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Abstract. We present a new methodology for decision-making support
based on belief functions thanks to a new theoretical canonical decom-
position of dichotomous basic belief assignments (BBAs) that has been
developed recently. This decomposition based on proportional conflict
redistribution rule no 5 (PCR5) always exists and is unique. This new
PCR5-based decomposition method circumvents the exponential com-
plexity of the direct fusion of BBAs with PCR5 rule and it allows to fuse
quickly many sources of evidences. The method we propose in this paper
provides both a decision and an estimation of the quality of the decision
made, which is appealing for decision-making support systems.
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1 Introduction

This paper deals with the decision-making support problem from many sources
of evidence characterized by belief functions (BF) defined over a same frame of
discernment. Belief functions introduced by Shafer [1] are appealing to model
epistemic uncertainty. They are well-known and used in the artificial intelligence
community to fuse uncertain information and to make a decision. However, many
debates in scientific community started with Zadeh’s criticism [2, 3] - see addi-
tional references in [4] - have bloomed on the validity of Dempster’s rule of
combination and its counter-intuitive behavior (not only in high conflicting sit-
uations, but also in low conflicting situations as well). That is why many rules
of combination have been developed by different researchers [5] (Vol. 2) over the
last decades. In this work we consider only the rule based on the proportional
conflict redistribution principle no 5 (PCR5 rule) to combine basic belief as-
signments (BBAs). This choice is motived not only by its conflict redistribution
principle, but also by its ability to generate a unique canonical decomposition of
any dichotomous BBA that will be convenient for decision-making from many
sources of evidence.

This paper is organized as follows. After a brief recall of basics of belief
functions in section 2, we present succinctly the canonical decomposition of a
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(dichotomous) BBA in section 3 based on [6]. Then we propose a new decision-
making support methodology that exploits this canonical decomposition in sec-
tion 4 for working in a general framework with many (non dichotomous) sources
of evidences, with basic illustrative examples. Conclusions are given in section
5.

2 Basics of belief functions

2.1 Definitions

The answer3 of the problem under concern is supposed to belong to a given finite
discrete frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn}, with n > 1. All ele-
ments of Θ are mutually exclusive4. The set of all subsets of Θ (including empty
set ∅ and Θ) is the power-set of Θ denoted by 2Θ. A Basic Belief Assignment
(BBA) given by a source of evidence is defined [1] as m(·) : 2Θ → [0, 1] satisfying
m(∅) = 0 and

∑
A∈2Θ m(A) = 1. The quantity m(A) is the mass of belief of A.

Belief and plausibility functions are respectively defined from m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B) (1)

and
Pl(A) =

∑
B∈2Θ|A∩B 6=∅

m(B) = 1− Bel(Ā). (2)

where Ā is the complement of A in Θ.

Bel(A) and Pl(A) are usually interpreted respectively as lower and upper
bounds of an unknown (subjective) probability measure P (A). A is called a
Focal Element (FE) of m(·) if m(A) > 0. When all focal elements are singletons
then m(·) is called a Bayesian BBA [1] and its corresponding Bel(·) function is
equal to Pl(·) and they are homogeneous to a (subjective) probability measure
P (·). The vacuous BBA (VBBA for short) representing a totally ignorant source
is defined as5 mv(Θ) = 1. A dogmatic BBA is a BBA such that m(Θ) = 0. If
m(Θ) > 0 the BBA m(·) is nondogmatic. A simple BBA is a BBA that has at
most two focal sets and one of them is Θ. A FoD is a dichotomous FoD if it has
only two elements, say Θ = {A, Ā} with A 6= ∅ and A 6= Θ. A dichotomous BBA
is a BBA defined over a dichotomous FoD.

2.2 PCR5 rule of combination

The combination of distinct sources of evidence characterized by their BBAs
is done by Dempster’s rule of combination in Shafer’s mathematical theory of

3 I.e. the solution, or the decision to take.
4 This is so-called Shafer’s model of FoD [5].
5 The complete ignorance is denoted Θ in Shafer’s book [1].
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evidence [1]. The justification and behavior of Dempster’s rule (corresponding
to the normalized conjunctive rule) have been disputed from many counter-
examples involving high and low conflicting sources (from both theoretical and
practical standpoints) as reported in [4]. Many alternatives to Dempster’s rule
are now available [5], Vol. 2. Among them, we consider in the sequel the PCR5
rule which transfers the conflicting mass only to the elements involved in the
conflict and proportionally to their individual masses, so that a more sophisticate
and precise distribution is done with the PCR5 fusion process. The PCR5 rule is
presented in details (with justification and examples) in [5], Vol. 2 and Vol. 3. We
only briefly recall for convenience its formula for the fusion of two BBAs, which
is symbolically noted as mPCR5 = PCR5(m1,m2), where PCR5(·, ·) represents
the PCR5 fusion rule for two BBAs. With this PCR5 rule, one has mPCR5(∅) =
0, and ∀X ∈ 2Θ \ {∅}

mPCR5(X) = mConj(X) +
∑

X2∈2Θ
X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (3)

where mConj(X) =
∑

X1,X2∈2Θ
X1∩X2=X

m1(X1)m2(X2) is the conjunctive rule, and

where all denominators in (3) are different from zero. If a denominator is zero,
that fraction is discarded. Extension of PCR5 for combining qualitative BBA’s
can be found in [5], Vols. 2 & 3. All propositions/sets are in a canonical form.
A variant of PCR5, called PCR6 has been proposed by Martin and Osswald in
[5], Vol. 2, for combining s > 2 sources. The general formulas for PCR5 and
PCR6 rules are also given in [5], Vol. 2. PCR6 coincides with PCR5 when one
combines two sources. The difference between PCR5 and PCR6 lies in the way
the proportional conflict redistribution is done as soon as three (or more) sources
are involved in the fusion.

3 Canonical decomposition of a dichotomous BBA

Because the canonical decomposition of a dichotomous BBA has been presented
in details in [6], we only make a succinct presentation here. A FoD is a dichoto-
mous FoD if it is made of only two elements, say Θ = {A, Ā} with A ∪ Ā = Θ
and A ∩ Ā = ∅. A is different from Θ and from Empty-Set because we want
to work with informative FoD. A dichotomous BBA m(·) : 2Θ → [0, 1] has the
general form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b (4)

with a, b ∈ [0, 1] and a+ b ≤ 1.
The canonical decomposition problem consists in finding the two following

simpler BBAs mp and mc of the form

mp(A) = x, mp(A ∪ Ā) = 1− x (5)
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mc(Ā) = y, mc(A ∪ Ā) = 1− y (6)

with (x, y) ∈ [0, 1] × [0, 1], such that m = Fusion(mp,mc), for a chosen rule
of combination denoted by Fusion(·, ·). The simple BBA mp(·) is called the
pro-BBA (or pro-evidence) of A, and the simple BBA mc(·) the contra-BBA (or
contra-evidence) of A. The BBA mp(·) is interpreted as a source of evidence
providing an uncertain evidence in favor of A, whereas mc(·) is interpreted as
a source of evidence providing an uncertain contrary evidence about A. In [6],
we proved that this decomposition always exists and is unique if we use the
PCR5 fusion rule. In the vacuous BBA case when a = 0 and b = 0, the BBA
m(·) can be interpreted as the PCR5 fusion of two degenerate pro- and contra-
evidences BBAs mp(·) and mc(·) which coincide with the vacuous BBA with
x = 0 and y = 0. Hence any (Bayesian, or non Bayesian) dichotomous BBA
m(·) can be always interpreted as the result of the PCR5 fusion of these two
(pros and cons) aspects of evidence about A. It is worth noting that this type of
canonical decomposition is different of Smets’ canonical decomposition problem
[7] which needs to work with generalized simple BBA which are not stricto sensu
valid BBAs as defined by Shafer [1].

For the case of dichotomous dogmatic BBA, the expression of solutions x
and y of canonical decomposition are as follows [6]:

– if a = b and a+ b = 1 then a = b = 0.5 and x = y = 1;

– if a < b then x < y, and we have y = 1 and x = a+
√
a2+4a
2 ;

– if a > b then x > y, and we have x = 1 and y = b+
√
b2+4b
2 .

For the case of dichotomous non-dogmatic BBA, the expression of solutions
x and y of the canonical decomposition do not have simple analytical expression
because one has to find x and y solutions of the system

a = x(1− y) +
x2y

x+ y
=
x2 + xy − xy2

x+ y
(7)

b = (1− x)y +
xy2

x+ y
=
y2 + xy − x2y

x+ y
(8)

under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1. In fact, we have
proved in [6] that x ∈ [a, a + b] ⊂ [0, 1] and y ∈ [b, a + b] ⊂ [0, 1], but the
explicit expression of x and y are very complicated to obtain analytically (even
with modern symbolic computing systems like MathematicaTM, or MapleTM)
because after algebraic calculation, and for x 6= 1, one has to solve the following
quartic equation which has at most four real solutions with only a valid one in
[a, a+ b]

x4 + (−a− 2)x3 + (2a+ b)x2 + (a+ b− ab− b2)x+ (−a2 − ab) = 0 (9)

and then compute y by y = (a+ b− x)(1− x).
Once the numerical values are committed to a and to b the numerical (ap-

proximate) solutions x and then y can be easily obtained by a standard numerical
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solver. For instance, with MatlabTMwe can use the fsolve command, and this is
what we use to make the canonical decomposition of dichotomous non-dogmatic
BBA.

3.1 Canonical decompositions from other well-known rules

In [6] we did prove that this type of canonical decomposition cannot be obtained
by the conjunctive rule only, because if mp and mc exist and if x > 0 and y > 0
then mConj(∅) = x · y > 0 which means that m = Conj(mp,mc) is not a proper
BBA as defined by Shafer’s. If we use the disjunctive rule of combination we
will always obtain the vacuous BBA as the result6 of Disj(mp,mc) because
mp(A)mc(Ā), mp(A)mc(A ∪ Ā), mp(A ∪ Ā)mc(Ā) and mp(A ∪ Ā)mc(A ∪ Ā)
will all be committed to the uncertainty A ∪ Ā. So for any choice of mp and
mc we always get same result (the vacuous BBA) when using the disjunctive
rule making the canonical decomposition of non vacuous dichotomous BBA m
just impossible. Due to the particular simple form of BBAs mp(·) and mc(·),
Yager’s rule [8] and Dubois-Prade rule [9] coincide, and we have to search x
and y in [0, 1] such that m(A) = a = x(1 − y) and m(Ā) = b = (1 − x)y.
Assuming7 y < 1, one gets from the first equation x = a/(1 − y). By replacing
x by its expression in the second equation y − xy = b we have to find y in [0, 1)
such that (after basic algebraic simplifications) y2 + (a − b − 1)y + b = 0. This
2nd order equation admits one or two real solutions y1 and y2 if and only if the
discriminant is null or positive respectively, that is if (a−b−1)2−4b ≥ 0. However
this discriminant can become negative depending on the values of a and b. For
instance, for a = 0.3 and b = 0.6, we have (a− b−1)2−4b = −0.71 which means
that there is no real solution for the equation y2 − 1.3 · y + 0.6 = 0. Therefore,
in general (that is for all possible values a and b of the BBA m), the canonical
decomposition of the BBA m(·) cannot be obtained from Yager’s and Dubois &
Prade rules of combination. If we use the averaging rule, we are searching x and
y in [0, 1] such that m(A) = a = (x + 0)/2 and m(Ā) = b = (0 + y)/2, which
means that x = 2a and y = 2b with x and y in [0, 1]. So, if a > 0.5 or b > 0.5
the canonical decomposition is impossible to make with the averaging rule of
combination. Therefore, in general, the averaging rule is not able to provide a
canonical decomposition of the BBA m(·).

If we consider the canonical decomposition of a dichotomous non-dogmatic
BBA (a+b < 1) using Dempster’s rule of combination [1], denoted DS(mp,mc),
we have to obtain x and y in [0, 1] such that8 xy 6= 1 and

6 Disj(mp,mc) denotes symbolically the disjunctive fusion of mp with mc.
7 Taking y = 1 would means that x(1 − y) = 0 but m(A) = a with a 6= 0 in general,

so the choice of y = 1 is not possible.
8 The third equality m(A ∪ Ā) = 1 − a − b = (1−x)(1−y)

1−xy being redundant with (10)
and (11) is useless.
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m(A) = a =
x(1− y)

1− xy
(10)

m(Ā) = b =
y(1− x)

1− xy
(11)

with the constraints 0 < x < 1 and 0 < y < 1. Therefore,

x =
a

1− y + ay
, y 6= 1

1− a
(12)

and we solve the equation y− xy+ bxy = b with x expressed as function of y as
above. We get the equation for a 6= 1

(a− 1)y2 + (1 + b− a)y − b = 0 (13)

whose two solutions are y1 = b/(1− a) and y2 = 1 - see [6] for details.
For the case a 6= 1, the second ”solution” y2 = 1 implies x = a

1−y2+ay2 =
a
a = 1 which is not an acceptable solution9 because one must have xy 6= 1. The
solution (x, y) of the decomposition problem for a 6= 1 is actually given by the
first solution y1, that is

y = y1 =
b

1− a
∈ [0, 1) (14)

x =
a

1− y + ay
=

a

1− b
∈ [0, 1) (15)

The analysis of the case a = 1 corresponding to the dogmatic BBA given
by m(A) = a = 1, m(Ā) = b = 0, m(A ∪ Ā) = 1 − a − b = 0 shows that
this BBA is not canonically decomposable by Dempster’s rule. Why? Because
one has to solve with 0 ≤ x, y ≤ 1 and 1 − xy 6= 0 the system of equations
(x − xy)/(1 − xy) = 1 and (y − xy)(1 − xy) = 0 which is satisfied for x = 1
and y ∈ [0, 1), that is any value in [0, 1) can be chosen for y. Similarly, for the
case (a, b) = (0, 1) one has to solve with 0 ≤ x, y ≤ 1 and 1 − xy 6= 0 the
system of equations (x − xy)/(1 − xy) = 0 and (y − xy)/(1 − xy) = 1 which is
satisfied for y = 1 and x ∈ [0, 1), that is any x value in [0, 1) can be chosen.
Therefore one sees that for the case (a, b) = (1, 0) and the case (a, b) = (0, 1)
there is no unique decomposition of these dogmatic BBAs from Dempster’s rule
of combination. More generally, any dogmatic BBA m(A) = a, m(Ā) = b with
a+ b = 1 is not decomposable from Dempster’s rule of combination for the case
when (a, b) 6= (1, 0) and (a, b) 6= (0, 1) - See Theorem 4 with its proof in [6].

In summary, the canonical decomposition based on Dempster’s rule of com-
bination is possible only for nondogmatic BBA with 0 < a < 1, 0 < b < 1
and a + b < 1 and we have x = a

1−b and y = b
1−a . Dempster’s rule does not

9 Otherwise the denominator of (10) and (11) will equal zero.
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allow to obtain a canonical decomposition if the BBA is a Bayesian (dogmatic)
dichotomous BBA.

Example where Dempster’s canonical decomposition is possible

Consider m(A) = a = 0.6, m(Ā) = b = 0.2 and m(A ∪ Ā) = 1− a− b = 0.2.
The solution (x, y) of the decomposition of m(·) based on Dempster’s rule is

x′ =
a

1− b
=

0.6

1− 0.2
= 0.75 and y′ =

b

1− a
=

0.2

1− 0.6
= 0.50

Therefore, the pro- and contra- evidential BBAs mp and mc are given by

mp(A) = x = 0.75, mp(A ∪ Ā) = 1− x = 0.25

mc(Ā) = y = 0.50, mc(A ∪ Ā) = 1− y = 0.50

It can be verified that DS(mp,mc) = m.
If we make the PCR5-based canonical decomposition, we will obtain in this

example x ≈ 0.6861 and y ≈ 0.3628. Therefore, the pro- and contra- evidential
BBAs mp and mc based on the PCR5-based canonical decomposition are

mp(A) = x = 0.6861, mp(A ∪ Ā) = 1− x = 0.3139

mc(Ā) = y = 0.3628, mc(A ∪ Ā) = 1− y = 0.6372

It can be verified that PCR5(mp,mc) = m.

In the case where Dempster’s rule can be applied for making the canonical
decomposition (that is when a+b < 1) we see that the canonical values (parame-
ters) x and y can be very different from those obtained with PCR5 rule as shown
in the previous example. This is normal because the principles of conflicting in-
formation redistribution of Dempster’s rule and PCR5 rule are very different,
and there is no link between parameters x and y obtained with Dempster’s rule
versus those obtained from PCR5. In PCR5 rule the conflict is a refined conflict,
i.e. the conflict is split into partial conflicts, so in PCR5 the total conflict is
more accurately redistributed than in Dempster’s rule because each partial con-
flict is redistributed only to the elements involved into it, while in Dempster’s
rule the total conflict is redistributed to all focal elements, therefore even the
elements that were not involved in the conflict receive conflicting mass, which is
inaccurate.

It is worth noting that the internal conflict of m based on Dempster’s rule will
be in this example xy = 0.75·0.5 = 0.375, whereas the internal conflict ofm based
on PCR5 rule will be only xy ≈ 0.6861 · 0.3628 ≈ 0.2489. In fact we can attest
that the internal conflict obtained from PCR5-based canonical decomposition is
always lesser (or equal) to the internal conflict obtained from Dempster-based
canonical decomposition. Although such claim cannot be proved algebraically10,

10 Because there is no simple analytical expressions for solutions x and y of PCR5-based
canonical decomposition.
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we can always make a fine sampling of (a, b) values in [0, 1) satisfying a+b < 1 to
evaluate numerically x and y and compare the internal conflict xy to the internal
conflict, denoted x′y′ = a

1−b ·
b

1−a , obtained with Dempster-based canonical
decomposition. In doing this we see that the difference ∆ = x′y′ − xy is always
greater (or equal) to zero as clearly shown in figure 1. This means that the PCR5-
based canonical decomposition is more efficient than Dempster-based canonical
decomposition because it always yield pro- and contra-evidences which are less
conflicting when using PCR5 rule than when using Dempster’s rule, which is
normal.

0

1

0.1

0.2

0.8
1

0.3

0.6

0.4

0.8

 Difference between internal conflicts based on Dempster's and PCR5 decompositions

b

0.5

0.6

a

0.4

0.6

0.4
0.2

0.2

0 0

Fig. 1. Plot of ∆ = x′y′ − xy as function of a and b.

It is important to keep in mind that Dempster-based canonical decomposition
is only possible for non-dogmatic BBAs (when a+b < 1) but cannot be obtained
with dogmatic BBAs, whereas PCR5-based canonical decomposition works for
all types of dichotomous BBAs (dogmatic and non-dogmatic ones).

3.2 Simple example of PCR5-based canonical decomposition

Let consider m(A) = 0.3, m(Ā) = 0.4 and m(A ∪ Ā) = 1−m(A)−m(Ā) = 0.3,
therefore a = 0.3 and b = 0.4. The quartic equation (9) becomes

x4 − 2.3x3 + x2 + 0.42x− 0.21 = 0 (16)

The four solutions of this quartic equation are approximately11
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x1 ≈ 1.5203, x2 ≈ −0.4243, x3 ≈ 0.7942, x4 ≈ 0.4099

One sees that x1 and x2 are not acceptable solutions because they do not
belong to [0, 1]. If we take x3 ≈ 0.7942 then will get y3 = (a + b − x3)/(1 −
x3) = (0.7 − x3)/(1 − x3) ≈ −0.4576. We see that y3 /∈ [0, 1] and therefore the
pair (x3, y3) cannot be a solution of the PCR5-based canonical decomposition
problem for the BBA m(·) of this example. If we take x4 ≈ 0.4099 then will get
y4 = (a+ b−x4)/(1−x4) = (0.7−x4)/(1−x4) ≈ 0.4916 which belongs to [0, 1].
So the pair (x4, y4) ∈ [0, 1]2 is the unique solution of the canonical decomposition
problem. Therefore the canonical masses mp(·) and mc(·) are given by

mp(A) ≈ 0.4099, mp(A∪Ā) ≈ 0.5901 and mc(Ā) ≈ 0.4916, mc(A∪Ā) ≈ 0.5084

It can be verified that PCR5(mp,mc) = m.

3.3 Advantages and limitation of PCR5-based decomposition

The PCR5-based canonical decomposition offers the following advantages:

1. It is well justified theoretically.
2. It gives us access to the simpler pro- and contra-evidences mp(·) and mc(·)

which are unique and always exist for any possible (dogmatic, or non-dogmatic)
dichotomous BBA m(·).

3. It allows to define clearly the notion of internal conflict of a dichotomous
source of evidence simply as Kint(m) , mp(A)mc(Ā).

4. It always provides less conflicting pro- and contra-evidences than what we
would obtain with Dempster’s rule when considering non-dogmatic dichoto-
mous BBA m(·). This proves the superiority of PCR5-based canonical de-
composition over Dempster’s-based canonical decomposition in general.

5. It allows also to adjust or revise12 quite easily a dichotomous source of evi-
dence (if needed) according to the knowledge one has on it by reinforcing or
discounting its pro- or contra-evidential BBA.

6. It can be easily achieved with classical numerical solvers on the shelf.
7. The decomposition can be done off-line for many sampled (a, b) values at

any precision we want, and stored in computer memory for working directly
with mp(·) and mc(·) instead of making the decomposition on the fly. This
is of prime importance for real-time applications where this method could
be used.

8. It allows to establish efficient fast13 suboptimal PCR5 fusion scheme, see
[10] for details, examples and evaluations.

The only important limitation of this PCR5-based canonical decomposition is
that it applies only to dichotomous BBAs, and it seems very difficult (maybe
impossible) to use or to extend it for making directly some new canonical de-
composition of non dichotomous BBAs. Because of this limitation the use of

11 The solutions can be easily obtained with the roots command of MatlabTM.
12 This point is not detailed here because is out of the scope of this paper.
13 Where the complexity is linear with the number of dichotomous BBAs to fuse.
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PCR5-based canonical decomposition appears, at first glance, quite restrictive
for being really useful in applications involving non dichotomous BBAs. Of course
in applications working with dichotomous BBAs (like those in robotics or for
autonomous vehicle navigation using belief-based perception based on grid oc-
cupancy) this PCR5-based canonical decomposition may have a great interest.
In fact we have already used it for belief-based inter-criteria analysis in [11]
and that is why we do not present our results in this work. Nevertheless we will
show in the next section how this PCR5-based canonical decomposition could be
used for the decision-making support in a more general context involving many
non-dichotomous BBAs. This is a problem which has not been addressed in [6].

4 Decision-making using PCR5-based decomposition

In this section we propose a new simple general decison-making scheme based on
PCR5-based canonical decomposition of dichotomous BBA. We consider S > 2
distinct sources of evidence characterized by their BBAs14 mΘ

s (·) defined over
the same (possibly non dichotomous) FoD Θ = {θ1, . . . , θn}, with n > 1.

Can we exploit the PCR5-based canonical decomposition in this context to
make a decision? How? We answer positively to the first question and explain
in details how we can proceed. For this, we need to express the problem in the
framework of dichotomous BBAs that has been presented in the previous section.
More precisely, suppose one has a BBA mΘ(.) defined on 2Θ with |Θ| ≥ 2, then
based on Bel and Pl formulas (1)-(2), it is always possible to calculate BelΘ(X)
and PlΘ(X) for any X ∈ 2Θ. From BelΘ(X) and PlΘ(X) one can always build
a simpler coarsened dichotomous BBA on the dichotomous (coarsened) FoD
ΘX , {X, X̄} if X 6= ∅ and X 6= ΘX as follows

mΘX (X) = BelΘ(X) (17)

mΘX (X̄) = 1− PlΘ(X) (18)

mΘX (X ∪ X̄) = PlΘ(X)−BelΘ(X) (19)

Hence, BelΘX (X) = mΘX (X) = Bel(X) and PlΘX (X) = mΘX (X) +mΘX (X ∪
X̄) = BelΘ(X)+PlΘ(X)−BelΘ(X) = PlΘ(X). This dichotomous BBA mΘX (·)
can always be decomposed canonically into its pro- and contra-evidences mΘX

p (.)

and mΘX
c (.).

Therefore, instead of combining S > 1 non dichotomous BBAs mΘ
s (.) for

s = 1, 2, . . . , S altogether from which a decision is classically drawn, we propose
to make the decision from the set of all combined coarsened BBAs relatively to
each possible dichotomous frame of discernment ΘX . Of course this decision-
scheme is only suboptimal because the whole information is not processed (com-
bined) altogether, but separately using only the coarsened (less informative)
BBAs mΘX

s (X). However, this method allows to use fast suboptimal PCR5 fu-
sion of mΘX

s (X) thanks to PCR5-based canonical decomposition as presented in

14 For clarity, we need to introduce in the notations a superscript to indicate the FoD
we are working on.
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[10] which can be applied with many (hundreds or even thousands) sources of
dichotomous BBAs. With this simple suboptimal decision-scheme we can easily
restrict the domain D on which the decisions can be made, for instance D can
be chosen as the set of singletons of 2Θ, or any other subset of 2Θ depending
on the application under concern as it will be shown in the next section. The
generic steps of the method we propose are as follows:
• Inputs: BBAs mΘ

s (·), s = 1, . . . , S, and the decision domain D ⊂ 2Θ.
• Step 1: For s = 1, . . . , S, coarsening of mΘ

s (·) into dichotomous BBA mΘX
s (·),

for each X ∈ D based on (17)-(19).
• Step 2: For s = 1, . . . , S, PCR5-based canonical decomposition of mΘX

s (·) to
get pro- and contra-evidences mΘX

p,s (·) and mΘX
c,s (·).

• Step 3: Conjunctive fusion of all the pro-evidences mΘX
p,s (·) to get mΘX

p (·).
• Step 4: Conjunctive fusion of all the contra-evidences mΘX

c,s (·) to get mΘX
c (·).

• Step 5: PCR5 fusion of mΘX
p (·) with mΘX

c (·) to get mΘX
PCR5(·) for X ∈ D.

• Step 6: Decision-making from the set of the combined coarsened dichotomous
BBAs {mΘX

PCR5(·), X ∈ D} to get the final decision X̂ ∈ D.

• Output: the final decision X̂ ∈ D
In steps 3 and 4 we use the conjunctive fusion because there is no con-

flict between all pro-evidences mΘX
p,s (·), and there is also no conflict between all

contra-evidences mΘX
c,s (·), s = 1, . . . , S. The steps 1 to 5 do not require high com-

putational burden and they can be done very quickly, specially if PCR5-based
decompositions have been done off-line (as they should be) [10].

We must detail a bit more the principle of the decision-making for the step
6. Actually, the decision-making for step 6 can be interpreted as a decision-
making problem from a set or coarsened BBAs mΘX

PCR5(·) defined over different
dichotomous FoD ΘX which are all the different coarsenings of the whole (refined
original) FoD Θ. In this paper we propose two methods to make the decision
from the set of coarsened BBAs {mΘX

PCR5(·), X ∈ D}.

4.1 Method 1 for Step 6

This method is very simple. We take the decision X̂ corresponding to the largest
value of mΘX

PCR5(X), that is

X̂ = arg max
X∈D

(mΘX
PCR5(X)) (20)

If there exist several arguments having the largest value (i.e. there is a tie), we
select the one whose mΘX

PCR5(X̄) is smaller.

Example 1 (without tie): Suppose Θ = {A,B,C,D,E} and we want to make
a decision/choice only among the elements of D = {A,B,C}. Suppose after
applying steps 1-5 we get the following 3 BBAs

mΘA
PCR5(A) = 0.3, mΘA

PCR5(Ā) = 0.2, mΘA
PCR5(A ∪ Ā) = 0.5

mΘB
PCR5(B) = 0.1, mΘB

PCR5(B̄) = 0.5, mΘB
PCR5(B ∪ B̄) = 0.4

mΘC
PCR5(C) = 0.4, mΘC

PCR5(C̄) = 0.3, mΘC
PCR5(C ∪ C̄) = 0.3
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The decision will be X̂ = C because mΘC
PCR5(C) > mΘA

PCR5(A) > mΘB
PCR5(B).

Example 2 (with tie) We consider samemΘB
PCR5(.) andmΘC

PCR5(.) as in example

1 but mΘA
PCR5(.) is given by mΘA

PCR5(A) = 0.4, mΘA
PCR5(Ā) = 0.2, and mΘA

PCR5(A∪
Ā) = 0.4. In this case, there is a tie between A and C because mΘA

PCR5(A) =

mΘC
PCR5(C) = 0.4. But because mΘA

PCR5(Ā) < mΘC
PCR5(C̄) we will take X̂ = A as

the final decision.

The interest of this method is above all its simplicity, but it does not allow
to quantify the quality (trustfulness) of the decision which is often useful and
required in decision-making support systems, and that is why we propose a
second method for the decision-making of step 6.

4.2 Method 2 for Step 6

This second method is a bit more sophisticate but it circumvents the exponential
complexity of the direct PCR6 fusion of S ≥ 2 BBAs defined on non dichoto-
mous FoD Θ. Once the step 5 is accomplished we propose to fuse altogether the
(coarsened) dichotomous mΘX

PCR5(·) and to apply the decision-making method
based on the distance between the belief intervals [12]. Because the fusion must
operate on the same common frame, we need just to express each BBA mΘX

PCR5(·)
as a dichotomous BBA on Θ which is denoted mΘX↑Θ

PCR5(·). This is done very easily
by just expressing each X̄ as the disjunction of all elements of Θ included in X̄.
The fusion of BBAs mΘX↑Θ

PCR5(·) is done by the weighted averaging rule of combi-
nation, where each weighting factor depends on the decisioning-making easiness
of the BBA mΘX

PCR5(·) to fuse. The easier the decision-making, the higher the
weighting factor. We summarize this method 2:

1) For each X ∈ D, establish mΘX↑Θ
PCR5(·) from mΘX

PCR5(·)
2) For each X ∈ D, compute the weighting factor w(X) of mΘX↑Θ

PCR5(·) by

w(X) =
1

C
(1− h(mΘX↑Θ

PCR5 )) (21)

where C =
∑
X∈D(1 − h(mΘX↑Θ

PCR5)) is a normalization factor, and where

h(mΘX↑Θ
PCR5) = H(mΘX↑Θ

PCR5)/Hmax ∈ [0, 1] is the normalized pignistic entropy of

the BBA mΘX↑Θ
PCR5 defined by H(mΘX↑Θ

PCR5 ) = −
∑
X∈2Θ BetP (X) log2(BetP (X))

and BetP (X) is the pignistic probability of X [13], and Hmax = log2 |Θ|.
3) Make the weighting average of mΘX↑Θ

PCR5(·) for all X ∈ D to get the BBA

mΘ(·) =
∑
X∈D

w(X)mΘX↑Θ
PCR5 (·) (22)

4) From mΘ(·) make the decision based on minimum of belief-interval distance
[12], that is

X̂ = arg min
X∈D

dBI(m
Θ,mΘ

X) (23)
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where mΘ
X is the BBA focused on X that is mΘ

X(X) = 1 and mΘ
X(Y ) = 0

if Y 6= X, and where dBI(., .) is the belief-interval distance defined by (see
[12] for details, justification and examples)

dBI(m1,m2) ,
√
Nc ·

∑
X∈2Θ

d2W (BI1(X), BI2(X)) (24)

where Nc = 1/2|Θ|−1 is a normalization factor to have dBI(m1,m2) ∈ [0, 1],
and dW (BI1(X), BI2(X)) is the Wassertein’s distance between belief inter-

valsBI1(X) , [Bel1(X), P l1(X)] = [a1, b1] andBI2(X) , [Bel2(X), P l2(X)] =
[a2, b2] given by

dW ([a1, b1], [a2, b2]) ,

√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2
5) The quality (or trustfulness) of the decision is given by

q(X̂) , 1−
dBI(m,mX̂)∑
X∈D dBI(m,mX)

(25)

q(X̂) ∈ [0, 1] becomes maximum (equal to one) when dBI(m
Θ,mΘ

X̂
) is zero,

which means that mΘ(·) is focused only on X̂. The higher q(X̂) is, the
more confident in the decision X̂ we are. When there exists a tie between
multiple decisions {X̂j , j > 1}, then the prudent decision corresponding to

their disjunction X̂ = ∪jX̂j should be preferred (if allowed), or we can apply

the method 1 to resolve the tie, or in desperation select randomly X̂ among
the elements X̂j involved in the tie.

Of course we could adopt a more complicate method where the averaging
fusion could operate on all the possible dichotomous BBAs related with each
elementX ∈ 2Θ\{∅,Θ} instead ofX ∈ D, but this would substantially increase the
computational burden. Because the decision X̂ must be constrained to belong to
D, we restrict the fusion to be applied only for the dichotomous BBAs related to
these elements only. By doing this we can reduce substantially the computational
burden if |D| is much lesser than 2|Θ|.

For convenience, we show how works the method 2 in the previous Example
1 using the same Θ and D = {A,B,C}. We have to make the weighted average
of the three following BBAs

mΘA↑Θ
PCR5(A) = 0.3, mΘA↑Θ

PCR5(B ∪ C ∪D ∪ E) = 0.2, mΘA↑Θ
PCR5(A ∪ Ā = Θ) = 0.5

mΘB↑Θ
PCR5(B) = 0.1, mΘB↑Θ

PCR5(A ∪ C ∪D ∪ E) = 0.5, mΘB↑Θ
PCR5(B ∪ B̄ = Θ) = 0.4

mΘC↑Θ
PCR5(C) = 0.4, mΘC↑Θ

PCR5(A ∪B ∪D ∪ E) = 0.3, mΘC↑Θ
PCR5(C ∪ C̄ = Θ) = 0.3

withB∪C∪D∪E = Ā,A∪C∪D∪E = B̄ andA∪B∪D∪E = C̄. The pignistic en-

tropies are respectively equal to H(mΘA↑Θ
PCR5) ≈ 2.1710, H(mΘB↑Θ

PCR5) ≈ 2.3201 and

H(mΘC↑Θ
PCR5) ≈ 2.0754, and their normalized values are h(A) ≈ 2.1710/2.3219 =
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0.9350, h(B) ≈ 2.3201/2.3219 = 0.9992 and h(C) ≈ 2.0754/2.3219 = 0.8938.
From Eq. (21) we get the weighting factors w(A) ≈ 0.37803, w(B) ≈ 0.00463
and w(C) ≈ 0.61734, and the weighted average BBA is

mΘ(A) = w(A)mΘA↑Θ
PCR5(A) + w(B) · 0 + w(C) · 0 ≈ 0.1134

mΘ(B) = w(A) · 0 + w(B)mΘB↑Θ
PCR5(B) + w(C) · 0 ≈ 0.0005

mΘ(C) = w(A) · 0 + w(B) · 0 + w(C)mΘC↑Θ
PCR5(C) ≈ 0.2469

mΘ(B ∪ C ∪D ∪ E) = w(A)mΘA↑Θ
PCR5(B ∪ C ∪D ∪ E) + w(B) · 0 + w(C) · 0 ≈ 0.0756

mΘ(A ∪ C ∪D ∪ E) = w(A) · 0 + w(B)mΘB↑Θ
PCR5(A ∪ C ∪D ∪ E) + w(C) · 0 ≈ 0.0023

mΘ(A ∪B ∪D ∪ E) = w(A) · 0 + w(B) · 0 + w(C)mΘC↑Θ
PCR5(A ∪B ∪D ∪ E) ≈ 0.1852

mΘ(Θ) = w(A)mΘA↑Θ
PCR5(Θ) + w(B)mΘB↑Θ

PCR5(Θ) + w(C)mΘC↑Θ
PCR5(Θ) = 0.3761

From Eq. (24) we get dBI(m
Θ,mΘ

A) ≈ 0.6818, dBI(m
Θ,mΘ

B) ≈ 0.7541 and
dBI(m

Θ,mΘ
C) ≈ 0.5874 because dBI(m

Θ,mΘ
C) < dBI(m

Θ,mΘ
A) < dBI(m

Θ,mΘ
B).

Thus the final decision must be X̂ = C because it corresponds to the smallest
dBI distance value. This decision is the same as with method 1. Based on Eq. (25)
one has q(X̂ = C) ≈ 0.7096 indicating a pretty good trustful decision because it
is much greater than 0.5. If one have preferred X̂ = A (the second best choice)
then q(X̂ = A) ≈ 0.6630 which is a bit worse, and for X̂ = B one gets the
least trustful decision because q(X̂ = B) ≈ 0.6273. Note that a more optimistic
attitude (if preferred) could be obtained by replacing the BetP probability by
the DSmP probability [5] (Chap. 3 of Vol. 3) in the entropy derivation.

5 Conclusions

In this work we have presented a very new methodology for decision-making un-
der uncertainty in the framework of belief functions thanks to the unique PCR5-
based canonical decomposition of any (dogmatic or non-dogmatic) dichotomous
BBAs. We have shown that this new canonical decomposition provides less con-
flicting contra- and pro-evidences with respect to the decomposition based on
Dempster’s rule when the latter can be applied. Any BBAs defined on a gen-
eral (non dichotomous) frame of discernment can be transformed into a set of
coarsened dichotomous BBAs that can always be decomposed canonically and
combined easily and quickly in one PCR5 fusion step to get a suboptimal fusion
result for each element of the decision space under consideration. The final deci-
sion can be made in two ways: either by a simple comparative analysis of masses
of elements of the decision space, or on the minimization of belief-interval dis-
tance which also offers the advantage of quantifying the quality of the decision.
The evaluation of this new methodology for real applications is under progress
and it will reported in forthcoming publications.



Canonical decomposition of BBA for decision-making support 15

References

1. Shafer G.: A Mathematical theory of evidence, Princeton University Press (1976)
2. Zadeh, L.A.: On the validity of Dempster’s rule of combination. ERL Memo

M79/24, Department of EECS, Univ. of California, Berkeley, U.S.A. (1979)
3. Zadeh, L.A.: A simple view of the Dempster-Shafer theory of evidence and its

implication for the rule of combination. The Al Magazine, 7(2), 85–90 (1986).
4. Dezert J., Tchamova A.: On the validity of Dempster’s fusion rule and its interpre-

tation as a generalization of bayesian fusion rule. Int. J. of Intelligent Syst. 29(3),
223–252 (2014)

5. Smarandache, F., Dezert J. (Editors): Advances and applications of DSmT for
information fusion, American Research Press, Vols. 1–4 (2004–2015)

6. Dezert, J., Smarandache, F.: Canonical decomposition of dichotomous basic belief
assignment. International Journal of Intelligent Systems, 1–21 (2020)

7. Smets, P.: The canonical decomposition of a weighted belief. In: Proc. of Int. Joint
Conf. on Artif. Intell., 1896–1901, San Mateo, CA, USA (1995)

8. Yager, R.: On the Dempster-Shafer framework and new combination rules. Infor-
mation Sciences 41, 93–138 (1987)

9. Dubois, D., Prade, H.: Representation and combination of uncertainty with belief
functions and possibility measures. Computational Intelligence 4, 244–264 (1988)

10. Dezert, J., Smarandache, F., Tchamova, A., Han, D.: Fast fusion of basic belief
assignments defined on a dichotomous frame of discernment. In: Proc. of Fusion
2020, Pretoria, South Africa (2020)

11. Dezert, J., Fidanova, S., Tchamova, A.: Fast BF-ICrA method for the evaluation of
MO-ACO algorithm for WSN layout. In: Proc. of FedCSIS Int. Conference, Sofia,
Bulgaria (2020)

12. Han, D., Dezert, J., Yang, Y.: Belief interval based distances measures in the theory
of belief functions. IEEE Trans. on SMC, 486, 833–850 (2018)

13. Smets, P., Kennes, R.: The transferable belief model. Art. Intell., 662, 191–234
(1994)


