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The percolation threshold of fracture networks is investigated by extensive direct numerical simulations. The
fractures are randomly located and oriented in three-dimensional space. A very wide range of regular, irregular,
and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with
different shapes and/or sizes. The results are rationalized in terms of a dimensionless density. A simple model
involving a new shape factor is proposed, which accounts very efficiently for the influence of the fracture shape.
It applies with very good accuracy in monodisperse or moderately polydisperse networks, and provides a good
first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the
corrective term is modelled for the investigated size distributions.
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I. INTRODUCTION

Geological fractures, usually defined as surface disconti-
nuities in rocks, are ubiquitous underground from scales of
a few millimeters to hundreds of kilometers [1]. Fluids can
generally flow through them and possibly much faster than in
the embedding porous matrix. Therefore, fracture networks do
influence flow and transports, and they are actively studied in
many areas such as geothermal energy exploitation, hydrology,
oil, and gas recovery and nuclear waste storage. In particular,
it is important to know their statistical geometrical properties.
A prominent feature in this respect is their connectivity, and
possibly their percolating character, which was first studied by
Charlaix et al. [2] and Balberg [3].

This paper intends to provide a major update of some of
our earlier works. Monodisperse networks of fractures were
considered in [4], where our first unification of the percolation
threshold values for various regular polygonal fracture shapes
was achieved, by use of the concept of excluded volume.
Polydisperse networks with power law distributions of the
fracture sizes were addressed in [5], where a generalized
dimensionless network density was introduced which accounts
for most of the influence of polydispersity. In all these
works, and in the present one as well, the fracture network
is considered as a given structure and its formation is not
addressed.

The present work proceeds along the same lines, with
significant improvements and extensions of several kinds.
A very extensive set of calculations was conducted, taking
benefit of much increased computational capabilities, with
a significant precision improvement resulting mostly from
the use of much larger and numerous samples. The range of
explored situations was also greatly extended, including new
fracture shapes very far from circularity, and various kinds
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of polydispersity, such as mixtures of fractures with different
shapes, possibly random, and various size distributions.

The rationalization of the results benefits greatly from these
gains in precision and scope of the data. The corrective factor
for fractures with very elongated shapes proposed in [5] was
successful only for the cases examined by then. A much better
model, more accurate and applicable in a much wider range
of shapes and mixtures of shapes, is formulated, based on
a different shape factor. Effects of the size polydispersity
undetected in [5] could be quantified and modelled, and a
simple criterion is obtained to assess whether they are a priori
negligible or should be taken into account.

The paper is organized as follows. General information
is provided in Sec. II, including the description of the
networks, dimensionless parameters and concepts used in
the analysis, and the numerical aspects of the determination
of the percolation thresholds. Monodisperse networks are
addressed in Sec. III. More complex networks containing
mixtures of fractures of various kinds are explored in Sec. IV
and size polydispersity is considered in Sec. V. A heuristic
argument proposed in [6] to predict the percolation thresholds
in continuum systems is revisited in Sec. VI. Concluding
remarks are formulated in Sec. VII.

Additional information is provided in the Supplemental
Material [7], including the comprehensive set of numerical
data, details about the random quadrilaterals used in some
of the investigated networks, and auxiliary data pertaining to
Sec. VI.

II. METHODS

A. Fracture networks

A fracture network is defined as a set of individual fractures
which possibly intersect. The fractures are regarded as plane,
finite objects without any restriction for their shape except for
the convexity of their contour.

We consider a canonical situation where several important
hypotheses are made. First, the fractures are randomly located
in space, with a density ρ (mean number of fractures per
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FIG. 1. Illustration of the investigated fracture shapes, and example of a network containing 238 random quadrilaterals.

unit volume). More precisely, the number of fractures in
a volume V obeys a Poisson distribution with mean ρV ,
independent of position. Second, the fractures are randomly
and isotropically oriented. Finally, the various attributes of a
fracture (position, orientation, shape, size) are uncorrelated, as
well as the attributes of different fractures in the network.

These are strong assumptions which are generally not
met in real fracture networks. However, earlier works have
shown that the percolation properties of anisotropic networks
where the fracture orientations are arranged in several discrete
families [8] or according to a continuous Fisher distribution
around a preferential direction [9] do not strongly differ from
those of isotropic networks. It has also been shown [10] that the
results for uniform ρ are applicable locally in inhomogeneous
networks if the density variations take place over distances
larger than the typical fracture size. Therefore, the present
canonical situation is a good starting point for the study of
more general cases.

The networks are generated by inserting fractures with
random orientations and with their centers at random locations
and in a cubic cell of size L3. Periodicity is applied along the
three x, y, and z axes.

A wide range of fracture shapes has been considered,
including disks and ellipses with an aspect ratio f = 1–16
(denoted f -ellipses), regular polygons with n = 3, 4, 6,
and 20 vertices, and elongated polygons with aspect ratios
f = 1–16 (see Fig. 1). Note that the f -lozenges, f -ellipses,
and f -rectangles belong to the class of the Lamé curves, or
superellipses [11], ∣∣∣∣xa

∣∣∣∣
q

+
∣∣∣∣yb

∣∣∣∣
q

= 1, (1)

with q = 1, 2, and ∞, respectively, and a/b = f . Mixtures
of fractures with different shapes in varying proportions have
also been considered.

The case when all the fractures in the network have identical
shapes and sizes is denoted I2OUD in [12] (acronym for
identical, isotropically oriented, and uniformly distributed).
However, mixtures of fractures with different shapes in
varying proportions have also been considered here, and three
kinds of fracture size distributions have been investigated:
monodisperse, bidisperse with two sizes RM and Rm (the
fraction of the largest ones is denoted by ϕM ), and power law
distributions. The bidisperse distribution is a simple model
without claim for realism; it corresponds to an extreme case
which is useful to check our predictions. Power law distribution
has a different status since it is one of the most commonly

observed distributions in geological fracture networks (see the
review in Sec. 5.2.2 of [13]); it is described by

ϕ(R) = αR−a (Rm � R � RM ), (2)

where ϕ(R)dR is the probability of R being in the interval
[R,R + dR]; α results from the normalization condition that
the integral over R of (2) should be equal to 1. The exponent
a is found to range between 1 and 5 in many observations of
fractured rocks [13]. The ratio RM/Rm is denoted R̃ in the
following, for both bidisperse and power law distributions.

Finally, networks of random quadrilaterals have been con-
sidered. These fractures are generated by randomly injecting
four points inside a disk (see Fig. 1 and the Supplemental
Material [7]). The resulting fractures have strongly polydis-
perse sizes and shapes that range from roughly square or
roughly triangular to very elongated. This makes this model
reminiscent of the variability that can exist in a real fracture
network.

Note that the ellipses, lozenges, the most elongated rect-
angles, the random quadrilaterals, and most of the shape
mixtures were not investigated in our earlier contributions.
The bidisperse size distributions are also a new addition and
the ranges of the ratio R̃ and exponent a for the power law
distributions have been widely extended.

B. Dimensionless parameters and percolation threshold

Some concepts and dimensionless parameters that are used
in the data analysis and rationalization are introduced in this
section.

Percolation of network on lattices has been extensively
studied (see, e.g., [14–16]). These lattices percolate when
the probability p of occupation of sites or bonds is larger
than a critical value pc, called percolation threshold, which
depends on the precise lattice structure. When transposed to
fracture networks, which pertain to the domain of continuum
percolation [17], it is clear that percolation occurs if some
threshold density is reached. A quantity equivalent to the
probability p in discrete lattices should be found. The excluded
volume, first applied in [18] to fracture networks, can be used
for this purpose.

The excluded volume Vex of an object was defined as the
volume surrounding it, in which the center of another object
must be in order for them to intersect. For randomly oriented
and located three-dimensional convex objects A and B, the
excluded volume is [19]

Vex,AB = VA + VB + (AARB + ABRA), (3)
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where VA and VB are the object volumes, AA and AB their
surface areas, and RA and RB their mean radii of curvature.
For plane convex objects with perimeters PA and PB , Vex,AB

becomes [2]

Vex,AB = 1
4 (AAPB + ABPA). (4)

When applied to a network where all the fractures are
identical, (4) reduces to

Vex = 1
2 AP. (5)

Conversely, in a polydisperse network where the fracture char-
acteristics (size and/or shape) are described by a probability
distribution ϕ(F ), the mean excluded volume obtained by
averaging (4) reads

〈Vex〉 = 1

4

∫∫
ϕ(F1) ϕ(F2) (A1P2 + A2P1) dF1 dF2

= 1

2
〈A〉〈P 〉, (6)

where 〈· 〉 is the statistical average.
The excluded volume provides a natural reference to

introduce a dimensionless density ρ ′, defined as the number
of objects per volume Vex,

ρ ′ = ρ Vex. (7)

On the other hand, the definition of Vex implies that ρ ′ is
also the average number of intersections per object, if they are
randomly located according to a Poisson process. Therefore, ρ ′
is a direct measure of the network connectivity. For networks
containing fractures that do not strongly differ in size or
shape, it proved very successful in unifying the values of the
percolation threshold ρ ′

c [4]. It is also a powerful tool for
the rationalization of many other geometrical or topological
properties such as the matrix partition into blocks, and of the
network permeability [12,13,20–22].

However, it was observed that whereas ρ ′ is still exactly
the mean number of intersection per fracture, it does not
govern the global connectivity and the percolation of networks
of strongly polydisperse fractures [5]. Intuitively, the reason
is that far-reaching connections between large objects are
more effective to build percolating clusters than connections
between smaller ones. A measure of the network density
that accounts for this remark and appropriately weights the
different kinds of connections was found in the form of
an alternative definition of the dimensionless density. It
results from a modification of (6) where 〈A〉〈P 〉 is replaced

by〈AP 〉, i.e.,

ρ ′
3 = ρ 1

2 〈AP 〉. (8)

This definition can be applied to mixtures of fractures with any
sizes and shapes, and reduces of course to ρ ′ if all the fractures
in the network are identical. The subscript “3” is a reminder
that 〈AP 〉 in (8) scales as the third moment of the fracture sizes,
while 〈A〉〈P 〉 in the definition of ρ ′ scales as the product of
their first and second moments. This dimensionless density
was found very successful to describe the percolation and
flow properties of networks of fractures with identical shapes
and polydisperse sizes with a power law distribution [23].
The reduced variance �2

AP of the product AP is used in the
following to quantify the degree of polydispersity of a network.
It is defined by

�2
AP = 〈 (AP )2 〉 − 〈AP 〉2

〈AP 〉2
. (9)

Finally, let us introduce for later use the three following
shape factors that measure in different ways the departure of a
flat, convex object shape from circularity:

η̃P = 4R/P − 2/π

1 − 2/π
, η̃ = 1 − 4π

A

P 2
,

η̃g = 1 −
√

A

2πR2
g

with R2
g = 1

A

∫
A

r2ds, (10)

where A, P , and R are the object surface area, perimeter, and
bounding radius, i.e., the radius of its minimum bounding
circle. The gyration radius Rg is the quadratic average of
the distance r of a point in the object from its barycenter.
These quantities are given in Table I for all the fracture
shapes considered in this work. The three shape factors are
normalized so that they all range from 0 for a disk to 1
for very elongated shapes with vanishing area. The first one
η̃P was already used in [5,12] to account for the effect of
the fracture shape elongation on the network percolation
properties. The isoperimetric deficit η̃ is a classical indicator in
applied morphological analysis, which proved to be a relevant
parameter for other topological properties of the network [22].
We are not aware of any prior use of η̃g in the literature. For
polydisperse networks, a mean value of η̃g will be used in the
following, which results from a rms average weighted by the

TABLE I. Geometrical characteristics of various shapes with unit bounding radius. K and E are the complete elliptic integrals of the first
and second kinds. The aspect ratio is the ratio of the major and minor semiaxes (f � 1).

Object shape A P R2
g R2

h/R
2
g

n-sided regular polygons n sin π

n
cos π

n
2n sin π

n

1
6

(
2 + cos 2π

n

)
2

Ellipses with aspect ratio f π

f
4E

(
1 − 1

f 2

)
1
4

(
1 + 1

f 2

)
4
3

[
1 + 1

1+f 2

K

(
1− 1

f 2

)
E

(
1− 1

f 2

)
]

Rectangles with aspect ratio f
4f

1+f 2
4(1+f )√

1+f 2
1/3 (1+f )2

1+f 2

Lozenges with aspect ratio f 2
f

4
√

1 + 1
f 2

1
4

(
1 + 1

f 2

)
2

042112-3



J.-F. THOVERT, V. V. MOURZENKO, AND P. M. ADLER PHYSICAL REVIEW E 95, 042112 (2017)

product AP of the fractures, i.e.,

〈η̃g〉 =
⎧⎨
⎩

〈
AP

(
1 −

√
A/2πR2

g

)2〉
〈AP 〉

⎫⎬
⎭

1/2

. (11)

C. Determination of the percolation threshold

The percolation threshold of fracture networks is deter-
mined in a similar way as in earlier works [4,5]. The main
steps of the procedure are recalled briefly, and only some
minor differences are discussed in more detail.

Recall that the generated networks are spatially periodic,
with a unit cell of size L3. It can easily be determined whether
any two fractures intersect, and a graph, denoted by �1, is built
from this knowledge. �1 summarizes all the connections in the
network. Its vertices and edges correspond to the fractures and
to the intersection between fractures, respectively. Due to the
periodicity, two fractures in neighboring cells can be connected
across the cell boundaries.

The sets of connected fractures, or connected clusters, can
be determined from �1. As the density ρ of fractures increases,
their typical size ξ increases and at some point, an infinite
cluster develops that spans the whole system. This corresponds
to the onset of percolation. In a periodic network, it occurs as
soon as a cluster contains two replicas of the same fracture in
different cells.

The transition to percolation in an infinite medium is a
critical process. It occurs with probability 1 at a critical density
ρc which depends on the system contents (fracture shapes and
sizes). If the medium is statistically isotropic, it also occurs
simultaneously along all the directions. But in finite systems
or in periodic media with a finite cell size L, the transition
is smooth. The percolation probability 
L(ρ) for a random
realization of a system of size L increases with the density ρ,
with a transition from 0 to 1 over a range of the order of �L.

This increase is generally described by an error function of the
form


L(ρ) = 1√
2π�L

∫ ρ

−∞
exp

{
− (ξ − ρLc)2

2(�L)2

}
dξ, (12)

where ρLc is the density for which 
L(ρ) = 1/2. As L

increases, the transition becomes sharper, �L decreases and
ρLc converges toward the limit ρc for infinite systems. These
size effects are described by the classical scaling laws [15]

ρLc − ρc ∝ L−1/ν, �L ∝ L−1/ν . (13)

In addition, percolation in finite systems generally occurs
first along some direction, and only later along the other
ones. Therefore, the probability 
L can be defined according
to various criteria: 


(1)
L for percolation along at least one

direction, 

(x)
L for percolation along a prescribed direction

(say x), and 

(3)
L for percolation along the three directions x,

y, and z. Each of them can be described by (12), with different
scaling laws (13) although they all converge to the same limit
ρc. Illustrations of these features are provided in Fig. 2.

In view of this, the following procedure is implemented for
the determination of the percolation threshold ρc for networks
made of fractures with any prescribed characteristics (shapes,
sizes). Note that it can be implemented indifferently in terms
of the densities ρ or ρ ′

3, which are related by a constant factor
[see Eq. (8)].

(a) For a given cell size L, choose a set of Nρ values ρ

evenly distributed in the expected range of transition of 
L

from nearly 0 to nearly 1.
(b) For each value of ρ, generate a set of Nr random

realizations, check their percolation status, and get an estimate
of the probability 
L(ρ).

(c) Determine ρLc and �L by a least square fit of 
L(ρ) by
the error function (12).

(d) Use the scaling laws (13) to estimate ρc from the linear
extrapolation of ρLc as a function of �L, when �L → 0 (a

FIG. 2. (a) The percolation probabilities 

(1)
L (red, •), 
(x)

L (blue, �), and 

(3)
L (black, �) as functions of ρ ′

3 for networks of bidisperse disks
with R̃ = 6, ϕM = 0.04, and L/RM = 8. The curves correspond to the fit (12) and the vertical lines indicate the positions of ρ

(1)
Lc , ρ

(x)
Lc , and

ρ
(3)
Lc . (b) The densities ρ

′(1)
L3c (•), ρ

′(x)
L3c (�), and ρ

′(3)
L3c (�) as functions of the corresponding �L for networks containing 75% of disks and 25% of

eight-ellipses with the same area. The cell size L ranges from 10.3 to 61.8 times the semimajor axis of the ellipses (right to left). The heavy
lines are linear fits which yield the extrapolated values 1.9862, 1.9859, and 1.9865 for �L = 0(L → ∞).
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two-step fit where ν is determined from the scaling of �L

with L and then ρc from the scaling of ρLc with L−1/ν yields
equivalent results).

The three percolation criteria are applied in step (b) to
determine 


(1)
L , 


(x)
L , and 


(3)
L and the following steps (c)

and (d) are performed based on each of these data, which
provides three estimates ρ(1)

c , ρ(x)
c , and ρ(3)

c of ρc. They should
be identical and their scatter is an indication of the prediction
uncertainty.

The extensive calculations involved in this procedure are
costly, and careful choices of the range of cell size L, the range
and number Nρ of investigated densities, and the number Nr

of realizations have to be made in order to achieve a good
accuracy without wasting resources. Accumulated experience
resulted in the following choices: Nρ ∼ 20 values of ρ are
considered in a range that is suggested by the results of earlier
calculations for a smaller value of L, if available, and by
the predictive models presented in the following if a yet
unexplored kind of network is addressed. The number or
realizations Nr is generally 500 for the polydisperse network,
100–500 for the mixtures of shapes with similar sizes, and it
can be reduced to 50 when the variability is small because the
fractures in the networks are all identical, with very large cell
sizes.

Finally, increasing cell sizes L up to Lmax have been
investigated. The values of Lmax/Rmax, where Rmax is the
largest bounding radius of the fractures in the network, are
reported in the detailed tables of the Supplemental Material [7].
Large values of the order of 100 have been used for the
monodisperse networks since the computations are relatively
fast. Smaller values are sufficient in polydisperse networks.
Lmax/Rmax was kept larger than 20, or exceptionally 10 in a few
cases of power law size distributions with large exponents since
these networks actually contain very few fractures of size Rmax.

Note that the pattern observed in the example of Fig. 2(b)
with a very weak dependence of ρ

(1)
Lc on L is a general feature.

Therefore, ρ(1)
Lc provides a fairly accurate estimation of ρc even

without extrapolation. Advantage of this was taken in some
cases. The extrapolation step (d) was skipped, when it was
known from comparable situations that ρ

(1)
Lc for some value

of L provides an adequate approximation of ρc. Thus, the
data used in the discussion and given in the fully detailed
set of results provided in the Supplemental Material [7] are
generally the average of the three extrapolated values ρ(1)

c ,
ρ(x)

c , and ρ(3)
c , or in some cases indicated in Tables VII and

VIII in the Supplemental Material [7], the value ρ
(1)
Lc obtained

with the specified size L without extrapolation.
Note finally that in view of (8), the number Nfr of

fractures in each realization of network for ρ ∼ ρ3c is about
2ρ ′

3L
3/〈A P 〉. With the largest investigated cell sizes, typical

values of Nfr are in the ranges 105–106 for most monodisperse
cases and shape mixtures (Tables I and II in the Supplemental
Material [7]), ∼104 (when ϕM ∼ 1) to ∼106 (when ϕM 
 1)
for bidisperse networks (Table IV in the Supplemental Ma-
terial [7]), and ∼104 (for small a) to ∼105 (for large a) for
power law size distributions (Table VII in the Supplemental
Material [7]). Nfr can exceed 3 × 106 in some cases with
elongated ellipses or when exceptionally large cells are used
to thoroughly check the size scaling effects.

The results can be subject to two kinds of uncertainties, re-
sulting from statistical noise and from an inadequate correction
for the finite size effects. The former contribution is difficult
to assess a priori, in view of the many successive operations
involved in steps (a)–(c), but it can be estimated by comparing
the results of several predictions from separate data sets, for
instance by splitting the Nr realizations into four subsets
and processing them separately. A more robust estimator is
obtained by considering 100 subsets of Nr/4 randomly picked
realizations and measuring the standard deviation σρLc

of the
resulting threshold values ρLc. In terms of ρ ′

3c and with the
largest domain size Lmax, σρLc

< 0.005 in nearly all cases and
never exceeds 0.007.

As already noted, defects in the correction for finite size
effects can be detected and quantified by the scatter of
ρ(1)

c , ρ(x)
c , and ρ(3)

c . As a rule, each of these values does
not differ from their average ρc by more than ±0.002 for
monodisperse networks, ±0.003 for mixtures of fractures
with different shapes, and ±0.010 for networks of fractures
with polydisperse sizes, in terms of ρ ′

3c, but larger deviations
occur occasionally. They probably result in part from statistical
fluctuations in addition to residual size effects, but in order to
stay on the safe side, we regard them as independent sources
of errors and define the confidence interval of the data by
summing the two contributions,

max
i=1,x,3

∣∣ρ(i)
c − ρc

∣∣ + 2σρLmaxc
. (14)

This quantity is systematically reported in the detailed tables
of the Supplemental Material [7]. It is always smaller than
0.01 for monodisperse and weakly polydisperse networks, but
often ranges between 0.01 and 0.02 for strongly polydisperse
networks, and exceptionally up to 0.03. When the extrapolation
step was skipped, the first contribution is not available
and (14) is replaced by a conservative value of 0.02, based
on similar or more demanding cases (see Tables VI–VIII in
the Supplemental Material [7]).

III. NETWORKS OF IDENTICAL FRACTURES

We consider here networks of identical fractures, i.e., the
networks denoted I2OUD in [12], with a variety of shapes
(results in Table I in the Supplemental Material [7]). We first
addressed this case in [4] and revisited it in later works [5,12]
where a greater variety of situations was explored. A still
wider range of fracture shapes is considered here, with the
addition of ellipses and lozenges. The precision of the data
was also improved, but the values reported here and displayed
in Fig. 3 differ only marginally from the earlier ones, when
available.

When these results are analyzed in terms of the average
number of intersections per fracture ρ ′, with a different
excluded volume for each shape, a remarkable property stands
out. As already noted in [4], the dimensionless percolation
threshold appears to be independent of the fracture shape, with

ρ ′
c ≈ 2.29 ± 0.05 (15)

for all regular polygons, disks, and two-rectangles. It
should be emphasized that other measures yield much more
scattered values. For instance, if the volume R3 based
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FIG. 3. Percolation thresholds ρ ′
c as functions of η̃P (a) or η̃g (b) and ρ ′

3c as a function of 〈η̃g〉 (c). Data in (a),(b) are for networks of
identical fractures with various shapes: disks and regular polygons (black ♦), rectangles (red, �), lozenges (magenta, ♦), and ellipses (blue, •).
The icons depict the shapes of the rectangles in (a) and (b) and ellipses in (b). In addition, the data in (c) include binary mixtures in various
proportions of 20-gons + rectangles (red, — · — for equal bounding radii and - - · - - for equal area) and disks + ellipses (blue, — · — for
equal bounding radii and - - · - - for equal area), mixtures in equal proportions of hexagons + triangles (red, �), hexagons + four-rectangles (red,
♦) and squares + eight-rectangles (red, �), ternary mixtures of disks + three-ellipses + nine-ellipses (×) and networks of random quadrilaterals
(+). Data in (d) are for monodisperse disks and ellipses (blue), four-ellipses with a = 4 (red, solid symbols if R̃ � 8) and bidisperse disks
with R̃ � 5 (black, solid symbols if ϕM � 0.02, slightly shifted horizontally for readability). The marks on the right in (a) are the predictions
of [24–26] for infinitely elongated objects. The solid lines correspond to the models and error bars (16) in (a), (17) in (b), and (18) in (c)
and (d).

on the bounding radius R of the fractures is used as a
reference, ρcR

3 ranges from 0.234 (disks) to 0.672 (triangles).
Thus, (15) demonstrates the success of the excluded volume
in accounting for the fracture shape effects.

Calculations including f -rectangles with f up to 16 showed
that a correction to (15) is required for very slender fracture
shapes. All the data in [5,12] could be summarized by a
formula which can be expressed in terms of the shape factor
η̃P ,

ρ ′
c = 2.41

[
1 − 0.53 η̃2

P

] ± 0.10. (16)

This relation is illustrated in Fig. 3(a). While it successfully
describes the data of [5], it appears that it does not accom-
modate slender ellipses and lozenges, which were investigated
only later. Therefore, a more general and robust model had

to be formulated. The shape factor η̃ based on the ratio
A/P 2 was considered, but did not yield a satisfactory fit,
although it has proved to be a relevant parameter for other
topological properties of the network [22]. A much better
description is obtained in terms of the last shape factor η̃g

in (10).
This shape factor is based on the gyration radius Rg of

the fracture shape. Rg was used by Alon et al. [6] in their
argument for the prediction of the threshold in continuous
percolation, as an estimator for the typical “bonding distance.”
Intuitively, far-reaching intersecting objects with large Rg are
more efficient to increase a connected cluster size than say,
disks with the same area. Hence, the ratio of the fracture area
to R2

g is a good candidate. An extremely good fit of all the data
for I2OUD networks is provided by the model illustrated in
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FIG. 4. The percolation threshold ρ ′
c as a function of η̃g for

networks of identical ellipses. Symbols correspond to the data of [27]
(�), of [28] (�), and to the present calculations (•). The thick straight
line corresponds to the model (17).

Fig. 3(b),

ρ ′
c,r = 2.31

[
1 − 5

8 η̃4/3
g

] ± 0.05. (17)

Data for networks of ellipses from the literature are
compared to ours in Fig. 4. Networks of ellipses with very large
aspect ratios up to f = 1000 have been investigated in [27],
with monodisperse or power law size distributions. Unfortu-
nately, the discussion of the results was smeared by a mistake
in the evaluation of the excluded volume, but a correction can
be made in the monodisperse cases. The corrected data are in
good agreement with the present results. The deviations do not
exceed ±0.1 from our numerical results when available, and
from (17) for values of f larger than investigated here. The data
of [28] for 1 � f � 5 are also in excellent agreement with our
data.

IV. MIXTURES OF FRACTURES WITH DIFFERENT
SHAPES AND SIMILAR SIZES

We consider here networks of fractures with different
shapes. Only a few such cases had been addressed in earlier
works. Mixtures in various proportions of 20-gons with f -
rectangles (f = 1–8) and of disks with four- and eight-ellipses
are systematically examined here (Table II in the Supplemental
Material [7]). The two kinds of fractures are always set with
identical bounding radii, or with identical areas. For instance in
the latter case, the diameter of the eight-ellipses is larger than
the disk diameter by a factor of 2

√
2. A few additional mixtures

include hexagons and triangles, hexagons and four-rectangles,
and squares and eight-rectangles, in equal proportions and with
equal bounding radii. Ternary mixtures of disks, three-ellipses,
and nine-ellipses with identical bounding radii have also been
considered (Table III in the Supplemental Material [7]), in
equal proportions (1/3, 1/3, 1/3), and in proportions (1/13,
3/13, 9/13) so that the volumetric areas of each kind of fracture
are identical. Finally, the networks of random quadrilaterals
(Table III in the Supplemental Material [7]) contain fractures

with a great variety of shapes and a wider range of sizes than
the other mixtures.

The discussion is very simple, as shown by Fig. 3(c) where
all these data are displayed. Since the networks possibly
contain very different kinds of fractures, the percolation
threshold is expressed in terms of ρ ′

3c and the mean shape factor
〈η̃g〉 is used as defined in (11). In these terms, the data for all
the mixtures comply with the same model as for networks of
identical fractures, i.e.,

ρ ′
3c = 2.31

[
1 − 5

8 〈η̃g〉4/3 ] ± 0.05. (18)

Note for future reference that for bidisperse mixtures, the
reduced variance �2

AP (9) reads

�2
AP = ϕM ϕm

[
(AP )M − (AP )m

ϕM (AP )M + ϕm(AP )m

]2

, (19)

where (AP )M and (AP )m are the largest and smallest values
of AP , with associated fractions ϕM and ϕm = 1 − ϕM . The
values of �AP for all the mixtures considered in this section
are given in Tables II and III in the Supplemental Material [7].
Its maximum �APmax is reached when ϕM (AP )M = ϕm(AP )m,
i.e.,

ϕMmax = 1

1 + (AP )M/(AP )m
,

�2
APmax

= [(AP )M − (AP )m]2

4(AP )M (AP )m
. (20)

V. NETWORKS OF FRACTURES WITH
POLYDISPERSE SIZES

A. Preliminary remarks

A few illustrative examples of results for polydisperse net-
works are displayed in Fig. 3(d), including bidisperse disks
with R̃ � 5 and four-ellipses with a power law distribution of
sizes with exponent a = 4. It appears that the combination of
a large size contrast ratio R̃ with some mixture compositions
(large exponent a or ϕM in a narrow unfavorable range)
can lead to significant deviations from the model (18).
These situations were not explored in [5] and therefore, it
was concluded that the modified dimensionless density ρ ′

3
incorporates all the influence of the size polydispersivity.

This is true in a large respect. In the worst cases of Fig. 3(d),
ρ ′

3c in the polydisperse and corresponding monodisperse
networks differ by about 12% (four-ellipses, power law) or
22% (bidisperse disks), whereas in terms of ρ ′

c these thresholds
differ by a ratio of at least 2 (and by a ratio of several hundreds
if the comparison is made in terms of ρcR

3
M ). Thus, (18) at

least provides a reasonable approximation of the percolation
threshold in polydisperse networks, with a fairly good accuracy
for mild polydispersity. The purpose of this section is to
identify the circumstances that cause a significant deviation,
and to evaluate and possibly model the required correction
to (18).

For this purpose, two size distributions have been inves-
tigated, namely the bidisperse and power law distributions
introduced in Sec. A. Bidisperse networks of disks have been
systematically studied by varying the size ratio R̃ and the
fraction ϕM of larger disks. Other shapes such as four-ellipses,
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FIG. 5. The increment δρ ′
3c in bidisperse networks as a function of the composition parameter �M . The curves in (a) are for constant ratios

R̃ and varying ϕM . The curves in (b) are for constant ϕM and varying ratios R̃. Solid lines correspond to disks and broken lines to four-ellipses.
Black symbols in (a) correspond to squares (�) and triangles (�) with R̃ = 4. Black symbols in (b) (�) correspond to the data of [28] for disks
with ϕM = 0.50.

and regular polygons have been examined in a less extensive
range (Tables IV–VI in the Supplemental Material [7]). The
same shapes have been considered for power law distributions,
in a wide range of size ratio R̃ and exponent a (Tables VII and
VIII in the Supplemental Material [7]).

The first general observation is that polydispersity always
increases the value of ρ ′

3c with respect to that ρ
′(m)
3c for the

monodisperse network of fractures with the same shape. For
this reason, the data are analyzed in terms of the increment
δρ ′

3c,

δρ ′
3c = ρ ′

3c − ρ
′(m)
3c , (21)

which is also the corrective term to be applied to (18) for
polydisperse networks.

B. Bidisperse networks

The results for bidisperse networks are presented in Fig. 5
as functions of the composition, quantified by the fraction �M

of larger objects weighted by their cubed size, as suggested
by (8),

�M = ϕM R3
M

ϕM R3
M + (1 − ϕM ) R3

m

, �m = 1 − �M. (22)

Note first that the increment δρ ′
3c for networks of regular

polygons (squares and triangles) is nearly identical to that for
networks of disks with the same size distribution. However,
the effect of size polydispersity is weaker for the elongated
four-ellipses than for disks [Fig. 5(a)].

When the size ratio R̃ is kept constant, δρ ′
3c is maximum

when �M = �m = 1/2. This corresponds to a proportion
ϕMmax of larger objects equal to

ϕMmax = 1

1 + R̃3
. (23)

This fraction becomes very small when the size contrast is
large. When ϕM � ϕMmax , the connectivity and percolation of
the networks is dominated by the large fractures and δρ ′

3c is

very small [Fig. 5(b)]. For instance, δρ ′
3c never exceeds 0.04

if the small and large fractures are in equal numbers. Our data
for this case are found in good agreement with those of [28]
for ϕM = 0.5 and R̃ up to 10 [Fig. 5(b)]. It should be noted
however that δρ ′

3c was evaluated relative to ρ
′(1)
3c which is found

equal to 2.265 in [28], lower than our result 2.303 by 0.038.
In bidisperse networks, the fraction ϕMmax also corresponds

to the composition that maximizes the normalized variance
�2

AP (9) of the product AP ,

�2
AP = ϕM (1 − ϕM )(R̃3 − 1)2

[ϕMR̃3 + (1 − ϕM )]2
(24)

with

�2
APmax

(R̃) = �2
AP

(
R̃,ϕMmax

) = (R̃3 − 1)2

4R̃
. (25)

The plot of δρ ′
3c vs �

1/2
AP in Fig. 6 for networks of bidisperse

disks confirms that the increment is indeed maximal when �AP

is maximal, i.e., when ϕM corresponds to (23), for any size ratio
R̃. In addition, the maximal increment can be represented by
the linear expression

δρ ′
3cmax

= α
[
�

1/2
APmax

− (
1
2

)1/2]
with α = 1

4

(bidisperse disks,�APmax � 1/2). (26)

Furthermore, δρ ′
3c for other values of ϕM is very well

represented by the cubic law

δρ ′
3c = δρ ′

3cmax
(R̃)

[
�AP

�APmax (R̃)

]3

. (27)

Hence, a full predictive model is obtained by combining (25)–
(27), which approximates all numerical data for bidisperse
networks of disks within ±0.04 with a rms deviation equal to
0.015. Since the increment δρ ′

3c for regular polygons is found
very close to that for disks [Fig. 5(a)], this model also applies
to networks of fractures with regular polygonal shapes, and
probably with any shapes that do not strongly deviate from
circularity.
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FIG. 6. The increment δρ ′
3c in bidisperse networks of disks as

a function of �
1/2
AP . The data correspond to constant ratios R̃ with

varying ϕM (- - · - -) and to various R̃ with ϕM = ϕMmax (- - ◦ - -). The
red straight line and the blue solid curves correspond to (26) and (27),
respectively.

However, elongated fractures seem to behave differently, as
seen in Fig. 5(a) where four-ellipses yield smaller increments
than disks. Nevertheless, the maximum increment is still
reached for the composition (23) that maximizes �AP and the
value of δρ ′

3cmax
still varies according to (26), with a modified

value of α = 1/6, as illustrated in Fig. 8(a),

δρ ′
3cmax

= α
[
�

1/2
APmax

− (
1
2

)1/2]
with α = 1

6

(bidisperse four-ellipses,�APmax � 1/2). (28)

Furthermore, the same cubic dependence (27) as for disks is
observed for other values of ϕM , and the data for four-ellipses
are very well represented by (25), (27), and (28), within ±0.02
with a rms deviation equal to 0.009.

C. Power law size distributions

The data for networks with power law distributions of
fracture size can be analyzed in the same way in terms of
�AP , which is defined by (9)

�2
AP = (4 − a)2

(1 − a)(7 − a)

(R̃7−a − 1)(R̃1−a − 1)

(R̃4−a − 1)2
. (29)

When the range of sizes R̃ is fixed, �AP is maximum for
a = 4, with

�2
APmax

(R̃) = 1

R̃3

[
R̃3 − 1

3 ln R̃

]2

. (30)

Note that in this case, the maximum of �AP does not
correspond to a constant ϕ(R)R3 (i.e., a = 3), as it does with
�M = �m in bidisperse networks.

The numerical data are displayed in Fig. 7, which is a
counterpart of Fig. 6 and many common features with the
bidisperse case are observed. Again, for any fixed R̃, the
maximum increment is reached for �APmax with a = 4, and

δρ ′
3cmax

is well described by (26) with a modified α [Fig. 7(a)],

δρ ′
3cmax

= α

[
�

1/2
APmax

−
(

1

2

)1/2]

with

{
α = 1

5

(
power law, disks,�APmax � 1

2

)
α = 1

8

(
power law, 4-ellipses,�APmax � 1

2

).
(31)

The data for regular polygons are again found very close to
that for disks. Elongated four-ellipses always yield smaller
increments, and the results for four-rectangles and four-
lozenges (with a = 4 and R̃ = 8) are very close to that for
four-ellipses. The variations of δρ ′

3cmax
as functions of �APmax

and the models (26), (28), and (31) are summarized in Fig. 8(a)
for disks and four-ellipses, with bidisperse and power law size
distributions. The overall rms deviation of the models from the
numerical data for �APmax is equal to 0.011.

Figure 7(b) shows that for �AP < �APmax (i.e., a �= 4), δρ ′
3c

can be estimated by a linear interpolation in terms of �
3/2
AP .

Thus, a counterpart of (27) applies for power law distributions,
with a different exponent,

δρ ′
3c = δρ ′

3cmax
(R̃)

[
�AP

�APmax (R̃)

]3/2

. (32)

The model resulting from the combination of (30)–(32)
approximates all the numerical data for disks with a rms
deviation equal to 0.012. Since the results for regular polygons
are very close to those for disks, they are very well described by
the same model with a rms deviation equal to 0.013. Finally,
the rms deviation of the model from the data for ellipses is
equal to 0.008.

D. Discussion

Very successful models for δρ ′
3c have been devised for the

investigated size distributions, in the form of (27) or (32),
combined with (26), (28), or (31).

It should be noted that they apply only for �APmax � 1/2.
However, the increment is very small for �AP � 1, well within
the error bar ±0.05 of (18), and it can be ignored. This explains
that the need for a correction was not detected in [5], where
combinations of large enough R̃ and a were not explored. It
also explains the success of (18) for the mixtures considered
in Sec. IV. The quadrilaterals have a wide range of sizes, but
�AP is only 0.75 (Table IX in the Supplemental Material [7]).
The fractures in the binary mixtures have sometimes very
different areas or bounding radii, but �AP exceeds 1 only in
rare occurrences [see Eqs. (19) and (20) and Tables II and III in
the Supplemental Material [7]]. The largest value �AP = 1.59
is reached for 10% of disks mixed with 90% of eight-ellipses
with identical bounding radii. In view of Fig. 6, the increment
δρ ′

3c is expected to remain smaller than 0.1 in mixtures of disks
with this value of a �AP and a similar ratio (AP )M/(AP )m.

This is an important observation for practical applications.
The criterion �AP � 1, for which the model (18) applies with
good accuracy without need for correction, can be satisfied in
a wide range of nontrivial situations, as seen in the above.
Furthermore, the simulations conducted in a great variety
of polydisperse cases show that the correction δρ ′

3c remains
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FIG. 7. The increment δρ ′
3c in networks with power law size distribution as a function of �

1/2
AP (a) and of �

3/2
AP (b). Data are for disks (dots),

four-ellipses (◦), hexagons ( ), squares (�), triangles (�), four-rectangles (+), and four-lozenges (×). Colors correspond to R̃ = 4 (blue),
8 (magenta), and 16 (red). Black broken lines correspond to a = 4.

smaller than 10% of the prediction of (18) when �AP � 4, and
smaller than 20% of the prediction of (18) when �AP � 10.
For illustration, a power law size distribution with exponent
a = 2 and R̃ = 100 yields �AP ≈ 9. Finally, δρ ′

3c depends
on the fracture shape and on the exact form of the size
distribution, but the largest increment for any specified value
of �AP corresponds to the bidisperse mixture of disks. There-
fore, (26) provides an upper bound for the necessary correction
to (18).

Thus, the analyses in Secs. V B and V C have identified the
relevant parameter �AP , which provides a quantitative way to
assess whether a correction to (18) is necessary and which
governs this correction if it is significant. Very successful
models for δρ ′

3c for bidisperse and power law distributions
have also been formulated.

Still, even though this is a gratifying and useful step, it is
not fully satisfying. Although (27) and (32) have identical
forms, the difference of the exponents is unexplained, as

is the change of α in (26), (28), and (31) according to
the form of the size distribution. The intrinsic parameter
�AP , which is a combination of moments of the frac-
ture geometrical characteristics, defined without reference to
the model parameters (R̃, ϕM , a) and therefore applicable
a priori to any kind of network, has obviously a high degree
of pertinence. But it does not capture by itself all the effects of
polydispersity. It probably should be corrected or completed
by another, yet unidentified, parameter to provide a unified,
model-independant model for δρ ′

3c.
A hint for further analysis might be found in the logarithmic

plot of δρ ′
3c vs �AP in Fig. 8(b). A transition takes place at

�AP ∼ 2 between two growth regimes according to �
3/2
AP and

�
1/2
AP . This is probably the reason for the apparent behavior (26)

with an offset value, when the small increments in the low �AP

range are disregarded. It probably results from the competition
of different combinations of moments that prevail in different
ranges of size contrasts.

FIG. 8. The increment δρ ′
3c in networks of disks (•) or four-ellipses (�) with bidisperse (ϕM = ϕMmax , solid lines) or power law (a = 4,

broken lines) distribution of fracture sizes, as a function of �
1/2
AP (a) and �AP (b). The straight lines in (a) correspond to (26). The dash lines in

(b) illustrate trends proportional to �
3/2
AP and �

1/2
AP .
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Finally, the difference in α between regular and elongated
fracture shapes is also unexplained, and insufficiently docu-
mented at this stage to elaborate.

VI. DISCUSSION OF A HEURISTIC PREDICTIVE MODEL

A. Principle of the argument

A heuristic argument was proposed in [6] to predict the
percolation thresholds in continuum systems. The average
“bonding distance” l is defined as the mean distance between
connected objects, and expressed in the form

l2 = 1

Vex

∫
Vex

r2 d3r. (33)

Note that l does not depend on the density of objects. It is then
postulated that percolation occurs when the average distance
between objects with at least two neighbors (of five neighbors
in two-dimensional settings, which are not considered here) is
smaller than 2l, i.e., when the mean number of such objects in
a volume Vl = 4πl3/3 is at least 1.

Since the number of connections to a given object obeys a
Poisson distribution with average ρ ′, the density ρ2 of objects
with at least two neighbors is given by

ρ2 = ρ [1 − (1 + ρ ′) e−ρ ′
]. (34)

Thus, the criterion ρ2Vl � 1 for percolation yields a transcen-
dental equation for the critical concentration ρ ′

c which can be
easily solved numerically,

ρ ′
c [1 − e−ρ ′

c (1 + ρ ′
c)] = Vex

Vl

. (35)

Although the argument is not substantiated, quite successful
examples of application are provided by [6]; it predicts
percolation thresholds ρ ′

c = 2.796 for penetrable spheres and
2.604 for aligned penetrable cubes, in very good agreement
with the results 2.735 [29] and 2.598 [30] from direct
simulations.

However, a major shortcoming has to be overcome for
applications to other situations. The definition (33) of the
bonding distance makes sense for the provided examples, with
spheres or aligned objects, because an object F2 intersects a
reference object F1 if and only if it is centered within a volume
homothetic to that of F1, dilated by a factor of 2. This volume
can be identified with Vex, and the integration in (33) can be
performed to evaluate its gyration radius l.

This does not apply for aspherical, randomly oriented
objects. Objects F1 and F2 centered at r1 and r2 can intersect
or not depending on their relative orientation. An intersection
probability 
(r2 − r1) can only be defined in average over
the orientation. No definite geometrical representation can be
given to the excluded volume, and a different definition of l

has to be devised. In addition, nothing tells a priori that the
second order moment (33) is the most relevant one. Therefore,
we introduce the p-order moment l(p) of the center-to-center
distance of intersecting objects as

l(p) =
∫

rp 
(r) d3r∫

(r) d3r

, (36)

where the integrals extend over the whole space. Note that the
denominator is equal to Vex.

B. Determination of the moments l ( p)

Although cumbersome, the analytic integration of (36) is
possible when p = 2. The final result for two objects F1 and
F2 reads

l
(2)
1,2 = A1P2

(
R2

g1 + R2
h2

) + A2P1
(
R2

g2 + R2
h1

)
A1P2 + A2P1

, (37)

where Ai and Pi are the object’s surface areas and perimeters.
Rgi and Rhi are the gyration radii of the object Fi and of its
contour ∂Fi ,

R2
gi = 1

Ai

∫
Fi

r2 ds, R2
hi = 1

Pi

∫
∂Fi

r2 dl. (38)

Formulas for these geometrical characteristics are provided
in Table I for various kinds of object shapes. Note that the
result (37) applies when the distance r in (36) is taken between
the object barycenters. When the two objects are identical, (37)
reduces to

l(2) = R2
g + R2

h. (39)

A global average of the bonding distance l(2) in a network
containing objects of various shapes and/or sizes can be
obtained by weighting l

(2)
1,2 by the proportion of intersections

between F1 and F2 objects,

〈l(2)〉 =
∫∫

l
(2)
1,2 Vex,ij dρidρj∫∫
Vex,ij dρidρj

=
〈
AR2

g

〉
〈A〉 +

〈
PR2

h

〉
〈P 〉 . (40)

Analytical integration for p �= 2 is not possible but the moment
l(p) can be calculated by numerical Monte Carlo integration.
An object F1 is placed at the origin, and another object F2

is placed at a random position r with a random orientation.
The quantities rp are averaged over all the cases when F2

intersects F1. This was done for objects with a variety of plane
convex shapes. The averages were taken over large numbers
of intersecting pairs (tens of millions for polygonal shapes and
hundreds of millions for disks and ellipses).

The full results for l(1) and l(2) are given in Table X in
the Supplemental Material [7]. In all cases, the measured l(2)

agrees within ±10−4 with (37). Furthermore, a very good
approximation of the data for l(1) is provided by the model

l(1) ≈
[

8 l(2)

9

]1/2

. (41)

This deviates from the measured data by less than 0.5% for
disks, regular polygons, and moderately elongated objects
(f � 2), and for pairs of such objects, even when they have
very different sizes. The deviation increases for very slender
objects, but reaches only about +3% for ellipses, rectangles, or
lozenges with f = 8. Hence, the combination of (37) and (41)
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TABLE II. The percolation threshold ρ ′
c determined from the numerical simulations and by applying (35) with Vl estimated with l = l(1)

or l = √
l(2), for monodisperse networks of regular or moderately elongated fractures. Numbers in parentheses are the deviations from the

simulation results.

Threshold ρ ′
c determined from

Fracture shape Simulations (35) with
√

l(2) (35) with l(1) (35) with
√

8l(2)/9

Disks 2.303 2.083 (−0.221) 2.278 (−0.026) 2.293 (−0.010)
20-gons 2.307 2.087 (−0.220) 2.282 (−0.025) 2.298 (−0.009)
Hexagons 2.331 2.125 (−0.207) 2.320 (−0.011) 2.341 (0.010)
Squares 2.340 2.141 (−0.199) 2.339 (−0.000) 2.360 (0.021)
Triangles 2.267 2.046 (−0.221) 2.250 (−0.017) 2.251 (−0.016)

Ellipses (f = 1.5) 2.272 2.027 (−0.245) 2.227 (−0.045) 2.229 (−0.043)
Ellipses (f = 2) 2.220 1.926 (−0.294) 2.227 (−0.089) 2.113 (−0.107)
Rectangles (f = 2) 2.240 1.955 (−0.286) 2.159 (−0.082) 2.146 (−0.094)
Lozenges (f = 2) 2.207 1.904 (−0.303) 2.111 (−0.097) 2.088 (−0.119)

provides a convenient and fairly accurate alternative to the
direct measurement of l(1) by Monte Carlo integration.

C. Percolation threshold predictions

The predictions for the percolation threshold of fracture
networks resulting from (35) when Vl is estimated from
l = l(1) or l =

√
l(2) are compared to the results from the

numerical simulations in Table II for monodisperse fractures
with circular, regular polygonal, and moderately elongated
shapes. Using l(2) as in the original argument of [6] yields very
decent predictions, which underestimate the real thresholds by
only 0.2–0.3. However, using instead the first order moment
l(1) is much more successful. The error ranges from 0 to −0.03
for regular shapes, and it does not exceed −0.1 for aspect
ratios f � 2. Interestingly, (35) accounts for the fact that ρ ′

c

for n-sided regular polygons (n � 4) is slightly larger than
for disks, whereas it is smaller for all other shapes. Finally,
l(1) as deduced from (37) and the approximation (41) yields
predictions as accurate as the measured value of l(1).

The same success is observed when two of these shapes
are mixed in the fracture networks. Mixtures of hexagons and
triangles (same bounding radius) or of 20-gons with squares
(same bounding radius or same area) in various proportions
(25/75%, 50/50%, and 75/25%) have been considered. The
bonding distance l(1) was averaged with the same weighting
as for l(2) in (40). Again, the predictions of (35) underestimate
the numerical results by at most −0.02.

However, the argument is much less successful for very
elongated shapes. The predicted thresholds are compared in
Fig. 9 to the results of the numerical simulations, for ellipses,
rectangles, and lozenges with f = 1–16. The data are plotted
as functions of the shape factor η̃g for an easier comparison
with the discussion in Secs. III and IV. Vl in (35) is based on
l = l(1) evaluated from (37) and (41) for convenience, but very
similar results are obtained if the values of l(1) from the Monte
Carlo integration are used in place of this model. It appears
that the prediction (35) fails when the fracture shape strongly
departs from circularity. Using l =

√
l(2) rather than l(1) yields

to even larger deviations from the numerical results.
Networks of fractures with polydisperse sizes have also

been considered. Only the simplest case of bidisperse disks is
discussed in detail here. The predictions of (35) with l = l(1)

are compared in Fig. 10(a) to the numerical simulations when
the size ratio R̃ varies for various values of the fraction
ϕM . Conversely, R̃ is kept constant and the composition
quantified by �M [see Eq. (22)] varies in Fig. 10(b). Note
that the percolation threshold is expressed in terms of the
density ρ ′

3c, which is more appropriate than ρ ′
c for polydisperse

networks. While an increase of ρ ′
3c due to the polydispersity

is indeed predicted, its magnitude and its dependence on the
size distribution are not correctly captured. In particular, the
predictions fail to converge to ρ ′

c for monodisperse networks
when R̃ increases while ϕM is kept constant. The comparison
is no more successful if l(1) is replaced by

√
l(2) or if

continuous size distributions are considered. For instance, the
increase of ρ ′

3c over ρ ′
c for monodisperse networks is strongly

underestimated for power law distributions of the fracture
sizes, whatever the exponent and the ratio of the upper and
lower cutoff sizes.

FIG. 9. The percolation thresholds ρ ′
c determined from the

numerical simulations (symbols, broken lines) and by applying (35)
with Vl estimated with l = l(1) as given by (37) and (41) (solid
lines), as functions of the shape factor η̃g . Data are for networks
of ellipses (label E, blue), rectangles (label R, red) or lozenges (label
L, magenta). The icons illustrate the shapes of the rectangles for
f = 2, 4, 6, 8, and 16.
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FIG. 10. The percolation thresholds ρ ′
c determined from the numerical simulations (symbols, broken lines) and by applying (35) with Vl

estimated with l = l(1) as given by (37) and (41) (solid lines), for bidisperse networks of disks with radii RM and Rm in proportions ϕM and
ϕm = 1 − ϕM . The data are plotted as functions of R̃ = RM/Rm in (a) for various values of the fraction ϕM , indicated next to the curves. The
data are plotted as functions of the composition parameter �M in (b) for various ratios R̃, indicated next to the curves.

Finally, the argument also fails for the networks or random
quadrilaterals, which is not surprising since they mix fractures
with very different and possibly very elongated shapes, with a
broad size distribution. The measured threshold ρ ′

3c = 2.15 is
overestimated by 0.27 when (35) is applied with the value of
l(1) determined by Monte Carlo integration.

In summary, the general argument of [6] is very successful
and indisputably captures part of the shape dependence of
ρ ′

c, when appropriately adapted, in networks of fractures of
comparable sizes and with shapes that do not strongly depart
from circularity. In particular, it accounts for the differences
between continuum percolation systems of solid (spheres,
cubes) or flat penetrable objects, although the reason why
l(2) or l(1) should be used depending on the situation is not
elucidated. The account for the influence of the fracture shape
is also interesting, although it applies in a limited range where
the approximation ρ ′

3c ≈ 2.3 ± 0.1 is probably sufficient for
most practical applications.

However, the argument fails to describe the case of
elongated fracture shapes. The quantity (Vl/Vex)1/3 which
determines the right-hand side term in (35) was called the
“pointedness” of the object in [6]. It was regarded as a
measure of the object’s departure from sphericity and was
expected to account for the longer average distance between
overlapping objects when they are elongated and for its
impact on the critical density. Figure 9 shows that it does
not succeed in this task. Furthermore, the argument does
not succeed either in mixtures of objects with different
sizes.

VII. CONCLUDING REMARKS

The main result in this paper is the model (18) for the
dimensionless percolation density ρ ′

3c, which applies with very
good accuracy to monodisperse and moderately polydisperse
fracture networks. The polydispersity can involve variable
fracture shapes and/or sizes. The critical density is unified
by the use of the reference volume 〈AP 〉 in the definition of

ρ ′
3c, and the shape factor 〈η̃g〉 describes its decrease when the

fracture shapes are very irregular.
The degree of polydispersity can be quantified by the

reduced standard deviation �AP of AP , and the model (18)
applies without need for a correction when �AP � 1. Con-
versely, strong polydispersity with �AP > 1 resulting from
broad size distributions increases ρ ′

3c. Its increment depends on
the particular form of the size distribution and on the fracture
shape in a way that is not yet fully elucidated. However, it
does not change the order of magnitude of the critical density,
and an upper bound is provided by the increment (26) for
bidisperse disks with the same �AP .

For practical applications, the knowledge of several quan-
tities is required to assess the percolating status of a fracture
network, namely ρ, 〈AP 〉, 〈η̃g〉, and �AP . Their determination
by stereological analysis of two-dimensional trace maps is
currently being investigated. A robust procedure that provides
reasonable estimates, at least when polydispersivity is mod-
erate, has been devised. For instance, the analysis of a trace
map in a plane intersecting a network of random quadrilaterals
yields a value of ρ ′

3c which deviates from the actual one by
only 20%, and 〈η̃g〉 is obtained with an error of only −0.006.
A full account of these developments will be provided in a
separate communication in the near future.

Finally, it should be emphasized that this work can be
extended in many ways. For instance, many real fracture
networks display a hierarchical character which is due to the
fact that different families of fractures are produced at different
geological times. Therefore, the newly generated fractures tend
to be stopped by the preexisting ones as proposed by [31].
Another important feature is that fractures do not follow a
Poisson distribution; in a first approximation this could be
accounted for by variations in the local density which could be
described by a fractal correlation. Totally different processes
were followed by [32] who built fractal networks based on
Levy flight processes, and by [33] who applied randomized
iteration functions to generate hierarchical fractal networks
with adjustable box dimension.
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1. DETAILED RESULTS

The numerical determinations of the percolation thresholds ρ′c (for monodispere networks)

and ρ′3c (for polydisperse networks) are provided here for:

� Networks of identical fractures in Table I;

� Binary mixtures of 20-gons and rectangles with various aspect ratios and of disks and

ellipses with various aspect ratios in Table II;

� Ternary mixtures of disks, 3-ellipses and 9 ellipses, and mixtures of random quadrilat-

erals in Table III;

� Networks of fractures with identical shapes and bidisperse sizes sorted according to

the size ratio R̃ = RM/Rm in Table IV or to the fraction ϕM of large objects in Tables

V and VI;

� Networks of fractures with identical shapes and power law size distributions, sorted

according to the fracture size range R̃ = RM/Rm in Table VII or to the scaling exponent

a in Table VIII.

In addition, some geometrical characteristics of the fracture shapes are reported in Table

I, including the shape factor η̃g. The average ⟨η̃g⟩ as defined in (Eq. 11) is also provided

for the mixtures of shapes in Tables II and III. The polydispersity index ΣAP is given for

all the polydisperse networks. The size Lmax of the largest cells used in the calculations is

indicated in all cases, normalized by the largest possible fracture bounding radius Rmax for

each case.

Unless otherwise stated, the critical density reported in the tables is deduced from the

average of the three extrapolated values ρ
(1)
c , ρ

(x)
c , and ρ

(3)
c (see Section 2.3 of the article),

based on data including calculations for L up to Lmax, and the uncertainty evaluated by

(Eq. 14) is given in parenthesis, multiplied by 103. For instance, (12) means ±0.012.

In some cases with power law size distributions (Tables VII and VIII), the extrapolation

step was skipped and the reported critical density is ρ
′(1)
L3c for L = LMax. These cases are

indicated by a mark ”(=)” next to the value of Lmax.
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Shape A P AP /2 η̃g Lmax ρ′c
n-sided Regular Polygons

n = 3 1.299 5.196 3.375 0.0906 80 2.270(5)

n = 4 2.000 5.657 5.656 0.0228 80 2.338(5)

n = 6 2.598 6.000 7.794 0.0038 80 2.334(4)

n = 20 3.090 6.257 9.668 0.0000 80 2.303(6)

Disks and Ellipses with aspect ratio f

f = 1 3.142 6.283 9.870 0.0000 160 2.303(4)

f = 1.5 2.094 5.289 5.538 0.0392 120 2.275(7)

f = 2 1.571 4.844 3.805 0.1056 120 2.220(4)

f = 3 1.047 4.455 2.333 0.2254 120 2.102(4)

f = 4 0.785 4.289 1.684 0.3140 120 1.999(3)

f = 6 0.524 4.150 1.087 0.4305 120 1.845(3)

f = 8 0.393 4.093 0.804 0.5039 80 1.737(3)

f = 16 0.196 4.029 0.396 0.6471 80 1.515(2)

Rectangles with aspect ratio f

f = 1 2.000 5.657 5.657 0.0228 80 2.338(5)

f = 2 1.600 5.367 4.293 0.1260 80 2.241(3)

f = 4 0.941 4.851 2.283 0.3296 80 2.006(4)

f = 6 0.649 4.603 1.493 0.4435 80 1.852(3)

f = 8 0.492 4.465 1.099 0.5152 80 1.748(4)

f = 16 0.249 4.242 0.528 0.6552 80 1.530(4)

Lozenges with aspect ratio f

f = 1 2.000 5.657 5.657 0.0228 80 2.338(5)

f = 2 1.000 4.472 2.236 0.1260 40 2.202(4)

f = 3 0.667 4.216 1.406 0.2431 40 2.049(3)

f = 4 0.500 4.123 1.031 0.3296 40 1.929(3)

f = 8 0.250 4.031 0.504 0.5152 40 1.664(2)

TABLE I. Data for monodisperse networks of identical fractures: fracture area A, perimeter P , ex-
cluded volume AP /2, shape factor η̃g, largest cell size Lmax used in the calculations and percolation
threshold ρ′c. All lengths are normalized by the fracture bounding radius.
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f p1 ⟨η̃g⟩ ΣAP
Lmax

Rmax
ρ′3c ⟨η̃g⟩ ΣAP

Lmax

Rmax
ρ′3c

Fractures with identical surface areas Fractures with identical bounding radii

20-gons and rectangles with aspect ratio f

1 0.00 0.0228 0.000 80.0 2.338( 5) 0.0228 0.000 80 2.338( 5)

1 0.25 0.0200 0.049 76.1 2.328( 7) 0.0183 0.261 80 2.325( 5)

1 0.50 0.0166 0.058 108.3 2.323( 6) 0.0139 0.262 120 2.318( 6)

1 0.75 0.0119 0.052 68.3 2.313(10) 0.0092 0.009 80 2.310( 6)

1 1.00 0.0000 0.000 80.0 2.303( 6) 0.0000 0.000 80 2.303( 6)

2 0.00 0.1260 0.000 80.0 2.241( 3) 0.1260 0.000 80 2.241( 3)

2 0.25 0.1113 0.073 74.4 2.252( 3) 0.0963 0.413 120 2.269( 5)

2 0.50 0.0929 0.088 103.2 2.268( 4) 0.0707 0.385 160 2.285( 9)

2 0.75 0.0672 0.079 63.2 2.286( 8) 0.0456 0.280 120 2.300( 6)

2 1.00 0.0000 0.000 80.0 2.303( 6) 0.0000 0.000 80 2.303( 6)

4 0.00 0.3296 0.000 80.0 2.006( 4) 0.3296 0.000 80 2.006( 4)

4 0.10 0.2782 0.733 80 2.085( 4)

4 0.25 0.2964 0.134 71.0 2.050( 5) 0.2199 0.775 80 2.159( 4)

4 0.50 0.2519 0.168 62.1 2.106( 4) 0.1488 0.618 80 2.229( 9)

4 0.75 0.1862 0.159 53.1 2.188( 6) 0.0907 0.409 80 2.274( 4)

4 1.00 0.0000 0.000 80.0 2.303( 6) 0.0000 0.000 80 2.303( 6)

8 0.00 0.5152 0.000 80.0 1.748( 4) 0.5152 0.000 80 1.748( 4)

8 0.10 0.3877 1.314 40 1.927( 6)

8 0.25 0.4730 0.214 34.0 1.789( 6) 0.2793 1.145 40 2.066( 5)

8 0.50 0.4126 0.283 28.0 1.861( 4) 0.1743 0.796 40 2.190( 9)

8 0.75 0.3148 0.285 43.9 2.003( 5) 0.1014 0.493 80 2.259( 5)

8 1.00 0.0000 0.000 80.0 2.303( 6) 0.0000 0.000 80 2.303( 6)

Disks and ellipses with aspect ratio f

4 0.00 0.3140 0.000 120.0 1.999( 3) 0.3140 0.000 120 1.999( 3)

4 0.10 0.2554 0.981 40 2.113( 6)

4 0.25 0.2815 0.124 35.0 2.041( 8) 0.1946 0.950 40 2.188(13)

4 0.50 0.2386 0.154 30.0 2.105( 6) 0.1265 0.708 40 2.252( 7)

4 0.75 0.1756 0.145 50.0 2.187( 3) 0.0750 0.453 40 2.285( 7)

4 1.00 0.0000 0.000 160.0 2.303( 4) 0.0000 0.000 160 2.303( 4)

8 0.00 0.5039 0.000 80.0 1.737( 3) 0.5039 0.000 80 1.737( 3)

8 0.02 0.4647 1.289 40 1.810( 4)

8 0.10 0.3572 1.590 40 1.959( 6)

8 0.25 0.4637 0.224 33.5 1.775( 3) 0.2471 1.279 40 2.091(13)

8 0.50 0.4057 0.296 27.1 1.845( 5) 0.1492 0.849 40 2.201( 6)

8 0.75 0.3108 0.301 61.8 1.986( 3) 0.0851 0.516 40 2.263( 9)

8 1.00 0.0000 0.000 160.0 2.303( 4) 0.0000 0.000 160 2.303( 4)

Hexagons (50%)+ Triangles (50%) 0.0505 0.396 40 2.305( 7)

Hexagons (50%)+ 4-Rectangles (50%) 0.1608 0.547 40 2.237( 6)

Squares (50%) + 8-Rectangles (50%) 0.2161 0.675 40 2.173( 5)

TABLE II. Data for networks containing fractures with two different shapes (p1 is the fraction of
20-gons or disks): the shape factor η̃g, the polydispersity index ΣAP , the largest cell size Lmax and
the percolation threshold ρ′3c.
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Composition ⟨η̃g⟩ ΣAP
Lmax

Rmax
ρ′3c

Disks + 3-Ellipses + 9-Ellipses (equal number densities) 0.1573 0.928 40 2.194( 6)

Disks + 3-Ellipses + 9-Ellipses (equal volumetric areas) 0.3050 1.356 40 1.976( 4)

Random quadrilaterals 0.2108 0.753 40 2.148( 3)

TABLE III. Data for networks containing fractures with three different shapes or random quadri-
laterals: the shape factor η̃g, the polydispersity index ΣAP , the largest cell size Lmax and the
percolation threshold ρ′3c. The disks, 3-ellipses and 9-ellipses have identical bounding radii.
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ϕM ΣAP
Lmax

RM
ρ′3c

Disks, RM/Rm=2.5

0.000 0.000 160 2.303( 4)

0.010 1.270 48.7 2.372( 8)

0.020 1.584 49.4 2.415( 8)

0.040 1.808 50.8 2.450( 6)

0.060 1.850 34.8 2.450( 8)

0.075 1.837 35.6 2.446(12)
0.080 1.828 35.8 2.446(11)
0.100 1.782 36.8 2.436(10)
0.150 1.635 39.1 2.416( 6)

0.250 1.360 44.0 2.376( 6)

0.400 1.046 51.2 2.344( 7)

0.500 0.880 28.0 2.328(18)
0.600 0.733 30.4 2.314( 9)

0.750 0.529 34.0 2.309( 7)

0.900 0.310 37.6 2.302(15)
0.950 0.214 38.9 2.308(11)
0.990 0.094 39.7 2.300( 9)

1.000 0.000 160 2.303( 4)

Disks, RM/Rm=5

0.000 0.000 160 2.303( 4)

0.005 5.399 32.6 2.695( 9)

0.0079 5.545 33.1 2.712(11)
0.010 5.508 24.9 2.706(13)
0.020 4.989 25.9 2.584(22)
0.040 4.077 27.8 2.474( 6)

0.075 3.171 31.2 2.381(16)
0.100 2.776 33.6 2.375( 8)

0.150 2.259 25.6 2.346(14)
0.250 1.678 32.0 2.324(10)
0.500 0.984 48.0 2.308( 6)

0.900 0.330 36.8 2.299( 8)

1.000 0.000 160 2.303( 4)

4-Ellipses, RM/Rm=2.5

0.000 0.000 120 1.999( 3)

0.010 1.269 32.5 2.046( 3)

0.020 1.584 32.9 2.072( 3)

0.040 1.808 33.9 2.092( 4)

0.0602 1.850 34.9 2.092( 4)

0.080 1.828 35.8 2.087( 3)

0.150 1.635 39.3 2.064( 3)

0.250 1.360 22.0 2.040( 6)

0.500 0.880 28.0 2.015( 4)

1.000 0.000 120 1.999( 3)

ϕM ΣAP
Lmax

RM
ρ′3c

Disks, RM/Rm=3.45

0.000 0.000 160 2.303( 4)

0.010 2.843 23.7 2.524(11)
0.020 3.111 24.3 2.568( 8)

0.0238 3.124 24.5 2.566( 9)

0.040 3.015 25.4 2.537( 8)

0.075 2.634 27.4 2.463(10)
0.100 2.400 28.8 2.435( 6)

0.150 2.040 31.7 2.390(10)
0.250 1.575 37.4 2.348( 8)

0.500 0.952 25.8 2.304(13)
0.900 0.324 37.1 2.302(12)
0.950 0.224 38.6 2.302( 9)

0.990 0.098 39.7 2.299(13)
1.000 0.000 160 2.303( 4)

Disks, RM/Rm=6

0.000 0.000 160 2.303( 4)

0.0046 7.314 27.2 2.804(11)
0.010 6.791 28.0 2.684( 9)

0.020 5.679 29.3 2.519( 8)

0.040 4.389 32.0 2.419( 6)

0.075 3.307 36.7 2.356( 7)

0.100 2.867 30.0 2.349( 9)

0.150 2.309 35.0 2.329(12)
0.250 1.700 45.0 2.316( 5)

1.000 0.000 160 2.303( 4)

4-Ellipses, RM/Rm=4

0.000 0.000 120 1.999( 3)

0.010 3.846 30.9 2.208( 5)

0.0154 3.937 31.4 2.208( 6)

0.020 3.903 31.8 2.200( 7)

0.040 3.507 22.4 2.136( 9)

0.050 3.309 23.0 2.110(14)
0.080 2.830 24.8 2.074( 7)

0.150 2.153 29.0 2.037(13)
1.000 0.000 120 1.999( 3)

ϕM ΣAP
Lmax

RM
ρ′3c

Disks, RM/Rm=4

0.000 0.000 160 2.303( 4)

0.001 1.873 30.0 2.363( 6)

0.002 2.500 30.1 2.414( 4)

0.003 2.898 30.2 2.461( 7)

0.005 3.379 30.4 2.529( 7)

0.010 3.846 30.9 2.612(11)
0.015 3.937 31.3 2.627( 6)

0.020 3.903 31.8 2.611(18)
0.040 3.507 33.6 2.529( 6)

0.075 2.898 36.7 2.456(15)
0.080 2.830 24.8 2.435(16)
0.100 2.589 26.0 2.401(12)
0.150 2.153 29.0 2.369(15)
0.250 1.629 35.0 2.326( 9)

0.500 0.969 50.0 2.311( 9)

0.750 0.565 65.0 2.306( 6)

0.900 0.328 74.0 2.303( 3)

0.990 0.099 39.7 2.302( 7)

1.000 0.000 160 2.303( 4)

Disks, RM/Rm=8

0.000 0.000 160 2.303( 4)

0.0019 11.29 20.3 2.923(25)
0.005 10.14 20.7 2.704(29)
0.010 8.321 21.4 2.537(24)
0.020 6.376 34.2 2.417(17)
0.040 4.670 25.6 2.354(19)
0.075 3.423 30.5 2.328(12)
0.100 2.942 25.5 2.310(17)
0.150 2.350 30.7 2.310( 7)

0.250 1.719 41.2 2.304(13)
1.000 0.000 160 2.303( 4)

Squares, RM/Rm=4

0 .000 0.000 80.0 2.338( 5)

0.015 3.937 20.9 2.667( 9)

0.075 2.898 24.5 2.480(10)
1.000 0.000 80.0 2.338( 5)

Triangles, RM/Rm=4

0.000 0.000 80.0 2.271( 8)

0.015 3.937 20.9 2.576(11)
0.075 2.898 24.5 2.400( 6)

1.000 0.000 80.0 2.271( 8)

TABLE IV. Data for networks of fractures with identical shapes and bidisperse sizes, with bounding
radii RM and Rm: fraction ϕM of large fractures, polydispersity index ΣAP , largest cell size Lmax
used in the calculations and percolation threshold ρ′3c.
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R̃ ΣAP
Lmax

RM
ρ′3c

Disks, ϕM=0.500
10.00 0.998 44.0 2.298(11)
5.000 0.984 48.0 2.308( 6)

4.000 0.969 50.0 2.311( 9)

3.448 0.952 25.8 2.304(13)
3.333 0.947 26.0 2.316( 8)

2.500 0.880 28.0 2.328(18)
2.000 0.778 30.0 2.335( 5)

1.667 0.645 32.0 2.328(11)
1.429 0.489 34.0 2.318( 7)

1.250 0.323 36.0 2.311( 8)

1.111 0.157 38.0 2.299( 7)

1.000 0.000 160 2.303( 4)

Disks, ϕM=0.100
8.000 2.942 25.5 2.310(17)
6.000 2.867 30.0 2.349( 9)

5.000 2.776 33.6 2.375( 8)

4.000 2.589 26.0 2.401(12)
3.448 2.400 28.9 2.435( 6)

3.125 2.241 31.0 2.445( 8)

2.929 2.121 32.6 2.449( 9)

2.778 2.014 33.9 2.444(11)
2.500 1.782 36.8 2.436(10)
2.080 1.334 21.3 2.393(17)
2.000 1.235 22.0 2.400(14)
1.500 0.576 28.0 2.326( 7)

1.000 0.000 160 2.303( 6)

R̃ ΣAP
Lmax

RM
ρ′3c

Disks, ϕM=0.250
8.000 1.719 41.2 2.304(13)
6.000 1.700 45.0 2.316( 5)

5.000 1.678 32.0 2.324(10)
4.000 1.629 35.0 2.326( 9)

3.448 1.575 37.4 2.348( 8)

2.500 1.360 44.0 2.376( 6)

2.326 1.287 45.8 2.380( 9)

2.201 1.225 47.3 2.378( 4)

2.128 1.184 48.2 2.376( 7)

2.000 1.102 25.0 2.365(17)
1.500 0.645 30.0 2.337( 8)

1.000 0.000 160 2.303( 4)

Disks, ϕM=0.075
8.000 3.423 30.5 2.328(12)
6.000 3.307 36.7 2.356( 7)

5.000 3.171 31.2 2.381(16)
4.000 2.898 36.7 2.456(15)
3.448 2.634 27.5 2.463(10)
3.213 2.483 29.0 2.469(19)
3.030 2.346 30.4 2.471(18)
2.500 1.837 35.6 2.446(12)
2.000 1.209 43.0 2.390( 8)

1.500 0.531 55.3 2.320( 6)

1.000 0.000 160 2.303( 4)

R̃ ΣAP
Lmax

RM
ρ′3c

Disks, ϕM=0.150
8.000 2.350 30.7 2.310( 7)

6.000 2.309 35.0 2.329(12)
5.000 2.259 25.6 2.346(14)
4.000 2.153 29.0 2.369(15)
3.448 2.040 31.7 2.390(10)
2.500 1.635 39.2 2.416( 6)

2.000 1.219 23.0 2.386(10)
1.500 0.625 28.7 2.331(11)
1.000 0.000 160 2.303( 4)

Disks, ϕM=0.040
8.000 4.670 25.6 2.354(19)
6.000 4.389 32.0 2.419( 6)

5.000 4.077 27.8 2.474( 6)

4.000 3.507 33.6 2.529( 6)

3.448 3.015 25.5 2.537( 8)

2.500 1.808 50.9 2.450( 6)

1.000 0.000 160 2.303( 4)

Disks, ϕM=0.020
8.000 6.376 34.2 2.417(17)
6.000 5.679 29.3 2.519( 8)

5.000 4.989 25.9 2.584(22)
4.000 3.903 31.8 2.611(18)
3.448 3.111 24.3 2.568( 8)

2.500 1.584 49.4 2.415( 8)

1.000 0.000 160 2.303( 4)

Disks, ϕM=0.010
8.000 8.321 21.4 2.537(24)
6.000 6.791 28.0 2.684( 9)

5.000 5.508 25.0 2.706(13)
4.000 3.846 30.9 2.612(11)
3.448 2.843 23.8 2.514(11)
2.500 1.270 48.7 2.372( 8)

1.000 0.000 160 2.303( 4)

TABLE V. Data for networks of fractures with circular shape and bidisperse sizes, with a fraction
ϕM of large fractures: ratio of the bounding radii R̃ = RM/Rm, polydispersity index ΣAP , largest
cell size Lmax and percolation threshold ρ′3c.
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RM/Rm ϕM ΣAP
Lmax

RM
ρ′3c

Disks
2.080 0.1000 1.334 21.3 2.393(17)
2.500 0.0600 1.850 34.9 2.450( 8)

3.000 0.0357 2.502 28.6 2.508(11)
3.448 0.0238 3.124 24.6 2.566( 9)

4.000 0.0150 3.937 31.4 2.627( 6)

5.000 0.0079 5.545 33.0 2.712(11)
6.000 0.0046 7.314 27.3 2.804(11)
8.000 0.0019 11.29 20.3 2.933(25)

RM/Rm ϕM ΣAP
Lmax

RM
ρ′3c

4-Ellipses
2.000 0.1111 1.237 44.4 2.055( 3)

2.500 0.0602 1.850 34.9 2.092( 4)

3.000 0.0357 2.502 28.6 2.132( 5)

3.448 0.0238 3.124 24.6 2.168( 7)

4.000 0.0154 3.937 31.4 2.208( 6)

6.000 0.0046 7.314 20.5 2.333(12)

TABLE VI. Data for bidisperse networks of disks or 4-ellipses, with bounding radii RM and Rm,
and a fraction ϕM = ϕM,max = 1/(1 + R̃3

) of large objects: polydispersity index ΣAP , largest cell
size Lmax and percolation threshold ρ′3c.

8



a ΣAP
Lmax

RM
ρ′3c

Disks, RM/Rm=4

0.0 0.853 40 2.341( 6)

0.5 0.956 40 2.344( 6)

1.0 1.070 40 2.362( 6)

1.5 1.192 120 2.372( 6)

2.0 1.315 40 2.383( 6)

2.5 1.429 120 2.399( 4)

3.0 1.523 20(=) 2.412(20)
3.5 1.586 20(=) 2.421(20)
4.0 1.608 20 2.411(15)
5.0 1.523 20(=) 2.414(20)
10.0 0.559 40 2.323( 2)

Disks, RM/Rm=8

0.0 1.001 40 2.343( 5)

0.5 1.200 40 2.353( 7)

1.0 1.461 40 2.371( 6)

1.5 1.790 40 2.391( 7)

2.0 2.187 40 2.420( 7)

2.5 2.626 40 2.451( 8)

3.0 3.048 20(=) 2.494(20)
3.5 3.362 20(=) 2.536(20)
4.0 3.479 20 2.549(11)
5.0 3.046 20(=) 2.505(20)
10.0 0.575 20(=) 2.324(20)

Disks, RM/Rm=16

0.0 1.070 40 2.346( 7)

0.5 1.352 40 2.356( 8)

1.0 1.779 40 2.375( 6)

1.5 2.416 20(=) 2.397(20)
2.0 3.333 20(=) 2.440(20)
2.5 4.549 20(=) 2.499(20)
4.0 7.627 10(=) 2.698(20)

a ΣAP
Lmax

RM
ρ′3c

4-Ellipses, RM/Rm=4

0.0 0.853 40 2.021( 2)

1.0 1.070 20 2.034( 4)

1.5 1.192 20 2.038( 6)

2.0 1.315 20 2.043( 5)

2.5 1.429 10(=) 2.061(20)
3.5 1.586 10(=) 2.071(20)
4.0 1.608 20 2.070( 4)

4.5 1.586 10(=) 2.074(20)

4-Ellipses, RM/Rm=8

0.0 1.001 40 2.024( 3)

1.0 1.461 20 2.038( 5)

1.5 1.790 20 2.050( 5)

2.0 2.187 20 2.066( 5)

2.5 2.626 10(=) 2.095(20)
3.5 3.362 10(=) 2.141(20)
4.0 3.479 10(=) 2.159(20)
4.5 3.361 10(=) 2.153(20)

4-Rectangles, RM/Rm=8

4.0 3.479 10(=) 2.173(20)

4-Lozenges:, RM/Rm=8

4.0 3.479 10(=) 2.073(20)

a ΣAP
Lmax

RM
ρ′3c

Hexagons, RM/Rm=4

1.5 1.192 40 2.402( 5)

2.0 1.315 40 2.418( 4)

2.5 1.429 40 2.431( 6)

4.0 1.608 20(=) 2.458(20)

Hexagons, RM/Rm=8

1.5 1.790 40 2.425( 4)

2.0 2.187 40 2.460( 6)

2.5 2.626 20(=) 2.499(20)

Squares, RM/Rm=4

1.5 1.192 40 2.411( 4)

2.5 1.429 40 2.441( 5)

4.0 1.608 20(=) 2.462(20)

Squares, RM/Rm=8

1.5 1.790 20(=) 2.437(20)
2.5 2.626 20(=) 2.505(20)
4.0 3.479 20(=) 2.596(20)

Triangles, RM/Rm=4

1.5 1.192 20(=) 2.341(20)
2.5 1.429 20(=) 2.363(20)
4.0 1.608 20(=) 2.385(20)

Triangles, RM/Rm=8

1.5 1.790 20(=) 2.359(20)
2.5 2.626 20(=) 2.419(20)
4.0 3.479 20(=) 2.509(20)

TABLE VII. Data for fracture networks of with power law size distribution in the range of bounding
radii Rm to RM : exponent a, polydispersity index ΣAP , largest cell size Lmax and percolation
threshold ρ′3c.
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R̃ ΣAP
Lmax

RM
ρ′3c

Disks, a=0.0
4 0.853 40 2.341( 6)

8 1.001 40 2.343( 5)

16 1.070 40 2.346( 7)

Disks, a=0.5
4 0. 956 40 2.344( 6)

8 1.200 40 2.353( 7)

16 1.352 40 2.356( 8)

Disks, a=1.0
4 1.070 40 2.362( 6)

8 1.461 40 2.371( 6)

16 1.779 40 2.375( 6)

Disks, a=1.5
4 1.192 120 2.372( 6)

8 1.790 40 2.391( 7)

16 2.416 20(=) 2.397(20)

Disks, a=2.0
4 1.315 40 2.383( 6)

8 2.187 40 2.420( 7)

16 3.333 20(=) 2.440(20)

Disks, a=2.5
4 1.429 120 2.399( 4)

8 2.626 40 2.451( 8)

16 4.549 20(=) 2.499(20)

Disks, a=3.0
4 1.523 20(=) 2.412(20)
8 3.048 20(=) 2.494(20)

R̃ ΣAP
Lmax

RM
ρ′3c

Disks, a=3.5
4 1.586 20(=) 2.421(20)
8 3.362 20(=) 2.536(20)

Disks, a=4.0
2 0.645 40 2.331( 4)

3 1.142 20 2.374( 5)

4 1.608 20 2.41115)
5 2.068 20 2.456( 6)

6 2.531 10(=) 2.496(20)
8 3.479 20 2.549(11)
10 4.463 10(=) 2.599(20)
12 5.485 10(=) 2.641(20)
16 7.627 10(=) 2.698(20)

Disks, a=5.0
4 1.523 20(=) 2.414(20)
8 3.046 20(=) 2.505(20)

4-Ellipses, a=4.0
2 0.645 40 2.016( 3)

3 1.142 20 2.041( 4)

4 1.608 20 2.070( 4)

5 2.068 20 2.097( 5)

6 2.531 10(=) 2.119(20)
8 3.479 10(=) 2.159(20)
10 4.463 10(=) 2.187(20)
12 5.485 10(=) 2.214(20)
16 7.627 10(=) 2.260(20)

R̃ ΣAP
Lmax

RM
ρ′3c

Hexagons, a=1.5
4 1.192 40 2.402( 5)

8 1.790 40 2.425( 4)

Hexagons, a=2.0
4 1.315 40 2.418( 4)

8 2.187 40 2.460( 6)

Hexagons, a=2.5
4 1.429 40 2.431( 6)

8 2.626 20(=) 2.499(20)

Squares, a=1.5
4 1.192 40 2.411( 4)

8 1.790 20(=) 2.437(20)

Squares, a=2.5
4 1.429 40 2.441( 5)

8 2.626 20(=) 2.505(20)

Squares, a=4.0
4 1.608 20(=) 2.462(20)
8 3.479 20(=) 2.596(20)

Triangles, a=1.5
4 1.192 20(=) 2.341(20)
8 1.790 20(=) 2.359(20)

Triangles, a=2.5
4 2.626 20(=) 2.419(20)
8 1.429 20(=) 2.363(20)

Triangles, a=4.0
4 1.608 20(=) 2.385(20)
8 3.479 20(=) 2.509(20)

TABLE VIII. Data for fracture networks of with power law size distribution with exponent a: range
of bounding radii R̃ = RM/Rm, polydispersity index ΣAP , largest cell size Lmax and percolation
threshold ρ′3c.
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2. RANDOM QUADRILATERALS

This model is intended to introduce a class of random fracture networks reminiscent

of real geological ones. Although it does not result from the modelling of field data, the

fractures can take a great variety of shapes and sizes, which is more realistic than one or a

few sets of regularly shaped objects. In addition, it provides a very demanding test case to

assess whether results obtained in simple model situations apply in a more general setting.

The fractures are generated by randomly injecting four points in a disk of constant radius

R (see Fig.1). The cases where three points form a triangle that contains the fourth one are

rejected. This occurs with a probability 35/(12π2) ≈0.296 4. The remaining quadrilaterals

have strongly polydisperse sizes and shapes that range from roughly square or roughly

triangular to very elongated.

Their statistical geometric characteristics have been measured from a set of 108 random

realizations. The means, extremal values and standard deviations of the main ones for our

purposes, namely the area A, the perimeterP , their product AP and the shape factor η̃g

(averaged according to Eq. 11) are given in Table IX. The maximal values of A, P and

AP are reached for the square inscribed in the circle, with A◇ = 2R2, P◇ = 4
√

2R and

(AP )◇ = 8
√

2R3. The minimal value 1-
√

3/π of η̃g also corresponds to this square.

The probability distributions of these parameters are shown in Fig.1. It appears that

many quadrilaterals are very elongated. The shape factor η̃g exceeds 0.2 (which roughly

corresponds to the value for 3-ellipses) with probability 0.5 and it exceeds 0.46 (which

roughly corresponds to the value for 6-ellipses) with probability 0.1. The measures A, P

and AP of the object size are also very widely spread.

Minimum Average Maximum Standard

deviation

A/R2 0 0.4895 2 0.2834

P /R 0 3.2847 4
√

2 ≈5.657 0.7323

AP /R3 0 1.7860 8
√

2 ≈11.314 1.3457

η̃g 1 −
√

3/π ≈0.0228 0.2108 1

TABLE IX. Means, extrema and standard deviations of the area A, perimeter P , product AP and

shape factor η̃g of the random quadrilaterals.

4 Sylvester J.J., On a Special Class of Questions on the Theory of Probabilities, Birmingham British Asso-
ciation Report, 39, 8-9 (1865).

11



0 0.2 0.4 0.6 0.8 1
A/A⋄, P/P⋄, AP/(AP )⋄, η̃g

0

1

2

3

4

5

f
(A

),
f
(P

),
f
(A

P
),

f
(η̃

g
)

A P

AP

η̃g

FIG. 1. Probability distribution functions of the area A, perimeter P , product AP and shape

factor η̃g of the random quadrilaterals.
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3. MOMENTS OF THE CENTER-TO-CENTER DISTANCE OF INTERSECTING

OBJECTS

Identical objects

n-Sided regular polygons

n l(1) l(2)

3 0.8166 0.7500

4 0.9477 0.9999

6 1.0597 1.2501

20 1.1500 1.4755

Ellipses with aspect ratio f

f l(1) l(2)

1 1.1593 1.5000

1.5 0.9693 1.0559

2 0.8785 0.8776

3 0.7950 0.7323

4 0.7583 0.6746

6 0.7274 0.6281

8 0.7150 0.6102

16 0.7014 0.5910

Rectangles with aspect ratio f

f l(1) l(2)

1 0.9477 0.9999

2 0.9075 0.9333

4 0.8403 0.8237

6 0.8105 0.7749

8 0.7950 0.7489

16 0.7711 0.7085

Losanges with aspect ratio f

f l(1) l(2)

1 0.9477 0.9999

2 0.7402 0.6250

3 0.6897 0.5556

4 0.6695 0.5312

8 0.6478 0.5078

Unit disk + disk with radius r

r l(1) l(2)

1 1.1593 1.5000

2/3 0.9722 1.0555

1/2 0.8847 0.8750

2/5 0.8349 0.7800

1/3 0.8031 0.7222

0.3112 0.7927 0.7040

0.2900 0.7830 0.6871

1/4 0.7650 0.6562

1/5 0.7433 0.6200

1/6 0.7293 0.5972

1/8 0.7124 0.5703

Unit disk + ellipse with aspect ratio f , same bounding radius

f l(1) l(2)

4 0.9428 1.0043

8 0.9011 0.9203

Unit disk + ellipse with aspect ratio f , same area

f l(1) l(2)

4 1.3459 2.1041

8 1.6374 3.2376

Unit n-sided polygon + same shape, smaller size (1/4)

n l(1) l(2)

3 0.5315 0.3281

4 0.6224 0.4375

6 0.6982 0.5469

20 0.7588 0.6456

Unit n1-sided regular polygon + n2-sided

n1, n2 l(1) l(2)

20, 4 (same bounding radius) 1.0485 1.2246

20, 4 (same area) 1.1645 1.5110

6, 3 (same bounding radius) 0.9363 0.9779

TABLE X. Moments l(1) and l(2) of the center-to-center distance of intersecting objects with

identical (left) or different (right) shapes and/or sizes, determined by Monte Carlo numerical

integration. The objects have a unit bounding radius, unless otherwise stated.
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