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Abstract

The percolation threshold of fracture networks is investigated by extensive direct numerical

simulations. The fractures are randomly located and oriented in 3d space. A very wide range

of regular, irregular and random fracture shapes is considered, in monodisperse or polydisperse

networks containing fractures with different shapes and/or sizes. The results are rationalized in

terms of a dimensionless density. A simple model involving a new shape factor is proposed, which

accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy

in monodisperse or moderately polydisperse networks, and provides a good first estimation in other

situations. A polydispersity index is shown to control the need for a correction, and the corrective

term is modelled for the investigated size distributions.
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1. INTRODUCTION

Geological fractures, usually defined as surface discontinuities in rocks, are ubiquitous

underground from scales of a few millimeters to hundreds of kilometers [1]. Fluids can

generally flow through them and possibly much faster than in the embedding porous matrix.

Therefore, fracture networks do influence flow and transports, and they are actively studied

in many areas such as geothermal energy exploitation, hydrology, oil and gas recovery and

nuclear waste storage. In particular, it is important to know their statistical geometrical

properties. A prominent feature in this respect is their connectivity, and possibly their

percolating character, which was first studied by Charlaix et al [2] and Balberg [3].

This paper intends to provide a major update of some of our earlier works. Monodisperse

networks of fractures were considered in [4], where a first unification of the percolation

threshold values for various regular polygonal fracture shapes was achieved, by use of the

concept of excluded volume. Polydisperse networks with power law distributions of the

fracture sizes were addressed in [5], where a generalized dimensionless network density was

introduced which accounts for most of the influence of polydispersity.

The present work proceeds along the same lines, with significant improvements and ex-

tensions of several kinds. A very extensive set of calculations was conducted, taking benefit

of much increased computational capabilities, with a significant precision improvement re-

sulting mostly from the use of much larger and numerous samples. The range of explored

situations was also greatly extended, including new fracture shapes very far from circular-

ity, and various kinds of polydispersity, such as mixtures of fractures with different shapes,

possibly random, and various size distributions.

The rationalization of the results benefits greatly from these gains in precision and scope

of the data. The corrective factor for fractures with very elongated shapes proposed in [5]

was successful only for the cases examined by then. A much better model, more accurate

and applicable in a much wider range of shapes and mixtures of shapes is formulated, based

on a different shape factor. Effects of the size polydispersity undetected in [5] could be

quantified and modelled, and a simple criterion is obtained to assess whether they are a

priori negligible or should be taken into account.

The paper is organized as follows. General information is provided in Section 2, including

the description of the networks, dimensionless parameters and concepts used in the analysis
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and the numerical aspects of the determination of the percolation thresholds. Monodisperse

networks are addressed in Section 3. More complex networks containing mixtures of fractures

of various kinds are explored in Section 4 and size polydispersity is considered in Section

5. A heuristic argument proposed in [6] to predict the percolation thresholds in continuum

systems is revisited in Section 6. Concluding remarks are formulated in Section 7.

Supplemental Material is provided in [7], including the comprehensive set of numerical

data, details about the random quadrilaterals used in some of the investigated networks and

auxilliary data pertaining to Section 6.

2. METHODS

2.1. Fracture networks

A fracture network is defined as a set of individual fractures which possibly intersect.

The fractures are regarded as plane, finite objects without any restriction for their shape

except for the convexity of their contour.

We consider a canonical situation where several important hypotheses are made. First,

the fractures are randomly located in space, with a density ρ (mean number of fractures

per unit volume). More precisely, the number of fractures in a volume V obeys a Poisson

distribution with mean ρV , independent of position. Second, the fractures are randomly

and isotropically oriented. Finally, the various attributes of a fracture (position, orientation,

shape, size) are uncorrelated, as well as the attributes of different fractures in the network.

These are strong assumptions which are generally not met in real fracture networks.

However, earlier works have shown that the percolation properties of anisotropic networks

where the fracture orientations are arranged in several discrete families [8] or according to

a continuous Fisher distribution around a preferential direction [9] do not strongly differ

from those of isotropic networks. It has also been shown [10] that the results for uniform

ρ are applicable locally in inhomogeneous networks if the density variations take place over

distances larger than the typical fracture size. Therefore, the present canonical situation is

a good starting point for the study of more general cases.

The networks are generated by inserting fractures with random orientations and with

their centers at random locations and in a cubic cell of size L3. Periodicity is applied along
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the three x-, y- and z-axes.

A wide range of fracture shapes has been considered, including disks and ellipses with an

aspect ratio f=1 to 16 (denoted f -ellipses), regular polygons with n=3, 4, 6 and 20 vertices,

and elongated polygons with aspect ratios f=1 to 16 (see Fig.1). Note that the f -lozenges,

f -ellipses and f -rectangles belong to the class of the Lamé curves, or super-ellipses [11]

∣
x

a
∣
q

+ ∣
y

b
∣
q

= 1 (1)

with q=1, 2 and ∞, respectively, and a/b = f . Mixtures of fractures with different shapes in

varying proportions have also been considered.

The case when all the fractures in the network have identical shapes and sizes is de-

noted I2OUD in [12] (acronym for Identical, Isotropically Oriented, and Uniformly Dis-

tributed). However, mixtures of fractures with different shapes in varying proportions have

also been considered here, and three kinds of fracture size distributions have been inves-

tigated: monodisperse, bidisperse with two sizes RM and Rm (the fraction of the largest

ones is denoted by ϕM) and power law distributions. The bidisperse distribution is a simple

model without claim for realism whereas power law is one of the most commonly observed

distribution in geological fracture networks (see the review in Section 5.2.2 of [13]), described

by

ϕ(R) = αR−a (Rm ≤ R ≤ RM) (2)

where ϕ(R)dR is the probability of R being in the interval [R,R + dR]; α results from the

normalization condition that the integral over R of (2) should be equal to 1. The exponent

a is found to range between 1 and 5 in many observations of fractured rocks [13]. The ratio

RM/Rm is denoted R̃ in the following, for both bidisperse and power law distributions.

Finally, networks of random quadrilaterals have been considered. These fractures are

generated by randomly injecting four points inside a disk (see Fig.1 and [7]). The resulting

fractures have strongly polydisperse sizes and shapes that range from roughly square or

roughly triangular to very elongated. This makes this model reminiscent of the variability

that can exist in a real fracture network.

Note that the ellipses, lozenges, the most elongated rectangles, the random quadrilaterals

and most of the shape mixtures were not investigated in our earlier contributions. The

bidisperse size distributions are also a new addition and the ranges of the ratio R̃ and

exponent a for the power law distributions have been widely extended.
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FIG. 1. Illustration of the investigated fracture shapes, and example of a network containing 238

random quadrilaterals.

2.2. Dimensionless parameters and percolation threshold

Some concepts and dimensionless parameters that are used in the data analysis and

rationalization are introduced in this section.

Percolation of network on lattices has been extensively studied (see, e.g., [14–16]). These

lattices percolate when the probability p of occupation of sites or bonds is larger than a

critical value pc, called percolation threshold, which depends on the precise lattice struc-

ture. When transposed to fracture networks, which pertain to the domain of continuum

percolation [17], it is clear that percolation occurs if some threshold density is reached. A

quantity equivalent to the probability p in discrete lattices should be found. The excluded

volume, first applied in [18] to fracture networks, can be used for this purpose.

The excluded volume Vex of an object was defined as the volume surrounding it, in which

the center of another object must be in order for them to intersect. For randomly oriented

and located three-dimensional convex objects A and B, the excluded volume is [19]

Vex,AB = VA + VB + (AARB +ABRA) (3)

where VA and VB are the object volumes, AA and AB their surface areas and RA and RB

their mean radii of curvature. For plane convex objects with perimeters PA and PB, Vex,AB

becomes [2]

Vex,AB =
1

4
(AAPB +ABPA) (4)

When applied to a network where all the fractures are identical, (4) reduces to

Vex =
1

2
AP (5)
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Conversely, in a polydisperse network where the fracture characteristics (size and/or shape)

are described by a probability distribution ϕ(F ), the mean excluded volume obtained by

averaging (4) reads

⟨Vex⟩ =
1

4 ∫ ∫
ϕ(F1)ϕ(F2) (A1P2 +A2P1) dF1 dF2 =

1

2
⟨A⟩ ⟨P ⟩ (6)

where ⟨⋅ ⟩ is the statistical average.

The excluded volume provides a natural reference to introduce a dimensionless density

ρ′, defined as the number of objects per volume Vex

ρ′ = ρ Vex (7)

On the other hand, the definition of Vex implies that ρ′ is also the average number of inter-

sections per object, if they are randomly located according to a Poisson process. Therefore,

ρ′ is a direct measure of the network connectivity. For networks containing fractures that

do not strongly differ in size or shape, it proved very successful in unifying the values of the

percolation threshold ρ′c [4]. It is also a powerful tool for the rationalization of many other

geometrical or topological properties such as the matrix partition into blocks, and of the

network permeability [12, 13, 20–22].

However, it was observed that whereas ρ′ is still exactly the mean number of intersection

per fracture, it does not govern the global connectivity and the percolation of networks of

strongly polydisperse fractures [5]. Intuitively, the reason is that far-reaching connections

between large objects are more effective to build percolating clusters than connections be-

tween smaller ones. A measure of the network density that accounts for this remark and

appropriately weights the different kinds of connections was found in the form of an alter-

native definition of the dimensionless density. It results from a modification of (6) where

⟨A⟩⟨P ⟩ is replaced by⟨A P ⟩, i.e.,

ρ′3 = ρ
1

2
⟨A P ⟩ (8)

This definition can be applied to mixtures of fractures with any sizes and shapes, and reduces

of course to ρ′ if all the fractures in the network are identical. The subscript ”3” is a reminder

that ⟨A P ⟩ in (8) scales as the third moment of the fracture sizes, while ⟨A⟩⟨P ⟩ in the

definition of ρ′ scales as the product of their first and second moments. This dimensionless

density was found very successful to describe the percolation and flow properties of networks

of fractures with identical shapes and polydisperse sizes with a power law distribution [23].
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The reduced variance Σ2
AP of the product AP is used in the following to quantify the degree

of polydispersity of a network. It is defined by

Σ2
AP =

⟨ (AP )2 ⟩ − ⟨AP ⟩2

⟨AP ⟩2
(9)

Finally, let us introduce for later use the three following shape factors that measure in

different ways the departure of a flat, convex object shape from circularity

η̃P =
4R/P − 2/π

1 − 2/π
, η̃ = 1 − 4π

A

P 2
, η̃g = 1 −

¿
Á
ÁÀ A

2πR2
g

with R2
g =

1

A ∫A
r2ds (10)

where A, P and R are the object surface area, perimeter and bounding radius, i.e., the

radius of its minimum bounding circle. The gyration radius Rg is the quadratic average of

the distance r of a point in the object from its barycenter. These quantities are given in Table

I for all the fracture shapes considered in this work. The three shape factors are normalized

so that they all range from 0 for a disk to 1 for very elongated shapes with vanishing area.

The first one η̃P was already used in [5, 12] to account for the effect of the fracture shape

elongation on the network percolation properties. The isoperimetric deficit η̃ is a classical

indicator in applied morphogical analysis, which proved to be a relevant parameter for other

topological properties of the network [22]. We are not aware of any prior use of η̃g in the

literature. For polydisperse networks, a mean value of η̃g will be used in the following, which

results from a RMS average weighted by the product AP of the fractures, i.e.,

⟨η̃g⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

⟨AP (1 −
√
A/2πR2

g)
2
⟩

⟨AP ⟩

⎫⎪⎪
⎬
⎪⎪⎭

1/2

(11)

2.3. Determination of the percolation threshold

The percolation threshold of fracture networks is determined in a similar way as in earlier

works [4, 5]. The main steps of the procedure are recalled briefly, and only some minor

differences are discussed in more details.

Recall that the generated networks are spatially periodic, with a unit cell of size L3. It

can easily be determined whether any two fractures intersect, and a graph, denoted by Γ1,

is built from this knowledge. Γ1 summarizes all the connections in the network. Its vertices

and edges correspond to the fractures and to the intersection between fractures, respectively.
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Due to the periodicity, two fractures in neighbouring cells can be connected across the cell

boundaries.

The sets of connected fractures, or connected clusters, can be determined from Γ1. As the

density ρ of fractures increases, their typical size ξ increases and at some point, an infinite

cluster develops that spans the whole system. This corresponds to the onset of percolation.

In a periodic network, it occurs as soon as a cluster contains two replicas of the same fracture

in different cells.

The transition to percolation in an infinite medium is a critical process. It occurs with

probability one at a critical density ρc which depends on the system contents (fracture shapes

and sizes). If the medium is statistically isotropic, it also occurs simultaneously along all the

directions. But in finite systems or in periodic media with a finite cell size L, the transition

is smooth. The percolation probability ΠL(ρ) for a random realization of a system of size L

increases with the density ρ, with a transition from 0 to 1 over a range of the order of ∆L.

This increase is generally described by an error function of the form

ΠL(ρ) =
1

√
2π∆L

ρ

∫
−∞

exp{−
(ξ − ρLc)2

2(∆L)
2

}dξ (12)

where ρLc is the density for which ΠL(ρ) = 1/2. As L increases, the transition becomes

sharper, ∆L decreases and ρLc converges toward the limit ρc for infinite systems. These size

effects are described by the classical scaling laws [15]

ρLc − ρc ∝ L−1/ν ∆L ∝ L−1/ν (13)

In addition, percolation in finite systems generally occurs first along some direction, and

only later along the other ones. Therefore, the probability ΠL can be defined according to

various criteria: Π
(1)
L for percolation along at least one direction, Π

(x)
L for percolation along

a prescribed direction (say x), and Π
(3)
L for percolation along the three directions x, y and

z. Each of them can be described by (12), with different scaling laws (13) although they all

converge to the same limit ρc. Illustrations of these features are provided in Fig.2.

In view of this, the following procedure is implemented for the determination of the

percolation threshold ρc for networks made of fractures with any prescribed characteristics

(shapes, sizes). Note that it can be implemented indifferently in terms of the densities ρ or

ρ′3, which are related by a constant factor (see Eq. 8).
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FIG. 2. (a) The percolation probabilities Π
(1)
L (red, ●), Π

(x)
L (blue, ∎) and Π

(3)
L (black, ▼) as

functions of ρ′3 for networks of bidisperse disks with R̃=6, ϕM=0.04 and L/RM=8. The curves

correspond to the fit (12) and the vertical lines indicate the positions of ρ
(1)
Lc , ρ

(x)
Lc and ρ

(3)
Lc . (b)

The densities ρ
′(1)
L3c (●), ρ

′(x)
L3c (∎) and ρ

′(3)
L3c (▼) as functions of the corresponding ∆L for networks

containing 75% of disks and 25% of 8-Ellipses with the same area. The cell size L ranges from

10.3 to 61.8 times the semi-major axis of the ellipses (right to left). The heavy lines are linear fits

which yield the extrapolated values 1.9862, 1.9859 and 1.9865 for ∆L=0 (L→∞).

a) For a given cell size L, choose a set of N ρ values ρ evenly distributed in the expected

range of transition of ΠL from nearly zero to nearly one.

b) For each value of ρ, generate a set of Nr random realizations, check their percolation

status, and get an estimate of the probability ΠL(ρ).

c) Determine ρLc and ∆L by a least square fit of ΠL(ρ) by the error function (12).

d) Use the scaling laws (13) to estimate ρc from the linear extrapolation of ρLc as a

function of ∆L, when ∆L →0 (a two-step fit where ν is determined from the scaling of

∆L with L and then ρc from the scaling of ρLc with L−1/ν yields equivalent results).

The three percolation criteria are applied in step (b) to determine Π
(1)
L , Π

(x)
L , and Π

(3)
L and

the following steps (c,d) are performed based on each of these data, which provides three

estimates ρ
(1)
c , ρ

(x)
c , and ρ

(3)
c of ρc. They should be identical and their scatter is an indication

of the prediction uncertainty.

The extensive calculations involved in this procedure are costly, and careful choices of the
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range of cell size L, the range and number Nρ of investigated densities and the number Nr of

realizations have to be made in order to achieve a good accuracy without wasting resources.

Accumulated experience resulted in the following choices. Nρ ∼20 values of ρ are considered

in a range that is suggested by the results of earlier calculations for a smaller value of L, if

available, and by the predictive models presented in the following if a yet unexplored kind

of network is addressed. The number or realizations Nr is generally 500 for the polydisperse

network, 100∼500 for the mixtures of shapes with similar sizes, and it can be reduced to

50 when the variability is small because the fractures in the networks are all identical, with

very large cell sizes.

Finally, increasing cell sizes L up to Lmax have been investigated. The values of

Lmax/Rmax, where Rmax is the largest bounding radius of the fractures in the network,

are reported in the detailed tables of [7]. Large values of the order of 100 have been used

for the monodisperse networks since the computations are relatively fast. Smaller values are

sufficient in polydisperse networks. Lmax/Rmax was kept larger than 20, or exceptionally

10 in a few cases of power law size distributions with large exponents since these networks

actually contain very few fractures of size Rmax.

Note that the pattern observed in the example of Fig.2b with a very weak dependence of

ρ
(1)
Lc on L is a general feature. Therefore, ρ

(1)
Lc provides a fairly accurate estimation of ρc even

without extrapolation. Advantage of this was taken in some cases. The extrapolation step

(d) was skipped, when it was known from comparable situations that ρ
(1)
Lc for some value

of L provides an adequate approximation of ρc. Thus, the data used in the discussion and

given in the fully detailed set of results provided in [7] are generally the average of the three

extrapolated values ρ
(1)
c , ρ

(x)
c , and ρ

(3)
c , or in some cases indicated in Tables ??-?? in [7], the

value ρ
(1)
Lc obtained with the specified size L without extrapolation.

Note finally that in view of (8), the number Nfr of fractures in each realization of network

for ρ ∼ ρ3c is about 2ρ′3L
3/⟨A P ⟩. With the largest investigated cell sizes, typical values of

Nfr are in the ranges 105 ∼106 for most monodisperse cases and shape mixtures (Tables ??

and ?? in [7]), ∼104 (when ϕM ∼1) to ∼106 (when ϕM <<1) for bidisperse networks (Table

?? in [7]), and ∼104 (for small a) to ∼105 (for large a) for power law size distributions (Table

?? in [7]). Nfr can exceed 3 106 in some cases with elongated ellipses or when exceptionally

large cells are used to thoroughly check the size scaling effects.
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The results can be subject to two kinds of uncertainties, resulting from statistical noise

and from an inadequate correction for the finite size effects. The former contribution is

difficult to assess a priori, in view of the many successive operations involved in steps

(a,b,c), but it can be estimated by comparing the results of several predictions from separate

data sets, for instance by splitting the Nr realizations into 4 subsets and processing them

separately. A more robust estimator is obtained by considering 100 subsets of Nr/4 randomly

picked realizations and measuring the standard deviation σρLc
of the resulting threshold

values ρLc. In terms of ρ′3c and with the largest domain size Lmax, σρLc
<0.005 in nearly all

cases and never exceeds 0.007.

As already noted, defects in the correction for finite size effects can be detected and

quantified by the scatter of ρ
(1)
c , ρ

(x)
c and ρ

(3)
c . As a rule, each of these values does not differ

from their average ρc by more than ±0.002 for monodisperse networks, ±0.003 for mixtures

of fractures with different shapes and ±0.010 for networks of fractures with polydisperse

sizes, in terms of ρ′3c, but larger deviations occur occasionally. They probably result in part

from statistical fluctuations in addition to residual size effects, but in order to stay on the

safe side, we regard them as independent sources of errors and define the confidence interval

of the data by summing the two contributions

max
i=1,x,3

∣ρ
(i)
c − ρc∣ + 2σρLmaxc

(14)

This quantity is systematically reported in the detailed tables of [7]. It is always smaller

than 0.01 for monodisperse and weakly polydisperse networks, but often ranges between

0.01 and 0.02 for strongly polydisperse networks, and exceptionally up to 0.03. When the

extrapolation step was skipped, the first contribution is not available and (14) is replaced

by a conservative value of 0.02, based on similar or more demanding cases (see Tables ??-??

in [7]).

3. NETWORKS OF IDENTICAL FRACTURES

We consider here networks of identical fractures, i.e., the networks denoted I2OUD in

[12], with a variety of shapes (results in Table ?? in [7]). This case was first addressed by

[4], and revisited in later works [5, 12] where a greater variety of situations was explored.

A still wider range of fracture shapes is considered here, with the addition of ellipses and
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lozenges. The precision of the data was also improved, but the values reported here and

displayed in Fig.3 differ only marginally from the earlier ones, when available.

When these results are analysed in terms of the average number of intersections per frac-

ture ρ′, with a different excluded volume for each shape, a remarkable property stands out.

As already noted in [4], the dimensionless percolation threshold appears to be independent

of the fracture shape, with

ρ′c ≈ 2.29 ± 0.05 (15)

for all regular polygons, disks and 2-rectangles. It should be emphasized that other measures

yield much more scattered values. For instance, if the volume R3 based on the bounding

radius R of the fractures is used as a reference, ρcR3 ranges from 0.234 (disks) to 0.672

(triangles). Thus, (15) demonstrates the success of the excluded volume in accounting for

the fracture shape effects.

Calculations including f -rectangles with f up to 16 showed that a correction to (15) is

required for very slender fracture shapes. All the data in [5, 12] could be summarized by a

formula which can be expressed in terms of the shape factor η̃P ,

ρ′c = 2.41 [1 − 0.53 η̃2P ] ± 0.10 (16)

This relation is illustrated in Fig.3a. While it successfully describes the data of [5], it appears

that it does not accommodate slender ellipses and lozenges, which were investigated only

later. Therefore, a more general and robust model had to be formulated. The shape factor

η̃ based on the ratio A/P 2 was considered, but did not yield a satisfactory fit, although it

has proved to be a relevant parameter for other topological properties of the network [22].

A much better description is obtained in terms of the last shape factor η̃g in (10).

This shape factor is based on the gyration radius Rg of the fracture shape. Rg was

used by Alon et al. [6] in their argument for the prediction of the threshold in continuous

percolation, as an estimator for the typical ”bonding distance”. Intuitively, far-reaching

intersecting objects with large Rg are more efficient to increase a connected cluster size

than say, disks with the same area. Hence, the ratio of the fracture area to R2
g is a good

candidate. An extremely good fit of all the data for I2OUD networks is provided by the

model illustrated in Fig.3b

ρ′c,r = 2.31 [1 −
5

8
η̃
4/3
g ] ± 0.05 (17)
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FIG. 3. The percolation thresholds ρ′c as functions of η̃P (a) or η̃g (b) and ρ′3c as a function of ⟨η̃g⟩

(c). Data in (a,b) are for networks of identical fractures with various shapes: disks and regular

polygons (black ⧫), rectangles (red, ∎), lozenges (magenta, ⧫) and ellipses (blue, ●). The icons

depict the shapes of the rectangles in (a,b) and ellipses in (b). In addition, the data in (c) include

binary mixtures in various proportions of 20-gons/rectangles (red, ⋅ for equal bounding radii

and - - ⋅ - - for equal area) and disks/ellipses (blue, ⋅ for equal bounding radii and - - ⋅ - - for

equal area), mixtures in equal proportions of hexagons/triangles (red, ▲), hexagons/4-rectangles

(red, ▼) and squares/8-rectangles (red, ∎), ternary mixtures of disks/3-ellipses/9-ellipses (×) and

networks of random quadrilaterals (+). Data in (d) are for monodisperse disks and ellipses (blue),

4-ellipses with a=4 (red, solid symbols if R̃ ≥8) and bidisperse disks with R̃ ≥5 (black, solid symbols

if ϕM ≤0.02, slightly shifted horizontally for readability). The marks on the right in (a) are the

predictions of [24–26] for infinitely elongated objects. The solid lines correspond to the models and

error bars (16) in (a), (17) in (b) and (18) in (c,d).
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FIG. 4. The percolation threshold ρ′c as a function of η̃P for networks of identical ellipses. Symbols

correspond to the data of [27] (∎), of [28] (▲) and to the present calculations (●). The thick straight

line corresponds to the model (17).

Data for networks of ellipses from the literature are compared to ours in Fig.4. Networks

of ellipses with very large aspect ratios up to f=1000 have been investigated in [27], with

monodisperse or power law size distributions. Unfortunately, the discussion of the results

was smeared by a mistake in the evaluation of the excluded volume, but a correction can be

made in the monodisperse cases. The corrected data are in good agreement with the present

results. The deviations do not exceed ±0.1 from our numerical results when available, and

from (17) for values of f larger than investigated here. The data of [28] for 1≤ f ≤5 are also

in excellent agreement with our data.

4. MIXTURES OF FRACTURES WITH DIFFERENT SHAPES AND SIMILAR

SIZES

We consider here networks of fractures with different shapes. Only a few such cases had

been addressed in earlier works. Mixtures in various proportions of 20-gons with f -rectangles

(f=1 to 8) and of disks with 4- and 8-ellipses are systematically examined here (Table ??

in [7]). The two kinds of fractures are always set with identical bounding radii, or with

14



identical areas. For instance in the latter case, the diameter of the 8-ellipses is larger than

than the disk diameter by a factor of 2
√

2. A few additional mixtures include hexagons

and triangles, hexagons and 4-rectangles and squares and 8-rectangles, in equal proportions

and with equal bounding radii. Ternary mixtures of disks, 3-ellipses and 9-ellipses with

identical bounding radii have also been considered (Table ?? in [7]), in equal proportions

(1/3, 1/3, 1/3), and in proportions (1/13, 3/13, 9/13) so that the volumetric areas of each

kind of fracture are identical. Finally, the networks of random quadrilaterals (Table?? in

[7]) contain fractures with a great variety of shapes and a wider range of sizes than the other

mixtures.

The discussion is very simple, as shown by Fig.3c where all these data are displayed. Since

the networks possibly contain very different kinds of fractures, the percolation threshold is

expressed in terms of ρ′3c and the mean shape factor ⟨η̃g⟩ is used as defined in (11). In these

terms, the data for all the mixtures comply with the same model as for networks of identical

fractures, i.e.,

ρ′3,c = 2.31 [1 −
5

8
⟨η̃g⟩

4/3 ] ± 0.05 (18)

Note for future reference that for bidisperse mixtures, the reduced variance Σ2
AP (9) reads

Σ2
AP = ϕM ϕm [

(AP )M − (AP )m

ϕM(AP )M + ϕm(AP )m
]

2

(19)

where (AP )M and (AP )m are the largest and smallest values of AP , with associated fractions

ϕM and ϕm = 1 − ϕM . The values of ΣAP for all the mixtures considered in this section are

given in Tables ??-?? in [7]. Its maximum ΣAPmax is reached when ϕM(AP )M = ϕm(AP )m,

i.e.,

ϕMmax =
1

1 + (AP )M/(AP )m
, Σ2

APmax
=

[(AP )M − (AP )m]
2

4(AP )M(AP )m
(20)

5. NETWORKS OF FRACTURES WITH POLYDISPERSE SIZES

5.1. Preliminary remarks

A few illustrative examples of results for polydisperse networks are displayed in Fig.3d,

including bidisperse disks with R̃ ≥5 and 4-ellipses with a power law distribution of sizes

with exponent a=4. It appears that the combination of a large size contrast ratio R̃ with
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some mixture compositions (large exponent a or ϕM in a narrow unfavorable range) can

lead to significant deviations from the model (18). These situations were not explored in [5]

and therefore, it was concluded that the modified dimensionless density ρ′3 incorporates all

the influence of the size polydispersivity.

This is true in a large respect. In the worst cases of Fig.3d, ρ′3,c in the polydisperse and

corresponding monodisperse networks differ by about 12% (4-ellipses, power law) or 22%

(bidisperse disks), whereas in terms of ρ′c these thresholds differ by a ratio of at least 2 (and

by a ratio of several hundreds if the comparison is made in terms of ρcR3
M). Thus, (18)

at least provides a reasonable approximation of the percolation threshold in polydisperse

networks, with a fairly good accuracy for mild polydispersity. The purpose of this Section is

to identify the circumstances that cause a significant deviation, and to evaluate and possibly

model the required correction to (18).

For this purpose, two size distributions have been investigated, namely the bidisperse and

power law distributions introduced in Section 2.1. Bidisperse networks of disks have been

systematically studied by varying the size ratio R̃ and the fraction ϕM or larger disks. Other

shapes such as 4-ellipses, and regular polygons have been examined in a less extensive range

(Tables ??-?? in [7]). The same shapes have been considered for power law distributions, in

a wide range of size ratio R̃ and exponent a (Tables ?? and ?? in [7]).

The first general observation is that polydispersity always increases the value of ρ′3c with

respect to that ρ
′(1)
3c for the monodisperse network of fractures with the same shape. For

this reason, the data are analyzed in terms of the increment δρ′3c

δρ′3c = ρ
′

3c − ρ
′(1)
3c (21)

which is also the corrective term to be applied to (18) for polydisperse networks.

5.2. Bidisperse networks

The results for bidisperse networks are presented in Fig.5 as functions of the composition,

quantified by the fraction ΦM of larger objects weighted by their cubed size, as suggested

by (8)

ΦM =
ϕM R3

M

ϕM R3
M + (1 − ϕM) R3

m

, Φm = 1 −ΦM (22)
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FIG. 5. The increment δρ′3c in bidisperse networks as a function of the composition parameter ΦM .

The curves in (a) are for constant ratios R̃ and varying ϕM . The curves in (b) are for constant ϕM

and varying ratios R̃. Solid lines correspond to disks and broken lines to 4-ellipses. Black symbols

in (a) correspond to squares (∎) and triangles (▲) with R̃=4. Black symbols in (b) (∎) correspond

to the data of [28] for disks with ϕM=0.50.

Note first that the increment δρ′3c for networks of regular polygons (squares and triangles)

is nearly identical to that for networks of disks with the same size distribution. However,

the effect of size polydispersity is weaker for the elongated 4-ellipses than for disks (Fig.5a).

When the size ratio R̃ is kept constant, δρ′3c is maximum when ΦM = Φm=1/2. This

corresponds to a proportion ϕMmax of larger objects equal to

ϕMmax =
1

1 + R̃3
(23)

This fraction becomes very small when the size contrast is large. When ϕM >> ϕMmax , the

connectivity and percolation of the networks is dominated by the large fractures and δρ′3c

is very small (Fig.5b). For instance, δρ′3c never exceeds 0.04 if the small and large fractures

are in equal numbers. Our data for this case are found in good agreement with those of [28]

for ϕM=0.5 and R̃ up to 10 (Fig.5b). It should be noted however that δρ′3c was evaluated

relative to ρ
′(1)
3c which is found equal to 2.265 in [28], lower than our result 2.303 by 0.038.

In bidisperse networks, the fraction ϕMmax also corresponds to the composition that
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FIG. 6. The increment δρ′3c in bidisperse networks of disks as a function of Σ
1/2
AP . The data

correspond to constant ratios R̃ with varying ϕM (- - ⋅ - -) and to various R̃ with ϕM = ϕMmax (-

- ○ - -). The red straight line and the blue solid curves correspond to (26) and (27), respectively.

maximizes the normalized variance Σ2
AP (9) of the product AP

Σ2
AP =

ϕM (1 − ϕM) (R̃3 − 1)
2

[ϕM R̃3 + (1 − ϕM)]
2 (24)

with

Σ2
APmax

(R̃) = Σ2
AP (R̃, ϕMmax) =

(R̃3 − 1)
2

4R̃
(25)

The plot of δρ′3c vs. Σ
1/2
AP in Fig.6 for networks of bidisperse disks confirms that the increment

is indeed maximal when ΣAP is maximal, i.e. when ϕM corresponds to (23), for any size

ratio R̃. In addition, the maximal increment can be represented by the linear expression

δρ′3cmax
= α(Σ

1/2
APmax

− (
1

2
)
1/2

) with α =
1

4
(bidisperse disks,ΣAPmax ≥

1

2
) (26)

Furthermore, δρ′3c for other values of ϕM is very well represented by the cubic law

δρ′3c = δρ
′

3cmax
(R̃)

⎡
⎢
⎢
⎢
⎢
⎣

ΣAP

ΣAPmax (R̃)

⎤
⎥
⎥
⎥
⎥
⎦

3

(27)
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Hence, a full predictive model is obtained by combining (25-27), which approximates all

numerical data for bidisperse networks of disks within ±0.04 with a RMS deviation equal

to 0.015. Since the increment δρ′3c for regular polygons is found very close to that for disks

(Fig.5a), this model also applies to networks of fractures with regular polygonal shapes, and

probably with any shapes that do not strongly deviate from circularity.

However, elongated fractures seem to behave differently, as seen in Fig.5a where 4-ellipses

yield smaller increments than disks. Nevertheless, the maximum increment is still reached

for the composition (23) that maximizes ΣAP and the value of δρ′3cmax
still varies according

to (26), with a modified value of α=1/6, as illustrated in Fig.8a,

δρ′3cmax
= α(Σ

1/2
APmax

− (
1

2
)
1/2

) with α =
1

6
(bidisperse 4-ellipses,ΣAPmax ≥

1

2
) (28)

Furthermore, the same cubic dependence (27) as for disks is observed for other values of

ϕM , and the data for 4-ellipses are very well represented by (25,27,28), within ±0.02 with a

RMS deviation equal to 0.009.

5.3. Power law size distributions

The data for networks with power law distributions of fracture size can be analyzed in

the same way in terms of ΣAP , which is defined by (9)

Σ2
AP =

(4 − a)
2

(1 − a) (7 − a)

(R̃7−a − 1) (R̃1−a − 1)

(R̃4−a − 1)
2 (29)

When the range of sizes R̃ is fixed, ΣAP is maximum for a=4, with

Σ2
APmax

(R̃) =
1

R̃3
[
R̃3 − 1

3 ln R̃
]

2

(30)

Note that in this case, the maximum of ΣAP does not correspond to a constant ϕ(R)R3

(i.e., a=3), as it does with ΦM = Φm in bidisperse networks.

The numerical data are displayed in Fig.7, which is a counterpart of Fig.6 and many

common features with the bidisperse case are observed. Again, for any fixed R̃, the maximum

increment is reached for ΣAPmax with a=4, and δρ′3cmax
is well described by (26) with a

modified α (Fig.7a).

δρ′3cmax
= α(Σ

1/2
APmax

− (
1

2
)
1/2

) with

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

α = 1
5 (power law, disks,ΣAPmax ≥

1
2)

α = 1
8 (power law, 4-ellipses,ΣAPmax ≥

1
2)

(31)

19



The data for regular polygons are again found very close to that for disks. Elongated 4-

ellipses always yield smaller increments, and the results for 4-rectangles and 4-lozenges (with

a=4 and R̃=8) are very close to that for 4-ellipses. The variations of δρ′3cmax
as functions

of ΣAPmax and the models (26,28,31) are summarized in Fig.8a for disks and 4-ellipses, with

bidisperse and power law size distributions. The overall RMS deviation of the models from

the numerical data for ΣAPmax is equal to 0.011.

Figure 7b shows that for ΣAP < ΣAPmax (i.e., a ≠4), δρ′3c can be estimated by a linear in-

terpolation in terms of Σ
3/2
AP . Thus, a counterpart of (27) applies for power law distributions,

with a different exponent,

δρ′3c = δρ
′

3cmax
(R̃)

⎡
⎢
⎢
⎢
⎢
⎣

ΣAP

ΣAPmax (R̃)

⎤
⎥
⎥
⎥
⎥
⎦

3/2

(32)

The model resulting from the combination of (30,31,32) approximates all the numerical data

for disks with a RMS deviation equal to 0.012. Since the results for regular polygons are

very close to those for disks, they are very well described by the same model with a RMN

deviation equal to 0.013. Finally, the RMS deviation of the model from the data for ellipses

is equal to 0.008.

5.4. Discussion

Very successful models for δρ′3c have been devised for the investigated size distributions,

in the form of (27) or (32), combined with (26), (28) or (31).

It should be noted that they apply only for ΣAPmax ≥ 1/2. However, the increment is

very small for ΣAP ≲1, well within the error bar ±0.05 of (18), and it can be ignored. This

explains that the need for a correction was not detected in [5], where combinations of large

enough R̃ and a were not explored. It also explains the success of (18) for the mixtures

considered in Section 4. The quadrilaterals have a wide range of sizes, but ΣAP is only 0.75

(Table ?? in [7]). The fractures in the binary mixtures have sometimes very different areas

or bounding radii, but ΣAP exceeds 1 only in rare occurences (see Eqs. (19,20) and Tables

?? and ?? in [7]). The largest value ΣAP = 1.59 is reached for 10% of disks mixed with 90%

of 8-ellipses with identical bounding radii. In view of Fig.6, the increment δρ′3c is expected

to remain smaller than 0.1 in mixtures of disks with this value of a ΣAP and a similar ratio

(AP )M/(AP )m.
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FIG. 7. The increment δρ′3c in networks with power law size distribution as a function of Σ
1/2
AP (a)

and of Σ
3/2
AP (b). Data are for disks (dots), 4-ellipses (○), hexagons (C), squares (◻), triangles (△),

4-rectangles (+) and 4-lozenges (×). Colors correspond to R̃=4 (blue), 8 (magenta) and 16 (red).

Black broken lines correspond to a=4.
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FIG. 8. The increment δρ′3c in networks of disks (●) or 4-ellipses (∎) with bidisperse (ϕM = ϕMmax ,

solid lines) or power law (a=4, broken lines) distribution of fracture sizes, as a function of Σ
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AP (a)

and ΣAP (b) . The straight lines in (a) correspond to (26). The dash lines in (b) illustrate trends

proportional to Σ
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AP and Σ
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This is an important observation for practical applications. The criterion ΣAP ≲1, for

which the model (18) applies with good accuracy without need for correction, can be sat-

isfied in a wide range of non trivial situations, as seen in the above. Furthermore, the

simulations conducted in a great variety of polydisperse cases show that the correction δρ′3c

remains smaller than 10% of the prediction of (18) when ΣAP ≲4, and smaller than 20% of

the prediction of (18) when ΣAP ≲10. For illustration, a power law size distribution with

exponent a = 2 and R̃=100 yields ΣAP ≈9. Finally, δρ′3c depends on the fracture shape and

on the exact form of the size distribution, but the largest increment for any specified value

of ΣAP corresponds to the bidisperse mixture of disks. Therefore, (26) provides an upper

bound for the necessary correction to (18) .

Thus, the analyses in Sections 5.2 and 5.3 have identified the relevant parameter ΣAP ,

which provides a quantitative way to assess whether a correction to (18) is necessary and

which governs this correction if it is significant. Very successful models for δρ′3c for bidisperse

and power law distributions have also been formulated.

Still, even though this is a gratifying and useful step, it is not fully satisfying. Although

(27) and (32) have identical forms, the difference of the exponents is unexplained, as is the

change of α in (26,28,31) according to the form of the size distribution. The intrinsic pa-

rameter ΣAP , which is a combination of moments of the fracture geometrical characteristics,

defined without reference to the model parameters (R̃, ϕM , a) and therefore applicable a

priori to any kind of network, has obviously a high degree of pertinence. But it does not cap-

ture by itself all the effects of polydispersity. It probably should be corrected or completed

by another, yet unidentified, parameter to provide a unified, model-independant model for

δρ′3c.

An hint for further analysis might be found in the logarithmic plot of δρ′3c vs. ΣAP in

Fig.8b. A transition takes place at ΣAP ∼2 between two growth regimes according to Σ
3/2
AP

and Σ
1/2
AP . This is probably the reason for the apparent behavior (26) with an offset value,

when the small increments in the low ΣAP range are disregarded. It probably results from

the competition of different combinations of moments that prevail in different ranges of size

contrasts.

Finally, the difference in α between regular and elongated fracture shapes is also unex-

plained, and insufficiently documented at this stage to elaborate.
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6. DISCUSSION OF A HEURISTIC PREDICTIVE MODEL

6.1. Principle of the argument

A heuristic argument was proposed in [6] to predict the percolation thresholds in contin-

uum systems. The average ”bonding distance” l is defined as the mean distance between

connected objects, and expressed in the form

l2 =
1

Vex
∫
Vex

r2 d3r (33)

Note that l does not depend on the density of objects. It is then postulated that percolation

occurs when the average distance between objects with at least two neighbours (of five

neighbours in two-dimensional settings, which are not considered here) is smaller than 2l,

i.e., when the mean number of such objects in a volume Vl = 4πl3/3 is at least one.

Since the number of connections to a given object obeys a Poisson distribution with

average ρ′, the density ρ2 of objects with at least two neighbours is given by

ρ2 = ρ [1 − (1 + ρ′) e−ρ
′

] (34)

Thus, the criterion ρ2Vl ≥ 1 for percolation yields a transcendental equation for the critical

concentration ρ′c which can be easily solved numerically,

ρ′c [1 − e−ρ
′

c (1 + ρ′c)] =
Vex
Vl

(35)

Although the argument is not substantiated, quite successful examples of application are

provided by [6]; it predicts percolation thresholds ρ′c=2.796 for penetrable spheres and 2.604

for aligned penetrable cubes, in very good agreement with the results 2.735 [29] and 2.598

[30] from direct simuations.

However, a major shortcoming has to be overcome for applications to other situations.

The definition (33) of the bonding distance makes sense for the provided examples, with

spheres or aligned objects, because an object F2 intersects a reference object F1 if and only

if it is centered within a volume homothetic to that of F1, dilated by a factor of 2. This

volume can be identified with Vex, and the integration in (33) can be performed to evaluate

its gyration radius l.

This does not apply for aspherical, randomly oriented objects. Objects F1 and F2 centered

at r1 and r2 can intersect or not depending on their relative orientation. An intersection
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probability Π(r2 − r1) can only be defined in average over the orientation. No definite

geometrical representation can be given to the excluded volume, and a different definition

of l has to be devised. In addition, nothing tells a priori that the second order moment (33)

is the most relevant one. Therefore, we introduce the p-order moment l(p) of the center-to-

center distance of intersecting objects as

l(p) = ∫
rp Π(r) d3r

∫ Π(r) d3r
(36)

where the integrals extend over the whole space. Note that the denominator is equal to Vex

.

6.2. Determination of the moments l(p)

Although cumbersome, the analytic integration of (36) is possible when p = 2. The final

result for two objects F1 and F2 reads

l
(2)
1,2 =

A1P2 (R2
g1 +R

2
h2) +A2P1 (R2

g2 +R
2
h1)

A1P2 +A2P1

(37)

where Ai and Pi are the object’s surface areas and perimeters. Rgi and Rhi are the gyration

radii of the object Fi and of its contour ∂Fi,

R2
gi =

1

Ai
∫
Fi

r2 ds , R2
hi =

1

Pi
∫
∂Fi

r2 dl (38)

Formulas for these geometrical characteristics are provided in Table I for various kinds of

object shapes. Note that the result (37) applies when the distance r in (36) is taken between

the object barycenters. When the two objects are identical, (37) reduces to

l(2) = R2
g +R

2
h (39)

A global average of the bonding distance l(2) in a network containing objects of various

shapes and/or sizes can be obtained by weigthing l
(2)
1,2 by the proportion of intersections

between F1 and F2 objects,

⟨l(2)⟩ =
∫ ∫ l

(2)
1,2 Vex,ij dρidρj

∫ ∫ Vex,ij dρidρj
=

⟨AR2
g⟩

⟨A⟩
+

⟨PR2
h⟩

⟨P ⟩
(40)

Analytical integration for p ≠ 2 is not possible but the moment l(p) can be calculated by

numerical Monte Carlo integration. An object F1 is placed at the origin, and another object
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Object shape A P R2
g R2

h/R
2
g

n-sided regular polygons n sin π
n cos πn 2n sin π

n
1
6(2 + cos 2π

n ) 2

Ellipses with aspect ratio f π
f 4E(1 − 1

f2
)

1
4(1 +

1
f2

)
4
3 [1 + 1

1+f2

K(1− 1
f2
)

E(1− 1
f2
)
]

Rectangles with aspect ratio f 4f
1+f2

4(1+f)
√

1+f2
1/3

(1+f)2

1+f2

Losanges with aspect ratio f 2
f 4

√

1 + 1
f2

1
4(1 +

1
f2

) 2

TABLE I. Geometrical characteristics of various shapes with unit bounding radius. K and E are

the complete elliptic integrals of the first and second kinds. The aspect ratio is the ratio of the

major and minor semi-axes (f ≥1).

F2 is placed at a random position r with a random orientation. The quantities rp are

averaged over all the cases when F2 intersects F1. This was done for objects with a variety

of plane convex shapes. The averages were taken over large numbers of intersecting pairs

(tens of millions for polygonal shapes and hundreds of millions for disks and ellipses).

The full results for l(1) and l(2) are given in Table ?? in [7]. In all cases, the measured

l(2) agrees within ±10−4 with (37). Furthermore, a very good approximation of the data for

l(1) is provided by the model

l(1) ≈ [
8 l(2)

9
]

1/2

(41)

This deviates from the measured data by less than 0.5% for disks, regular polygons and

moderately elongated objects (f ≤2), and for pairs of such objects, even when they have

very different sizes. The deviation increases for very slender objects, but reaches only about

+3% for ellipses, rectangles or lozenges with f=8. Hence, the combination of (37) and (41)

provides a convenient and fairly accurate alternative to the direct measurement of l(1) by

Monte Carlo integration.

6.3. Percolation threshold predictions

The predictions for the percolation threshold of fracture networks resulting from (35)

when Vl is estimated from l = l(1) or l =
√
l(2) are compared to the results from the nu-

merical simulations in Table II for monodisperse fractures with circular, regular polygonal

and moderately elongated shapes. Using l(2) as in the original argument of [6] yields very
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Threshold ρ′c determined from

Fracture shape Simulations (35) with
√

l(2) (35) with l(1) (35) with
√

8l(2)/9

Disks 2.303 2.083 (-0.221) 2.278 (-0.026) 2.293 (-0.010)

20-gons 2.307 2.087 (-0.220) 2.282 (-0.025) 2.298 (-0.009)

Hexagons 2.331 2.125 (-0.207) 2.320 (-0.011) 2.341 ( 0.010)

Squares 2.340 2.141 (-0.199) 2.339 (-0.000) 2.360 ( 0.021)

Triangles 2.267 2.046 (-0.221) 2.250 (-0.017) 2.251 (-0.016)

Ellipses (f=1.5) 2.272 2.027 (-0.245) 2.227 (-0.045) 2.229 (-0.043)

Ellipses (f=2) 2.220 1.926 (-0.294) 2.227 (-0.089) 2.113 (-0.107)

Rectangles (f=2) 2.240 1.955 (-0.286) 2.159 (-0.082) 2.146 (-0.094)

Losanges (f=2) 2.207 1.904 (-0.303) 2.111 (-0.097) 2.088 (-0.119)

TABLE II. The percolation threshold ρ′c determined from the numerical simulations and by ap-

plying (35) with Vl estimated with l = l(1) or l =
√

l(2), for monodisperse networks of regular or

moderately elongated fractures. Numbers in parenthesis are the deviations from the simulation

results.

decent predictions, which underestimate the real thresholds by only 0.2 to 0.3. However,

using instead the first order moment l(1) is much more successful. The error ranges from 0

to -0.03 for regular shapes, and it does not exceed -0.1 for aspect ratios f ≤2. Interestingly,

(35) accounts for the fact that ρ′c for n-sided regular polygons (n ≥4) is slightly larger than

for disks, whereas it is smaller for all other shapes. Finally, l(1) as deduced from (37) and

the approximation (41) yields predictions as accurate as the measured value of l(1).

The same success is observed when two of these shapes are mixed in the fracture networks.

Mixtures of hexagons and triangles (same bounding radius) or of 20-gons with squares (same

bounding radius or same area) in various proportions (25/75%, 50/50% and 75/25%) have

been considered. The bonding distance l(1) was averaged with the same weighting as for l(2)

in (40). Again, the predictions of (35) underestimate the numerical results by at most -0.02.

However, the argument is much less successful for very elongated shapes. The predicted

thresholds are compared in Fig.9 to the results of the numerical simulations, for ellipses,

rectangles and lozenges with f=1 to 16. The data are plotted as functions of the shape

factor η̃g for an easier comparison with the discussion in Sections 3 and 4. Vl in (35) is based

on l = l(1) evaluated from (37, 41) for convenience, but very similar results are obtained if the

values of l(1) from the Monte Carlo integration are used in place of this model. It appears

that the prediction (35) fails when the fracture shape strongly departs from circularity.

Using l =
√
l(2) rather than l(1) yields to even larger deviations from the numerical results.
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FIG. 9. The percolation thresholds ρ′c determined from the numerical simulations (symbols, broken

lines) and by applying (35) with Vl estimated with l = l(1) as given by (37, 41) (solid lines), as

functions of the shape factor η̃g. Data are for networks of ellipses (label E, blue), rectangles (label

R, red) or lozenges (label L, magenta). The icons illustrate the shapes of the rectangles for f=2,

4, 6, 8 and 16.

Networks of fractures with polydisperse sizes have also been considered. Only the simplest

case of bidisperse disks is discussed in details here. The predictions of (35) with l = l(1) are

compared in Fig.10a to the numerical simulations when the size ratio R̃ varies for various

values of the fraction ϕM . Conversely, R̃ is kept constant and the composition quantified by

ΦM (see Eq. 22) varies in Fig.10b. Note that the percolation threshold is expressed in terms

of the density ρ′3c, which is more appropriate than ρ′c for polydisperse networks. While an

increase of ρ′3c due to the polydispersity is indeed predicted, its magnitude and its dependence

on the size distribution are not correctly captured. In particular, the predictions fail to

converge to ρ′c for monodisperse networks when R̃ increases while ϕM is kept constant. The

comparison is no more successful if l(1) is replaced by
√
l(2) or if continuous size distributions

are considered. For instance, the increase of ρ′3c over ρ′c for monodisperse networks is strongly

underestimated for power law distributions of the fracture sizes, whatever the exponent and

the ratio of the upper and lower cut-off sizes.

Finally, the argument also fails for the networks or random quadrilaterals, which is not

surprising since they mix fractures with very different and possibly very elongated shapes,

with a broad size distribution. The measured threshold ρ′3,c = 2.15 is overestimated by 0.27
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FIG. 10. The percolation thresholds ρ′c determined from the numerical simulations (symbols,

broken lines) and by applying (35) with Vl estimated with l = l(1) as given by (37, 41) (solid lines),

for bidisperse networks of disks with radii RM and Rm in proportions ϕM and ϕm = 1 − ϕM . The

data are plotted as functions of R̃ = RM/Rm in (a) for various values of the fraction ϕM , indicated

next to the curves. The data are plotted as functions of the composition parameter ΦM in (b) for

various ratios R̃, indicated next to the curves.

when (35) is applied with the value of l(1) determined by Monte Carlo integration.

In summary, the general argument of [6] is very successful and indisputably captures part

of the shape dependence of ρ′c, when appropriately adapted, in networks of fractures of com-

parables sizes and with shapes that do not strongly depart from circularity. In particular, it

accounts for the differences between continuum percolation systems of solid (spheres, cubes)

or flat penetrable objects, although the reason why l(2) or l(1) should be used depending on

the situation is not elucidated. The account for the influence of the fracture shape is also

interesting, although it applies in a limited range where the approximation ρ′3c ≈ 2.3±0.1 is

probably sufficient for most practical applications.

However, the argument fails to describe the case of elongated fracture shapes. The

quantity (Vl/Vex)1/3 which determines the RHS term in (35) was called the ”pointedness”

of the object in [6]. It was regarded as a measure of the object’s departure from sphericity

and was expected to account for the longer average distance between overlapping objects

when they are elongated and for its impact on the critical density. Fig.9 shows that it does

not succeed in this task. Furthermore, the argument does not succeed either in mixtures of
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objects with different sizes.

7. CONCLUDING REMARKS

The main result in this paper is the model (18) for the dimensionless percolation density

ρ′3,c, which applies with very good accuracy to monodisperse and moderately polydisperse

fracture networks. The polydispersity can involve variable fracture shapes and/or sizes. The

critical density is unified by the use of the reference volume ⟨AP ⟩ in the definition of ρ′3,c,

and the shape factor ⟨η̃g⟩ describes its decrease when the fracture shapes are very irregular.

The degree of polydispersity can be quantified by the reduced standard deviation ΣAP of

AP , and the model (18) applies without need for a correction when ΣAP ≤ 1. Conversely,

strong polydispersity with ΣAP > 1 resulting from broad size distributions increases ρ′3,c. Its

increment depends on the particular form of the size distribution and on the fracture shape

in a way that is not yet fully elucidated. However, it does not change the order of magnitude

of the critical density, and an upper bound is provided by the increment (26) for bidisperse

disks with the same ΣAP .

For practical applications, the knowledge of several quantities is required to assess the

percolating status of a fracture network, namely ρ, ⟨AP ⟩, ⟨η̃g⟩ and ΣAP . Their determina-

tion by stereological analysis of two-dimensional trace maps is currently being investigated.

A robust procedure that provides reasonable estimates at least when polydispersivty is mod-

erate has been devised. For instance, the analysis of a trace map in a plane intersecting a

network of random quadrilaterals yields a value of ρ′3,c which deviates from the actual one

by only 20%, and ⟨η̃g⟩ is obtained with an error of only -0.006. A full account of these

developments will be provided in a separate commuication in the near future.
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1. DETAILED RESULTS

The numerical determinations of the percolation thresholds ρ′c (for monodispere networks)

and ρ′3c (for polydisperse networks) are provided here for:

� Networks of identical fractures in Table I;

� Binary mixtures of 20-gons and rectangles with various aspect ratios and of disks and

ellipses with various aspect ratios in Table II;

� Ternary mixtures of disks, 3-ellipses and 9 ellipses, and mixtures of random quadrilat-

erals in Table III;

� Networks of fractures with identical shapes and bidisperse sizes sorted according to

the size ratio R̃ = RM/Rm in Table IV or to the fraction ϕM of large objects in Tables

V and VI;

� Networks of fractures with identical shapes and power law size distributions, sorted

according to the fracture size range R̃ = RM/Rm in Table VII or to the scaling exponent

a in Table VIII.

In addition, some geometrical characteristics of the fracture shapes are reported in Table

I, including the shape factor η̃g. The average ⟨η̃g⟩ as defined in (Eq. 11) is also provided

for the mixtures of shapes in Tables II and III. The polydispersity index ΣAP is given for

all the polydisperse networks. The size Lmax of the largest cells used in the calculations is

indicated in all cases, normalized by the largest possible fracture bounding radius Rmax for

each case.

Unless otherwise stated, the critical density reported in the tables is deduced from the

average of the three extrapolated values ρ
(1)
c , ρ

(x)
c , and ρ

(3)
c (see Section 2.3 of the article),

based on data including calculations for L up to Lmax, and the uncertainty evaluated by

(Eq. 14) is given in parenthesis, multiplied by 103. For instance, (12) means ±0.012.

In some cases with power law size distributions (Tables VII and VIII), the extrapolation

step was skipped and the reported critical density is ρ
′(1)
L3c for L = LMax. These cases are

indicated by a mark ”(=)” next to the value of Lmax.
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Shape A P AP /2 η̃g Lmax ρ′c
n-sided Regular Polygons

n = 3 1.299 5.196 3.375 0.0906 80 2.270(5)

n = 4 2.000 5.657 5.656 0.0228 80 2.338(5)

n = 6 2.598 6.000 7.794 0.0038 80 2.334(4)

n = 20 3.090 6.257 9.668 0.0000 80 2.303(6)

Disks and Ellipses with aspect ratio f

f = 1 3.142 6.283 9.870 0.0000 160 2.303(4)

f = 1.5 2.094 5.289 5.538 0.0392 120 2.275(7)

f = 2 1.571 4.844 3.805 0.1056 120 2.220(4)

f = 3 1.047 4.455 2.333 0.2254 120 2.102(4)

f = 4 0.785 4.289 1.684 0.3140 120 1.999(3)

f = 6 0.524 4.150 1.087 0.4305 120 1.845(3)

f = 8 0.393 4.093 0.804 0.5039 80 1.737(3)

f = 16 0.196 4.029 0.396 0.6471 80 1.515(2)

Rectangles with aspect ratio f

f = 1 2.000 5.657 5.657 0.0228 80 2.338(5)

f = 2 1.600 5.367 4.293 0.1260 80 2.241(3)

f = 4 0.941 4.851 2.283 0.3296 80 2.006(4)

f = 6 0.649 4.603 1.493 0.4435 80 1.852(3)

f = 8 0.492 4.465 1.099 0.5152 80 1.748(4)

f = 16 0.249 4.242 0.528 0.6552 80 1.530(4)

Lozenges with aspect ratio f

f = 1 2.000 5.657 5.657 0.0228 80 2.338(5)

f = 2 1.000 4.472 2.236 0.1260 40 2.202(4)

f = 3 0.667 4.216 1.406 0.2431 40 2.049(3)

f = 4 0.500 4.123 1.031 0.3296 40 1.929(3)

f = 8 0.250 4.031 0.504 0.5152 40 1.664(2)

TABLE I. Data for monodisperse networks of identical fractures: fracture area A, perimeter P , ex-
cluded volume AP /2, shape factor η̃g, largest cell size Lmax used in the calculations and percolation
threshold ρ′c. All lengths are normalized by the fracture bounding radius.
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f p1 ⟨η̃g⟩ ΣAP
Lmax

Rmax
ρ′3c ⟨η̃g⟩ ΣAP

Lmax

Rmax
ρ′3c

Fractures with identical surface areas Fractures with identical bounding radii

20-gons and rectangles with aspect ratio f

1 0.00 0.0228 0.000 80.0 2.338( 5) 0.0228 0.000 80 2.338( 5)

1 0.25 0.0200 0.049 76.1 2.328( 7) 0.0183 0.261 80 2.325( 5)

1 0.50 0.0166 0.058 108.3 2.323( 6) 0.0139 0.262 120 2.318( 6)

1 0.75 0.0119 0.052 68.3 2.313(10) 0.0092 0.009 80 2.310( 6)

1 1.00 0.0000 0.000 80.0 2.303( 6) 0.0000 0.000 80 2.303( 6)

2 0.00 0.1260 0.000 80.0 2.241( 3) 0.1260 0.000 80 2.241( 3)

2 0.25 0.1113 0.073 74.4 2.252( 3) 0.0963 0.413 120 2.269( 5)

2 0.50 0.0929 0.088 103.2 2.268( 4) 0.0707 0.385 160 2.285( 9)

2 0.75 0.0672 0.079 63.2 2.286( 8) 0.0456 0.280 120 2.300( 6)

2 1.00 0.0000 0.000 80.0 2.303( 6) 0.0000 0.000 80 2.303( 6)

4 0.00 0.3296 0.000 80.0 2.006( 4) 0.3296 0.000 80 2.006( 4)

4 0.10 0.2782 0.733 80 2.085( 4)

4 0.25 0.2964 0.134 71.0 2.050( 5) 0.2199 0.775 80 2.159( 4)

4 0.50 0.2519 0.168 62.1 2.106( 4) 0.1488 0.618 80 2.229( 9)

4 0.75 0.1862 0.159 53.1 2.188( 6) 0.0907 0.409 80 2.274( 4)

4 1.00 0.0000 0.000 80.0 2.303( 6) 0.0000 0.000 80 2.303( 6)

8 0.00 0.5152 0.000 80.0 1.748( 4) 0.5152 0.000 80 1.748( 4)

8 0.10 0.3877 1.314 40 1.927( 6)

8 0.25 0.4730 0.214 34.0 1.789( 6) 0.2793 1.145 40 2.066( 5)

8 0.50 0.4126 0.283 28.0 1.861( 4) 0.1743 0.796 40 2.190( 9)

8 0.75 0.3148 0.285 43.9 2.003( 5) 0.1014 0.493 80 2.259( 5)

8 1.00 0.0000 0.000 80.0 2.303( 6) 0.0000 0.000 80 2.303( 6)

Disks and ellipses with aspect ratio f

4 0.00 0.3140 0.000 120.0 1.999( 3) 0.3140 0.000 120 1.999( 3)

4 0.10 0.2554 0.981 40 2.113( 6)

4 0.25 0.2815 0.124 35.0 2.041( 8) 0.1946 0.950 40 2.188(13)

4 0.50 0.2386 0.154 30.0 2.105( 6) 0.1265 0.708 40 2.252( 7)

4 0.75 0.1756 0.145 50.0 2.187( 3) 0.0750 0.453 40 2.285( 7)

4 1.00 0.0000 0.000 160.0 2.303( 4) 0.0000 0.000 160 2.303( 4)

8 0.00 0.5039 0.000 80.0 1.737( 3) 0.5039 0.000 80 1.737( 3)

8 0.02 0.4647 1.289 40 1.810( 4)

8 0.10 0.3572 1.590 40 1.959( 6)

8 0.25 0.4637 0.224 33.5 1.775( 3) 0.2471 1.279 40 2.091(13)

8 0.50 0.4057 0.296 27.1 1.845( 5) 0.1492 0.849 40 2.201( 6)

8 0.75 0.3108 0.301 61.8 1.986( 3) 0.0851 0.516 40 2.263( 9)

8 1.00 0.0000 0.000 160.0 2.303( 4) 0.0000 0.000 160 2.303( 4)

Hexagons (50%)+ Triangles (50%) 0.0505 0.396 40 2.305( 7)

Hexagons (50%)+ 4-Rectangles (50%) 0.1608 0.547 40 2.237( 6)

Squares (50%) + 8-Rectangles (50%) 0.2161 0.675 40 2.173( 5)

TABLE II. Data for networks containing fractures with two different shapes (p1 is the fraction of
20-gons or disks): the shape factor η̃g, the polydispersity index ΣAP , the largest cell size Lmax and
the percolation threshold ρ′3c.
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Composition ⟨η̃g⟩ ΣAP
Lmax

Rmax
ρ′3c

Disks + 3-Ellipses + 9-Ellipses (equal number densities) 0.1573 0.928 40 2.194( 6)

Disks + 3-Ellipses + 9-Ellipses (equal volumetric areas) 0.3050 1.356 40 1.976( 4)

Random quadrilaterals 0.2108 0.753 40 2.148( 3)

TABLE III. Data for networks containing fractures with three different shapes or random quadri-
laterals: the shape factor η̃g, the polydispersity index ΣAP , the largest cell size Lmax and the
percolation threshold ρ′3c. The disks, 3-ellipses and 9-ellipses have identical bounding radii.
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ϕM ΣAP
Lmax

RM
ρ′3c

Disks, RM/Rm=2.5

0.000 0.000 160 2.303( 4)

0.010 1.270 48.7 2.372( 8)

0.020 1.584 49.4 2.415( 8)

0.040 1.808 50.8 2.450( 6)

0.060 1.850 34.8 2.450( 8)

0.075 1.837 35.6 2.446(12)
0.080 1.828 35.8 2.446(11)
0.100 1.782 36.8 2.436(10)
0.150 1.635 39.1 2.416( 6)

0.250 1.360 44.0 2.376( 6)

0.400 1.046 51.2 2.344( 7)

0.500 0.880 28.0 2.328(18)
0.600 0.733 30.4 2.314( 9)

0.750 0.529 34.0 2.309( 7)

0.900 0.310 37.6 2.302(15)
0.950 0.214 38.9 2.308(11)
0.990 0.094 39.7 2.300( 9)

1.000 0.000 160 2.303( 4)

Disks, RM/Rm=5

0.000 0.000 160 2.303( 4)

0.005 5.399 32.6 2.695( 9)

0.0079 5.545 33.1 2.712(11)
0.010 5.508 24.9 2.706(13)
0.020 4.989 25.9 2.584(22)
0.040 4.077 27.8 2.474( 6)

0.075 3.171 31.2 2.381(16)
0.100 2.776 33.6 2.375( 8)

0.150 2.259 25.6 2.346(14)
0.250 1.678 32.0 2.324(10)
0.500 0.984 48.0 2.308( 6)

0.900 0.330 36.8 2.299( 8)

1.000 0.000 160 2.303( 4)

4-Ellipses, RM/Rm=2.5

0.000 0.000 120 1.999( 3)

0.010 1.269 32.5 2.046( 3)

0.020 1.584 32.9 2.072( 3)

0.040 1.808 33.9 2.092( 4)

0.0602 1.850 34.9 2.092( 4)

0.080 1.828 35.8 2.087( 3)

0.150 1.635 39.3 2.064( 3)

0.250 1.360 22.0 2.040( 6)

0.500 0.880 28.0 2.015( 4)

1.000 0.000 120 1.999( 3)

ϕM ΣAP
Lmax

RM
ρ′3c

Disks, RM/Rm=3.45

0.000 0.000 160 2.303( 4)

0.010 2.843 23.7 2.524(11)
0.020 3.111 24.3 2.568( 8)

0.0238 3.124 24.5 2.566( 9)

0.040 3.015 25.4 2.537( 8)

0.075 2.634 27.4 2.463(10)
0.100 2.400 28.8 2.435( 6)

0.150 2.040 31.7 2.390(10)
0.250 1.575 37.4 2.348( 8)

0.500 0.952 25.8 2.304(13)
0.900 0.324 37.1 2.302(12)
0.950 0.224 38.6 2.302( 9)

0.990 0.098 39.7 2.299(13)
1.000 0.000 160 2.303( 4)

Disks, RM/Rm=6

0.000 0.000 160 2.303( 4)

0.0046 7.314 27.2 2.804(11)
0.010 6.791 28.0 2.684( 9)

0.020 5.679 29.3 2.519( 8)

0.040 4.389 32.0 2.419( 6)

0.075 3.307 36.7 2.356( 7)

0.100 2.867 30.0 2.349( 9)

0.150 2.309 35.0 2.329(12)
0.250 1.700 45.0 2.316( 5)

1.000 0.000 160 2.303( 4)

4-Ellipses, RM/Rm=4

0.000 0.000 120 1.999( 3)

0.010 3.846 30.9 2.208( 5)

0.0154 3.937 31.4 2.208( 6)

0.020 3.903 31.8 2.200( 7)

0.040 3.507 22.4 2.136( 9)

0.050 3.309 23.0 2.110(14)
0.080 2.830 24.8 2.074( 7)

0.150 2.153 29.0 2.037(13)
1.000 0.000 120 1.999( 3)

ϕM ΣAP
Lmax

RM
ρ′3c

Disks, RM/Rm=4

0.000 0.000 160 2.303( 4)

0.001 1.873 30.0 2.363( 6)

0.002 2.500 30.1 2.414( 4)

0.003 2.898 30.2 2.461( 7)

0.005 3.379 30.4 2.529( 7)

0.010 3.846 30.9 2.612(11)
0.015 3.937 31.3 2.627( 6)

0.020 3.903 31.8 2.611(18)
0.040 3.507 33.6 2.529( 6)

0.075 2.898 36.7 2.456(15)
0.080 2.830 24.8 2.435(16)
0.100 2.589 26.0 2.401(12)
0.150 2.153 29.0 2.369(15)
0.250 1.629 35.0 2.326( 9)

0.500 0.969 50.0 2.311( 9)

0.750 0.565 65.0 2.306( 6)

0.900 0.328 74.0 2.303( 3)

0.990 0.099 39.7 2.302( 7)

1.000 0.000 160 2.303( 4)

Disks, RM/Rm=8

0.000 0.000 160 2.303( 4)

0.0019 11.29 20.3 2.923(25)
0.005 10.14 20.7 2.704(29)
0.010 8.321 21.4 2.537(24)
0.020 6.376 34.2 2.417(17)
0.040 4.670 25.6 2.354(19)
0.075 3.423 30.5 2.328(12)
0.100 2.942 25.5 2.310(17)
0.150 2.350 30.7 2.310( 7)

0.250 1.719 41.2 2.304(13)
1.000 0.000 160 2.303( 4)

Squares, RM/Rm=4

0 .000 0.000 80.0 2.338( 5)

0.015 3.937 20.9 2.667( 9)

0.075 2.898 24.5 2.480(10)
1.000 0.000 80.0 2.338( 5)

Triangles, RM/Rm=4

0.000 0.000 80.0 2.271( 8)

0.015 3.937 20.9 2.576(11)
0.075 2.898 24.5 2.400( 6)

1.000 0.000 80.0 2.271( 8)

TABLE IV. Data for networks of fractures with identical shapes and bidisperse sizes, with bounding
radii RM and Rm: fraction ϕM of large fractures, polydispersity index ΣAP , largest cell size Lmax
used in the calculations and percolation threshold ρ′3c.
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R̃ ΣAP
Lmax

RM
ρ′3c

Disks, ϕM=0.500
10.00 0.998 44.0 2.298(11)
5.000 0.984 48.0 2.308( 6)

4.000 0.969 50.0 2.311( 9)

3.448 0.952 25.8 2.304(13)
3.333 0.947 26.0 2.316( 8)

2.500 0.880 28.0 2.328(18)
2.000 0.778 30.0 2.335( 5)

1.667 0.645 32.0 2.328(11)
1.429 0.489 34.0 2.318( 7)

1.250 0.323 36.0 2.311( 8)

1.111 0.157 38.0 2.299( 7)

1.000 0.000 160 2.303( 4)

Disks, ϕM=0.100
8.000 2.942 25.5 2.310(17)
6.000 2.867 30.0 2.349( 9)

5.000 2.776 33.6 2.375( 8)

4.000 2.589 26.0 2.401(12)
3.448 2.400 28.9 2.435( 6)

3.125 2.241 31.0 2.445( 8)

2.929 2.121 32.6 2.449( 9)

2.778 2.014 33.9 2.444(11)
2.500 1.782 36.8 2.436(10)
2.080 1.334 21.3 2.393(17)
2.000 1.235 22.0 2.400(14)
1.500 0.576 28.0 2.326( 7)

1.000 0.000 160 2.303( 6)

R̃ ΣAP
Lmax

RM
ρ′3c

Disks, ϕM=0.250
8.000 1.719 41.2 2.304(13)
6.000 1.700 45.0 2.316( 5)

5.000 1.678 32.0 2.324(10)
4.000 1.629 35.0 2.326( 9)

3.448 1.575 37.4 2.348( 8)

2.500 1.360 44.0 2.376( 6)

2.326 1.287 45.8 2.380( 9)

2.201 1.225 47.3 2.378( 4)

2.128 1.184 48.2 2.376( 7)

2.000 1.102 25.0 2.365(17)
1.500 0.645 30.0 2.337( 8)

1.000 0.000 160 2.303( 4)

Disks, ϕM=0.075
8.000 3.423 30.5 2.328(12)
6.000 3.307 36.7 2.356( 7)

5.000 3.171 31.2 2.381(16)
4.000 2.898 36.7 2.456(15)
3.448 2.634 27.5 2.463(10)
3.213 2.483 29.0 2.469(19)
3.030 2.346 30.4 2.471(18)
2.500 1.837 35.6 2.446(12)
2.000 1.209 43.0 2.390( 8)

1.500 0.531 55.3 2.320( 6)

1.000 0.000 160 2.303( 4)

R̃ ΣAP
Lmax

RM
ρ′3c

Disks, ϕM=0.150
8.000 2.350 30.7 2.310( 7)

6.000 2.309 35.0 2.329(12)
5.000 2.259 25.6 2.346(14)
4.000 2.153 29.0 2.369(15)
3.448 2.040 31.7 2.390(10)
2.500 1.635 39.2 2.416( 6)

2.000 1.219 23.0 2.386(10)
1.500 0.625 28.7 2.331(11)
1.000 0.000 160 2.303( 4)

Disks, ϕM=0.040
8.000 4.670 25.6 2.354(19)
6.000 4.389 32.0 2.419( 6)

5.000 4.077 27.8 2.474( 6)

4.000 3.507 33.6 2.529( 6)

3.448 3.015 25.5 2.537( 8)

2.500 1.808 50.9 2.450( 6)

1.000 0.000 160 2.303( 4)

Disks, ϕM=0.020
8.000 6.376 34.2 2.417(17)
6.000 5.679 29.3 2.519( 8)

5.000 4.989 25.9 2.584(22)
4.000 3.903 31.8 2.611(18)
3.448 3.111 24.3 2.568( 8)

2.500 1.584 49.4 2.415( 8)

1.000 0.000 160 2.303( 4)

Disks, ϕM=0.010
8.000 8.321 21.4 2.537(24)
6.000 6.791 28.0 2.684( 9)

5.000 5.508 25.0 2.706(13)
4.000 3.846 30.9 2.612(11)
3.448 2.843 23.8 2.514(11)
2.500 1.270 48.7 2.372( 8)

1.000 0.000 160 2.303( 4)

TABLE V. Data for networks of fractures with circular shape and bidisperse sizes, with a fraction
ϕM of large fractures: ratio of the bounding radii R̃ = RM/Rm, polydispersity index ΣAP , largest
cell size Lmax and percolation threshold ρ′3c.
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RM/Rm ϕM ΣAP
Lmax

RM
ρ′3c

Disks
2.080 0.1000 1.334 21.3 2.393(17)
2.500 0.0600 1.850 34.9 2.450( 8)

3.000 0.0357 2.502 28.6 2.508(11)
3.448 0.0238 3.124 24.6 2.566( 9)

4.000 0.0150 3.937 31.4 2.627( 6)

5.000 0.0079 5.545 33.0 2.712(11)
6.000 0.0046 7.314 27.3 2.804(11)
8.000 0.0019 11.29 20.3 2.933(25)

RM/Rm ϕM ΣAP
Lmax

RM
ρ′3c

4-Ellipses
2.000 0.1111 1.237 44.4 2.055( 3)

2.500 0.0602 1.850 34.9 2.092( 4)

3.000 0.0357 2.502 28.6 2.132( 5)

3.448 0.0238 3.124 24.6 2.168( 7)

4.000 0.0154 3.937 31.4 2.208( 6)

6.000 0.0046 7.314 20.5 2.333(12)

TABLE VI. Data for bidisperse networks of disks or 4-ellipses, with bounding radii RM and Rm,
and a fraction ϕM = ϕM,max = 1/(1 + R̃3

) of large objects: polydispersity index ΣAP , largest cell
size Lmax and percolation threshold ρ′3c.
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a ΣAP
Lmax

RM
ρ′3c

Disks, RM/Rm=4

0.0 0.853 40 2.341( 6)

0.5 0.956 40 2.344( 6)

1.0 1.070 40 2.362( 6)

1.5 1.192 120 2.372( 6)

2.0 1.315 40 2.383( 6)

2.5 1.429 120 2.399( 4)

3.0 1.523 20(=) 2.412(20)
3.5 1.586 20(=) 2.421(20)
4.0 1.608 20 2.411(15)
5.0 1.523 20(=) 2.414(20)
10.0 0.559 40 2.323( 2)

Disks, RM/Rm=8

0.0 1.001 40 2.343( 5)

0.5 1.200 40 2.353( 7)

1.0 1.461 40 2.371( 6)

1.5 1.790 40 2.391( 7)

2.0 2.187 40 2.420( 7)

2.5 2.626 40 2.451( 8)

3.0 3.048 20(=) 2.494(20)
3.5 3.362 20(=) 2.536(20)
4.0 3.479 20 2.549(11)
5.0 3.046 20(=) 2.505(20)
10.0 0.575 20(=) 2.324(20)

Disks, RM/Rm=16

0.0 1.070 40 2.346( 7)

0.5 1.352 40 2.356( 8)

1.0 1.779 40 2.375( 6)

1.5 2.416 20(=) 2.397(20)
2.0 3.333 20(=) 2.440(20)
2.5 4.549 20(=) 2.499(20)
4.0 7.627 10(=) 2.698(20)

a ΣAP
Lmax

RM
ρ′3c

4-Ellipses, RM/Rm=4

0.0 0.853 40 2.021( 2)

1.0 1.070 20 2.034( 4)

1.5 1.192 20 2.038( 6)

2.0 1.315 20 2.043( 5)

2.5 1.429 10(=) 2.061(20)
3.5 1.586 10(=) 2.071(20)
4.0 1.608 20 2.070( 4)

4.5 1.586 10(=) 2.074(20)

4-Ellipses, RM/Rm=8

0.0 1.001 40 2.024( 3)

1.0 1.461 20 2.038( 5)

1.5 1.790 20 2.050( 5)

2.0 2.187 20 2.066( 5)

2.5 2.626 10(=) 2.095(20)
3.5 3.362 10(=) 2.141(20)
4.0 3.479 10(=) 2.159(20)
4.5 3.361 10(=) 2.153(20)

4-Rectangles, RM/Rm=8

4.0 3.479 10(=) 2.173(20)

4-Lozenges:, RM/Rm=8

4.0 3.479 10(=) 2.073(20)

a ΣAP
Lmax

RM
ρ′3c

Hexagons, RM/Rm=4

1.5 1.192 40 2.402( 5)

2.0 1.315 40 2.418( 4)

2.5 1.429 40 2.431( 6)

4.0 1.608 20(=) 2.458(20)

Hexagons, RM/Rm=8

1.5 1.790 40 2.425( 4)

2.0 2.187 40 2.460( 6)

2.5 2.626 20(=) 2.499(20)

Squares, RM/Rm=4

1.5 1.192 40 2.411( 4)

2.5 1.429 40 2.441( 5)

4.0 1.608 20(=) 2.462(20)

Squares, RM/Rm=8

1.5 1.790 20(=) 2.437(20)
2.5 2.626 20(=) 2.505(20)
4.0 3.479 20(=) 2.596(20)

Triangles, RM/Rm=4

1.5 1.192 20(=) 2.341(20)
2.5 1.429 20(=) 2.363(20)
4.0 1.608 20(=) 2.385(20)

Triangles, RM/Rm=8

1.5 1.790 20(=) 2.359(20)
2.5 2.626 20(=) 2.419(20)
4.0 3.479 20(=) 2.509(20)

TABLE VII. Data for fracture networks of with power law size distribution in the range of bounding
radii Rm to RM : exponent a, polydispersity index ΣAP , largest cell size Lmax and percolation
threshold ρ′3c.
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R̃ ΣAP
Lmax

RM
ρ′3c

Disks, a=0.0
4 0.853 40 2.341( 6)

8 1.001 40 2.343( 5)

16 1.070 40 2.346( 7)

Disks, a=0.5
4 0. 956 40 2.344( 6)

8 1.200 40 2.353( 7)

16 1.352 40 2.356( 8)

Disks, a=1.0
4 1.070 40 2.362( 6)

8 1.461 40 2.371( 6)

16 1.779 40 2.375( 6)

Disks, a=1.5
4 1.192 120 2.372( 6)

8 1.790 40 2.391( 7)

16 2.416 20(=) 2.397(20)

Disks, a=2.0
4 1.315 40 2.383( 6)

8 2.187 40 2.420( 7)

16 3.333 20(=) 2.440(20)

Disks, a=2.5
4 1.429 120 2.399( 4)

8 2.626 40 2.451( 8)

16 4.549 20(=) 2.499(20)

Disks, a=3.0
4 1.523 20(=) 2.412(20)
8 3.048 20(=) 2.494(20)

R̃ ΣAP
Lmax

RM
ρ′3c

Disks, a=3.5
4 1.586 20(=) 2.421(20)
8 3.362 20(=) 2.536(20)

Disks, a=4.0
2 0.645 40 2.331( 4)

3 1.142 20 2.374( 5)

4 1.608 20 2.41115)
5 2.068 20 2.456( 6)

6 2.531 10(=) 2.496(20)
8 3.479 20 2.549(11)
10 4.463 10(=) 2.599(20)
12 5.485 10(=) 2.641(20)
16 7.627 10(=) 2.698(20)

Disks, a=5.0
4 1.523 20(=) 2.414(20)
8 3.046 20(=) 2.505(20)

4-Ellipses, a=4.0
2 0.645 40 2.016( 3)

3 1.142 20 2.041( 4)

4 1.608 20 2.070( 4)

5 2.068 20 2.097( 5)

6 2.531 10(=) 2.119(20)
8 3.479 10(=) 2.159(20)
10 4.463 10(=) 2.187(20)
12 5.485 10(=) 2.214(20)
16 7.627 10(=) 2.260(20)

R̃ ΣAP
Lmax

RM
ρ′3c

Hexagons, a=1.5
4 1.192 40 2.402( 5)

8 1.790 40 2.425( 4)

Hexagons, a=2.0
4 1.315 40 2.418( 4)

8 2.187 40 2.460( 6)

Hexagons, a=2.5
4 1.429 40 2.431( 6)

8 2.626 20(=) 2.499(20)

Squares, a=1.5
4 1.192 40 2.411( 4)

8 1.790 20(=) 2.437(20)

Squares, a=2.5
4 1.429 40 2.441( 5)

8 2.626 20(=) 2.505(20)

Squares, a=4.0
4 1.608 20(=) 2.462(20)
8 3.479 20(=) 2.596(20)

Triangles, a=1.5
4 1.192 20(=) 2.341(20)
8 1.790 20(=) 2.359(20)

Triangles, a=2.5
4 2.626 20(=) 2.419(20)
8 1.429 20(=) 2.363(20)

Triangles, a=4.0
4 1.608 20(=) 2.385(20)
8 3.479 20(=) 2.509(20)

TABLE VIII. Data for fracture networks of with power law size distribution with exponent a: range
of bounding radii R̃ = RM/Rm, polydispersity index ΣAP , largest cell size Lmax and percolation
threshold ρ′3c.
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2. RANDOM QUADRILATERALS

This model is intended to introduce a class of random fracture networks reminiscent

of real geological ones. Although it does not result from the modelling of field data, the

fractures can take a great variety of shapes and sizes, which is more realistic than one or a

few sets of regularly shaped objects. In addition, it provides a very demanding test case to

assess whether results obtained in simple model situations apply in a more general setting.

The fractures are generated by randomly injecting four points in a disk of constant radius

R (see Fig.1). The cases where three points form a triangle that contains the fourth one are

rejected. This occurs with a probability 35/(12π2) ≈0.296 [34]. The remaining quadrilaterals

have strongly polydisperse sizes and shapes that range from roughly square or roughly

triangular to very elongated.

Their statistical geometric characteristics have been measured from a set of 108 random

realizations. The means, extremal values and standard deviations of the main ones for our

purposes, namely the area A, the perimeterP , their product AP and the shape factor η̃g

(averaged according to Eq. 11) are given in Table IX. The maximal values of A, P and

AP are reached for the square inscribed in the circle, with A◇ = 2R2, P◇ = 4
√

2R and

(AP )◇ = 8
√

2R3. The minimal value 1-
√

3/π of η̃g also corresponds to this square.

The probability distributions of these parameters are shown in Fig.1. It appears that

many quadrilaterals are very elongated. The shape factor η̃g exceeds 0.2 (which roughly

corresponds to the value for 3-ellipses) with probability 0.5 and it exceeds 0.46 (which

roughly corresponds to the value for 6-ellipses) with probability 0.1. The measures A, P

and AP of the object size are also very widely spread.

Minimum Average Maximum Standard

deviation

A/R2 0 0.4895 2 0.2834

P /R 0 3.2847 4
√

2 ≈5.657 0.7323

AP /R3 0 1.7860 8
√

2 ≈11.314 1.3457

η̃g 1 −
√

3/π ≈0.0228 0.2108 1

TABLE IX. Means, extrema and standard deviations of the area A, perimeter P , product AP and

shape factor η̃g of the random quadrilaterals.
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FIG. 1. Probability distribution functions of the area A, perimeter P , product AP and shape

factor η̃g of the random quadrilaterals.
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3. MOMENTS OF THE CENTER-TO-CENTER DISTANCE OF INTERSECTING

OBJECTS

Identical objects

n-Sided regular polygons

n l(1) l(2)

3 0.8166 0.7500

4 0.9477 0.9999

6 1.0597 1.2501

20 1.1500 1.4755

Ellipses with aspect ratio f

f l(1) l(2)

1 1.1593 1.5000

1.5 0.9693 1.0559

2 0.8785 0.8776

3 0.7950 0.7323

4 0.7583 0.6746

6 0.7274 0.6281

8 0.7150 0.6102

16 0.7014 0.5910

Rectangles with aspect ratio f

f l(1) l(2)

1 0.9477 0.9999

2 0.9075 0.9333

4 0.8403 0.8237

6 0.8105 0.7749

8 0.7950 0.7489

16 0.7711 0.7085

Losanges with aspect ratio f

f l(1) l(2)

1 0.9477 0.9999

2 0.7402 0.6250

3 0.6897 0.5556

4 0.6695 0.5312

8 0.6478 0.5078

Unit disk + disk with radius r

r l(1) l(2)

1 1.1593 1.5000

2/3 0.9722 1.0555

1/2 0.8847 0.8750

2/5 0.8349 0.7800

1/3 0.8031 0.7222

0.3112 0.7927 0.7040

0.2900 0.7830 0.6871

1/4 0.7650 0.6562

1/5 0.7433 0.6200

1/6 0.7293 0.5972

1/8 0.7124 0.5703

Unit disk + ellipse with aspect ratio f , same bounding radius

f l(1) l(2)

4 0.9428 1.0043

8 0.9011 0.9203

Unit disk + ellipse with aspect ratio f , same area

f l(1) l(2)

4 1.3459 2.1041

8 1.6374 3.2376

Unit n-sided polygon + same shape, smaller size (1/4)

n l(1) l(2)

3 0.5315 0.3281

4 0.6224 0.4375

6 0.6982 0.5469

20 0.7588 0.6456

Unit n1-sided regular polygon + n2-sided

n1, n2 l(1) l(2)

20, 4 (same bounding radius) 1.0485 1.2246

20, 4 (same area) 1.1645 1.5110

6, 3 (same bounding radius) 0.9363 0.9779

TABLE X. Moments l(1) and l(2) of the center-to-center distance of intersecting objects with

identical (left) or different (right) shapes and/or sizes, determined by Monte Carlo numerical

integration. The objects have a unit bounding radius, unless otherwise stated.
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