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Abstract

A theoretical framework is proposed for simultaneous reconstruction of the three-dimensional grain

shapes, intragranular strain and orientation fields inside polycrystals from near-field X-ray diffrac-

tion images, using box beam illumination. The approach, named Iterative Tensor Field (ITF)

reconstruction, uses a tensor field representation and a kinematical forward simulation model to

reproduce the measured diffraction signal from individual grains. The framework establishes a link

between the local deformation components inside the grains and the intensities of the diffraction

signal in the measured images by forming a local linear problem. This is solved using a large scale

linear optimisation method in every main iteration of the underlying non-linear problem. The

optimisation enforces smooth gradients and the objective function may include regularisation con-

straints of static equilibrium or input from a Crystal Plasticity FEM simulation. The method has

modest computational requirements and enables efficient scanning of millimetre or sub-millimetre

sized specimens. Results on experimental data measured on a Gum metal specimen are presented,

which demonstrate convergence and the feasibility of the approach. The mathematical formulation,

data representation and challenges in the reconstruction and validation are discussed. The physical

aspects of the contrast phenomenon, the deformation sensitivity of the technique, and potential

means of error assessment are described. A number of alternative concepts for a polycrystalline

deformation model and potential solvers are also presented.

1. Introduction

1.1. Relevance of mesoscale characterisation of polycrystals

In order to gain a better understanding of the multiscale processes involved in the plastic de-

formation and failure of polycrystalline structural materials, a variety of advanced experimental

characterisation tools, primarily electron and X-ray microscopy, are deployed. These experimental

observations are then often coupled to modelling efforts (dislocation dynamics, crystal plasticity)

carried out on realistic microstructure instantiations, for a recent detailed review see (Shade et

al.,2019)[1] and references therein. As pointed out by Sangid (Sangid, 2019)[2], the comparison
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between experiment and simulation using emerging machine learning and optimisation techniques

offer powerful leverage for improving materials models and can be expected to advance our capa-

bilities for predictive modelling of this kind of processes.

The mesoscale is of high relevance when studying the effects of crystallography, grain inter-

actions and grain boundaries on elasticity, plasticity, damage initiation, propagation, and phase

transformations. Our experimental focus is on the scale of millimetre to sub-millimetre sized poly-

crystalline specimens consisting of 100s or 1000s of grains. This is a length scale which delivers

a wealth of information and unites a series of advantages: (1) the investigated microstructures -

typically tens of grains across the specimen width - are representative for bulk behaviour and ex-

hibit grain to grain interactions; (2) micromechanical experiments with well controlled macroscopic

loading conditions are fairly easily implemented; (3) X-rays have the capability to provide high-

resolution non-destructive crystallographic information of the bulk; (4) Crystal Plasticity FEM

simulations are well adapted to this scale. Therefore, it is an outstanding opportunity to directly

compare in-situ experimental data with simulations on a fully detailed three-dimensional mechan-

ical model, i.e. a “digital twin” of the real specimen. For a complete mechanical model, highly

detailed three-dimensional information on the crystal phases, crystal boundaries, local crystal ori-

entations and the full local strain tensors are required.

1.2. 3D strain mapping methods

The experimental determination of local strains (and stresses derived thereof) can be divided

into the following categories, reflecting the length scale and resolution of the measurement with

respect to the grain size. While the rest of the article describes new opportunities for intragranular

strain retrieval, in this overview we cover recent advances in experimental and theoretical abilities

to characterise the deformation state, i.e. the orientation and strain distributions, of the crystalline

lattice in 3D in the bulk of polycrystalline materials by means of synchrotron X-ray diffraction

techniques. As more sophisticated tools are being developed, mapping grain structures in 3D via

X-ray diffraction has been providing data sets with increasingly rich information content. While

diffraction is sensitive to the actual elastic strain state of the crystal lattice, digital image correlation

can track the overall (elastic and plastic) deformation between two or more measured states at

various scales when suitable markers are present within the material (Maire & Withers, 2014;

Sutton & Hild, 2015; Mao, 2019)[3, 4, 5].

1.2.1. Ensemble average strain (Type I stresses)

In a far-field powder diffraction type experiment (using monochromatic X-rays or neutrons) the

detector is far from the sample (e.g. 50mm+) and the pixel size is much larger than the average

grain size. Debye-Scherrer rings are formed on the detector from a quasi-infinite number of grains

of the polycrystal that diffract simultaneously, like a powder. These rings provide the basis of the

analysis, and the information in the large number of pixels that constitute a ring in a single image

is reduced to a few geometric parameters in a pre-processing step before the structure or strain

(Type I stress) analysis. The rings change smoothly and are only very slightly sensitive to fine

rotations (e.g. 0.1◦) of the sample, during which the actual grains and sub-regions of grains, that

happen to be in the diffraction condition for the wavelength of the incident beam, change. The
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macroscopic strain is equivalent to an average stretch of the lattice perpendicular to a diffracting

lattice plane, which manifests itself in a change of Bragg angle and hence a change in the local

effective radius (or radial moment of intensities) of the Debye-Scherrer rings.

In the field of classical strain scanning, a location in the specimen is measured directly and

controlled by apertures. It is often carried out at the component scale with macroscopic sampling

volumes (Withers & Webster, 2001) (Staron et al., 2017)[6, 7]. In a more recent approach, and

where the sample geometry allows, utilising 2D area detectors and a pencil beam, the diffraction

signal is processed (data reduction) and the information is localised via a scanning and recon-

struction procedure, following established principles of computed tomography (Álvarez-Murga et

al., 2012)[8]. We note that both techniques can also utilise neutrons, with the added capability

of Bragg edge imaging (Lionheart & Withers, 2015) (Hendriks et al., 2019) (Gregg et al., 2020)

[9, 10, 11].

1.2.2. Grain average strain (Type II stresses)

Grain average strain tensors can be obtained by recording reflections from individual grains,

i.e. diffraction spots or peaks, instead of the Debye-Scherrer rings. The far-field (detector pixel size

50...200µm) grain tracking methods are known as 3D X-Ray Diffraction (3DXRD) (Lauridsen et al.,

2001) (Henning Friis Poulsen, 2004) (Schmidt et al., 2011) (Sørensen et al., 2012) (Sharma et al.,

2012) (Jensen & Poulsen, 2012) (Schmidt, 2014)[12, 13, 14, 15, 16, 17] or High Energy Diffraction

Microscopy (HEDM) (Shade et al., 2019)(Lienert et al., 2011) (Bernier et al., 2011) (Barton &

Bernier, 2012) [1, 18, 19, 20]. After considerable initial efforts to achieve hardware stability,

distortion correction, reliable indexing and geometry calibration via software, grain average strain

measurements on 100s or 1000s of grains became standard in far-field at strain resolutions of 10−4

and beyond (Paciorek et al., 1999) (H. F. Poulsen et al., 2001) (Oddershede et al., 2010) (Bernier

et al., 2011; Edmiston et al., 2011, 2012) (Borbely et al., 2014) (Sedmák et al., 2016)[21, 22, 23,

19, 24, 25, 26, 27]. Determination of grain average strains from near-field diffraction data obtained

with DCT has been demonstrated (Reischig, 2008) (Reischig et al., 2013) (Proudhon et al., 2016)

(Reischig & Ludwig, 2019) [28, 29, 30, 31] and can achieve a strain resolution of a few times 10−4.

1.2.3. Intragranular strain (Type III stresses)

A robust, although time-consuming, technique for the local measurement of intra-granular

strains in the bulk at micrometre spatial and 10−4 strain accuracy is Differential Aperture X-ray

Microscopy (DAXM) (Larson et al., 2002; Levine et al., 2006; Robach et al., 2013; Tardif et al.,

2016)[32, 33, 34, 35], a variant of polychromatic X-ray Laue micro-diffraction. More recently, using

monochromatic micro-beam scanning, a far-field detector and an established 3DXRD indexing

procedure (ImageD11) (Wright, 2017)[36], Hektor et al. has shown local sensitivity of the method

to hydrostatic strain (Hektor et al., 2019)[37], and Hayashi et al. has demonstrated mapping the

full strain tensor over a region containing 373 voxels at 1.2 µm spacing deep inside a steel specimen

(Hayashi et al., 2019)[38].

Dark Field X-ray Microscopy focuses on a single reflection of an embedded grain and uses

compound refractive lenses to achieve 100...200nm spatial, 0.001rad orientation and 10−5 strain

resolution along that scattering vector (H. Simons et al., 2015; H. F. Poulsen et al., 2017; Hugh
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Simons et al., 2018)[39, 40, 41]. Combining more than one (hkl) reflection on the current setup

at ID06, ESRF is problematic due to the lengthy scanning time and limitations of the sample

goniometer.

Operating at a spatial resolution of tens of nanometres, and focusing on an individual crys-

tal, nanoscanning and coherent X-ray diffraction techniques (Coherent Bragg Diffraction Imaging,

CBDI) are capable of mapping the strain component along a scattering vector in single crystals

(see (Schulli & Leake, 2018)[42] for a recent review). Mapping several reflections in an isolated

nano-crystal (Newton et al., 2010)[43] or in embedded grains (Cherukara et al., 2018)[44] enables

quantification of the full strain tensor and has recently been used to characterise the full 3D strain

tensor field around individual dislocations (Hofmann et al., 2020)[45].

1.2.4. Intragranular misorientation

All techniques mentioned in Section 1.2.3 use a far-field detector and intrinsically provide access

to intragranular misorientation fields. Intragranular misorientation can also be characterised using

a near-field setup. A variety of reconstruction techniques have been proposed to extract local

orientation from line and box-beam near-field diffraction signal (see Poulsen, 2012)[46]. Forward

modelling based approaches typically employ line beam illumination and naturally include sub-

grain misorientations in a 2D section of the specimen (Suter et al., 2006; S. F. Li & Suter, 2013;

Renversade et al., 2016; Menasche et al., 2020)[47, 48, 49, 50]. High quality 3D volumes with

a spatial resolution down to one micrometre and an orientation resolution within 0.1◦ can be

constructed by scanning and stacking multiple 2D sections.

Extended beam (box beam) acquisition techniques complement the existing portfolio of X-ray

orientation microscopy techniques. For instance, DCT can account for and resolve a misorientation

distribution within the grains using a ”6D solver”, still preceded by an indexing step (see Section 1.3

for further details, and Fig. 21 for an overview of data representation). ”6D” stands for the

combined representation of three real space and three orientation space dimensions, and it has

been demonstrated to provide accurate grain maps with micrometre resolution when the mosaicity

of the crystal lattice is moderate (Poulsen, 2003; Nicola Viganò et al., 2014; Nicola Viganò, Tanguy,

et al., 2016; N. Viganò & Ludwig, 2018)[51, 52, 53, 54, 55].

1.3. Representation of 3D deformation fields in polycrystals

The local deformation of the crystal lattice in the most simple case is described by a 9-

component deformation tensor, or three (mis)orientation and six strain parameters over all (x,y,z)

locations within the sample (see Appendix). Complementing it with a scalar that represents the

local diffracting power, this F(x, y, z) : R3 7→ R1+9 10-component tensor field constitutes the ulti-

mate information which can reasonably be extracted from the typical grain resolved 3D polycrystal

diffraction methods under consideration. For deformations at a smaller scale and using a suitably

narrow energy bandwidth (dE/E < 10−4), rocking curve imaging techniques apply [56, 57].

As intragranular misorientation and strain can be treated as small local deviations from a

mean, in a more intricate model, a distribution of small deformations at each location may be

considered. The kind of diffraction data at hand does not contain enough information to uniquely

resolve random distributions at this level of detail, however, sparse distributions (i.e. voxel average
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orientations) can be reliably inferred. With full beam illumination, the complete solution space

for misorientations only, without strain, is a six-dimensional space, the outer product of 3D real

space and 3D orientation space. Such a representation was described by Poulsen (H. F. Poulsen,

2003)[51], and a grain-by-grain solver, named a ”6D solver” was demonstrated by Viganò et al.

using simulated (Viganò N. et al., 2014)[52] and real data sets (Viganò N., Nervo, et al., 2016;

Nicola Viganò, Tanguy, et al., 2016)[53, 54]. The main advantage of discretising deformation space

is that the multidimensional reconstruction can be formulated as a linear problem in a rigorous

mathematical framework. In this framework, each pixel of the obtained image stack represents one

linear equation, and the pixel intensity is the sum of the contributions from those elements of the

six-dimensional space that project into the pixel. As in this model the projection directions are

fixed, the projection contributions can be expressed as one large constant matrix, the “A matrix”.

The diffracting power of the elements are the unknown parameters sought, and a sparse solution

can be found with established iterative schemes. An extension to include the extra six dimensions of

strain would quickly render the solution space enormous and the framework impractical (Fig. 21).

Instead, as a feasible alternative, a vector representation uses a tensor field throughout the

solution process that assigns nine deformation components to a location within the grain repre-

sented by a finite voxel element over a regular grid. The amount of data storage required for a

medium sized grain is in the megabyte range, and a highly-detailed deformation map of a complete

sample volume still easily fits in the RAM of a high-end desktop computer. However, the vector

representation results in a non-linear problem with less obvious solution strategies, as discussed in

Section 3 and Section 4.

1.4. Acquisition modes and spatial sensitivity in mapping local deformation

High spatial sensitivity in the maps is obtainable either via a small pencil beam cross-section

(down to 0.1µm) when using a far-field detector (pixel size 50...250µm) or a small pixel size

(0.5...5µm) with a near-field detector. In the latter case, the beam has a line or a rectangular

(”full” or ”box”) cross-section. Fig. 22 summarises the scanning approaches and the dimensionality

of the reconstruction problem.

Common in the monochromatic beam 3DXRD/HEDM/DCT methods is that the sample is

rotated continuously around a single axis over typically 180◦ or 360◦ while integrating the images

of a 2D area detector over small angular intervals of ωstep = 0.025...1◦. The diffracted beams

from the grains are recorded in the dark beam area of the detector. The image stack is filtered

and diffraction spots originating from the grains are segmented from the background as 2D images

in the (u, v) detector space, or 3D image stacks in a (u, v, w) space, where w = ω/ωstep is the

image stack dimension. w is a real number, and the w = 0 position corresponds to ω = 0◦

rotational position. Although w is measured in number of images, its unit is equally referred to as

a ”pixel” within the (u, v, w) space of a diffraction spot. Grain centroids or voxels, their orientation,

corresponding diffraction spots and (hkl) Miller indices are found in an indexing routine or by a

forward simulation scheme. The data processing assumes kinematical diffraction conditions and

a parallel beam geometry. Since the spatial, orientation and strain information are convoluted in

the (u, v, w) diffraction spots, the spatial, orientation and strain resolution in all of these methods
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are interdependent. They are also dependent on the grain size and intragranular misorientation

and strain gradients in the polycrystal. Consider a grain of thickness lg that is intersected along

vector v by a microbeam of cross-sectional area sb and a narrow energy bandwidth dE, while

the sample is scanned with dω rotational intervals. We will assume a constant curvature ξ of the

lattice around an arbitrary axis. The curvature is linearly proportional to (∇D)v, i.e. to the

gradient components of the local deformation gradient tensor D along v. There are three different

conditions which limit the δsub sub-volume of the grain that simultaneously diffracts in a (hkl)

diffraction spot within the dω interval (i.e. in a single image):

I) If the deformation state varies little across the grain, the entire illuminated line section

diffracts and δsub is proportional to the grain size.

δIsub ∼ lg sb (1)

II) If only a sub-region of the grain diffracts at a time, then, as an approximation, δsub is

inversely proportional to the lattice curvature. The gradient components may create an out-of-

plane curvature of the lattice and a gradient of the lattice spacing along the beam. The higher

the intragranular misorientation and strain gradients the less volume diffracts simultaneously.

Furthermore, δsub is approximately linearly proportional to dω.

δIIsub ∼
dω sb
ξ

(2)

III) If dE results in an effective reflection curve which is wider than dω (typically not the case):

δIIIsub ∼
dE sb
ξ

. (3)

A small microbeam illumination much reduces the number of simultaneously diffracting grains

and volume, hence it can tolerate much larger deformation levels in the sample before overlapping

diffraction spots become critical. Along the rotation axis direction, the spatial resolution equals the

beam size, and laterally it can theoretically approach the beam size, if a suitable 2D tomographic

reconstruction algorithm is applied. A rigorous 2D or 3D reconstruction of the deformation field

theoretically allows for utilising the fundamental spatial sensitivity of the setup. i.e. the microbeam

size or the detector pixel size.

In the monochromatic scanning method in (Hektor et al., 2019)[37] and (Hayashi et al.,

2019)[38], the 2D deformation reconstruction problem is circumvented and reduced to an indexing

problem. The local strain values represent a weighted mean of the total volume contributing to the

indexed reflections for one voxel. Either condition I or II may be determining the orientation and

strain accuracy, and, counter-intuitively, they may increase with higher deformations, according to

condition II.

In the case of box beam illumination, as in DCT and Near-Field HEDM, sb covers the entire

grain. In conventional (3D) DCT reconstructions the grains are assumed to have zero deformation,

i.e. condition I applies, and the spatial resolution is limited by the detector pixel size and tomo-

graphic reconstruction theory. When assessing deformed grains, condition II applies and, again,

results in increased input data (3D diffraction spot volumes instead of 2D projections) for the

reconstruction problem that couples real space (shape) and deformation.
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Grain boundaries are step functions in the (mis)orientation tensor, where the gradient is infinite,

and provide the most obvious and robust means to define a spatial resolution for those methods

which can map multiple grains. E.g. the spatial resolution of grain-by-grain processing methods can

be quantified by the gaps or overlaps of the reconstructed grain volumes. Internal grain boundaries

or grain boundaries on a free surface in this sense are analogous to high contrast features with a

sharp interface in resolution standards for absorption tomography. When well defined features are

absent within the grain volume and deformation gradients are smooth, spatial resolution cannot

be inferred from the reconstructed deformation field. The accuracy of a 3D diffraction scanning

method is best described by an expected or mean error of the following quantities: 1) location

of grain or domain boundaries; 2) location of grain or domain centroids; 3) each orientation and

strain tensor component; 4) each orientation and strain tensor gradient.

The angular range covered by a detector pixel as viewed from the sample is similar in both a

typical far-field and near-field detector setup (1...2×10−4rad). The far-field 3DXRD/HEDM setup

generally provides a better orientation and strain resolution due to a smaller point spread function,

less susceptibility to mechanical instability due to the larger pixels, and more indexed families and

reflections as a result of reduced overlap and higher signal-to-noise ratio.

1.5. Strain mapping with a near-field DCT setup

The full beam approach can utilise most photons from the synchrotron source of all scanning

techniques, hence it has an inherent advantage in speed, simplicity of the setup, and easy switching

to absorption or phase contrast imaging mode. These are exactly the advantages that allowed the

DCT method to be transferred from the synchrotron to a laboratory-based instrument (King et

al., 2013; McDonald et al., 2015; Sun et al., 2019; Bachmann et al.,2019)[58, 59, 60, 61]. A further

advantage in time-resolved scans is described in Section 4.9. The efficiency of other scanning

methods on the synchrotron is adversely affected by: the efficiency of the focusing optics, speed

of positioning motors, overall setup stability, detector readout time. It should be noted that these

constraints have been gradually being eliminated, e.g. by state-of-the-art detectors which have

negligible dead time.

In the problem at hand, the ”near-field” imaging detector is a few millimetres away from the

sample, and the detector pixel size is much smaller than the average grain size. Debye-Scherrer rings

are not formed on the detector at all, instead, individual diffraction spots are observed, typically

well-separated (see Fig. 5). The experimental setup in the current paper (or in routine DCT at

present) does not utilise the direct transmitted beam behind the sample but utilises the diffracted

beams only. These form several unconnected diffraction spots from each grain and are segmented

out from the image stack along the (u, v, w) directions. Subsequently, they are indexed according

to their grain and (hkl) lattice plane of origin. Since a given (hkl) plane normal diffracts multiple

times (maximum four times) over a 360-degree rotation, the observed and indexed diffraction spots

of a specific grain are referred to with the linear index k instead. Several such (u, v, w) diffraction

spots from a given grain are used as the input data for the 3D shape and strain reconstruction of

that one grain.

The DCT indexing process is described in (Reischig et al., 2013)[29], the setup calibration

and the mean grain position, orientation and strain fitting are outlined in (Reischig & Ludwig,
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2019)[31]. Including a distortion correction of the raw images, the achievable accuracy in the

simulated diffraction spot centroid positions can be significantly smaller than one pixel in (u, v)

and often even better in w (i.e. smaller than the typical 0.05◦ stepping interval).

The diffraction spots are highly sensitive to the ω rotation. In case of zero intragranular de-

formation the projection is a parallel projection of the grain volume with limited extent along ω

(defined by the energy bandpass and divergence of the incoming beam), as the entire grain volume

diffracts at the same rotational position (Fig. 2a). A hypothetical state of constant deformation

throughout the grain volume would result in small shifts of the projection directions and spot

positions (Fig. 2b). Although the case of negligible intragranular orientation spread may be en-

countered in recrystallised and annealed materials, most structural materials exhibit some degree

of local deformation, which is apparent as a spread in w. Within one integrated ω rotational step

(e.g. ωstep = 0.05◦), only a sub-region of the grain would diffract and contribute to the intensity

(Equation (2)). Over the entire ω range of the diffraction spots (typically 0.1...2◦), in theory, all

sub-regions of the grain would diffract at some point. The exact (u, v) and w position where a sub-

region (or reconstructed voxel) diffracts on the detector within a given diffraction spot depends on

the intragranular orientation and strain distribution within that grain. Any orientation or strain

component in the sample reference that translates into either a stretch perpendicular to the (hkl)

lattice planes or a tilt of those planes will result in a (u, v, w) offset in the diffraction peak position

of a voxel (Fig. 2c). The intensity distribution inside the diffraction spots is typically a slowly

varying continuous field, spread over (u, v, w). The grain shapes, the misorientation fields and the

strain fields are highly convoluted, and cannot be simplified to an azimuthal and radial spread as

in the case of Debye-Scherrer rings.

For a given voxel, the offset in this (u, v, w) projected peak position relative to a (u∗, v∗, w∗)

reference projected position is computed in the diffraction model. The reference (u∗, v∗, w∗) posi-

tion is where the voxel would project if it had the pre-determined grain average orientation and

strain. The pixel size is comparable to the reconstruction voxel size, which is the basis for the

spatial sensitivity. The thousands of active voxels which make up a grain all project somewhere

within each indexed diffraction spot of the grain. This results in a cloud of intensities in the

3D (u, v, w) space of each diffraction spot, which is a distorted projection of the grain volume

(Fig. 2c). In the near-field setup, this sensitivity to the offsets in u, v, w separately is the basis for

the local (mis)orientation and strain (Type 3 stress) analysis. However, this orientation sensitivity

combined with the box beam illumination also constitute the limiting conditions of the near-field

setup. Namely, the diffraction spots start to severely overlap for increasing values of intragranular

orientation spread, as observed in metallic materials which have been subjected to several per cent

of plastic deformation.

The motivation of the current study is to present a model and a solver to explore the possibility

of maximising information available from such full-beam illumination, while exploiting its photon

efficiency. The data processing method is also adapted to line and pencil beam illumination, and

it reconstructs not only the grain shapes but also the orientation and strain fields at the sub-grain

level. The proposed algorithm, named Iterative Tensor Field (ITF) Reconstruction, is based on a

vector representation of the 3D distribution of diffracting power and a 3D intragranular deformation
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field, and aims to reconstruct this F(x, y, z) : R3 7→ R1+9 tensor field on a grain-by-grain basis

in the deformed state. It builds on the principles of kinematical diffraction and ray tracing, and

employs an iterative solver.

The diffraction model is described in Section 2, and the ITF algorithm in Section 3. Based

on similar principles, potential alternative models and solvers are set out in Section 4, although

these are not applied or discussed in detail. The ITF solver is demonstrated on experimental data,

as reported in Sections 5 and 6. The results and applicability of the solver and the approach are

discussed in Section 7.

2. Diffraction model

2.1. Diffraction signal

The pixel intensities in an image frame are the summed contribution of the X-ray diffraction

signal Id and elements of the background noise, such as inelastic scattering Iinelastic and fluores-

cence Ifluorescence from the sample, the sample environment device, the beam defining aperture,

and a dark current signal from the imaging sensor. The contribution of the photons arriving at

the detector is modulated by the detector function, which is usually simplified to a point spread

function convoluting the contributions from a small neighbourhood around a pixel:

I = F (Id + Iinelastic + Ifluorescence + Isensor) . (4)

To model the diffraction signal, the grains within the sample volume are assumed to be ”ide-

ally mosaic”, i.e. an ensemble of kinematically scattering crystallites, each contributing to the

diffraction signal when passing through the diffraction condition of an (hkl) reflection while being

illuminated with a monochromatic beam and rotated at a rotational speed ωs around the rotation

axis. An analytical solution of this total integrated diffracted intensity (or diffracting power) Icryst

exists for a free-standing deformation-free crystallite, using the ”small crystal” approximation (see

Warren, 1990 [62]):

Icryst ∼
I0 λ

3 F 2
hkl

ωs δ2
cell

Lhkl δcryst , (5)

where I0 is the intensity of the incident X-ray beam, λ = hc/E is the photon wavelength, E

is the photon energy, h is Planck’s constant, c is the speed of light, Fhkl is the structure factor

of the crystal lattice, δcell is the volume of the crystal unit cell, δcryst is the volume of the small

crystallite, and Lhkl is the Lorentz-polarisation factor that depends on the relative orientations of

the (hkl) plane normal, the rotation axis and the polarisation vector of the (synchrotron) X-ray

beam.

In a kinematical diffraction model, the phases and interference of the elastically scattered

photons are neglected, and the real-valued intensity contributions from different parts of the sample

are added up. Extinction of the transmitted beam due to diffraction along its path is neglected.

For monochromatic beams the use of intensity at a specific rotational position w is not practical,

instead, the integrated intensity is employed. To model the integrated intensity Iuvw diffracted

from a 3D polycrystalline sample volume into a pixel region Ωp in (u, v, w) of an image frame

exposed during the scan, a real-valued integral needs to be computed over the surface area of the
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pixel in (u, v), over the rotational step interval in w (during which the exposure is continuous), and

over the 3D real space Ωs covering the sample volume in (x, y, z) in the sample reference, taking

into account the orientation and strain fields across the volume:

Iuvw =

∫∫∫
Ωp

∫∫∫
Ωs

I0 C S D dx dy dz du dv dw ; (6)

where I0 is the intensity distribution of the incident beam:

I0 = I0(x, y, z, w,E) . (7)

The incident beam and rotation axis directions are fixed and dependence on them is not shown.

C represents the local crystallography, diffracting power and any potential (hkl) reflections of the

lattice:

C = C(x, y, z, u, v, w,E, Fhkl,B0,U(x, y, z),D(x, y, z)) , (8)

where B0 is the reciprocal basis matrix of the undeformed reference unit cell, U represents the

local crystal orientation and D the local deformation, as defined in the Appendix.

S is an attenuation factor due to absorption and scattering inside the sample along the incident

and diffracted beam path:

S = S(x, y, z, u, v, w,E) . (9)

D is the detection efficiency of the detector and a scalar to transform intensity into detector

units:

D = D(E) . (10)

We use a grain-by-grain approach where the diffraction signal from the indexed individual

grains are concentrated into a finite number of segmented and indexed diffraction spots that are

treated independently, assuming no contribution (overlap) from other grains. Voxel elements of

a grain volume are assumed to diffract as a ”small crystal” when exposed and rotated around

the rotation axis through a reflection k with the Miller indices (hkl), and each gives rise to the

integrated intensity Ik. The strength of a reflection is characterised by the scalar intensity modulus

κk which comprises all relevant effects:

κk = δvox I0DChkl Sk Lk (11)

Chkl ∼
λ3 F 2

hkl

δ2
cell ωs

= const . (12)

A parallel beam geometry is assumed for the synchrotron beam, the incident beam direction,

intensity and photon energy is considered constant everywhere in the laboratory reference frame

and during the scan: I0 = const and λ = const. Alternatively, the intensity profile across the

beam cross-section can easily be monitored by moving the sample and beam stop out of the beam

and recording reference images. The detector response is also assumed to be constant over the field

of view of the system: D = const. Due to the typically small grain size compared to the sample

cross-section, and the changes in diffracted beam directions as a result of deformation being small,
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one can reasonably assume that the total self-attenuation the rays are subject to on their paths

are constant across the volume of a grain and across the entire w range of a reflection: Sk = const.

The same argument stands for the geometric factor Lk = const. Using fixed size cubic voxels,

the voxel volumes are also constant, when a grain completely fills in the volume of a voxel. These

assumptions, in an ideal case, yield the same integrated intensity for each voxel of a grain within

a diffraction spot.

To account for the case when the voxel is not completely occupied by the crystal and to allow

for local variations in the reconstruction, the following product is used for the integrated intensity

Ijk of a voxel j in diffraction spot k:

Ijk = pj κk , (13)

where pj is the scalar diffracting power of voxel j and is the same for each reflection k. The pj

values define the shape of a grain. They are not known initially and allowed to change from voxel to

voxel during the shape reconstruction. Using binary values for pj allows for a simple representation

of grain volumes – as commonly used in DCT.

The intensity modulus κk may be precomputed and calibrated for the specific hardware and

sample material or fitted during the iterations, as shown in Section 3.4. We further make the

assumption that pj and κk are not directly dependent on the deformation state of a voxel. This

appears to be a workable simplification for metals, although more experimental data and studies

on the consistency and error of the reconstructions will be required to justify it. It is, nevertheless,

reasonable to expect that the intensity modulus varies sufficiently slowly with the deformation

components, and that its behaviour could be characterised by a fairly simple function. Having

an adequately calibrated function in relation to deformation, the intensity modulus of each voxel

could be updated during the iterative solution without significantly perturbing the local linear

behaviour of the solver proposed in the following sections.

2.2. Intensity distribution function

The integrated intensity from a voxel is distributed over an area of a small number of pixels in

the (u, v) image plane, and over a narrow range of w rotational intervals, according to an intensity

distribution function. An accurate description of how the intensity is precisely distributed would

need to take into account intricacies of the detector elements: the scintillator that transforms the

X-rays into visible light, the visible light optics and the imaging sensor. In particular, the following

aspects play an important role:

• precise shape of the finite voxel element and the diffracted wave front;

• absorption conditions and visible light generation from X-ray photons in the scintillator;

• incident angle between the impinging beam and the scintillator;

• afterglow (light emission delay) of the scintillator;

• propagation and internal reflections of the visible light inside the optics;

• detection of visible light photons and cross-talk between the pixels of the imaging sensor;
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• read-out and digital conversion characteristics of the imaging sensor.

For faster computation of the model, this complex process is approximated by a combination of

an intensity distribution function that describes the peak shape of each voxel, and a point spread

function that describes a blurring of the total combined deposited intensity from the voxels. The

intensity distribution function is sensitive to small changes in the deformation state of a voxel, and

is a crucial element of the model that should be chosen with consideration, as it can significantly

affect the fidelity of simulated diffraction spots and the processing time.

Each diffraction spot k of a grain is stored as a 3D array of pixel intensity values, and ordered

in memory contiguously as the vector where the order of dimensions are (v, u, w). Pixels within a

diffraction spot are identified with the linear index i, which normally only lists active pixels, i.e.

those which receive an intensity contribution.

In the model, one diffracted ray j initiates from the centroid position xj = (x, y, z) of voxel j

in the sample reference, and it intersects the detector plane at (u, v) at rotational position w. This

ujk(xj ,dj) = (u, v, w) projection position represents the centre or the peak of the intensity distri-

bution of that voxel in diffraction spot k, and it is a function of the nine deformation components

dj = djm of the voxel, where m = 1...9. Bragg’s law and the setup geometry determines ujk, see

Appendix for the computation. Ray j deposits its intensity in a small neighbourhood of ujk over

Nt number of detector pixels which are denoted by n = 1...Nt. The look-up table i = ψjkn returns

pixel index i, where intensity is deposited from voxel j in diffraction spot k which has the list index

n, and it is used in the forward projection (simulation) of the pixel intensities.

The intensity distribution function tn(u) determines the peak shape, i.e. what fraction of the

intensity is assigned to an affected pixel n. The same function is used for all voxels, reflections and

grains. Normally the further away the centroid of a pixel is from the ray position u, the lower its

value. A suitable intensity distribution function should meet the criterion that the integral sum of

the intensity over all affected pixels must be one.

Nt∑
1

tn = 1 (14)

The set of voxels j that contribute intensity to a given (i, k) pixel with list index n are stored

and returned in the look-up table j = φikn. This look-up table φikn is used in the backprojection

operation during the iterations, and can be regarded as the ”inverse” of ψjkn.

The intensity of pixel i in diffraction spot k is denoted with qik. Considering kinematical

diffraction conditions, the resulting intensity of a pixel is the sum of the intensity contributions

from all rays that affect that pixel:

qik = κk

Nt∑
n=1

∑
j∈φikn

pj tn(ujk(xj ,dj)) . (15)

Once computed, the list of pixel intensities can be reassigned into the original (u, v, w) 3D array

format of the diffraction spot. The centroids of the pixels are at integer numbers of (u, v, w),

which are equal to the pixel integer indices (uvw) within the spot. The linear pixel index i is an

equivalent notation of the 3D indices (uvw).

The value of pj may change from voxel to voxel, or it can be forced to be a binary value for a

discrete grain shape reconstruction. Prior to discretisation, nevertheless, it is treated as a floating
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point value during the reconstruction. The most simple form of tn would be to assign the total

intensity of the ray to one single pixel, the nearest pixel to the ray position (u, v, w). However,

this would mean that the pixel intensity would remain constant for a small deformation change,

and it would abruptly drop to zero, once the ray position is closer to another pixel. The pixel

intensity as a function of the deformation components would not be continuous or differentiable.

Instead, we choose to use a simple and feasible form of the intensity distribution function, which

is advantageous for the linearisation and effective computation of the pixel intensities, and their

derivatives w.r.t. the deformation components. We use a linear interpolation, where the intensity

diffracted from a voxel is distributed among the 8 nearest neighbouring pixels in (u, v, w), i.e. a

2 × 2 × 2 pixel neighbourhood. In order for this interpolation to be valid, it is necessary that

there is no gap in the sample rotation, exposure and integration of the intensities in consecutive

images by the detector. Such integration gap may arise, for example, when the read-out time of

the detector (during which the signal accumulation is interrupted) is non-negligible compared to

the exposure time per image, or due to synchronisation problems.

When applying tn to a projected ray position (u, v, w), the 2 × 2 × 2 pixel neighbourhood is

defined by the indices (u∗v∗w∗), which correspond to the coordinates (u∗, v∗, w∗) of the first corner

pixel (n = 1) of the neighbourhood:

u∗ = floor(u) v∗ = floor(v) w∗ = floor(w) . (16)

Six linear interpolation coefficients c describe the distance of the ray position from the lower

and upper voxels in the 2× 2× 2 neighbourhood:

c+u = u− u∗ c+v = v − v∗ c+w = w − w∗ (17)

c−u = 1− c+u c−v = 1− c+v c−w = 1− c+w . (18)

The tn intensities deposited into the 8 neighbouring voxels ψn are a linear combination of those

six coefficients:

ψ1 = (u∗, v∗, w∗) t1 = c−u c
−
v c
−
w

ψ2 = (u∗, v∗, w∗ + 1) t2 = c−u c
−
v c

+
w

ψ3 = (u∗, v∗ + 1, w∗) t3 = c−u c
+
v c
−
w

ψ4 = (u∗, v∗ + 1, w∗ + 1) t4 = c−u c
+
v c

+
w

ψ5 = (u∗ + 1, v∗, w∗) t5 = c+u c
−
v c
−
w

ψ6 = (u∗ + 1, v∗, w∗ + 1) t6 = c+u c
−
v c

+
w

ψ7 = (u∗ + 1, v∗ + 1, w∗) t7 = c+u c
+
v c
−
w

ψ8 = (u∗ + 1, v∗ + 1, w∗ + 1) t8 = c+u c
+
v c

+
w

(19)

The total diffracted and deposited intensity from a voxel is preserved,
∑8

1 tn = 1, which means

that this tn is an adequate intensity distribution function.

A variety of other types of intensity distribution functions can be considered. There is an

obvious benefit of a smaller spread where a lower number of pixels are affected by the ray and

have to be included in the computation. A high-fidelity function would depend on the mosaicity
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and strain state of the grains, and the divergence and energy bandwidth of the incident beam. A

commonly used relative energy bandwidth dE/E in experiments is 10−4 to 10−3, which is adapted

to a typical ωstep of 0.05◦. The intensity distribution function proposed above appears to be a good

approximation when deformation is apparent through extended diffraction spots in w. It should

be noted, however, that for grains with small deformation gradients the reflection curve may be

sharp and fall within one rotational step, so the linear interpolation along w leads to a discrepancy.

The 3D intensity distributions of the diffraction spots are convoluted with the point spread

function s(u, v) of the detector in two dimensions over (u, v) to simulate a blurring effect.

2.3. Link between voxel deformations and pixel intensities

The deformation gradient tensor field D(x, y, z) in the current framework is compatible with

finite strain theory, i.e. not restricted to small strains, and applied as defined in the Appendix. It is

solved for each voxel in the deformed state, thus local displacements in the underlying displacement

field are irrelevant. The deformation field is defined directly by its nine deformation components

d = djm in the sample reference, rather than by the unit cell parameters, which contributes to

faster forward simulations. A D solution can be decomposed into misorientation and strain (see

Appendix), or optionally, D can account for misorientation only. For alternative treatments of

the link between lattice deformations and diffraction, see (Oddershede et al., 2010, Bernier et al.,

2011, Edmiston et al., 2011)[23, 19, 24].

The link between the pixel intensities qik, the diffracting power (grain shape) pj and the defor-

mation tensor components djm is established via computing their derivatives ∂q
∂t , ∂t

∂u , ∂u
∂d during

the iterations. The forward derivatives of the peak shifts w.r.t. the deformation components can

be computed with finite differences by forward simulating all peak positions for a small change in

each deformation component m, i.e. nine forward simulations in total.

An explicit formula can be derived for the derivatives, nevertheless there may not be a gain in

computation time, and reusing the forward simulation code to compute the finite differences allows

for a more straightforward and reliable implementation. Given that the peak shifts are close to

linear, these derivatives change slowly with the deformation state, so they can be kept constant and

stored over several iterations. Depending on the grain size and diffraction geometry, their change

across the voxels of a grain is also moderate, and may potentially be considered constant (not the

case in our current implementation). The ∂u
∂d derivatives are a useful measure of how sensitive the

peak shifts are to small deformation:

∂u

∂d
=

(
∂ujk
∂djm

,
∂vjk
∂djm

,
∂wjk
∂djm

)
. (20)

The deformation sensitivity χm indicates the average change in a deformation component m that

can be detected with a one pixel peak shift along u or v, or a one image shift along w. It refers to

a specific orientation in the sample (and location, to a lesser extent) or to a grain.

χm =

 1

mean
∣∣∣ ∂uk

∂dm

∣∣∣ , 1

mean
∣∣∣ ∂vk

∂dm

∣∣∣ , 1

mean
∣∣∣ ∂wk

∂dm

∣∣∣
 (21)

The peak deformation sensitivity χ+
m indicates the smallest change in a deformation component m

that can be detected in any of the reflections with a one pixel peak shift along u or v, or a one
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image shift along w.

χ+
m =

 1

max
∣∣∣ ∂uk

∂dm

∣∣∣ , 1

max
∣∣∣ ∂vk

∂dm

∣∣∣ , 1

max
∣∣∣ ∂wk

∂dm

∣∣∣
 (22)

The deformation sensitivity can also be determined for an entire experiment (a combination of the

setup and the material) by computing the mean sensitivity of all grains and all observed reflections.

The derivative of the intensity distribution function w.r.t. the peak shifts can be expressed

with a linear combination of the c coefficients computed beforehand. With an example of the first

two pixels in the 2× 2× 2 neighbourhood:

∂t1
∂u

= −c−v c−w
∂t1
∂v

= −c−u c−w
∂t1
∂w

= −c−u c−v (23)

∂t2
∂u

= −c−v c−w
∂t2
∂v

= −c−u c−w
∂t2
∂w

= +c−u c
−
v etc. (24)

The derivatives exist, and are continuous monotonic functions over the range of one pixel in u, v

and w, i.e. as long as the ray projects into the same 2× 2× 2 pixel region. When the ray reaches

the boundary of the 2× 2× 2 neighbourhood, the derivatives abruptly change sign or become zero

outside the neighbourhood region. This is the main reason why the problem at hand is non-linear.

If the influence of the convolution with the detector point spread function is neglected, the

derivative of a given pixel intensity w.r.t. the intensity distribution function is:

∂qik
∂tjkn

=

pj κk for j ∈ φikn
0 for j /∈ φikn .

(25)

A voxel j contributes only once to a pixel i in a reflection k with its corresponding neighbour-

hood index n according to a symbolic look-up table n = ηijk, which is not explicitly stored or used.

Combining the above derivatives yields the expression for the derivative of a given pixel intensity

qik w.r.t. a deformation component m of a contributing voxel j = φikn and neighbourhood index

n = ηijk:

Ad =
∂qik
∂djm

∣∣∣∣
j∈φikn

= pj κk

(
∂tjkn
∂ujk

∂ujk
∂djm

+
∂tjkn
∂vjk

∂vjk
∂djm

+
∂tjkn
∂wjk

∂wjk
∂djm

)
. (26)

Similarly, the derivative of a given pixel intensity w.r.t. the diffracting power pj of a given voxel:

Ap =
∂qik
∂pj

∣∣∣∣
j∈φikn

= κk tjkn . (27)

The derivatives are zero for all other pixel-voxel (i, j) combinations. Only the non-zero elements

are computed and stored as matrices, offering a relatively memory-efficient sparse representation.

In the implementation of the solver algorithm the ∂u
∂d derivatives are the most expensive to

compute, however, these can then be stored and used over a number of iterations while kept

constant. The c coefficients are recomputed in each iteration, from which the tjkn values, the ∂t
∂u

derivatives and the A matrices can be generated by a few multiplication and addition operations,

resulting in fast computations.
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3. Solution by local linear optimisation

3.1. Inferring shape and deformations as a linear optimisation

Starting from an adequate initial approximate shape and deformation state, small corrections

are applied to the diffracting power (shape) and deformation components of all voxels simultane-

ously in an iterative manner ( Fig. 4). In the current implementation one grain is processed at a

time, entirely independently from the others, hence the grains in the volume can easily be dealt

with in independent parallel processes.

The pixel intensities and the above derivatives are computed for all voxels of a grain that are

active for a given shape and deformation field. For the sake of simplicity in this description, all

active pixels in all diffraction spots are contained in a single vector q = qik, and all deformation

components (misorientation and/or strain) of all active voxels are contained in a single vector

d = djm.

The difference between the measured qmes and simulated q pixel intensities is computed in

each iteration:

∆q = qmes − q . (28)

This difference is to be minimised as far as possible in every iterative step of the solution by finding

an adequate set of corrections in diffracting powers and/or deformation components. Utilising the

derivatives above, a local linear problem at the current solution can be formulated as:

∆q =
[
Ad Ap

]∆d

∆p

 = A∆c , (29)

where ∆d is the corrections to be applied to the deformation components, ∆p is the corrections

to the diffracting powers, both either positive or negative, and contained in a single vector ∆c for

simplicity. The A matrices contain the intensity contributions to each pixel (one row per pixel)

from all deformation components and diffracting powers (one column per component).

Since the linear system typically contains more unknown parameters than equations, an objec-

tive function is constructed to be minimised by a solver. Several algorithms are known to handle

such large linear systems and approximate a solution. The system at hand is analogous to a

computed tomography problem, where a Simultaneous Iterative Reconstruction Technique (SIRT)

or a Conjugate Gradient (CG) method provides effective means of solution (Sluis & Vorst, 1990)

(Gregor & Fessler, 2015)[63, 64]. SIRT is routinely used for the shape reconstruction of moder-

ately deformed grains in DCT (Ludwig et al., 2009)[65], and its discrete counterpart, DART has

also been demonstrated to be very effective (Batenburg et al., 2010)[66]. SIRT and CG have also

been used for determining the orientation distribution function of a single grain (Hansen et al.,

2009)[67]. More robust algorithms, for example the Chambolle-Pock method (Chambolle & Pock,

2011) (Sidky et al., 2012)[68, 69], that have been used in 6D shape and orientation reconstructions

(Viganò et al., 2014)[52], could also be considered.

Since the components of the linear system change as the deformation components and diffracting

powers change, a linear solver which does not require much computation to initialise (precondi-

tioning) and which does not heavily build on previous iteration steps are the best suited to the
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problem. SIRT and CG are prime candidates for their simplicity, and have shown convergence in

preliminary simulation tests. One can choose to keep the current linear system for a number of

sub-iterations, if that provides the best overall convergence rate for the non-linear problem. CG

may need restarting after a certain number of main iterations, as the corrections do depend on

prior steps.

Translated into a least squares problem, the solver tries to minimise the objective function Γ0

which is the square of the L2 norm (denoted by ‖.‖2) of the residual vector.

Γ0 = ‖∆q−Ad∆d−Ap∆p‖22 = ‖∆q−A∆c‖22 (30)

∆c∗ = argmin
∆c

(Γ0) (31)

In SIRT the corrections in each iteration α are computed as a backprojection operation, us-

ing the transpose matrix AT . The initial values of ∆c∗ at the start of the iteration are zero:

∆c(α=0) = 0. The backprojection distributes the residual errors of the pixels among the contribut-

ing parameters, here the deformation components and/or diffracting powers, with a given weight.

The weights can be chosen within some limits, e.g. based on the L1 or the L2 norm of the intensity

contributions to a pixel, where the model would be expected to converge (Sluis & Vorst, 1990)[63].

We choose to use the L2 norm weighting as, for example, in (Kak & Slaney, 2001)[70]. In the

following formulae, the index i covers all active pixels in all diffraction spots, the index j covers

all deformation components and diffracting powers in all active voxels, and the look-up tables

have the corresponding form: φi and ψj . The SIRT solution of a given deformation component or

diffracting power j after iteration α+ 1 is:

∆cj(α+1) =
1∑

i∈ψj
‖Aij‖

∑
i∈ψj

Aij

(
∆qi −

∑
j∈φi

Aij∆c(α)

)
∑
j∈φi
‖Aij‖2

+ ∆cj(α) . (32)

In practice, the correction may be computed in only one step, without iterations. If the A matrix

is kept constant, a small number of further iteration steps can be computed. Although this does

not any more accurately represent the geometry due to the change in deformation state, it may be

a more efficient way of approximating the solution.

After the SIRT iterations α, the deformation components and diffracting powers are updated

with the SIRT correction in each main iteration β:

c(β+1) = c(β) + ∆c∗ . (33)

The exact projection geometry is recomputed with the updated deformation components, and the

A matrix is regenerated to repeat the SIRT steps in a next iteration loop (Fig. 4). Note that,

although the simultaneous correction of the deformation components and the diffracting powers is

formally possible, the solution might only converge close to the true solution.

3.2. Regularisation and mechanical constraints

The objective function Γ can naturally include additional mechanical constraints (Γ1(d)) or

physical criteria regarding the shape or diffracting power (Γ2(p)) in the solution space to improve

the well-posedness and convergence rate. For example, in a formulation using the L2 norm of the
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deviation of the deformation components from zero, from the grain mean values or from some other

reference value f1, the objective function becomes:

Γ = Γ0 + γ1Γ1 + γ2Γ2 + etc. (34)

Γ1 = ‖f1 −A1∆d‖22 Γ2 = ‖f2 −A2∆p‖22 . (35)

The linearised system to be approximated using SIRT can be formulated as:
∆q
√
γ1 f1
√
γ2 f2

· · ·

 =


Ad Ap

√
γ1A1 0

0
√
γ2A2

· · · · · ·


∆d

∆p

 . (36)

The physical criteria or mechanical constraints would typically refer to the magnitude or gra-

dients of the diffracting powers and/or the deformation components. The L2 norm is adapted to a

SIRT solver, however, depending on the nature of the objective function, e.g. when L1 norms are

involved, another suitable algorithm should be selected. Examples of potentially useful regularisa-

tion criteria include:

a) The L1 or L2 norm of the parameters in an absolute sense.

b) The L1 or L2 norm of the parameters relative to their deviation from predetermined grain

mean values.

c) L1 or L2 norm of the gradients to enforce smoothness in the solution.

d) Strain compatibility: assuming that the grains would have zero orientation spread in their

stress free state. It is normally not the case in polycrystals, in particular, metal grains tend

to have a considerable mosaic spread according to their dislocation content even at very low

residual stresses.

e) Static stress equilibrium: assuming linear elasticity, if the single crystal elastic moduli

and the zero stress lattice parameters of the material are known, the stress tensor σ can be

computed from the strain tensor for each voxel from Hooke’s law (see Appendix). Using small

strain theory, the strain components in the sample reference, with a good approximation, are

a linear function of the deformation tensor components. The small body forces can be

neglected, hence the divergence of the stress tensor field should be zero everywhere. The

stress imbalance, i.e. the deviation from the static equilibrium condition, can be described

locally for each voxel as the divergence of the stress tensor, which can be treated as a linear

function of the stress or deformation components (see Appendix). The volume integral of

the L2 (or L1) norm of the local deviations from static equilibrium across all voxels in the

grain volume can be used as the objective function:

Γ(d) = ‖div(σ(d))‖22 . (37)

f) Elastic strain energy minimised: if the single crystal elastic moduli are known, the elastic

strain energy density of the lattice can be computed as a quadratic function of the strain
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components. Applying small strain theory, the strain components in the sample reference can

be approximated as a linear function of the deformation tensor components. The integral

of the local strain energy density ϑ across the grain volume can be used in the objective

function:

Γ(d) = δvox
∑
j

ϑ(dj) . (38)

3.3. Iterative Tensor Field (ITF) reconstruction based on SIRT

This section describes the implementation and use of a SIRT-based solver (named Iterative

Tensor Field reconstruction) in detail, which was also used to produce the experimental results

reported in Section 6. Initial tests of the simultaneous reconstruction of diffracting power and

deformation components from the 3D diffraction spots did not show satisfactory convergence in our

simulations. This is presumably due to the fact that if the current deformation field is far from the

true solution, many of the voxels project into empty pixels, and the grain shape becomes corrupted

during the iterations. This effect is much eliminated when the shape reconstruction is based on

the 2D diffraction spots that are integrated over w, just like in a regular DCT reconstruction.

Therefore, in our current approach, the shape reconstruction is separated from the deformation

reconstruction, and is performed from the 2D diffraction spots with the current deformation field

fixed, before the first and then after every Idef number of main deformation iteration cycles. In

each main deformation iteration cycle, the exact projection geometry is recomputed. Each main

iteration may contain multiple SIRT sub-iterations, however, in the current implementation only

one single SIRT step is used per main iteration cycle. When inferring the deformation components,

the shape, i.e. the active voxels, are fixed (Fig. 4).

The grain average orientation and strain values are fitted beforehand using the diffraction spot

centroids (Fig. 3). The deformation components are sought as an additional deformation to the

grain average state. In the deformation solver demonstrated in this study, we use the following

objective function in the linear problem in each main iteration, without applying any mechanical

constraints:

Γ = ‖∆q−Ad∆d‖22 + γ ‖d + ∆d‖22 , (39)

where d is the current deformation solution. The first term aims at eliminating the pixel inten-

sity deviations and the second one is a Tikhonov regularisation term which prefers deformation

components closer to the initial grain average values.

In every iteration there is a possibility to apply additional corrections to the SIRT solution,

although such constraints should ideally be included as an extra term in the objective function

or included in the model. In the current implementation, we apply a smoothing operation to the

deformation field in every main iteration by applying a 3× 3× 3 mean filter (box filter) including

the 26 nearest neighbours of a voxel. The actual resulting field is a linear combination of the mean

filter (with weight Ws) and the current solution (with weight 1−Ws). This smoothing is analogous

to including a spatial gradient term in the objective function. From an implementation perspective

this way is beneficial because such smoothing functions are available in code libraries.
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A weighting factor is applied to the backprojection contributions of the reflections. The angle

of incidence onto lattice planes with a normal closer to the rotation axis changes slower w.r.t. ω.

Hence, they sweep through their reflection curve slower, resulting in a higher integrated intensity,

i.e. a larger Lk and κk in Equation (11), and a higher signal-to-noise ratio. These diffraction spots

are also more spread out in w, and they constitute higher deformation sensitivity, although they

are also more susceptible to diffraction spot overlap. To account for these higher quality reflections,

the backprojection contribution of the reflections are weighted with their
√
κk value.

Furthermore, an additional weighting factor ξik is applied to each pixel in each diffraction

spot. ξik is normally one but it allows for further fine-tuning of the pixel contributions in the

backprojection. Noise in the images may get magnified in the backprojection, especially near the

edges of a diffraction spot, where few voxels project and the denominator in Equation (32) is small.

In these areas, background noise and under- or over-segmentation of the spots has a significant

effect, hence ξ is set to zero. More abrupt disturbance may arise from spot overlaps, scintillator

defects and faulty detector pixels, etc. Thus, the absolute values of the ∆d corrections from

each reflection and of the combined ∆d correction are forced within preset limits. Since typically

tens of diffraction spots are used per grain, any suppressed contribution is averaged out in the

backprojection, and such fine-tuning of the pixel contributions helps convergence.

Control over weighting factors ξik also provides the option to include or exclude diffraction

spots from the analysis. For example, as the iteration progresses it may become more apparent if

any of the spots are corrupted by overlap. We currently apply an automatic preselection of the

reflections before the iterations, where outliers are excluded based on their mean (u, v, w) positions,

and this set is kept fixed during the iterations.

The final deformation dfinal state of the voxels is a combination of the initial grain average

and the local corrections found by the iterative solver (see Appendix).

The SIRT algorithm provides not only the direction but also the magnitude of the deformation

corrections. Alternatively, a fixed step size (10−4 to 10−5 in the deformation components) can be

applied to increase the convergence rate, while preserving the direction (sign) of the corrections.

Several figures of merit can be used to describe the fidelity of a solution and track convergence.

Monitoring which pixels are active in the observed and simulated diffraction spots and the level

of overlap between the two sets (”pixel hit rate”) is an informative measure, given the unique 3D

shapes of the spots from a deformed grain. In practice, the utility of this approach somewhat

diminishes when the segmentation of the spots is too relaxed or too conservative.

Figures of merit can include, for example:

a) The L1 norm, the L2 norm, the mean or the median of the residual errors in the pixel

intensities;

b) Voxel hit rate: the fraction of voxels which project into an active pixel, and not into a

zero pixel;

c) Pixel hit rate: the fraction of active pixels which are reached by at least one ray from the

voxels;
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d) Deviation from mechanical constraints, such as static equilibrium (if the elastic moduli

are known), etc.

Furthermore, to monitor the rate of convergence and stability, the value and rate of change of

the norm, mean and standard deviation of the deformation parameters and their corrections can

be employed. The condition to stop the iterations may be based on a combination of the above

measures. We currently simply apply a fixed number of iterations. The final deformation field D

in the solution is decomposed into an absolute orientation (3-component Rodrigues vector) and a

6-component strain tensor for each voxel in a post-processing step (see Appendix).

The complete grain maps are assembled from the individual grain volumes, similarly to standard

DCT (Ludwig et al., 2009)[65]. Overlapping voxels are first removed, then filled in by the closest

grain according to the 3D Euclidean distance of its nearest voxel to the overlap voxel. Filling

in missing voxels around the grain boundaries (dilation) can be performed, in which case the

orientation and strain fields are extrapolated linearly in 3D.

3.4. Grain shape reconstruction

In the current implementation, the deformation and shape reconstruction cycles are separate

and interlaced. The shape reconstruction is carried out as the initial step, then after every Idef

number of main iterations. It is performed from the 2D diffraction spots integrated over w, with

the deformation field (thus also the diffraction geometry) fixed, and aims at reproducing the pixel

intensities by optimising p in a regular SIRT problem:

qmes,2D = Ap p . (40)

An initial shape reconstruction envelope is defined as the convex region in which more than

50% of the pixels (not all, to account for segmentation errors) backproject at zero deformation,

plus an extra margin of a few voxels that takes potential deformation into account. The shape

reconstruction cycle consists of a SIRT reconstruction of the real-valued diffracting powers in Ireal

number of iterations, which is interrupted with a thresholding and discretisation procedure, based

on the assumption that the diffracting power varies little across the grain and is independent from

the deformation state. Negative voxel values are set to zero and the solution is smoothed with a

3D filter in each SIRT iteration.

Discretisation has been previously shown to be effective in the shape reconstruction of unde-

formed grains by Batenburg et al. (Batenburg et al., 2010). In their 2D method, following an initial

reconstruction, only the grain boundaries are corrected during the iterations. In our case, all grain

voxels are allowed to change for the next set of Ireal iterations, so that the grain boundaries do

not need to be determined, which allows for a more simple and coherent implementation, although

potentially less efficient. The binary threshold for determining the grain shape from the real-valued

SIRT reconstruction is found iteratively similar to the approach described in (Der Sarkissian et

al., 2018)[71]. A lower threshold results in a larger binary grain volume. In each iteration step,

for a given binary threshold, its corresponding κk values and the mean absolute residual error (the

L1 norm) over all simulated versus measured pixels in all diffraction spots are computed. The

threshold and its corresponding κk values (see Section 2.1) with the lowest error are chosen as
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solution. The threshold search is a single parameter optimisation, where the error function is fairly

smooth and usually has a well defined minimum.

For a given binary threshold and the resulting grain shape, the intensity modulus κk as a single

scalar determines the diffracted intensity from a voxel or from the entire grain in diffraction spot

k. For each diffraction spot, an estimate of the κk value is computed from each pixel as the ratio

of the measured (qmes,2Dik ) and forward projected qik intensities. From this set, the median value

is taken as a robust estimate of κk of that reflection.

κk = median

(
qmes,2Dik

qik

)
(41)

We use the median value of κk, rather than the mean, for each reflection as this provides a robust

estimator even in case a diffraction spot is affected by an overlap up to 50% of its area. Currently,

κk is estimated independently for each reflection. If the structure factors, self-attenuation, etc. are

modelled correctly (Equation (11)) and the relative intensities of the reflections can be trusted,

then they can also be taken into account when computing κk, eliminating the discrepancies caused

by spot overlaps.

In each shape reconstruction cycle a new grain reconstruction envelope is determined with

an extension around the current grain volume region to allow the grain volume to grow. The

deformation components are extrapolated linearly over the extension region in 3D.

Accounting for knowledge of the microstructure, morphological constraints to the grain shape

can be applied during the iterations. In the current solver, the binary grain volume is enforced to

be a single connected region, holes in the volume are filled in, grain boundaries are smoothed, and

spikes protruding from the volume are removed in a dilation-erosion (retaining only a connected

region in the volume). For annealed microstructures these are usually safe assumptions.

A pseudo code of the grain shape reconstruction cycle is as follows:

AFTER every Idef number of main iterations DO shape reconstruction:

- Keep deformation field and projection geometry fixed

- Determine new grain reconstruction envelope

- Extrapolate deformation components

- FOR Ishape number of iterations DO:

- DO Ireal number of real-valued sirt iterations

- Set negative voxels to zero; smooth solution with a 3D filter

- DO binary thresholding

- Set new appropriate threshold based on previous values

- Make binary grain volume by thresholding

- Apply morphological corrections to volume

- Forward project 2D diffraction spots

- Compute median κk for each diffraction spot

23



- Compute combined L1 norm of pixel errors

- Stop, if number of grain voxels changed is lower than limit

- Choose threshold (volume and κk) with lowest error

- Update active voxels in binary grain shape and deformation grid.

3.5. Spatial grids

The shape and deformation reconstruction are performed on two separate 3D grids in real space,

with the shape grid having a smaller spacing – usually the pixel size of the detector. This ensures

the maximum spatial resolution in the shape reconstruction and adequate sampling for smooth

forward projected diffraction spots that are free from aliasing. The (u, v, w) values over the shape

grid points are linearly interpolated in (x, y, z) based on the forward mapping of the deformation

grid points (x, y, z) 7→ (u, v, w). These (u, v, w) ray positions, now with a higher concentration of

points, are then accumulated into a 3D array to generate a diffraction spot. A weighting scheme

for the intensities ensures consistency between the two grids for grid points that are near the

boundary of the grain volume. Alternative supersampling methods in the forward projection may

be considered to ensure smoothness of the diffraction spot intensities.

The backprojection is performed using the deformation grid and the intensity weighting scheme

that is applied in the forward projection. The deformation grid is less dense than the shape grid, so

that less deformation parameters need to be computed in the backprojection, which greatly benefits

processing time. Its spacing is chosen to be adequate for the highest underlying spatial frequencies

of the deformation field as observed in the images, or e.g. 1/2 to 1/3 of the spacing interval

of the shape grid. Although the fact that the forward projection and backprojection happens

on different spatial grids breaks the original linear formula used for SIRT (Equation (29)), the

increased smoothness and continuity of the intensity distribution improves the underlying model

and does not compromise the solution.

3.6. Well-posedness and initialisation

The original reconstruction problem combining the deformation field and the diffracting powers

is inherently ill-posed because voxels with zero diffracting power can have any orientation and

strain. Establishing the number of equations and number of unknown parameters is problematic

at the start. For a better insight, it is useful to consider the linear form (Equation (29)) at the

true solution, rather than the initial solution. At or very close to the true solution, the number of

equations (known parameters) in (Equation (29)) is the number of detector pixels into which at

least one ray projects. This is the same as the number of measured non-zero detector pixels, which

is known from the input. However, due to the difficulty of segmenting the diffraction spots from a

noisy background, the number of measured active pixels depends on the segmentation threshold,

thus is not evident.

The more complex the deformation field and the larger the misorientation and strain gradients

at the scale of observation (e.g. with variations over 2...10 times the detector pixel size), the more

spread out the diffraction spots are (condition II, Equation (2)). Thus, the number of active pixels

and equations in the linear form (Equation (29)) is also higher for essentially the same number of
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unknowns, so the linear problem is less ill-posed. Note that in a rigorous 12D description of the

problem (Section 1.3, and Fig. 21), with the same number of spatial voxels, the initial number of

unknowns (the space of possible deformation combinations, consisting of three misorientation and

six strain components) would increase proportionally to n3+6
d , where nd is the number of possible

discrete values per deformation component considered, leading to a much more underdetermined

problem.

The exact number of unknown parameters per grain in the present vector representation is also

problematic to determine at the start, as the grain shapes are unknown. The number of voxels

in the initial shape reconstruction envelope constitute the initial number of unknows (with one

diffracting power value and nine deformation components each), which is also a fair approximation

of the refined volume in the final solution.

3.7. Error estimation

The forward derivative P and the pseudoinverse T relate peak shifts to deformation components

(see Section 4.3), and can be used as a basis for estimating the errors of a solution in the deformation

components. However, in a real measurement, there is no way to pinpoint the true (u, v, w)

projection positions of a single voxel within an extended diffraction spot, which could then be

transformed into an error in the deformation components. As an alternative, an error assessment

based on simulated data sets mimicking the real conditions could be produced.

A measure of the quality of the solution can, nevertheless, be computed for an entire grain

using the figures of merit proposed in Section 3.3. On a voxel-by-voxel basis, an error figure can

be produced by combining the residual pixel errors at the locations in uj where a voxel projects.

A more exact way to estimate the local errors is analysing local deviations from static equi-

librium in the measured stress field (as in Equation (37)), if the single crystal elastic constants

of the sample material are known. The analysis can be extended to a larger scale by computing

the total forces and moments acting on cuboid regions that include several voxels under a sliding

window over the volume, which theoretically should be zero. However, these stress conditions will

not detect any error that is present as a constant field of normal stresses (e.g. a hydrostatic stress

state), unless they include a free surface where the stresses are known to be zero. Such analysis

can also be performed on multiple grains, or at the grain boundaries, or over the entire grain map.

Another informative error estimate applying equilibrium at the macroscopic level can be the

deviation of the total force through a complete cross-section of the sample from the externally

applied force or from zero. For example, if the sample is loaded along the rotation axis, the surface

integral of the stresses in the direction of the rotation axis through any complete section of the

sample must be equal to the external force. Similar considerations apply to shear forces and the

balance of moments.

4. Alternative models and solvers

In addition to the SIRT/CG-based Iterative Tensor Field Reconstruction method proposed in

Section 3.3, alternative ways of inferring grain shapes and a deformation field inside grains of

polycrystals can be considered. Building on the key concepts of kinematical diffraction, a vector
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representation of the solution space and an iterative solution utilising local linearity, we propose

a number of potential approaches that utilise a full beam (box beam) illumination for future

consideration. In the following sections concepts 1 to 5 assume that the mean grain positions and

orientations are known initially from indexing within some accuracy, while concepts 6 to 8 outline

indexing-free methods. Concept 9 describes how time can be introduced in the reconstructions as

the 4th dimension.

4.1. Concept 1: Global ITF

This concept is an extension of the ITF method presented in detail in Section 3.3 and in

Section 6. As the memory requirements are feasible, it has the potential to be performed simul-

taneously on all grains, instead of grain-by-grain, while assuming or enforcing a single orientation

per voxel. Voxel orientations near the grain boundaries could be checked and corrected or refined

regularly during the iterations. If a sophisticated forward simulation is used that takes into account

self-absorption in the sample and other contributions to Equation (11), the intensity in overlapping

diffraction spots from two or more grains could be handled rigorously. Overlaps in the diffraction

spots pose a major limitation to the current indexing and grain-by-grain processing, which could

be much eliminated this way, and enable a more robust handling of twins, subgrains and small

angle grain boundaries.

4.2. Concept 2: Omega-ITF

At small deformation levels (in the order of 10−4 to 10−3), the peak shifts in (u, v) are typically

a few pixels, which is small compared to the typical grain sizes of tens or 100s of pixels, leading to

only a moderate deviation from the case of fixed parallel projections. This results in small (u, v)

peak shifts and diffraction spots that are only moderately deformed in (u, v). The deformations

are inferred only from the ∆wk peak shifts that are defined as a deviation from a reference w0

position (w0 refers to zero strain or the grain average strain).

From each measured 3D (u, v, w) diffraction spot two 2D (u, v) projection images are computed:

1) integrated image: each (u, v) pixel contains the integrated intensity of the diffraction spot along

w; 2) moment image: each (u, v) pixel contains the deviation of the first moment (centre of mass)

of the intensities along w (positive or negative). This moment should correspond to the sum of

the ∆w peak shifts of all voxels that project into the (u,v) pixel, i.e. the equivalent of a line

integral of the ∆w peak shifts. Since the ∆w values can be approximated as a linear function

of the deformation components (see Section 4.3.1), and the projection geometry can be regarded

fixed, the deformation components can be found in a quasi-linear problem. It is analogous to

regular tomography with the distinction that for each voxel several unknowns are sought. An

approximation of the 3D grain shape can be reconstructed by SIRT, as it is routinely done in

DCT. Using the reconstructed grain shape, the deformation components can be inferred with a

regular SIRT, Conjugate Gradient or other methods from the moment images.

The approach may also be applicable to single crystals in X-ray topography and rocking curve

imaging, when several (hkl) reflections are recorded and combined. Furthermore, the approach

may be adapted to infer deformation fields from extinction contrast in the transmitted beam that

occurs as shadows of diffracting grains in the alternative ”direct beam” version of DCT, where only
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a small number of grains are present in the sample cross-section (Johnson et al., 2008) (Ludwig

et al., 2008)[72, 73]. The extinction spots can be treated similar to diffraction spots but with a

negative intensity modulus and no peak shifts in (u, v). The moment images would be computed

from the extinction peak shifts along w, and would constitute a projection geometry identical to

regular computed tomography.

In light of the analysis regarding the uniqueness of 3D strain fields based on line integrals

presented in [11], it should be noted that considering the w peak shifts only, without the shifts in

(u, v), might not lead to a unique solution for the local deformation components.

4.3. Concept 3: Deformations from gradient intensity flow

This method builds upon the concepts of ”peak shift inversion” and ”intensity flow field”, which

we briefly introduce below.

4.3.1. Peak shift inversion

Small deformations have a quasi-linear effect on the peak shifts in (u, v, w) on the detector.

For the moment, we put aside the problem of how to determine those peak shifts from projection

images, discussed in the next subsection (Section 4.3.2). Assuming a linear relationship allows for

a simple approximate inversion, i.e. obtaining a small correction of deformation components from

peak shifts. Although this concept is not applied in the SIRT solver presented in Section 3.3, we

speculate that this concept offers potential alternative solutions where, instead of the collective

corrections as in SIRT/CG, more localised corrections are applied in solution space, and it also

enables some means of error estimation.

A peak shift ∆ujk of a ray from diffracting volume element j in diffraction spot k can be

approximated as a linear function of the deformation components dj and the position xj of the

element in the sample reference frame. Combining the peak shifts and partial derivatives of a voxel

from all diffraction spots into one uj vector, the P matrix is defined:

P j =
[
∂uj

∂dj

∂uj

∂xj

]
. (42)

The peak shifts of an element in all diffraction spots can be written as the matrix-vector product:

∆uj = (∆uj ,∆vj ,∆wj)
T = P j

∆dj

∆xj

 . (43)

In the inverse relation, to find a suitable deformation and voxel position correction for a set of

measured or assumed peak shift values, a generalised inverse (Ben-Israel & Greville 2003)[74] of

matrix P can be utilised. In particular, the Moore-Penrose pseudoinverse is unique and provides a

least squares fit for an input vector of peak shift values (which are necessarily subject to errors of

the measurement or the estimate). There are typically tens of indexed diffraction spots available

for a grain, of a variety of (hkl) indices, with non-coplanar scattering vectors substantially spanning

3D real space in the sample reference. The number of peak shift components combined from all

observed diffraction spots is significantly higher than 12, hence the nine deformation components

and the three spatial parameters can be reliably fitted. The Moore-Penrose pseudoinverse of P

T j = (P T
j P j)

−1P T
j (44)
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can be computed as a matrix product, including a 12 × 12 matrix inversion, or by singular value

decomposition or they can be derived analytically. An explicit least squares estimate of an ad-

justment in the deformation components ∆d∗j and voxel position ∆x∗j can be obtained for a set of

estimated peak shift values ∆u∗j : ∆d∗j

∆x∗j

 = T j∆u∗j . (45)

In more simple cases, P and T may exclude the spatial coordinates x and/or strain, and

only include crystal orientation. A valuable property of theirs is that they vary relatively slowly

w.r.t. the deformation components and the spatial position in the sample. Hence, once they are

computed, they can be kept constant for a number of iterations, and, in case of small grains, one

matrix may be a suitable approximation to be used for all voxels. Furthermore, the components

in P and T themselves provide an estimate of what deformation and spatial resolution we may

expect from the experimental setup.

A potentially useful variant of P and T is one that only takes into account the wj shifts within

the diffraction spots:

Pw,j =
∂wj

∂dj
Tw,j = (P T

w,jPw,j)
−1P T

w,j (46)

and from an estimate ∆w∗j of those provides a best fit correction for the deformation components

(for details on its potential application, see Section 4.2):

∆wj = Pw,j∆dj ∆d∗j = Tw,j∆w∗j . (47)

4.3.2. Intensity flow field

The 12-parameter fitting using T , used in a single step or iteratively, is essentially the same

procedure as the one used for refining the grain mean (i.e. not a voxel) position, orientation and

strain from the diffraction spot centroids (Reischig, 2008; Bernier et al., 2011; Oddershede et al.,

2010; Reischig & Ludwig, 2019)[28, 23, 19, 31].

As opposed to fitting the spot centroid positions, the challenge at hand is that a grain is not

represented by a single centroid but as a point cloud (a set of voxels). Knowing the T pseu-

doinverse in itself does not provide a solution, as we are faced with the original problem of not

knowing which voxel contributes to a given pixel in the diffraction spots. We assume that a

reasonable guess can be made of how the intensities within an entire diffraction spot could be

rearranged to decrease or eliminate the pixel residual errors. This guess has the form of a physi-

cally meaningful displacement field which assigns a (∆u∗,∆v∗,∆w∗) peak shift to each ray (each

voxel). We will refer to such a vector field defined for each diffraction spot, as the intensity flow

ϕk(uk) : (uk, vk, wk) 7→ (∆u∗k,∆v
∗
k,∆w

∗
k). It essentially provides a local driving force for a ray

to move into a certain more preferable direction within the diffraction spot. It can also be re-

garded as the gradient of a potential field where lower energy potential corresponds to lower pixel

errors locally. The mappings ϕk(uk) from all diffraction spots are combined into one function

ϕ(u) 7→ ∆u. Pseudoinverse T can be applied to transform these effective guesses of the peak shifts
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into a deformation and position correction for each voxel:∆d∗j

∆x∗j

 = T j ϕ(uj) . (48)

4.3.3. Gradient intensity flow as a deformation solver

The outlined concepts can be employed in a solver that aims to find the deformation field

for fixed voxel positions and a fixed grain shape, treating the voxels independently. One would

perform forward projection with the parameters d and x, and compute ϕ(u) to obtain and apply

a correction to them. T may only need infrequent update, as argued previously. The intensity

flow field ϕk(u) is defined as the gradient of the measured minus the simulated pixel intensities

in a diffraction spot. This essentially directs intensities (i.e. rays of the voxels) to shift towards

(u, v, w) regions where there is a lack of intensity, and away from (u, v, w) regions where there is

a surplus of intensity. Thus, it helps to eliminate the pixel residual errors on a very local scale.

A partial initial overlap between the observed and simulated deformation fields in (u, v, w) is a

prerequisite.

4.4. Concept 4: Deformations from collective intensity flow

Similar to gradient intensity flow, but the field ϕk(u) is constructed in a way that it aims

to completely eliminate the pixel residual errors in a diffraction spot. Suitable flow fields could

be determined by employing principles of, e.g. optical flow algorithms, fluid dynamics of a gas

flow or machine learning. While such fields would only provide an estimate, we speculate that

the consistency of these estimates across multiple diffraction spots may well drive the deformation

solution towards the real values.

4.5. Concept 5: Coupling with CP-FEM solvers

Close coupling of the diffraction solver with a crystal plasticity FEM solver may be considered

by sharing the same finite element grid or mesh and defining a suitable objective function (Equa-

tion (34), Equation (37)). It would need to balance error measures from the diffraction model and

the mechanical model of the polycrystalline volume in each iteration. Alternatively, mechanical

constraints could be fully enforced in the model. FFT based FEM solvers may be best adapted

for the task as they are based on a regular grid (Lebensohn, 2001)[75].

4.6. Concept 6: Sub-grain deformation based on free elements

Rather than a conventional grain representation where diffracting elements are fixed on a reg-

ular, space-filling 3D grid, in this concept the diffracting elements of one grain are free to move

in (x, y, z) in the sample reference, resulting in three extra degrees of freedom. The grain shape

is gradually built up in the iteration from a cloud of elements as their position and orientation

converges to the true local orientations. The diffracting power of each element is constant, and

their number and local density determines the grain shape and local diffracting powers, hence this

degree of freedom is eliminated from the reconstruction problem. The total number of elements to

use may be predetermined based on the observed diffraction spot intensities. A figure of merit for

an element may be based on completeness (the fraction of detected vs expected (hkl) reflections)
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or the local pixel intensity errors where the element projects. New elements may be created based

on indexed grain centroids, orientation distribution functions, or near other elements with a high

figure of merit, or in a random manner. Elimination of the elements may be based on heuristic

rules, e.g. according to their figure of merit and/or after a fixed number of iterations. The ele-

ments may be ordered in space relative to one another, while still allowed to change position and

orientation, analogous to a rubber or sponge-like object.

The diffraction spots are forward simulated as detailed in Section 2.1. The positions and

deformations of the elements are either updated independently using the ”intensity flow” concept

or in a collective manner like the SIRT/CG based approach. The advantage is that a persistent

vector model can be used with simple computation and a high degree of parallelisation, well

suited to GPUs. The model avoids treating the diffracting powers separately, and the problem of

their inherently ill-posed representation. Regularisation may compensate for the higher degree of

freedom and unknowns. A disadvantage is that it is more complicated to consider smoothness and

real space gradients of diffracting power, deformation or stresses.

4.7. Concept 7: Grain map reconstruction based on free elements

Following the concept of free elements, and accounting for orientation only and no strain,

entire 3D grain maps could potentially be reconstructed simultaneously. As a first step, the entire

recorded (u, v, w) image stack (typically 7200 images with 2048x2048 pixels, 60GB at 16bit integer

representation) is thresholded to a binary stack to segment the diffraction signal and zero the

background noise. A 3D Euclidean distance transform is computed for each pixel in (u, v, w) to

obtain its distance from the nearest segmented diffraction spot, which results in a map of identical

size to the raw image stack. The map is zero inside the diffraction spots. A pixel value in this map

can be seen as an energy component for an element that projects there, with the analogy that the

total energy of any element should be zero at the true orientation solution. The negative (u, v, w)

gradient of this distance map is then computed, resulting in a field that points towards the nearest

active pixel (segmented diffraction spot) at every (u, v, w) pixel in the image stack. This gradient

map is used as the intensity flow ϕ(u) and is not changed in the iteration.

Using the product of pseudoinverse T (which here excludes strain) and ϕ(u), a correction of

position and orientation of a free element can be computed directly to improve its fit to the nearest

observed diffraction spots, even if the spots are actually far in (u, v, w). If most of the closest

diffraction spots belong to the same grain, then even a single or just a few of such corrections

should be sufficient to shift the element to the true grain position and orientation. We speculate

that grain shapes would be reproduced with this approach as the elements settle in a ”low energy”

state. Intragranular information probably cannot be inferred in 3D accurately using the binary

signal.

The elements can be updated independently and the diffraction signal is not simulated, which

offers fast parallel computing with no random memory writes. The convergence rate is expected to

scale with the sparsity of diffraction spots, as the orientation and real space need less dense initial

(random) sampling. The initial knowledge of orientations present in the sample, e.g. from indexing

or an orientation distribution reconstruction from far-field diffraction data (Barton & Bernier, 2012;
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Kazantsev et al., 2009; Schmidt et al., 2011)[76, 14, 20] would greatly help convergence. A sufficient

number of elements for a detailed map, each having their individual T matrices, would require 100s

of GB of RAM, which is available in state-of-the-art desktop computers. Furthermore, sub-regions

of the sample can be treated independently. The adaptive orientation mapping algorithm by Li et

al. for a 2D section (Li & Suter, 2013)[48] provides reliable grain maps and is somewhat similar

to this concept.

4.8. Concept 8: Grain and deformation map based on free elements

Concepts 6 and 7 would naturally combine and a compound ϕ(u) flow field (energy gradient

field) could be defined over the entire detector space. The field ϕ(u) would be based on the negative

gradient of the distance map where the measured diffraction signal is zero, and on the difference

between observed and forward simulated intensities where the measured diffraction signal is larger

than zero (these regions would need to be updated in each iteration). Although there is no proof

or guarantee for convergence, this theoretical approach creates a consistent framework for inferring

the local orientation, strain state and diffracting power over the entire 3D sample volume without

an indexing step. Bypassing the indexing has the advantage that significant spot overlaps, twins,

and sub-grains might be handled adequately. The approach appears to be within reach with regard

to processing power and RAM available in a small computer cluster.

4.9. Concept 9: Sliding interval time-resolved scans

The single-axis scanning procedure in DCT has the unique advantage that a series of w rota-

tional positions represent a linear time series, and a 3D reconstruction from a set of images over an

w range represents the mean deformation state in the corresponding time window. By continuing

scanning several times around 360◦, and performing reconstructions from the images within a slid-

ing time window, the 3D deformation fields can be obtained as a function of time in a very effective

way with any of the above reconstruction methods, maximising time resolution. The algorithm

would take the reconstructed grain map and deformation field from the previous time window

as the initial state and refine that result by excluding the first w frame and including the latest

frame in the input data. This, of course, assumes sufficiently slow changes in the sample, so that

the input data under any time window is consistent enough for reconstruction. It probably also

requires active control of the sample positioning during acquisition and additional data processing

steps to ensure that the same gauge volume is being scanned and any sample drifts are tracked or

corrected accurately. If the sample drifts are known accurately, their effects are straight forward

to include in the forward projection model.

5. Experimental

5.1. Material - Gum Metal under tensile load

For testing the model and the ITF solver at considerable strain levels, DCT scans were per-

formed on an annealed polycrystalline Gum Metal sample with a composition of Ti-36Nb-2Ta-

3Zr-0.3O wt% and mean grain diameter of 61µm under uniaxial tensile load. Gum Metal is a

family of beta-Ti alloys, with a body-centred cubic (bcc) lattice, which exhibit superelasticity, and
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can sustain exceptional elastic elongation well beyond 2% nominal strain, due to its low elastic

modulus and high yield strength (Kamimura et al., 2016)[77]. Its mechanical behaviour is strongly

influenced by the low value of its shear modulus C ′ = (C11−C12)/2 (Furuta et al., 2013)[78], and it

can undergo a reversible stress-induced martensitic phase transformation (Talling et al., 2009)[79].

The lattice planes in single and polycrystals of the alloy of Ti-36Nb-2Ta-3Zr-0.3O wt% composition

exhibit linear elastic behaviour up to ∼ 0.7 % uniaxial strain (350...450 MPa) (Hara et al., 2009;

Talling et al., 2008)[80, 81] beyond which the elastic behaviour is progressively non-linear. The

specimen had a strong {110} texture in the loading direction (Fig. 10).

5.2. DCT acquisition parameters

The dog bone shaped sample was prepared by spark cutting from a 3 mm rod, and had a

rectangular cross-section of ∼ 540× 570µm at the gauge volume. The sample was mounted into a

small tensile device (Gueninchault et al., 2016)[82], in which the gauge section could be irradiated

with an X-ray beam around 360◦ perpendicular to the loading axis through its glass walls. The

device was mounted on the rotation stage of a diffractometer, with the loading and the rotation

axes aligned vertical. Two identical DCT scans were recorded at different load levels: 1) a low

load of ∼34 MPa was exerted to stabilise the sample in the strain device; 2) a high load of ∼345

MPa was applied near the end of the linear elastic regime of the material. The tensile force was

determined by a strain gauge integrated into the tensile device, and calibrated to ∼0.1 N accuracy.

The scans were not started for several minutes after applying the load, during which the force

showed some relaxation. The vertical position of the sample was adjusted before the high load

scan to ensure that approximately the same volume was scanned in both cases.

The specimen was scanned using a quasi-parallel monochromatic synchrotron beam of 40 keV

energy and ∆E
E ' 10−3 relative energy bandwidth from an in-vacuum undulator and a double bent

silicon crystal Laue monochromator. The beam was collimated to about 1× 1 mm area inserting

a series of compound refractive lenses in the optics hutch located 60 m from the experiment

(Vaughan et al., 2011)[83]. The scan consisted of a continuous rotation through an angular interval

of ωstep = 0.05◦ for each image (angular step size), integrating the diffraction signal for 1.5 sec

per image (exposure time), which resulted in 7200 images over a 360◦ rotation. To allow for the

detector read-out time, the rotation stage was rotated back to the correct starting position for

each image, so that gaps in the integration were avoided. Including this regular back rotation, the

total scan time was 5h. Had a state-of-the-art sensor been used with negligible read-out time, the

scan would have taken 3h – the total net exposure time. The detector consisted of a transparent

luminescent screen (a scintillator crystal), a 10x microscopy objective, a mirror and a Frelon sensor,

providing 2048 × 2048 pixels and an effective pixel size of 1.4 µm in the recorded images. The

rotation axis to detector distance was 7 mm. A rectangular beam stop, slightly larger than the

direct beam footprint, was placed in front of the scintillator to absorb the direct beam and reduce

background scatter noise in the dark field area.

32



5.3. Data processing algorithm, solver parameters

5.3.1. Indexing and grain average properties

The image stack was preprocessed, the diffraction spots segmented and the grains indexed ac-

cording to the procedure described in (Reischig et al., 2013)[29]. The setup geometry parameters

and the mean position, orientation and strain components of all indexed grains were fitted simulta-

neously in an iterative routine optimising the least squares deviation in the (u, v, w) spot centroid

positions (Reischig & Ludwig, 2019)[31]. With the setup parameters fixed, the centroid position,

mean orientation and mean strain state (altogether 12 parameters) of each grain were refitted in a

simple robust fit using Siegel’s repeated median method (Siegel, 1982)[84] to eliminate the effect of

outliers due to spot overlap, thus providing an improved estimate. Outlier diffraction spots were

identified as having a (u, v, w) deviation from their simulated centroid position beyond twice the

median error. These spots were excluded from the local deformation and shape analysis. Grains

with less than 15 remaining diffraction spots or with scattering vectors that were all coplanar (in

such case the full strain tensor cannot be inferred) were discarded in the local deformation analysis.

5.3.2. Shape reconstruction

The grain median orientations and strain tensors were used as the initial reference state for the

SIRT-based ITF deformation solver described in Section 3.3. The solver was run independently

on each grain. The shape and deformation reconstructions were separate and interlaced using

Idef = 100, Ishape = 10 and Ireal = 20 number of cycles. The shape reconstruction grid had a

spacing of 1.4 µm, the same as the detector pixel size. The 2D diffraction spots, integrated in w,

were used as projections. The intensity distribution function tn assigned all intensity to the nearest

pixel in (u, v), rather than the four nearest neighbours, for speed. The objective function of the

SIRT solver in the shape reconstruction was based on the pixel intensities only (Equation (40)).

A smoothing operation was performed using a 3D Gaussian filter over a 3× 3× 3 neighbourhood

with a standard deviation of one voxel. It was followed by morphological operations on the binary

shape: 1) filling in enclosed holes inside the grain volume; 2) erosion and dilation of 1 voxel

over the 26 nearest neighbours; 3) any unconnected regions other than the one that contains the

volume centroid was removed. The shape reconstruction loop was stopped early if the number of

binary voxels that changed versus the previous step was smaller than 0.5% of the volume. At the

beginning of each shape reconstruction cycle, the reconstruction envelope was the previous grain

volume dilated with 5 voxels.

5.3.3. Deformation reconstruction

The deformation reconstruction grid had a spacing of 5 µm, which seemed to suit the intensity

variations in the 3D diffraction spots. The intensity distribution function described in Equa-

tion (19) and a point spread function of Gaussian shape with 1.5 pixels standard deviation over a

11 × 11 pixel (u, v) region was used. The objective function of the SIRT solver was based on the

pixel intensities and the deviation of the deformation components from the median grain values,

as in Equation (39). A smoothing 3D mean filter (box filter) was applied to the deformation field

over the active voxels in a 3× 3× 3 neighbourhood, and the result combined the filtered and the

unfiltered solution to provide a smoother deformation gradient, with 5% and 95% contribution,
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respectively. The ∂u/∂d derivatives were recomputed at every 10 iterations. Imain = 5000 main

iterations were used, and one sub-iteration (Isub = 1), i.e. in this case there was no difference

between main and sub-iteration, and the forward projection was always performed without lin-

ear approximation. No additional stopping criterion was enabled. The backprojection correction

contribution to a deformation component from each reflection was limited to ±1× 10−4, and the

total correction from all reflections to ±5 × 10−4 in each step. The individual grain results were

combined into a grain map, with the overlaps removed, but no space-filling or dilation operation

was performed. All strain values were corrected retrospectively with an offset in hydrostatic strain

to compensate for the originally inaccurate nominal lattice parameter and X-ray wavelength. The

grain and deformation maps presented here were not treated any further.

5.3.4. Implementation

The deformation solver has been implemented in the MATLAB environment (version R2017a,

MathWorks, 2017), adapted to the existing DCT MATLAB library (Ludwig et al., https://

sourceforge.net/projects/dct/), with a highly optimised MATLAB code that was compiled

for execution on a Linux platform. The code makes no use of GPU-s, but utilises the built-in

CPU multithreading of Matlab. The compiled code was run on the computer cluster of the ESRF,

where grains were processed independently using 4 processor cores each. The cluster computers

have 16...28 Intel Xeon E5-2680 processor cores each, running multiple jobs simultaneously. The

execution used 160 cores in total, and the execution time was approximately 24 hours for each

of the low load and the high load data set containing ∼1430 grains. The memory usage of the

code is fairly lean. The active voxel positions and deformation components of a grain, in the

sample reference, are stored as vectors of type 64-bit floating point. The peak shift derivatives

∂u/∂d, indices of the 8 nearest neighbours and 6 interpolation coefficients for each voxel and each

diffraction spot are also stored as vectors or (non-sparse) arrays throughout the iteration. The

observed segmented and the simulated diffraction spots are stored as full 3D volumes of the same

size, with a zero padding of 2 pixels in (u, v, w). Any forward simulated intensity that would fall

outside the volume is accumulated on the edges of the volume.

6. Results

6.1. Observed reflections

The maximum observable 2θ angle for the experiment described here was ∼ 11.5◦ at the edges of

the detector, and∼ 16◦ in the detector corners, w.r.t. the sample centroid. The observed diffraction

spots belonged to the first three lattice plane families: {110}, {200}, {211} and occasionally to

{220}. The maximum theoretically observable reflections during the 360◦ scan is 24, 12, 48,

respectively, ignoring the limitation in the observable Bragg angle. The 3D diffraction spots of the

first two families typically had enough signal-to-noise ratio to exhibit visually smooth gradients,

while the third and fourth family appear noisy and much less smooth. The diffraction spots selected

automatically for analysis are mostly free from large overlaps, although smaller overlaps are fairly

common from small grains or sub-grains.
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The scanned regions of the sample in the two scans were found to be offset vertically by 16µm

(∼ 11.5 voxels). The reconstructed regions were both 406 voxels in Z (along the rotation/loading

axis) and ∼ 420 voxels laterally (Fig. 23). The number of grains that were suitable for local

deformation analysis was nearly the same, 1428 in the low load and 1437 in the high load data

set. The number of active diffraction spots per grain available as input after outlier rejection for

the local deformation analysis was rather low: between 20 and 35 for most of the grains (Fig. 8).

The standard deviation of the discrepancy between the forward simulated and observed diffraction

spot centroids were typically within one pixel in (u, v) and well within half an image in w (Fig. 23,

Fig. 9).

The 3D intensity distribution in the observed diffraction spots appear smooth, continuous

and connected. For grains with a small error, the resolved deformation fields reproduce most of

the features and spatial frequencies that are present in the observed diffraction spots: intensity

gradients, ridges, dips, valleys, holes, etc., which suggests that the deformation and diffraction

model and its spatial accuracy is suitable (Fig. 6). Some diffraction spots exhibit extended “tails”

in w, where only a small fraction of the grain volume diffracts, but which are still connected to the

rest of the intensity cloud. These come from regions in the grain which have a distinct deformation

state, although still connected to the majority of the volume via smooth deformation gradients.

Although less relevant to this data set, we note that twins, subgrains and neighbours with a small-

angle grain boundary which share a significant fraction of the reflections with the parent grain may

be missed by the current indexing procedure, thus may not be reconstructed.

6.2. Deformation sensitivity

The deformation sensitivity χ (Equation (21)) and peak deformation sensitivity χ+ (Equa-

tion (22)) to the orientation and strain tensor components in the sample reference were computed

for each grain from its reflections used in the local deformation analysis. All the grain sensitiv-

ities were then combined into one mean value per deformation component, which refers to the

entire data set and the specific experimental setup (Fig. 7). This mean sensitivity is in the range

of 1.5...3 × 10−3, for at least one (u, v, w) component, for each strain tensor component. The

mean peak sensitivity is under 10−3, for at least one (u, v, w) component, for each strain tensor

component. These results indicate that inferring the deformation components at an accuracy in

the order of 10−4 is theoretically feasible when fitting a high number of diffraction spots, if the

simulated diffraction spot intensities at the solution match closely with the observed distributions.

Regarding misorientation, the Rodrigues vector components around the X and Y axes have the

highest mean peak sensitivity of 2.7×10−4 (5.4×10−4 rad, approximately double in radians), and

it is w.r.t. ω. The misorientation Rodrigues vector component around the Z axis has the highest

mean sensitivity w.r.t. ω of 8.7 × 10−4 (1.74 × 10−3 rad), the same as its peak sensitivity, which

equals 0.05◦, the rotational step interval ωstep. This is expected, as the step size in the ω rotation

is a direct measure of the Z rotational direction of a plane normal.

6.3. Errors

The total absolute error in the pixel intensities of a diffraction spot (the L1 norm), normalised

by the measured integrated intensity of the diffraction spot was averaged across all reflections
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and all grains (yielding the sample mean of the L1 norm), and monitored during the iterations

(Section 11 and Fig. 11). The results are plotted for all grains, as well as a smaller selection of

grains which had an error with a mean L1 norm less than 0.6, i.e. a more reliable deformation

solution. A monotonic decrease is visible in the combined L1 norm, and a steady increase in the

pixel hit rate of diffraction spots. The larger diffraction spots have a significant halo around them,

and often extended “tails” in ω, which is why the pixel hit rate may not go over 80...85%. The

voxel hit rate increases only a few per cent, and plateaus after a small decline at ∼ 1000 iterations.

It is probably due to a significant number of weak diffraction spots that were tightly segmented

from the background noise, hence some of the rays may hit empty pixels, even if projecting into

the correct pixel. The combined error curve still shows some improvement at 5000 iterations, and

it was not stabilised in a minority of the grains, which show good potential for reducing errors in

further iterations.

The distribution of the number of indexed reflections and of the active reflections available per

grain for deformation analysis are even across the cross-section. The following figures of merit were

quantified to indicate the quality of the deformation solution for each grain and the ensemble of

all grains (Section 11 and Fig. 11): mean L1 norm of the pixel intensity errors normalised with the

total diffraction spot intensities, median voxel hit rate (see Section 3.3), median pixel hit rate (see

Section 3.3), median deviation of measured and simulated ω spread. These quantities offer a way

to classify the grains and relax the need of a manual evaluation of a large number of grains in a data

set when optimising the solver parameters or validating the results. They seem to correlate well

with each other and all indicate significantly higher errors in the grains on or close to the sample

surface (Figs. 14 and 15). As apparent from the diffraction spots, the surface grains are much

more deformed already in the low load state. Based on a visual comparison between observed

and simulated diffraction spot intensities in the current results, the grains can be classified in

the following groups according to their mean L1 norm of the pixel intensity error (eL1) with the

following approximate ranges:

eL1 < 0.5: good resemblance with nearly all features reproduced, mismatch in the tails with

an error w ≤ 1;

eL1 < 0.6: good resemblance for most of the volume, significant mismatch in smaller regions;

eL1 < 0.8: main features (lower spatial frequencies) reproduced, significant local differences;

eL1 < 1: variable resemblance, unreliable results;

eL1 > 1: main trends captured, local results not to be trusted.

The reconstructed grain maps are nearly 100% space filling with only a few grains in the bulk that

did not qualify for deformation analysis. Most grain shapes look realistic, concave grain boundaries

are reconstructed well, and the maps from the two load states match closely. The grain volumes

tend to slightly overlap when assembled in the map. The thickness of the overlapping regions along

the grain boundaries is typically 1...2 voxels (1.4...2.8µm), occasionally 3 or 4. Half of the mean

overlap thickness (roughly ∼1 voxel or ∼1.5µm) can be regarded as the actual deviation from

an expected grain boundary location, i.e. the spatial resolution of the measurement. In a small
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number of cases protrusions from the grains are visible, and more frequent in the surface grains.

These are most probably due to overlaps in the diffraction spots. As the surface grains are more

spread out in w, there is a higher chance for an overlap to be included in the 2D spot integrated

across w that is used for shape reconstruction.

6.4. Deformation field

A horizontal X − Y slice of the 3D strain maps reconstructed by the ITF solver is shown in

Fig. 17, which shows a realistic and reasonable strain distribution. The quantitative validation

of the local deformation is not possible from this experiment. A quantitative assessment here

is restricted to a comparison of the grain average strain values of the local fields with the grain

average values fitted from the diffraction spot centroids, and of the overall elastic behaviour.

The mean of the local strain tensor components (all in the sample reference frame) in the low

load (ε̄low) and high load (ε̄high) data sets of all voxels reconstructed with the ITF solver:

ε̄low =


−1.39 −0.06 −0.12

−0.06 −2.69 0.04

−0.12 0.04 1.8

× 10−4 , (49)

ε̄high =


−16.37 −0.86 −0.61

−0.86 −18.75 0.84

−0.61 0.84 52.73

× 10−4 , (50)

and their difference:

ε̄high − ε̄low =


−14.89 −0.80 −0.49

−0.80 −16.06 0.79

−0.49 0.79 50.93

× 10−4 . (51)

The elongations in the normal directions correspond to a Poisson’s ratio of 0.305 and a Young’s

modulus of 61.1GPa of the polycrystal aggregate, as computed from the difference in the external

tensile forces.

From the diffraction spot centroids, the difference between the mean of all grain median strain

tensors in the low load and high load data sets:

ε̄centhigh − ε̄centlow =


−16.12 −0.82 −0.59

−0.82 −16.50 0.48

−0.59 0.48 51.47

× 10−4 , (52)

where the elongations in the normal directions correspond to a Poisson’s ratio of 0.317 and a

Young’s modulus of 60.4 GPa of the polycrystal aggregate.

Recalling that the specimen has a strong {110} texture, the two results compare very well with

the Young’s modulus measured for this alloy family in a single crystal tensile test in the < 110>

direction: 60 GPa measured, ∼63 GPa calculated (Takesue et al., 2009) [85].

The histograms of the strain components from the centroids at the grain level (Fig. 12) and

from the voxels at the sub-grain level (Fig. 13) both show the same expected behaviour from low to
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high load: a widening of the distributions, and the Poisson effect. The plots include all measured

grains and voxels, including those in which large errors are probable.

The mean values of the reconstructed local orientation and strain tensors were computed for

each grain, and the local intragranular deviations from the mean were analysed in the sample ref-

erence frame (Fig. 16 and Fig. 18). Both the misorientation and the intragranular strain deviations

are in the order of a few times 10−4 in the solution. The measured misorientation angle from the

grain mean is typically within ±10−3 rad (Fig. 19). The local misorientation around the Z loading

axis, as opposed to X and Y , shows a wider intragranular distribution for surface grains at low

load, and a larger change for all grains going from low to high load with no obvious clockwise or

anticlockwise preference (Fig. 16). The intragranular deviations of the strain values increase from

low to high load but remain small compared to the absolute values shown in Fig. 17 and Fig. 20.

Strain components εXX and εY Y show the largest deviations, while the deviations of components

εZZ are within ±1.5 × 10−4. These results, where the Z loading axis shows distinctly different

behaviour in local deviations compared to the lateral directions, may be due to a texture effect, or

to an unwanted tendency of the deformation solver to suppress deviations in the εZZ components.

7. Discussion

7.1. Deformation solution and accuracy

The geometry calibration using the diffraction pattern of the sample itself provided sub-pixel

accuracy and a Young’s modulus close to the value reported in the literature. This is a prerequisite

to also enable sub-pixel precision in the local deformation solver. The parameters of the solver were

not fully optimised, and it appears that the solution could benefit from fine tuning of the settings.

Reliable shape reconstructions would normally require at least 15...20 diffraction spots per grain,

so for inferring deformation information in addition, the number of diffraction spots with a high

signal-to-noise ratio in the current data sets is very low, and possibly a major limitation. This is

in part due to the high self-absorption in the specimen. The weak diffraction spots often blend

into the background, and their boundaries and intensity gradients are largely influenced by noise

rather than the diffraction signal. Such spots, when numerous, break the consistency of the data

and may significantly mislead the solver, at least locally.

It may be critical for the initial convergence of the solver that the grain average orientations

and strains are known, as this assures that there is an overlap between the measured and the initial

simulated state both in solution and in detector space. Since the deformation field is continuous,

this overlapping region does exist and can start driving the solution towards the real values. On

the other hand, when the initial deformation in the iteration is all zero, then, in a general case,

there may not be an overlap between observed and measured spots. Given a parallel X-ray beam,

a constant deformation field results in flat diffraction spots in (u, v), i.e. the voxels project into the

same constant w. This flat profile may not be overlapping with the observed 3D spot in (u, v, w),

if they are far from each other in w due to a large discrepancy in the initial deformation state. In

order to interpret the deformation results, it is important to consider the deformation sensitivity

of the setup (Fig. 7), which is approximately 1...2.5× 10−3. Those few diffraction spots per grain

that provide the peak (highest) deformation sensitivity (3...10×10−4) were often fitted less well in
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grains that exhibited higher deformations, i.e. the solver with the current settings failed to fully

exploit the information in these reflections. It would be crucial for the solver to fit such reflections

better in order to maximise the local deformation accuracy.

We conclude that the deformation results should be viewed as a possible solution to the mea-

sured data rather than the real solution. The deformation results obtained here are supposed to

approach the minimum norm solution in terms of deviations from the robust grain average. The

relatively low setup sensitivity, with potential inaccuracies of up to 1...2.5 × 10−3, means that

the setup is blind to deformation fields that are much below this limit and are practically in the

null-space of the mapping operation. In other words, an error in one deformation component in

the order of 10−4 would be compensated by the others with a similar magnitude, and most of the

resulting deviations in (u, v, w) could still be below one pixel or image. From another perspective,

a small deviation in the reconstructed diffraction spots translate into a relatively large error in

some deformation components. In terms of the linear problem in Equation (29) this means that

more equations, i.e. more active pixels in more detailed diffraction spots, are required to find a

unique solution. One way to realise this is using a smaller angular step size.

In summary, the results demonstrate that: 1) the diffraction model can provide sufficient

fidelity in reproducing the signal; 2) convergence can be realised by an iterative solver; 3) most

of the observed diffraction spots can be reproduced to a high degree with a physically meaningful

deformation field; 4) the implementation is efficient and feasible; 5) the grain average of the local

deformation fields are reliable.

By adapting the acquisition parameters and possibly the diffraction model and solver, we expect

that the true deformation fields can be inferred at the level of 10−4 – favourable and relevant for

numerous applications.

7.2. Potential improvements of the experimental setup

An obvious way of improvement is exposing each image longer for a stronger diffraction signal. It

is easily within reach, as the ongoing source upgrade at the ESRF will deliver ∼ 20 times the current

X-ray flux at ID11, i.e. a fraction of the current scanning times. State-of-the-art sCMOS sensors

[86] have negligible read-out time and allow for continuous exposure during rotation, avoiding

gaps or the need for repositioning before each image. Using smaller angular increments are the

most effective way to improve deformation sensitivity, with a consequence of extended exposure

times and potentially a need to decrease the photon energy bandwidth accordingly. Sensitivity in

most components scales with the detector distance but a larger detector distance means a lower

solid angle coverage. A larger detector area (more pixels) is clearly beneficial for detecting more

diffraction spots. Positioning the detector laterally on each side of the optical axis for two scans

altogether offers another simple way to extend the field of view.

An example of a realistic configuration with much increased orientation and strain resolution

for the same measurement could have:

• double the rotation axis to detector distance (14 mm);

• double the sensor size (4096× 4096 pixels) for the same angular coverage;
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• the same 1.4 µm effective pixel size;

• 10 times smaller angular stepping ωstep.

The mean peak deformation sensitivity of such a configuration for the same sample would approach

5...6× 10−4 in the Y Z, XZ shear strain components, 1...2× 10−4 in the other strain components,

and below 10−4 in misorientation (Fig. 7). For the Gum Metal specimen, increasing the photon

energy would reduce self-absorption, but its overall effect on the deformation accuracy is not

obvious.

For light materials, a setup configuration using lower energies and higher 2θ Bragg angles,

e.g. around 90◦, can be realised by a horizontal rotation axis and a detector placed above or

underneath the axis to account for the synchrotron beam polarisation while still benefiting from

the Friedel pair based indexing [87, 29]. Higher Bragg angles increase the sensitivity to the d-

spacings (proportionally to tan(θ)), and also the azimuthal orientation sensitivity (which in turn

has the adverse effect of increasing the risk that diffraction spots overlap). The higher diffracting

power, higher photon flux from the source and higher detection efficiency in the scintillator at

lower energies decrease scanning times. On the other hand, reduction of the photon energy would

require smaller sample dimensions in order to compensate for the increased attenuation.

There are no obvious ways of optimising the setup geometry purely from theoretic considera-

tions, as the number of irradiated grains, sample mosaicity and the overall background noise should

all be considered. The goal of the optimisation should be maximising accuracy in grain boundary

locations, local orientations or strains, or minimising total scanning time. The main parameters to

be found are: beam height (size of the irradiated volume), beam energy, detector distance, pixel

size, ω step size, and the beam energy bandwidth and settings of the X-ray monochromator and

focusing optics.

Alternative scanning geometries and procedures can be considered in place of or as a follow-up

of a DCT scan, targeting a small number of selected grains within the volume, e.g. using topo-

tomography [88] or moving the detector to predicted diffraction spot positions at a much larger

distance. If the positioning and calibration can be done with high precision, this could significantly

improve the strain and orientation resolution. In terms of the maximum detectable strain level

from a hardware perspective, there is no apparent limit other than increasing spot overlaps and

diminishing signal-to-noise ratio. We do not expect that large absolute strain values alone would

impede the solver, and the maximum elastic lattice strains of 1...2% encountered in metals can

probably be resolved. It is the complexity of the strain and misorientation fields that would pose

a challenge to the solver. Following plastic deformation of several degrees, the magnitude and

complexity of the intragranular misorientation field dominate the projections and it might hinder

strain retrieval with the proposed method. More simulation tests and experiments are required to

judge the performance of the algorithm at high strains and/or high mosaicity.

The ITF reconstruction approach is a general imaging methodology for extracting complete

local deformation tensors by combining several (hkl) reflections, and is adapted to a range of

diffraction geometries. A smaller beam cross section naturally yields a better spatial definition

of the mapping problem (though typically at the expense of scanning times), which in turn may
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improve deformation sensitivity. For example, line beam illumination and collecting diffraction

signal at high scattering angles would be an obvious way to increase strain sensitivity and the

correlation of detector and sample space. This would be a step closer to conditions in section

topography (Reischig et al., 2013)[29]. Appropriate 2D gratings or apertures can create a structured

illumination pattern, i.e. an array of pencil beams with line footprints that can be detected

simultaneously on an area detector, and much reduce the complexity of the 3D problem [87].

7.3. Potential improvements of the solver

The low signal-to-noise ratio could be compensated by pre-smoothing of the diffraction spots

(e.g. by 2D or 3D splines, wavelets, etc.), which could significantly increase the smoothness of the

intensity gradients in weak spots and the consistency of the backprojection corrections.

The grain shapes could be improved by a simultaneous reconstruction of the entire sample

volume (the global ITF concept in Section 4.1), so that voxels in grain boundary regions are more

reliably assigned the correct grain. More precise grain shapes should increase the deformation

accuracy, and vice versa. Tails in the intensity distributions most probably originate from grain

boundary regions, and their reproducibility would benefit from the whole-sample reconstructions.

The deformation fields themselves may also be represented by potentially more effective ways, e.g.

by splines or wavelets.

A hierarchic solution approach using gradually finer or adaptive grids in real space and in

detector space could also improve robustness and the reproducibility of the intensity tails.

Additional physical effects can potentially be included in the forward model, if they are a

continuous (and at least locally differentiable) function of time, real space, orientation and strain.

When overlaps are more prominent, indexing may not be feasible using spot centroids, and a

preliminary orientation map may be obtained by the 6D approach [53, 55] or scanning orientation

space for each voxel [48]. Such a map may then be refined by the presented methods to infer

deformation. Alternatively, the reconstruction approach based on free elements (Section 4.6) may

be attempted.

7.4. Verification and applicability

The validity of the presented approach and the alternative approaches should be confirmed

with testing on simulated data sets. The robustness, reliability and uniqueness of the deformation

solution should be verified. The background noise has a crucial effect on the consistency of the

data and the effectiveness of the solver, hence the simulations should include noise that has been

previously quantified in real experiments. The fulfilment of local static equilibrium is the most

comprehensive way to obtain a figure of merit of the local solutions in real measurements.

The method or its alternative variants are potentially also applicable to single crystals utilising

either diffracted beams or extinction contrast in the direct beam in X-ray topography, rocking

curve imaging [56, 57] and related methods, as long as kinematical diffraction approximations are

at least partially valid. While the complexity of the presented 3D algorithm and its limited spatial

and deformation sensitivity may be a disadvantage versus other 3D polycrystal scanning methods

using a line or pencil beam, the simple experimental setup and efficient scanning procedure offer

major benefits.
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8. Conclusions

A theory for the reconstruction of intragranular orientation and strain fields in polycrystalline

samples in 3D using a near-field area detector and box beam illumination has been presented. Ex-

perimental results from a synchrotron-based X-ray diffraction experiment on a Gum Metal sample

demonstrate the feasibility and potential of the proposed approach. A kinematical diffraction model

is used in a vector field representation of the local deformations to simulate realistic diffraction

spots. The convergence of the proposed non-linear solver using an adapted SIRT algorithm, named

Iterative Tensor Field Reconstruction (ITF), was demonstrated, and it found realistic deformation

solutions that were consistent with the expected elastic behaviour at the grain level. The solver

employs Tikhonov regularisation and enforces smooth deformation gradients. The applied acqui-

sition parameters limited the deformation sensitivity to 1...2× 10−3, and the number of available

diffraction spots with sufficient signal-to-noise ratio was also a limiting factor.

Quantitative means and aspects of the data analysis and validation have been described. The

study suggests that all necessary theoretical, experimental and algorithmic tools are available to

resolve the strain fields from near-field diffraction images at an accuracy in the order of 10−4, or the

equivalent stress fields in the order of tens of MPa. Several improvements to the experimental setup

and the solver are possible. A near-field detector with a pixel size of 1...2µm and fine rotational

stepping (in the range of 0.005...0.01◦) in ω can provide adequate strain resolution. Scanning times

can be in the order of hours or possibly minutes, depending on the specimen. Calibration of the

near field setup is achievable from the data set itself or by scanning a calibration standard.

The model and solver algorithm allows for directly applying constraints of static equilibrium

in the optimisation or coupling with CP-FEM solvers, if the single crystal elastic moduli of the

material are known. With an optimised implementation, the computations can potentially be per-

formed in a single computer within a day. A range of alternative ways of inferring the sub-grain

orientation and deformation fields have been proposed, including indexing-based grain-by-grain and

indexing-free methods. A quantitative validation of the local deformation solution requires simu-

lation studies, evaluation of stress equilibrium or comparison to alternative scanning techniques,

such as line and pencil beam scanning.

9. Supplementary material

Diffraction spots

(dct1 grain *.avi)

The video files show all segmented 3D diffraction spots that were used for deformation reconstruc-

tion in the high load data set for selected grains, stacked along the w dimension. The measured

intensities are on the left, the simulated equivalent is on the right. The 2D diffraction spots in-

tegrated along w are also shown in separate videos. One pixel in the video files corresponds to

one detector pixel. The grey scale colour limits were set individually for each diffraction spot.

Occasional overlaps from other diffraction spots are visible in the observed images.

3D map of strain components at high load

(dct1 absolute strain.avi)
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Video showing consecutive X-Y slices of the 3D strain maps of the high load data set reconstructed

by the ITF solver. The RGB colours correspond to the strain scale in Fig. 17. From left to right,

the order of the strain components is: εxx, εyy, εzz in the top row; εyz, εxz, εxy in the bottom row.

3D map of strain deviations from the grain mean

(dct1 strain deviation from grain mean.avi)

Video showing consecutive X-Y slices of the 3D map of strain deviations from the grain mean of

the high load data set reconstructed by the ITF solver. The RGB colours correspond to the strain

scale in Fig. 18. From left to right, the order of the strain components is: εxx, εyy, εzz in the top

row; εyz, εxz, εxy in the bottom row.
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11. Figures

Appendix A. Crystallographic phase as an undeformed reference

The list of theoretical (hkl) reflections of the reference crystal phase can be obtained by, for

example, computing the structure factors Fhkl (see [62]) for all (hkl) combinations from the atomic

positions in the unit cell, and retaining those (hkl)-s for which the structure factor is non-zero and

the Bragg angle is within the range covered by the experimental setup. Metal crystal lattices often

exhibit one of the few common hexagonal or cubic crystallographic spacegroups with a known list

of reflections. Three Cartesian coordinate reference frames are used in the processing: the crystal

reference (also referred to as “grain” reference), the sample and the laboratory reference. The

laboratory reference is fixed to the incident X-ray beam direction and the rotation axis direction.

The sample reference is fixed to and rotates with the rotation table, and corresponds to the lab

reference at ω = 0 rotational position. The crystal reference frame is rotated in relation to the

sample reference according to the grain orientation. Local misorientation and strain are defined

in relation to an undeformed (stress free) crystal lattice, referred to as the reference lattice. The

unit cells of the undeformed reference lattice is aligned with the crystal reference frame according

to a suitable convention. For cubic lattices, we use the common convention that the cubic unit

cell is aligned with the crystal reference. For a given (hkl) reflection, its corresponding scattering

vector or plane normal nb in direct space in the Cartesian crystal reference can be obtained via the

reciprocal basis matrix B as described in [13]. The matrix B0 here refers to the unit cell of the

undeformed reference crystal lattice, and it is a function of the lattice parameters (a, b, c, α, β, γ).
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nb = B0


h

k

l

 . (A.1)

The d-spacing of this lattice plane in the undeformed reference state (|.| denotes the Euclidean

vector norm)

δ0 =
1

|nb|
. (A.2)

The corresponding Bragg angle θ0 in the undeformed state considering the first harmonic of

the reflection from Bragg’s law:

sin θ0 =
λ

2δ0
λ =

hc

E
. (A.3)

where λ is the wavelength and E is the photon energy of the incident and diffracted X-ray beams,

h is Planck’s constant, c is speed of light. The unit plane normal of the reflection in the Cartesian

crystal reference frame in an undeformed state

nc =
nb

|nb|
(A.4)

The unit plane normal in an undeformed state with its coordinates in the sample reference frame

n0 = U(r0) nc (A.5)

where U0 is a rotation tensor representing crystal orientation, and it is computed from a 3D Ro-

drigues vector r0 that uniquely describes grain orientation, similar to Euler angles. As crystal

symmetry is taken into account by the indexing procedure beforehand, r0 falls within the funda-

mental zone of Rodrigues space.

Appendix B. Representation of the deformation field

A set of plane normals n0 and their corresponding d-spacings δ0, one from each indexed diffrac-

tion spot, serve as a basic input for the deformation solver. Having obtained this input upstream

in the processing (see [29, 31]), the underlying crystallography is irrelevant as Bragg’s law and the

principles of solid mechanics prevail. The initial n0 values for the strain retrieval already describe

a deformed state of the lattice (the initial state), with an initial strain tensor ε0 (the mean grain

strain). ε0 is determined upstream in the processing from the diffraction spot centroids along with

each plane normal n0. With a vector vc indicating an arbitrary direction in the lattice

v0 = ε0U0 vc . (B.1)

Note that this matrix product with the strain tensor does not apply directly to a plane normal,

as it is not fixed to real material points: n0 6= ε0U0nc. Also note that all strain tensors and the

deformation gradient tensor in the this description include the identity matrix.

The following relations are applicable to each voxel independently. The nine components d =

dm of the local deformation gradient tensor D(d) are the unknown parameters sought for a voxel.
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They represent a combination of an additional misorientation and strain state relative to the initial

grain state (ε0,U0). They refer to the mean value over the volume of the voxel, i.e. expected to

have the least deviation from the true local values at the voxel centroid.

D(d) =


d1 + 1 d4 d7

d2 d5 + 1 d8

d3 d6 d9 + 1

 (B.2)

Planes in the continuum remain planes after deformation according to the deformation gradient

tensor. Curvature of the lattice cannot be interpreted from D of a single voxel but it is exhibited

through a spatial gradient of D across the voxels. In case only misorientation is considered and

no strain, the underlying three rotational parameters in the form of Rodrigues vectors (or Euler

angles) are used instead of d (three components instead of nine) and an additional operation

is required to generate the misorientation matrix. In a post-processing operation, after running

the solver, the inferred D tensor is combined with the initial input strain and orientation tensor

according to

v = Dε0U0 vc = (εdUd)U
0 vc (B.3)

where v stands for the vector vc in the observed state of the specimen in the sample reference frame.

Polar decomposition is used to separate out the symmetric left stretch tensor εd (left Cauchy-Green

deformation tensor), so that the initial mean orientation and the local misorientation tensors can

be unified into one orientation tensor U = UdU
0 (that is an orthogonal rotation matrix):

εdUd = Dε0 . (B.4)

It is common to have an uncertainty in the hydrostatic strain component due to an inaccuracy in the

photon energy of the X-ray beam or the scaling of the unit cell parameters. These two discrepancies

have the exact same effect on diffraction through Bragg’s law, and they are indistinguishable. A

hydrostatic strain correction εhyd can be applied retrospectively and directly to the results from the

solver. The final local orientation matrix U and strain tensor ε = εhyd εd in the sample reference

frame, with respect to the reference crystal:

v = εhyd εdU vc = εU vc . (B.5)

Appendix C. Transformation from sample to crystal reference frame

The strain tensor in the crystal reference εc, and its inverse transform back to the sample

reference:

εc = UT εU ε = U εcUT . (C.1)

The strain tensor in the crystal reference in Voigt notation and including a factor of 2 for the shear

components

εV =
(
εc11 − 1 εc22 − 1 εc33 − 1 2εc23 2εc13 2εc12

)T
. (C.2)
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In case of a linear elastic behaviour, the stress tensor components in the grain reference are obtained

in Voigt notation from Hooke’s law:

σV = C εV (C.3)

σV =
(
σc11 σc22 σc33 σc23 σc13 σc12

)T

(C.4)

which allows to construct σc, the stress tensor in the crystal reference. C is the elastic stiffness

tensor that contains the single crystal elastic moduli of the material in the grain reference. For

example, for a cubic lattice with three distinct elastic moduli (c11, c12, c44)

C =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


. (C.5)

The stress tensor in the sample reference

σ = UσcUT (C.6)

and in the inverse transform

σc = UTσU . (C.7)

The local divergence of the stress tensor field at a voxel j:

div(σj) =


∂σj

11

∂x +
∂σj

12

∂y +
∂σj

13

∂z

∂σj
21

∂x +
∂σj

22

∂y +
∂σj

23

∂z

∂σj
31

∂x +
∂σj

32

∂y +
∂σj

33

∂z

 (C.8)

which can be approximated as a linear function of the stress components of the neighbouring voxel

elements (with the voxel indices on a 3D grid):

div(σx,y,z) ' 1

2


σx+1,y,z

11 − σx−1,y,z
11 + σx,y+1,z

12 − σx,y−1,z
12 + σx,y,z+1

13 − σx,y,z−1
13

σx+1,y,z
21 − σx−1,y,z

21 + σx,y+1,z
22 − σx,y−1,z

22 + σx,y,z+1
23 − σx,y,z−1

23

σx+1,y,z
31 − σx−1,y,z

31 + σx,y+1,z
32 − σx,y−1,z

32 + σx,y,z+1
33 − σx,y,z−1

33

 . (C.9)

The L2 norm of the divergence as an objective function:

Γ(d) = ‖div(σ(d))‖22 =

∑
j

(∂σj11

∂x
+
∂σj12

∂y
+
∂σj13

∂z

)2

+

(
∂σj21

∂x
+
∂σj22

∂y
+
∂σj23

∂z

)2

+

(
∂σj31

∂x
+
∂σj32

∂y
+
∂σj33

∂z

)2
 .

(C.10)
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Appendix D. Forward projection of diffraction peak positions

A plane normal n0 of an (hkl) reflection is represented by two arbitrary unit vectors e1 and

e2, in a way that they form an orthonormal set.

n0 = e0
1 × e0

2 e0
1 ⊥ e0

2

∣∣e0
1

∣∣ = 1
∣∣e0

2

∣∣ = 1 (D.1)

The base vectors in the deformed state:

e1 = D e0
1 e2 = D e0

2 . (D.2)

The unit plane normal in the deformed state (not restricted to small strain theory)

n =
e1 × e2

|e1 × e2|
. (D.3)

The ratio of the d-spacing in the deformed (δ) and undeformed state (δ0) can be derived by

considering a plane P in the undeformed state at unit distance from the origin with plane normal

n0 and unit d-spacing δ0 = 1. Let A0 be a material point that lies in P at location n0. As a result

of deformation gradient D, A0 is displaced to A = Dn0, the plane normal of P changes to n, and

its d-spacing to δ, where δ is the distance of P from the origin in the deformed state. As the origin

has zero displacement, the relative d-spacing (not restricted to small strains)

δrel =
δ

δ0
= nD n0 (D.4)

From the relative d-spacing, the sine of the Bragg-angle θ in the deformed state is computed as:

sin θ =
1

δrel
sin θ0 (D.5)

For a given plane normal n and Bragg angle θ, a maximum of four reflections can be observed

during a 360◦ rotational scan of the sample. The four ω rotation angles of the sample stage where

diffraction occurs from n can be computed from a quadratic equation knowing the incident beam

and rotation axis directions (see, for example, Moscicki et al., 2009 [89]):

ω1 = ω1(sin θ,n,Ω)

ω2 = ω2(sin θ,n,Ω)

ω3 = ω3(sin θ,n,Ω)

ω4 = ω4(sin θ,n,Ω)

(D.6)

where Ω represents all constant parameters of the setup geometry. The rotation angles w expressed

in images, rather than degrees, with ωstep being the width of the rotational interval covered by an

image:

w =
ω

ωstep
(D.7)

The (u, v) detector pixel coordinates where a ray projects, that was diffracted by a voxel at position

x0 in the sample reference, is computed as the intersection of the diffracted beam path with the

detector plane:

(u, v, w) = u(n,x0, ω,Ω) . (D.8)
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Figure 1: Diffraction Contrast Tomography (DCT) setup. The beamstop is removable to record the absorption

radiographs in the direct beam that are used in a tomographic reconstruction.
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Δ u=const

Δ u=(0,0,0)

Figure 2: Schematic representation of the effect of the local deformation state on the projection geometry. (a) Zero

deformation. (b) Uniform deformation state. (c) Non-uniform deformation distribution.

58



Figure 3: Flow chart of the complete DCT processing including deformation reconstruction by the Iterative Tensor

Field solver.
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Figure 4: Flow chart of the Iterative Tensor Field (ITF) reconstruction algorithm.
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Figure 5: Example of a preprocessed detector image showing the diffraction signal in the dark field area in the high

load data set ( 2048 × 2048 pixels or 2.87 × 2.87 mm2 effective area).
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Figure 6: Five examples of segmented 3D diffraction spots showing the intensity distribution in (u, v, w) in the high

load data set. Measured (left columns) and simulated equivalents at the solution (right columns) across consecutive

w images, and the resulting 2D diffraction spots integrated in w are shown. The intensity ”tails” extend beyond

the w ranges shown here. (a) Grain #1 (the largest detected grain, mean L1 error 0.316). (b) Grain #269 (mean

L1 error 0.364).
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Figure 7: Mean deformation sensitivity of all grains in the high load data set, w.r.t. strain tensor and Rodrigues

vector components in the sample reference frame. (a) Mean sensitivity χ in the experimental setup used. (b) Mean

peak sensitivity χ+ in the experimental setup used. (c) Mean sensitivity χ in an optimised experimental setup. (d)

Mean peak sensitivity χ+ in an optimised experimental setup. Values are clipped at the top of the plots.

a) b)

Figure 8: Number of active diffraction spots used for the reconstruction per grain in the low load data set (a) and

in the high load data set (b).
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Figure 9: Histograms of discrepancies between the measured and simulated diffraction spot centroid positions in

the low load data set (a) and in the high load data set (b).

Figure 10: Pole figures of the Gum Metal specimen along the rotation (and tensile loading) axis as created from the

indexed reflections in the low load data set.
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Figure 11: Convergence plots of error metrics combining the active diffraction spots of all grains, and of a selected

set of grains with a mean L1 norm under the threshold. Mean L1 norm of the pixel intensity errors normalised with

the total diffraction spot intensities in the low load (a) and high load (d) data set. Voxel hit rate at low load (b),

and at high load (e). Pixel hit rate at low load (c), and at high load (f).

Figure 12: Histograms of the grain average strain tensor components in the sample reference frame, obtained by

robust median fitting before hydrostatic strain correction.
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Figure 13: Histograms of the strain tensor components of all grain voxels in the grain map, in the sample reference

frame after hydrostatic strain correction.
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Figure 14: Histograms of the mean L1 norm of the pixel intensity errors normalised with the total diffraction spot

intensities for each grain, in the low load (a) and high load (b) data set.

Figure 15: Mean L1 norm of the pixel intensity errors normalised with the total diffraction spot intensities for each

grain in a X-Y section at low load (a) and at high load (b).
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Figure 16: Rodrigues vector components of the orientation deviation from the grain mean in the sample reference

frame in a X-Y section, at low load (a) and at high load (b).
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Figure 17: Lattice strain tensor components in the sample reference frame in a X-Y section at low load (a) and at

high load (b).
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Figure 18: Deviation of lattice strain tensor components from the grain mean in the sample reference frame in a

X-Y section, at low load (a) and at high load (b).
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Figure 19: 3D rendering of the local misorientation angle from the grain mean orientation at high load. The front

section was rendered transparent to show grains in the bulk.

Figure 20: 3D rendering of the local strain tensor components in the sample reference frame at high load. The front

section was rendered transparent to show grains in the bulk.
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Algorithm 
Representation  Mapped 

dimensions 
Memory need 

per voxel (bit) * 

Total memory need (GB) 
Diffracting 

power Orientation Strain 323 voxels 5123 voxels 

6D solver solution 3D discrete - 6D discrete 
to scalar 163 × 32bit = 1.3 × 105 0.54 2200 

12D solver 
(theoretical) solution 3D discrete 6D discrete 12D discrete 

to scalar 169 × 32bit = 2.2 × 1012 9 × 106 3.7 × 1010 

ITF-DCT 1D 3D 6D 3D discrete 
to 10D 10 × 32bit = 320 0.001 5.4 

Figure 21: TABLE 1. Representation of deformation in a 3D volume and the corresponding memory requirements

(data storage for the solution only, excluding processing). () For comparing the discrete representation, the number

of distinct orientation or strain values was assumed to be 16.

Incident beam 
profile 

Irradiated 
volume Detector Beam chromaticity Axes scanned 

for 3D map 
Dimensions of solution 

Real space Orientation Strain 

Pencil beam 1D line far-field polychromatic 3 translations 
(+1 energy) 0 3 5 

(6) 

Pencil beam 1D line far-field monochromatic 2 translations 
+ 1 rotation 0 / 2 3 6 

Line beam 2D section near-field monochromatic 1 translation 
+1 rotation 2 3 6 

Box beam 3D volume near-field monochromatic 1 rotation 3 3 6 

Figure 22: TABLE 2. Acquisition modes for reconstruction of deformation fields in a 3D sample volume.

 
Low load High load 

Average tensile stress from load cell ~34 MPa ~345 MPa 

Reconstructed volume size in (x,y,z) 410 × 440 × 406 voxels 

No. of grains analysed for deformation 1428 1437 

No. of diffraction spots analysed per grain 11 … 47 10 ... 43 

Mean no. of diffraction spots analysed per grain 29 26 

Standard deviation of error between measured 
and simulated diffraction spot centroids 

u:                                      0.731 pixel    0.813 pixel 

v:    0.577 pixel    0.668 pixel 

w:    0.303 image    0.350 image 

Figure 23: TABLE 3. Results of the indexing, shape reconstruction and fitting of grain average properties.
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