average
grain size. Debye-Scherrer rings are formed on the detector from a quasi-infinite number of grains
of the polycrystal that diffract simultaneously, like a powder. These rings provide the basis of the
analysis, and the information in the large number of pixels that constitute a ring in a single image
is reduced to a few geometric parameters in a pre-processing step before the structure or strain
(Type I stress) analysis. The rings change smoothly and are only very slightly sensitive to fine
rotations (e.g. 0.1°) of the sample, during which the actual grains and sub-regions of grains, that

happen to be in the diffraction condition for the wavelength of the incident beam, change. The



macroscopic strain is equivalent to an average stretch of the lattice perpendicular to a diffracting
lattice plane, which manifests itself in a change of Bragg angle and hence a change in the local
effective radius (or radial moment of intensities) of the Debye-Scherrer rings.

In the field of classical strain scanning, a location in the specimen is measured directly and
controlled by apertures. It is often carried out at the component scale with macroscopic sampling
volumes (Withers & Webster, 2001) (Staron et al., 2017)[6l [7]. In a more recent approach, and
where the sample geometry allows, utilising 2D area detectors and a pencil beam, the diffraction
signal is processed (data reduction) and the information is localised via a scanning and recon-
struction procedure, following established principles of computed tomography (Alvarez—l\/[urga et
al., 2012)[8]. We note that both techniques can also utilise neutrons, with the added capability
of Bragg edge imaging (Lionheart & Withers, 2015) (Hendriks et al., 2019) (Gregg et al., 2020)
[9, [0, [11].

1.2.2. Grain average strain (Type II stresses)

Grain average strain tensors can be obtained by recording reflections from individual grains,
i.e. diffraction spots or peaks, instead of the Debye-Scherrer rings. The far-field (detector pixel size
50...200pm) grain tracking methods are known as 3D X-Ray Diffraction (3DXRD) (Lauridsen et al.,
2001) (Henning Friis Poulsen, 2004) (Schmidt et al., 2011) (Segrensen et al., 2012) (Sharma et al.,
2012) (Jensen & Poulsen, 2012) (Schmidt, 2014)[12] 13} 14, 15l 16l 7] or High Energy Diffraction
Microscopy (HEDM) (Shade et al., 2019)(Lienert et al., 2011) (Bernier et al., 2011) (Barton &
Bernier, 2012) [1l (18] 19, 20]. After considerable initial efforts to achieve hardware stability,
distortion correction, reliable indexing and geometry calibration via software, grain average strain
measurements on 100s or 1000s of grains became standard in far-field at strain resolutions of 10~*
and beyond (Paciorek et al., 1999) (H. F. Poulsen et al., 2001) (Oddershede et al., 2010) (Bernier
et al., 2011; Edmiston et al., 2011, 2012) (Borbely et al., 2014) (Sedmé&k et al., 2016)[21], 22| 23]
191 24 25] 26|, 27]. Determination of grain average strains from near-field diffraction data obtained
with DCT has been demonstrated (Reischig, 2008) (Reischig et al., 2013) (Proudhon et al., 2016)
(Reischig & Ludwig, 2019) [28, 29, 30, 31] and can achieve a strain resolution of a few times 10~%.

1.2.3. Intragranular strain (Type III stresses)

A robust, although time-consuming, technique for the local measurement of intra-granular
strains in the bulk at micrometre spatial and 10~# strain accuracy is Differential Aperture X-ray
Microscopy (DAXM) (Larson et al., 2002; Levine et al., 2006; Robach et al., 2013; Tardif et al.,
2016)[32], 33, [34], 5], a variant of polychromatic X-ray Laue micro-diffraction. More recently, using
monochromatic micro-beam scanning, a far-field detector and an established 3DXRD indexing
procedure (ImageD11) (Wright, 2017)[36], Hektor et al. has shown local sensitivity of the method
to hydrostatic strain (Hektor et al., 2019)[37], and Hayashi et al. has demonstrated mapping the
full strain tensor over a region containing 373 voxels at 1.2 um spacing deep inside a steel specimen
(Hayashi et al., 2019)[38].

Dark Field X-ray Microscopy focuses on a single reflection of an embedded grain and uses
compound refractive lenses to achieve 100...200nm spatial, 0.001rad orientation and 10~° strain

resolution along that scattering vector (H. Simons et al., 2015; H. F. Poulsen et al., 2017; Hugh



Simons et al., 2018)[39, [40, 4I]. Combining more than one (hkl) reflection on the current setup
at ID06, ESRF is problematic due to the lengthy scanning time and limitations of the sample
goniometer.

Operating at a spatial resolution of tens of nanometres, and focusing on an individual crys-
tal, nanoscanning and coherent X-ray diffraction techniques (Coherent Bragg Diffraction Imaging,
CBDI) are capable of mapping the strain component along a scattering vector in single crystals
(see (Schulli & Leake, 2018)[42] for a recent review). Mapping several reflections in an isolated
nano-crystal (Newton et al., 2010)[43] or in embedded grains (Cherukara et al., 2018)[44] enables
quantification of the full strain tensor and has recently been used to characterise the full 3D strain

tensor field around individual dislocations (Hofmann et al., 2020)[45].

1.2.4. Intragranular misorientation

All techniques mentioned in Section [1.2.3|use a far-field detector and intrinsically provide access
to intragranular misorientation fields. Intragranular misorientation can also be characterised using
a near-field setup. A variety of reconstruction techniques have been proposed to extract local
orientation from line and box-beam near-field diffraction signal (see Poulsen, 2012)[46]. Forward
modelling based approaches typically employ line beam illumination and naturally include sub-
grain misorientations in a 2D section of the specimen (Suter et al., 2006; S. F. Li & Suter, 2013,
Renversade et al., 2016; Menasche et al., 2020)[47, 48, 49, 50]. High quality 3D volumes with
a spatial resolution down to one micrometre and an orientation resolution within 0.1° can be
constructed by scanning and stacking multiple 2D sections.

Extended beam (box beam) acquisition techniques complement the existing portfolio of X-ray
orientation microscopy techniques. For instance, DCT can account for and resolve a misorientation
distribution within the grains using a ”6D solver”, still preceded by an indexing step (see Section
for further details, and Fig. for an overview of data representation). ”6D” stands for the
combined representation of three real space and three orientation space dimensions, and it has
been demonstrated to provide accurate grain maps with micrometre resolution when the mosaicity
of the crystal lattice is moderate (Poulsen, 2003; Nicola Vigano et al., 2014; Nicola Vigano, Tanguy,
et al., 2016; N. Vigand & Ludwig, 2018)[51] 52 53] 54 [55].

1.8. Representation of 3D deformation fields in polycrystals

The local deformation of the crystal lattice in the most simple case is described by a 9-
component deformation tensor, or three (mis)orientation and six strain parameters over all (x,y,z)
locations within the sample (see Appendix). Complementing it with a scalar that represents the
local diffracting power, this F(z,y, ) : R? — R 10-component tensor field constitutes the ulti-
mate information which can reasonably be extracted from the typical grain resolved 3D polycrystal
diffraction methods under consideration. For deformations at a smaller scale and using a suitably
narrow energy bandwidth (dE/E < 10~%), rocking curve imaging techniques apply [56} 57].

As intragranular misorientation and strain can be treated as small local deviations from a
mean, in a more intricate model, a distribution of small deformations at each location may be
considered. The kind of diffraction data at hand does not contain enough information to uniquely

resolve random distributions at this level of detail, however, sparse distributions (i.e. voxel average



orientations) can be reliably inferred. With full beam illumination, the complete solution space
for misorientations only, without strain, is a six-dimensional space, the outer product of 3D real
space and 3D orientation space. Such a representation was described by Poulsen (H. F. Poulsen,
2003)[51], and a grain-by-grain solver, named a ”6D solver” was demonstrated by Vigano et al.
using simulated (Vigano N. et al., 2014)[52] and real data sets (Vigano N., Nervo, et al., 2016;
Nicola Vigano, Tanguy, et al., 2016)[53] [54]. The main advantage of discretising deformation space
is that the multidimensional reconstruction can be formulated as a linear problem in a rigorous
mathematical framework. In this framework, each pixel of the obtained image stack represents one
linear equation, and the pixel intensity is the sum of the contributions from those elements of the
six-dimensional space that project into the pixel. As in this model the projection directions are
fixed, the projection contributions can be expressed as one large constant matrix, the “A matrix”.
The diffracting power of the elements are the unknown parameters sought, and a sparse solution
can be found with established iterative schemes. An extension to include the extra six dimensions of
strain would quickly render the solution space enormous and the framework impractical (Fig. .

Instead, as a feasible alternative, a vector representation uses a tensor field throughout the
solution process that assigns nine deformation components to a location within the grain repre-
sented by a finite voxel element over a regular grid. The amount of data storage required for a
medium sized grain is in the megabyte range, and a highly-detailed deformation map of a complete
sample volume still easily fits in the RAM of a high-end desktop computer. However, the vector
representation results in a non-linear problem with less obvious solution strategies, as discussed in

Section [l and Section [Fl

1.4. Acquisition modes and spatial sensitivity in mapping local deformation

High spatial sensitivity in the maps is obtainable either via a small pencil beam cross-section
(down to 0.1pm) when using a far-field detector (pixel size 50...250pum) or a small pixel size
(0.5...5pum) with a near-field detector. In the latter case, the beam has a line or a rectangular
(”full” or ”box”) cross-section. Fig. summarises the scanning approaches and the dimensionality
of the reconstruction problem.

Common in the monochromatic beam 3DXRD/HEDM/DCT methods is that the sample is
rotated continuously around a single axis over typically 180° or 360° while integrating the images
of a 2D area detector over small angular intervals of wgtep, = 0.025...1°. The diffracted beams
from the grains are recorded in the dark beam area of the detector. The image stack is filtered
and diffraction spots originating from the grains are segmented from the background as 2D images
in the (u,v) detector space, or 3D image stacks in a (u,v,w) space, where w = w/wgep is the
image stack dimension. w is a real number, and the w = 0 position corresponds to w = 0°
rotational position. Although w is measured in number of images, its unit is equally referred to as
a ”pixel” within the (u, v, w) space of a diffraction spot. Grain centroids or voxels, their orientation,
corresponding diffraction spots and (hkl) Miller indices are found in an indexing routine or by a
forward simulation scheme. The data processing assumes kinematical diffraction conditions and
a parallel beam geometry. Since the spatial, orientation and strain information are convoluted in

the (u,v,w) diffraction spots, the spatial, orientation and strain resolution in all of these methods



are interdependent. They are also dependent on the grain size and intragranular misorientation
and strain gradients in the polycrystal. Consider a grain of thickness I, that is intersected along
vector v by a microbeam of cross-sectional area s, and a narrow energy bandwidth dFE, while
the sample is scanned with dw rotational intervals. We will assume a constant curvature £ of the
lattice around an arbitrary axis. The curvature is linearly proportional to (VD)v, i.e. to the
gradient components of the local deformation gradient tensor D along v. There are three different
conditions which limit the &g, sub-volume of the grain that simultaneously diffracts in a (hkl)
diffraction spot within the dw interval (i.e. in a single image):

I) If the deformation state varies little across the grain, the entire illuminated line section

diffracts and 4, is proportional to the grain size.

5§ub ~ lg Sb (1)

IT) If only a sub-region of the grain diffracts at a time, then, as an approximation, g, is
inversely proportional to the lattice curvature. The gradient components may create an out-of-
plane curvature of the lattice and a gradient of the lattice spacing along the beam. The higher
the intragranular misorientation and strain gradients the less volume diffracts simultaneously.

Furthermore, s, is approximately linearly proportional to dw.

b ™ )
T¢

IIT) If dF results in an effective reflection curve which is wider than dw (typically not the case):
dE

o~ 3)

A small microbeam illumination much reduces the number of simultaneously diffracting grains
and volume, hence it can tolerate much larger deformation levels in the sample before overlapping
diffraction spots become critical. Along the rotation axis direction, the spatial resolution equals the
beam size, and laterally it can theoretically approach the beam size, if a suitable 2D tomographic
reconstruction algorithm is applied. A rigorous 2D or 3D reconstruction of the deformation field
theoretically allows for utilising the fundamental spatial sensitivity of the setup. i.e. the microbeam
size or the detector pixel size.

In the monochromatic scanning method in (Hektor et al., 2019)[37] and (Hayashi et al.,
2019)[38], the 2D deformation reconstruction problem is circumvented and reduced to an indexing
problem. The local strain values represent a weighted mean of the total volume contributing to the
indexed reflections for one voxel. Either condition I or IT may be determining the orientation and
strain accuracy, and, counter-intuitively, they may increase with higher deformations, according to
condition II.

In the case of box beam illumination, as in DCT and Near-Field HEDM, s; covers the entire
grain. In conventional (3D) DCT reconstructions the grains are assumed to have zero deformation,
i.e. condition I applies, and the spatial resolution is limited by the detector pixel size and tomo-
graphic reconstruction theory. When assessing deformed grains, condition II applies and, again,
results in increased input data (3D diffraction spot volumes instead of 2D projections) for the

reconstruction problem that couples real space (shape) and deformation.



Grain boundaries are step functions in the (mis)orientation tensor, where the gradient is infinite,
and provide the most obvious and robust means to define a spatial resolution for those methods
which can map multiple grains. E.g. the spatial resolution of grain-by-grain processing methods can
be quantified by the gaps or overlaps of the reconstructed grain volumes. Internal grain boundaries
or grain boundaries on a free surface in this sense are analogous to high contrast features with a
sharp interface in resolution standards for absorption tomography. When well defined features are
absent within the grain volume and deformation gradients are smooth, spatial resolution cannot
be inferred from the reconstructed deformation field. The accuracy of a 3D diffraction scanning
method is best described by an expected or mean error of the following quantities: 1) location
of grain or domain boundaries; 2) location of grain or domain centroids; 3) each orientation and
strain tensor component; 4) each orientation and strain tensor gradient.

The angular range covered by a detector pixel as viewed from the sample is similar in both a
typical far-field and near-field detector setup (1...2x10~*rad). The far-field 3DXRD/HEDM setup
generally provides a better orientation and strain resolution due to a smaller point spread function,
less susceptibility to mechanical instability due to the larger pixels, and more indexed families and

reflections as a result of reduced overlap and higher signal-to-noise ratio.

1.5. Strain mapping with a near-field DCT setup

The full beam approach can utilise most photons from the synchrotron source of all scanning
techniques, hence it has an inherent advantage in speed, simplicity of the setup, and easy switching
to absorption or phase contrast imaging mode. These are exactly the advantages that allowed the
DCT method to be transferred from the synchrotron to a laboratory-based instrument (King et
al., 2013; McDonald et al., 2015; Sun et al., 2019; Bachmann et al.,2019)[58] [59, [60, [61]. A further
advantage in time-resolved scans is described in Section 4.9l The efficiency of other scanning
methods on the synchrotron is adversely affected by: the efficiency of the focusing optics, speed
of positioning motors, overall setup stability, detector readout time. It should be noted that these
constraints have been gradually being eliminated, e.g. by state-of-the-art detectors which have
negligible dead time.

In the problem at hand, the "near-field” imaging detector is a few millimetres away from the
sample, and the detector pixel size is much smaller than the average grain size. Debye-Scherrer rings
are not formed on the detector at all, instead, individual diffraction spots are observed, typically
well-separated (see Fig. [5)). The experimental setup in the current paper (or in routine DCT at
present) does not utilise the direct transmitted beam behind the sample but utilises the diffracted
beams only. These form several unconnected diffraction spots from each grain and are segmented
out from the image stack along the (u,v,w) directions. Subsequently, they are indexed according
to their grain and (hkl) lattice plane of origin. Since a given (hkl) plane normal diffracts multiple
times (maximum four times) over a 360-degree rotation, the observed and indexed diffraction spots
of a specific grain are referred to with the linear index k& instead. Several such (u,v,w) diffraction
spots from a given grain are used as the input data for the 3D shape and strain reconstruction of
that one grain.

The DCT indexing process is described in (Reischig et al., 2013)[29], the setup calibration

and the mean grain position, orientation and strain fitting are outlined in (Reischig & Ludwig,



2019)[31]. Including a distortion correction of the raw images, the achievable accuracy in the
simulated diffraction spot centroid positions can be significantly smaller than one pixel in (u,v)
and often even better in w (i.e. smaller than the typical 0.05° stepping interval).

The diffraction spots are highly sensitive to the w rotation. In case of zero intragranular de-
formation the projection is a parallel projection of the grain volume with limited extent along w
(defined by the energy bandpass and divergence of the incoming beam), as the entire grain volume
diffracts at the same rotational position (Fig. ) A hypothetical state of constant deformation
throughout the grain volume would result in small shifts of the projection directions and spot
positions (Fig. ) Although the case of negligible intragranular orientation spread may be en-
countered in recrystallised and annealed materials, most structural materials exhibit some degree
of local deformation, which is apparent as a spread in w. Within one integrated w rotational step
(e.g. wstep = 0.05°), only a sub-region of the grain would diffract and contribute to the intensity
(Equation ) Over the entire w range of the diffraction spots (typically 0.1...2°), in theory, all
sub-regions of the grain would diffract at some point. The exact (u,v) and w position where a sub-
region (or reconstructed voxel) diffracts on the detector within a given diffraction spot depends on
the intragranular orientation and strain distribution within that grain. Any orientation or strain
component in the sample reference that translates into either a stretch perpendicular to the (hkl)
lattice planes or a tilt of those planes will result in a (u, v, w) offset in the diffraction peak position
of a voxel (Fig. 2k). The intensity distribution inside the diffraction spots is typically a slowly
varying continuous field, spread over (u,v,w). The grain shapes, the misorientation fields and the
strain fields are highly convoluted, and cannot be simplified to an azimuthal and radial spread as
in the case of Debye-Scherrer rings.

For a given voxel, the offset in this (u,v,w) projected peak position relative to a (u*,v*, w*)
reference projected position is computed in the diffraction model. The reference (u*,v*, w*) posi-
tion is where the voxel would project if it had the pre-determined grain average orientation and
strain. The pixel size is comparable to the reconstruction voxel size, which is the basis for the
spatial sensitivity. The thousands of active voxels which make up a grain all project somewhere
within each indexed diffraction spot of the grain. This results in a cloud of intensities in the
3D (u,v,w) space of each diffraction spot, which is a distorted projection of the grain volume
(Fig. ) In the near-field setup, this sensitivity to the offsets in u, v, w separately is the basis for
the local (mis)orientation and strain (Type 3 stress) analysis. However, this orientation sensitivity
combined with the box beam illumination also constitute the limiting conditions of the near-field
setup. Namely, the diffraction spots start to severely overlap for increasing values of intragranular
orientation spread, as observed in metallic materials which have been subjected to several per cent
of plastic deformation.

The motivation of the current study is to present a model and a solver to explore the possibility
of maximising information available from such full-beam illumination, while exploiting its photon
efficiency. The data processing method is also adapted to line and pencil beam illumination, and
it reconstructs not only the grain shapes but also the orientation and strain fields at the sub-grain
level. The proposed algorithm, named Iterative Tensor Field (ITF) Reconstruction, is based on a

vector representation of the 3D distribution of diffracting power and a 3D intragranular deformation



field, and aims to reconstruct this F(z,y,2) : R® — R tensor field on a grain-by-grain basis
in the deformed state. It builds on the principles of kinematical diffraction and ray tracing, and
employs an iterative solver.

The diffraction model is described in Section [2| and the ITF algorithm in Section Based
on similar principles, potential alternative models and solvers are set out in Section [4] although
these are not applied or discussed in detail. The ITF solver is demonstrated on experimental data,
as reported in Sections [5] and [6] The results and applicability of the solver and the approach are
discussed in Section

2. Diffraction model

2.1. Diffraction signal

The pixel intensities in an image frame are the summed contribution of the X-ray diffraction
signal I and elements of the background noise, such as inelastic scattering Iineiastic and fluores-
cence I fiyorescence from the sample, the sample environment device, the beam defining aperture,
and a dark current signal from the imaging sensor. The contribution of the photons arriving at
the detector is modulated by the detector function, which is usually simplified to a point spread

function convoluting the contributions from a small neighbourhood around a pixel:

I= F(Id + Iinelastic + Ifluorescence + Isensor) . (4)

To model the diffraction signal, the grains within the sample volume are assumed to be ”ide-
ally mosaic”, i.e. an ensemble of kinematically scattering crystallites, each contributing to the
diffraction signal when passing through the diffraction condition of an (hkl) reflection while being
illuminated with a monochromatic beam and rotated at a rotational speed ws around the rotation
axis. An analytical solution of this total integrated diffracted intensity (or diffracting power) Io;y st
exists for a free-standing deformation-free crystallite, using the "small crystal” approximation (see

Warren, 1990 [62]):

Ig N3 F?
Oighkl Lk 5c7‘yst ) (5)

cell

Icv" st ™
Y )

where Ij is the intensity of the incident X-ray beam, A = he/FE is the photon wavelength, E
is the photon energy, h is Planck’s constant, ¢ is the speed of light, Fpy; is the structure factor
of the crystal lattice, dcey; is the volume of the crystal unit cell, d¢rys+ is the volume of the small
crystallite, and Lpy; is the Lorentz-polarisation factor that depends on the relative orientations of
the (hkl) plane normal, the rotation axis and the polarisation vector of the (synchrotron) X-ray
beam.

In a kinematical diffraction model, the phases and interference of the elastically scattered
photons are neglected, and the real-valued intensity contributions from different parts of the sample
are added up. Extinction of the transmitted beam due to diffraction along its path is neglected.
For monochromatic beams the use of intensity at a specific rotational position w is not practical,
instead, the integrated intensity is employed. To model the integrated intensity I, diffracted
from a 3D polycrystalline sample volume into a pixel region €, in (u,v,w) of an image frame

exposed during the scan, a real-valued integral needs to be computed over the surface area of the

10



pixel in (u,v), over the rotational step interval in w (during which the exposure is continuous), and
over the 3D real space €25 covering the sample volume in (x,y, z) in the sample reference, taking

into account the orientation and strain fields across the volume:

Iuvw:/// /// IpyCSD dxdydzdudvdw ; (6)
Q, Q.

where I is the intensity distribution of the incident beam:
IO:IO(xayaszaE) . (7)

The incident beam and rotation axis directions are fixed and dependence on them is not shown.
C represents the local crystallography, diffracting power and any potential (hkl) reflections of the

lattice:
C =C(z,y,z,u,v,w, E, Fppi, Bo,U(z,y, 2), D(x,y, 2)) , (8)

where By is the reciprocal basis matrix of the undeformed reference unit cell, U represents the
local crystal orientation and D the local deformation, as defined in the Appendix.
S is an attenuation factor due to absorption and scattering inside the sample along the incident

and diffracted beam path:
S=8(z,y,z,u,v,w, E) . (9)

D is the detection efficiency of the detector and a scalar to transform intensity into detector

units:
D=D(E). (10)

We use a grain-by-grain approach where the diffraction signal from the indexed individual
grains are concentrated into a finite number of segmented and indexed diffraction spots that are
treated independently, assuming no contribution (overlap) from other grains. Voxel elements of
a grain volume are assumed to diffract as a ”small crystal” when exposed and rotated around
the rotation axis through a reflection k with the Miller indices (hkl), and each gives rise to the
integrated intensity I;. The strength of a reflection is characterised by the scalar intensity modulus

k1 which comprises all relevant effects:

Kk = Ovoz 10 D Chit Sk L (11)
A3 F2
Chil ~ =5 hkl — const . (12)
cell Ws

A parallel beam geometry is assumed for the synchrotron beam, the incident beam direction,
intensity and photon energy is considered constant everywhere in the laboratory reference frame
and during the scan: Iy = const and A = const. Alternatively, the intensity profile across the
beam cross-section can easily be monitored by moving the sample and beam stop out of the beam
and recording reference images. The detector response is also assumed to be constant over the field
of view of the system: D = const. Due to the typically small grain size compared to the sample

cross-section, and the changes in diffracted beam directions as a result of deformation being small,
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one can reasonably assume that the total self-attenuation the rays are subject to on their paths
are constant across the volume of a grain and across the entire w range of a reflection: Sy = const.
The same argument stands for the geometric factor L = const. Using fixed size cubic voxels,
the voxel volumes are also constant, when a grain completely fills in the volume of a voxel. These
assumptions, in an ideal case, yield the same integrated intensity for each voxel of a grain within
a diffraction spot.

To account for the case when the voxel is not completely occupied by the crystal and to allow
for local variations in the reconstruction, the following product is used for the integrated intensity

I, of a voxel j in diffraction spot k:
Lk = pj ki, (13)

where p; is the scalar diffracting power of voxel j and is the same for each reflection k. The p;
values define the shape of a grain. They are not known initially and allowed to change from voxel to
voxel during the shape reconstruction. Using binary values for p; allows for a simple representation
of grain volumes — as commonly used in DCT.

The intensity modulus x; may be precomputed and calibrated for the specific hardware and
sample material or fitted during the iterations, as shown in Section [3.4. We further make the
assumption that p; and kj are not directly dependent on the deformation state of a voxel. This
appears to be a workable simplification for metals, although more experimental data and studies
on the consistency and error of the reconstructions will be required to justify it. It is, nevertheless,
reasonable to expect that the intensity modulus varies sufficiently slowly with the deformation
components, and that its behaviour could be characterised by a fairly simple function. Having
an adequately calibrated function in relation to deformation, the intensity modulus of each voxel
could be updated during the iterative solution without significantly perturbing the local linear

behaviour of the solver proposed in the following sections.

2.2. Intensity distribution function

The integrated intensity from a voxel is distributed over an area of a small number of pixels in
the (u,v) image plane, and over a narrow range of w rotational intervals, according to an intensity
distribution function. An accurate description of how the intensity is precisely distributed would
need to take into account intricacies of the detector elements: the scintillator that transforms the
X-rays into visible light, the visible light optics and the imaging sensor. In particular, the following

aspects play an important role:
e precise shape of the finite voxel element and the diffracted wave front;
e absorption conditions and visible light generation from X-ray photons in the scintillator;
e incident angle between the impinging beam and the scintillator;
o afterglow (light emission delay) of the scintillator;
e propagation and internal reflections of the visible light inside the optics;

e detection of visible light photons and cross-talk between the pixels of the imaging sensor;
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e read-out and digital conversion characteristics of the imaging sensor.

For faster computation of the model, this complex process is approximated by a combination of
an intensity distribution function that describes the peak shape of each voxel, and a point spread
function that describes a blurring of the total combined deposited intensity from the voxels. The
intensity distribution function is sensitive to small changes in the deformation state of a voxel, and
is a crucial element of the model that should be chosen with consideration, as it can significantly
affect the fidelity of simulated diffraction spots and the processing time.

Each diffraction spot k of a grain is stored as a 3D array of pixel intensity values, and ordered
in memory contiguously as the vector where the order of dimensions are (v, u,w). Pixels within a
diffraction spot are identified with the linear index i, which normally only lists active pixels, i.e.
those which receive an intensity contribution.

In the model, one diffracted ray j initiates from the centroid position x; = (x,y, z) of voxel j
in the sample reference, and it intersects the detector plane at (u, v) at rotational position w. This
w;;(x;,d;) = (u,v,w) projection position represents the centre or the peak of the intensity distri-
bution of that voxel in diffraction spot k, and it is a function of the nine deformation components
d; = djp, of the voxel, where m = 1...9. Bragg’s law and the setup geometry determines u;j, see
Appendix for the computation. Ray j deposits its intensity in a small neighbourhood of u;j over
N¢ number of detector pixels which are denoted by n = 1...N¢. The look-up table i = 1, returns
pixel index i, where intensity is deposited from voxel j in diffraction spot k£ which has the list index
n, and it is used in the forward projection (simulation) of the pixel intensities.

The intensity distribution function ¢, (u) determines the peak shape, i.e. what fraction of the
intensity is assigned to an affected pixel n. The same function is used for all voxels, reflections and
grains. Normally the further away the centroid of a pixel is from the ray position u, the lower its
value. A suitable intensity distribution function should meet the criterion that the integral sum of

the intensity over all affected pixels must be one.

Ny
S tn=1 (14)
1

The set of voxels j that contribute intensity to a given (i, k) pixel with list index n are stored
and returned in the look-up table j = ¢;r,. This look-up table ¢;i, is used in the backprojection
operation during the iterations, and can be regarded as the "inverse” of ¥;xn.

The intensity of pixel ¢ in diffraction spot k is denoted with g;;. Considering kinematical
diffraction conditions, the resulting intensity of a pixel is the sum of the intensity contributions

from all rays that affect that pixel:

Ny
dik = Fk Z Z Pi tn(uju(x;,d))) - (15)

n=1j€pirn

Once computed, the list of pixel intensities can be reassigned into the original (u,v,w) 3D array

format of the diffraction spot. The centroids of the pixels are at integer numbers of (u,v,w),

which are equal to the pixel integer indices (uvw) within the spot. The linear pixel index 7 is an
equivalent notation of the 3D indices (uvw).

The value of p; may change from voxel to voxel, or it can be forced to be a binary value for a

discrete grain shape reconstruction. Prior to discretisation, nevertheless, it is treated as a floating
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point value during the reconstruction. The most simple form of ¢,, would be to assign the total
intensity of the ray to one single pixel, the nearest pixel to the ray position (u,v,w). However,
this would mean that the pixel intensity would remain constant for a small deformation change,
and it would abruptly drop to zero, once the ray position is closer to another pixel. The pixel
intensity as a function of the deformation components would not be continuous or differentiable.
Instead, we choose to use a simple and feasible form of the intensity distribution function, which
is advantageous for the linearisation and effective computation of the pixel intensities, and their
derivatives w.r.t. the deformation components. We use a linear interpolation, where the intensity
diffracted from a voxel is distributed among the 8 nearest neighbouring pixels in (u,v,w), i.e. a
2 x 2 x 2 pixel neighbourhood. In order for this interpolation to be valid, it is necessary that
there is no gap in the sample rotation, exposure and integration of the intensities in consecutive
images by the detector. Such integration gap may arise, for example, when the read-out time of
the detector (during which the signal accumulation is interrupted) is non-negligible compared to
the exposure time per image, or due to synchronisation problems.

When applying ¢, to a projected ray position (u,v,w), the 2 x 2 x 2 pixel neighbourhood is
defined by the indices (uw*v*w*), which correspond to the coordinates (u*, v*, w*) of the first corner

pixel (n = 1) of the neighbourhood:
* = floor(u) v* = floor(v) w* = floor(w). (16)

Six linear interpolation coefficients ¢ describe the distance of the ray position from the lower

and upper voxels in the 2 x 2 x 2 neighbourhood:

ct=u—u* cf =v—v* ch =w—w* (17)
e, =1—cf cy =1-cF cp=1-ct. (18)

The t,, intensities deposited into the 8 neighbouring voxels v, are a linear combination of those

six coefficients:

1 = (U, v, w) t1 =c, ¢, cy,

e = (U, 0", w4+ 1) ty = c, c, b

Py = (u", 0" + 1,w") ts =c, cle,

Yy = (U 0" + Lw* 4+ 1) ty =c, clhel
(19)

Y5 = (u* + 1, 0", w") ts = cc

e = (U + 1,0, w* + 1) te = cle el

7 = (u" + 1,0" + 1, w") ty =cteler,

g = (u +1,0" + 1w +1) ts =clelef

The total diffracted and deposited intensity from a voxel is preserved, Zf t, = 1, which means
that this ¢,, is an adequate intensity distribution function.

A variety of other types of intensity distribution functions can be considered. There is an
obvious benefit of a smaller spread where a lower number of pixels are affected by the ray and

have to be included in the computation. A high-fidelity function would depend on the mosaicity
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and strain state of the grains, and the divergence and energy bandwidth of the incident beam. A
commonly used relative energy bandwidth dE/E in experiments is 10™* to 1073, which is adapted
to a typical wstep of 0.05°. The intensity distribution function proposed above appears to be a good
approximation when deformation is apparent through extended diffraction spots in w. It should
be noted, however, that for grains with small deformation gradients the reflection curve may be
sharp and fall within one rotational step, so the linear interpolation along w leads to a discrepancy.

The 3D intensity distributions of the diffraction spots are convoluted with the point spread

function s(u,v) of the detector in two dimensions over (u,v) to simulate a blurring effect.

2.8. Link between vozxel deformations and pizel intensities

The deformation gradient tensor field D(xz,y, z) in the current framework is compatible with
finite strain theory, i.e. not restricted to small strains, and applied as defined in the Appendix. It is
solved for each voxel in the deformed state, thus local displacements in the underlying displacement
field are irrelevant. The deformation field is defined directly by its nine deformation components
d = dj,, in the sample reference, rather than by the unit cell parameters, which contributes to
faster forward simulations. A D solution can be decomposed into misorientation and strain (see
Appendix), or optionally, D can account for misorientation only. For alternative treatments of
the link between lattice deformations and diffraction, see (Oddershede et al., 2010, Bernier et al.,
2011, Edmiston et al., 2011)[23], [19] 24].

The link between the pixel intensities ¢;1, the diffracting power (grain shape) p; and the defor-

99 9t Ju
ot> ou’ od

mation tensor components d;,, is established via computing their derivatives during
the iterations. The forward derivatives of the peak shifts w.r.t. the deformation components can
be computed with finite differences by forward simulating all peak positions for a small change in
each deformation component m, i.e. nine forward simulations in total.

An explicit formula can be derived for the derivatives, nevertheless there may not be a gain in
computation time, and reusing the forward simulation code to compute the finite differences allows
for a more straightforward and reliable implementation. Given that the peak shifts are close to
linear, these derivatives change slowly with the deformation state, so they can be kept constant and
stored over several iterations. Depending on the grain size and diffraction geometry, their change
across the voxels of a grain is also moderate, and may potentially be considered constant (not the
case in our current implementation). The g—g derivatives are a useful measure of how sensitive the
peak shifts are to small deformation:

Ju <8ujk vk 8wjk>
od ddjy, Odjp,” Od,; '

(20)

The deformation sensitivity x., indicates the average change in a deformation component m that
can be detected with a one pixel peak shift along u or v, or a one image shift along w. It refers to

a specific orientation in the sample (and location, to a lesser extent) or to a grain.

1 1 1

Xm = (21)
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The peak deformation sensitivity x; indicates the smallest change in a deformation component m

that can be detected in any of the reflections with a one pixel peak shift along u or v, or a one
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image shift along w.
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: : (22)
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The deformation sensitivity can also be determined for an entire experiment (a combination of the
setup and the material) by computing the mean sensitivity of all grains and all observed reflections.

The derivative of the intensity distribution function w.r.t. the peak shifts can be expressed
with a linear combination of the ¢ coefficients computed beforechand. With an example of the 