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Abstract

The phase field method has been widely adopted in brittle fracture analysis
for its ability to handle complex crack topology. This paper presents a novel
efficient and robust phase field algorithm for quasi-static brittle fracture anal-
ysis. This algorithm overcomes two major issues that affect significantly the
numerical cost of the method: the treatment of unstablediscontinuous
crack propagation and the inequality constraint associated with the irre-
versibility of the damage evolution. To handle unstablediscontinuous
crack propagation, a semi-implicit scheme, which combines the usual ex-
plicit and implicit schemes, is proposed. Different from explicit schemes that
require small time steps and purely implicit schemes that looselose immedi-
ately efficiency when encountering unstable crackdiscontinuous propaga-
tion, the proposed method can releasealleviate the steps constraint while
keeping a good robustness with discontinuous cracking. Concerning the irre-
versibility constraint, this work proposes a practical and easy-to-implement
method. It is shown that this method is extremely efficient and robust with-
out any supplementary numerical coefficient. The efficiency of the method is
demonstrated by means of representative numerical examples.
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1. Introduction1

Numerical simulations of fracture processes play an important role in2

engineering designs. The prediction of crack propagation in brittle materials3

is usually based on Griffith’s theory [1], which compares the energy released4

by the crack propagation to a critical energy release rate. A general concept5

in these models is that a necessary condition for crack propagation is that the6

energy release rate reaches a critical value. Discontinuous crack propagation7

happens when the elastic energy stored in the body is greater than this value.8

One of the major difficulties in fracture simulations is the intrinsic spa-9

tial singularity, i.e. the displacement field is discontinuous across the10

crack point the crack tip. The numerical treatment of this singularity in11

finite element (FE) models can be considered, either by embedding disconti-12

nuity lines by means of remeshing strategies [2, 3] and cohesive elements [4, 5],13

or by enriching the displacement field with discontinuities using the parti-14

tion of unity method [6], as introduced in extended finite element methods15

(XFEM) [7]. However, tracing the evolution of complex crack paths, includ-16

ing crack initiation, propagation, merging and branching, in such models has17

proven to be a tedious task, especially in three dimensional cases [8, 9].18

An alternative approach to deal with the discontinuous crack topology19

consists in incorporating a smooth auxiliary (phase) field. This auxiliary20

variable describes continuously the transition between fully broken and intact21

material phases within a small band. As a consequence, discontinuities are22

not directly introduced into the model, the evolution of fracture surfaces23

is provided by the problem solution on a fixed mesh. This is particularly24

advantageous for handling complex crack paths. Following the terminology25

of [10], such regularized models are referred to as phase field models.26

Phase field models of quasi-static brittle fracture are based on the vari-27

ational formulation of Griffith’s-type methods, proposed by Francfort and28

Marigo [11] and implemented for the first time by Bourdin et al. [12]. The29

energy functional in the phase field model resembles closely the potential30

used in image segmentation [13], which relies on the regularization concept31

through Γ-convergence [14]. More recently, Miehe et al. [10, 15] presented a32

quasi-static phase field formulation aligned with thermodynamic arguments.33

This model possesses several practical features for its numerical implementa-34

tion and has been widely adopted for various applications (see e.g. [16, 17]).35
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A higher-order extension within the isogeometric analysis framework can be36

found in [18].37

The major limit of the phase field method for engineering-size applica-38

tions is its expensive computational cost. Phase field models usually require39

very fine meshes around crack paths for convergence reasons. Although par-40

allelization [19] or adaptive meshing strategies [20, 21, 22, 23, 24, 25] can41

be applied to accelerate the simulations, the development of efficient solu-42

tion schemes remains a key point to make the method more attractive for43

problems having real engineering interests.44

Depending on whether the displacement and the crack field are computed45

simultaneously or alternativelyalternately, two families of phase field solu-46

tion schemes can be distinguished: monolithic and staggered schemes. Mono-47

lithic schemes are expected to have higher convergence rates, since the two48

field solutions are solved simultaneously in a unique Newton-Raphson loop.49

However, this type of approaches suffers from the well-known discontinu-50

ous crack propagation in quasi-static simulations. The loss of convexity of51

the problem makes the solutions difficult to converge. Additional numerical52

treatments are usually required to improve its robustness (see e.g. [26]). Fur-53

thermore, this approach cannot be directly implemented into a commercial54

code without supplementary developments.55

Staggered schemes are more robust and easier to implement in an ex-56

isting commercial code [27]. They are based on an operator split algo-57

rithm in which the mechanical problem and the damage problem are solved58

alternativelyalternately. Explicit or implicit strategies can then both be59

considered. Explicit schemes [10, 16] consider that the damage is constant60

over an incremental time step when computing the displacement field. The61

damage field is updated for the next time step after the convergence of the62

mechanical problem. They were found to be extremely robust, even with63

discontinuous crack propagation. Nevertheless, this kind of approaches64

usually requires very small time steps, which are not accessible for many65

engineering applications.66

Implicit schemes can overcomealleviate this time step dependency (see67

e.g. [28, 29, 30]). The implicit method proposed by [28, 29] is usually known68

as an alternate minimization scheme, in which two minimization problems for69

the displacement and damage fields are solved independently by fixing one of70

these two fields. Similarly to explicit schemes, this method computes the dis-71

placement field at constant damage, but instead updates the latter at current72

time step and then computes again a new displacement. Therefore, different73
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from the explicit scheme, the convergence of damage field can be ensured74

for each time step in the alternate minimization procedure. This method75

is very stable but usually converges extremely slowly, although relaxation76

methods can be employed to accelerate it [31]. Experience [30] shows that77

the implicit methods work independently ofwith relatively large time78

steps but usually require numerous iterations to find the converged solutions,79

particularly when encountering unstablediscontinuous crack propagation.80

Nevertheless, this kind of approaches is appealing for many engineering prob-81

lems subjected to long-term loading (e.g. nuclear fuel simulations [30]), in82

which small time steps are not acceptable.83

This work falls within this perspective. In order to have a solution scheme84

independent ofallowing large time steps while keeping a good efficiency85

and robustness for unstable propagationdiscontinuous cracking, we86

present here a novel staggered scheme, referred to as semi-implicit method,87

for quasi-static brittle fracture simulations. The first important ingredient88

of the semi-implicit method relies on an alternativea modified one-loop89

implicit scheme [30], in which we suggest to integrate the damage update into90

the mechanical Newton loop so as to improve the damage convergence rate.91

Since the damage field is updated after computing each displacement incre-92

ment estimate, the convergence of the mechanical problem may be strongly93

perturbed but we can expect a faster damage convergence, compared to the94

alternate minimization scheme [28, 29]. Indeed, as shown in the examples,95

damage field can converge relatively faster than displacement field, and even96

small variations of the damage field can affect significantly the mechani-97

cal equilibrium. Particularly in unstablediscontinuous propagation steps,98

globally stable damage field cannot ensure immediately that equilibrium.99

We observed that this problem causes a significant number of iterations only100

needed for achieving that mechanical convergence, after the convergence of101

damage field. A simple way for overcoming this problem is to switch to a less102

strict convergence criterion for the mechanical problem. However, this is not103

considered in this work. Instead, on the level of solution scheme, this work104

proposes to apply an explicit-type resolution for the mechanical convergence105

by fixing the damage variables, once the damage convergence is found by the106

suggested implicit procedure. Therefore, this semi-implicit scheme, which107

combines the implicit and explicit schemes, presents a twofold advantage:108

large time steps independence and robustness for discontinuous cracking.109

Another important issue in phase field implementation to deal with is the110

irreversibility condition. The thermodynamics arguments demand that the111
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crack field should not be reversible in any case. This results in an inequality-112

constrained phase field problem. Different methods to impose the irreversibil-113

ity can significantly affect the computational cost of phase field solutions.114

The simplest way, proposed by Miehe et al. [10], is to introduce a mono-115

tonically increasing history field energy function in the phase field equation116

to replace the original loading-induced reference energy. This method seems117

very efficient, since no explicit constraints are introduced in the phase field118

equation. However, the introduction of the history field makes the phase field119

solution differ from the original variational framework and its equivalence to120

the original minimization problem can not be proven [32]. From this view-121

point, the penalty methods [32], which rely on equality-based formulations122

and can keep the variational nature of the original problem, seem an appeal-123

ing option. The main drawback of these methods lies on the introduction124

of the penalty coefficient, which may cause ill-conditioning of the problem.125

Although analytic derivations of the ’optimal’ coefficients have been pro-126

posed, the choice of these penalty coefficients remains a delicate task. The127

most standard method to solve the constrained phase field problem is the La-128

grangian method or its augmented version [33]. This kind of methods may129

result in a large size system and therefore an extremely high numerical cost,130

with the introduction of a large amount of extra-variables. Hence, this kind131

of methods needs an efficient implementation.132

This work proposes an efficient way to impose the irreversibility condition,133

which can be viewed as an efficient variant of Lagrangian method for the134

inequality-constrained phase field problem. Hence, this method can keep the135

original variational nature of the phase field solution. The implementation136

relies on an iterative procedure with only equality constraints on a reduced137

and irreversible active subset, which limits the size of the augmented system.138

Particularly, a vanishing energy driving force is applied to the constrained139

subset, which ensures the positivity of Lagrange multipliers. It is shown that140

the proposed method is very efficient and can lead to a similar result to that141

of Lagrangian method. Together with the proposed semi-implicit solution142

scheme, the novel phase field algorithmic implementation seems very robust143

for quasi-static brittle fracture simulations. Several representative numerical144

examples will be presented for demonstrating the efficiency and robustness145

of the method.146

This paper is organized as follows. Section 2 introduces the phase field147

formulation for brittle fracture, in which the novel method for imposing the148

irreversibility condition is described. Then, the semi-implicit solution scheme149
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is exposed in Section 3. Section 4 will present some numerical examples.150

Finally, the paper will be closed by some concluding remarks.151

2. Problem formulation152

2.1. Phase field modeling of crack topology153

Let us consider a n dimensional domain Ω ⊂ Rn with a fully open crack154

Γ ⊂ Rn−1. The crack field can be then described by a damage function d(x)155

which is equal to 0 everywhere, except for Γ. For a fully damaged point, we156

consider that d equals to 1. Figure 1(a) shows a sharp crack topology. Dif-157

fuse approximation consists in introducing a continuous transition between158

the crack and undamaged zone. This leads to a partially damaged domain159

around the crack, in which d ∈ (0, 1) (see e.g. Figure 1(b)). In phase field160

methods [12, 10], the width of the damaged zone is controlled by an inter-161

nal characteristic length lc (called also regularization length) and the crack162

surface density can be defined as163

γ(d,∇d) =
1

2lc
(d2 + l2c |∇d|2) (1)

Ω

Γ

d = 0

d = 1, ∀x ∈ Γ

(a) Discrete crack

Ω

d > 0

d = 0

d = 1, ∀x ∈ Γ

(b) Diffuse crack

Figure 1: Approximation of crack topology

As a consequence, the total crack surface is approximated by its integral164

over the domain165

Γ ≈ Γ(d) =

∫
Ω

γ(d,∇d)dV =

∫
Ω

1

2lc
(d2 + l2c |∇d|2)dV (2)
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2.2. Variational formulation and governing equations166

The variational formulation of brittle fracture is given by the work of167

Francfort and Marigo [11]. Let Ω denote again the elastic body with a crack168

Γ, a prescribed surface loading t̄ is applied on its boundary ∂Ω, the energy169

functional in quasi-static setting reads170

Π(u,Γ) =

∫
Ω

ψe(εe(u))dV︸ ︷︷ ︸
Πe

+

∫
Γ

GcdΓ︸ ︷︷ ︸
Πd

−
∫
∂Ω

t̄udA︸ ︷︷ ︸
Πext

(3)

where u denotes the displacement field, Gc is the critical release energy per171

unit crack surface, and Πe, Πd, Πext denote respectively the elastic bulk en-172

ergy, dissipation potential and external work. In this work, no external173

applied forces are taken into account. Hence, we can simply con-174

sider t̄ = 0 without changing the formulation. According to Griffith’s175

theory, cracks should propagate along a path of the least energy and satisfy176

the irreversibility condition: Γ(s) ⊆ Γ(t), ∀s < t, which leads to a minimiza-177

tion problem for crack propagation178

(u,Γ) = Arg
{

inf
u∗,Γ∗

Π(u∗,Γ∗)

}
(4)

We remark that the volume body forces are neglected here. Under in-179

finitesimal strain assumption, the elastic strain tensor is defined as180

εe = ε = ∇su (5)

where ∇s denotes the symmetric gradient operator.181

The dissipation functional is defined as the work needed to create the182

corresponding crack surface Γ which is approximated by Γ(d) in diffuse ap-183

proximation, i.e.184

Πd =

∫
Γ

GcdΓ ≈
∫

Γ

Gcγ(d,∇d)dΓ (6)

In order to be consistent with the second thermodynamic principle, we185

demand a positive crack dissipation rate: Π̇d ≥ 0. This results in186

δdγ ≥ 0 and ḋ ≥ 0 (7)

where δdγ = 1
lc

(d− l2c∆d). Note that this positive increment constraint187

(7) ensures the global irreversibility condition of Γ. In addition, the first188

condition in (7) is automatically satisfied in phase field approximation.189
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Taking into account the rigidity degradation of material due to the frac-190

ture and a spectral decomposition of strain tensor [10] for preventing the191

crack opening in compression, we can define the elastic energy functional as192

Πe =

∫
Ω

(
g(d)ψ+

e (ε) + ψ−e (ε)
)
dV (8)

where the degradation function is chosen as: g(d) = (1−d)2 +k, with a small193

value k appearing to avoid singular problems. In our work, this value is194

set to 10−10. The spectral decomposition of strain is written as195

ε = ε+ + ε− with ε± =
∑
i=1

〈εi〉±ni ⊗ ni (9)

where (·)+ and (·)− denote respectively the tensile and compressive modes.196

εi and ni are the eigenvalues and eigenvectors in different dimensions. The197

Macaulay brackets are defined as: 〈·〉± = 1
2
(·±|·|). With the Lamé constants198

λ and µ, the elastic energy relating to each part of strain is defined as199

ψ±e (ε) =
λ

2
(〈tr[ε]〉±)2 + µε± : ε± (10)

Therefore, considering that Πe =
∫

Ω
ΨedV =

∫
Ω

(σ : ε − fd)dV , the200

definition of stress is given by201

σ =
∂Ψe

∂ε
= g(d)

(
λ〈tr[ε]〉+I + 2µε+

)
+ λ〈tr[ε]〉−I + 2µε− (11)

and the energetic driving force of damage reads202

f = -
∂Ψe

∂d
= 2(1− d)ψ+

e (12)

Taking the variation of the total energy functional, the optimization prob-203

lem (4) with inequality constraint becomes [10]:204 {
div σ = 0 in Ω

σ · n = t̄ on ∂σΩ
(13)

with a Kuhn-Tucker-type (KT) condition205

ḋ ≥ 0, f −Gcδdγ ≤ 0, ḋ(f −Gcδdγ) = 0 (14)

in the whole domain Ω and ∇d · n = 0 on the boundary ∂Ω. Note that the206

equation (14)3 allows to compute the damage d when ḋ > 0, i.e.207

f −Gcδdγ = 0 → 2(1− d)ψ+
e =

Gc

lc

(
d− l2c∆d

)
for ḋ > 0 (15)
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2.3. Finite element discretization208

The implementation of phase field method can be performed in different209

manners (monolithic or staggered), as mentioned in introduction. For the210

reason of stability and robustness, this work is based on a operator split211

scheme, i.e. staggered implementation [10].212

The finite element method is used for the spatial discretization.213

u(x) = Nu(x)U, d(x) = Nd(x)d (16)

where U and d are respectively the usual nodal displacement and damage214

vectors. Nu and Nd are corresponding FE shape functions. Noting by B the215

gradient of shape functions, the FE discretization leads to the two following216

equations (17) et (18):217

Ru(u, d, t) =
∂Π

∂u
=
∂Πe

∂u
− ∂Πext

∂u
= Fint(u, d)− Fext(t) (17)

where Fint =
∫

Ω
BT
uσdV , Fext =

∫
∂Ω

NT
u t̄ dA.218

Rd(u, d) =
∂Π

∂d
=
∂Πe

∂d
+
∂Πd

∂d
= Kd(u)d− Fd(u) (18)

where Kd =
∫

Ω
(2ψ+

e + Gc

lc
)NT

dNddV +
∫

Ω
GclcB

T
dBddV , Fd =

∫
Ω

2NT
dψ

+
e dV .219

The solution (u, d) to the original variational problem (4) should220

be computed through minimizing the residuals Ru and Rd under221

the irreversibility condition ḋ ≥ 0. Due to the splitting of the222

energy (11), the mechanical problem (17) remains nonlinear even223

when fixing the damage variable at a constant stage. The stan-224

dard Newton–Raphson method is usually applied for the mechan-225

ical problem.226

2.4. Irreversibility condition227

As the reference elastic energy ψ+
e can decrease with external loading, the228

desired condition: ḋ ≥ 0 in Ω is not automatically satisfied in the method.229

Hence, this point needs some additional treatment. To this end, different230

methods exist in the literature.231
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2.4.1. Brief review of previous methods232

The most thorough way from the mathematical point of view is to apply233

an inequality constraint when solving the phase field equation234

2(1− d)ψ+
e =

Gc

lc

(
d− l2c∆d

)
subject to ḋ ≥ 0 (19)

As mentioned in the introduction, this inequality constraint can be enforced235

using the Lagrange multiplier (see e.g. [28, 33]). However, the standard236

Lagrangian method results in a large size augmented system, which is ex-237

tremely expensive to solve. Its application to an engineering size problem is238

inappropriate. An alternative option is to use the penalty method [32] which239

does not introduce extra-variables in the problem. However, the introduction240

of penalty coefficients may result in ill-conditioned systems.241

A more efficient way [12] is to solve the phase field equation (18) with242

a constraint on the damage variation only when a point reaches a critical243

value, i.e.244

ḋ = 0 for d ≈ 1 (20)

Therefore, this method only prevents the cure of fully broken points. The245

irreversibility condition is not ensured in the whole domain Ω.246

An alternative efficient method [34] consists in solving, at first, only the247

unconstrained phase field equation (18) for the whole domain Ω, and then248

doing an a posteriori projection, which reads249 {
2(1− d∗)ψ+

e = Gc

lc
(d∗ − l2c∆d∗)

d(t) = max(d∗, d(s)), ∀s < t
(21)

This method enforces the exact irreversibility condition, but the projection250

makes the solution deviate from the original variational framework.251

More recently, Miehe et al. [10] proposed to introduce a compact history252

field function H to replace the reference elastic energy ψ+
e in phase field253

equation, which results in254 {
H = max (ψ+

e (t), ψ+
e (s)) , ∀s < t

2(1− d)H = Gc

lc
(d− l2c∆d)

(22)

In this method, the increasing of damage is driven by the history field function255

H. The following KT condition is expected to be satisfied in Ω256

ḋ ≥ 0, ψ+
e −H ≤ 0, ḋ(ψ+

e −H) = 0 (23)
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As commented by [10], the damage will not decrease with the monotonically257

increasing function H, therefore the irreversibility ḋ ≥ 0 can be always en-258

sured. However, nothing can guarantee the consistency condition (23)3: the259

equation (22) does not guarantee that the damage will not increase with a260

decreasing reference energy ψ+
e . Indeed, the introduction of the history field261

function, which can be viewed as an a priori projection, makes the solution262

lose its original variational nature. Regardless of this drawback, this method263

has been widely adopted for its implementation simplicity and efficiency.264

2.4.2. An efficient irreversibility implementation265

In order to keep at maximum the variational nature of the phase field266

solutions without losing much efficiency, we propose here a novel implemen-267

tation of the inequality condition. Let us consider a time discrete formulation268

of the constrained damage problem (19), the damage at instant t is given by269

2(1− dt)ψ+
e =

Gc

lc

(
dt − l2c∆dt

)
subject to dt ≥ dt−1 (24)

The use of standard Lagrangian method leads to the following equations270

with equality constraints on a set of points271 
2(1− dt)ψ+

e + γ = Gc

lc
(dt − l2c∆dt)

γ(dt − dt−1) = 0

γ ≥ 0

(25)

where γ denotes the Lagrange multiplier, which should not be negative:272

γ ≥ 0. The solution of the above equations can be found by an iterative273

procedure, in which the values of Lagrange multipliers are updated accord-274

ing to the current estimate and successively until all the constrained points275

have positive damage increments. This procedure is extremely expensive for276

two reasons: introduction of a large number of additional variables (which277

is equal to the degree number of original system) and numerous iterations278

required for finding the a priori unknown values of Lagrange multipliers. Al-279

though active-set algorithms (e.g. [22]) can be used to reduce the280

additional variables, the iterations number may remain important.281

In this work, we propose an efficient solution procedure with only equality282

constrains on a subset of the global system, which is based on the following283
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modified formulation284 
2(1− dt)(1− p)ψ+

e + pγ = Gc

lc
(dt − l2c∆dt)

γ(dt − dt−1) = 0

γ ≥ 0

γ(1− p) = 0

(26)

where p is an indicator function which equals to 1 for the constrained subset285

and equals to 0 for the unconstrained subset. The first equation implies286

that the energetic driving force f = ∂Ψe

∂d
(12) should be vanishing for the287

constrained points. This supplementary condition: f = 0 (ψ+
e = 0) has288

a minor effect on those unconstrained points. Hence, the final phase field289

solution is expected to keep the original variational nature. This formulation290

enables the following solution procedure:291

• Given a precomputed energy ψ+
e and the previous damage dt−1292

• Initiation: p(x) = 0, ∀x ∈ Ω293

• For iteration i294

1. Compute the damage d∗i with d∗i = dt−1 on the constrained set295

D = {x ∈ Ω| p(x) = 1}296

2. Determine the decreasing points D∗ = {x ∈ Ω| d∗i < dt−1}297

3. Update the constrained set D = D
⋃
D∗298

4. Update the indicator function p(x) = 1, ∀x ∈ D299

5. Check the convergence: If D∗ = ∅ or ‖d∗i − d∗i−1‖∞ ≤ εc, then300

dt = d∗i , END. Otherwise, repeat the iteration.301

This procedure is computationally efficient, since only equality constraints302

are imposed on a subset of the global system. In addition, it should be303

noticed that the constrained set is irreversibly updated in the sense that304

one already constrained point cannot become unconstrained in a solution305

loop. The feasibility of this concept is ensured by the vanishing energetic306

driving force, which guarantees the positivity of the Lagrange multiplier.307

This way, the iterative procedure usually converges very fast within several308

iterations. The irreversibility condition: ḋ ≥ 0 is automatically satisfied with309

the converged solution. Compared to those projection-based approaches (e.g.310
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[10, 34]), this method is more expensive but is expected to lead to more robust311

variationally-consistent phase field solutions.312

The proposed implementation differs from active-set algorithms313

in the following aspects. The constrained set is increasingly up-314

dated for a given energy state: Di ⊂ Di+1, where i stands for the it-315

eration step. However, in active-set algorithms, active constrained316

points may be removed from the constrained set (e.g. according317

to the possitivity of the Lagrange multiplier), hence Di 6⊂ Di+1. In318

addition, the energy is removed for the constrained set in proposed319

algorithm, which is not the case for active-set algorithms. The im-320

pact of this irreversibility implementation is numerically analyzed321

by a 1D example in Appendix.322

3. A robust solution scheme for unstable crack propagation323

3.1. UnstableDiscontinuous crack growth324

In quasi-static crack modeling, unstable crack propagation is present325

as a discontinuous crack evolution in timediscontinuous crack evo-326

lution happens as the jump of the crack field. It remains a compu-327

tationally challenging problem with standard iterative Newton algorithms,328

since the jump of the solution (e.g. displacement field) is difficult to329

capture with the tangent operator due to the loss of convexity of the330

problem. One possible way to overcome this issue is to switch to truly dy-331

namic simulations [35, 36, 37], in order to capture the loss of kinetic energy332

which is not taken into account in quasi-static simulations. However, the nu-333

merical integration scheme requires very small time steps for capturing the334

stress waves. Although this issue can be overcome using for example mass335

scaling techniques [38], this kind of dynamic approaches is not considered in336

this work. Hence ,the development of efficient solution schemes is essential337

to deal with the unstable discontinuous crack propagation in quasi-static338

simulations.339

3.2. Explicit scheme340

An efficient phase field solution scheme has been proposed by [10] and341

improved by [16]. This kind of approaches, referred to as explicit scheme,342

consists in solving the mechanical equation at a constant damage for each343

time step. Once the converged mechanical solution obtained, the damage344
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is then updated for the next step. Since the mechanical and damage prob-345

lems are decoupled, the problem to be solved becomes convex. This method346

shows an excellent convergence property even when unstable discontinu-347

ous cracking occurs. However, as the convergence on damage is not checked,348

small time steps are usually demanded. The solution procedure is summa-349

rized as follows:350

• At time step t, d∗ = dt−1351

• Loop for mechanical equilibrium: find u by minimizing Ru(u, d∗, t)352

• If convergence, update ut = u and internal variables353

• Loop for the damage problem: find d by minimizing Rd(ut, d) with354

ḋ ≥ 0355

• Update the damage field: dt = d356

• Pass to next time step357

We remark here the irreversibility condition is assumed to be con-358

sidered by one of the previously mentioned methods in section 2.4.359

This remark holds for the following sections.360

3.3. Implicit scheme361

3.3.1. Alternate minimization scheme362

In order to release the time step constraint, the convergence on damage363

field must be additionally checked. The alternate minimization scheme [28,364

29] is similar to the explicit scheme, but has an additional loop on the damage365

field before passing to the next step:366

• At time step t, d0 = dt−1367

• Loop on j = 0, 1, 2, , . . .368

1. Loop for mechanical equilibrium: find u by minimizingRu(u, dj, t)369

2. If convergence, update ut = u and internal variables370

3. Loop for the damage problem: find d by minimizing Rd(ut, d)371

with ḋ ≥ 0372

4. Update the damage field: dj+1 = d373
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5. If ‖dj+1 − dj‖ ≤ εd, then dt = dj+1, pass to next time step374

6. Otherwise, repeat the j-loop375

Some variants with different convergence criterion for damage field can also376

be found in the literature (e.g. [29, 32]). This scheme is stable in the sense377

that the mechanical loop always converges within limited itera-378

tions, thanks to the decoupling of the two problems. The main drawback is379

the low convergence rate of the global damage field.380

3.3.2. A modified one-loop implicit scheme381

Alternatively, we can consider an implicit method by integrating the dam-382

age update in the mechanical loop:383

• At time step t, u0 = ut−1, d0 = dt−1384

• Mechanical Newton loop on i = 0, 1, 2, , . . .385

1. Compute a displacement increment δui+1 = −K−1
u Ru(ut−1, d

i, t)386

2. Update ui+1 = ut−1 + δui+1 and internal variables387

3. Loop for the damage problem: find d by minimizingRd(ui+1, d)388

with ḋ ≥ 0389

4. Update the damage field: di+1 = d390

5. If convergence, then ut = ui+1, dt = di+1, pass to next time step391

6. Otherwise, repeat the Newton loop392

whereKu stands for the tangent stiffness matrix or the initial elastic393

stiffness matrix for the modified Newton method.394

Generally speaking, the iterative Newton procedure should be repeated395

until the convergence of both mechanical and damage problems. In this396

one-loop scheme, a necessary condition for the global mechanical397

equilibrium is the convergence of the damage field. Therefore, the398

residual Ru can be used as a global convergence criterion. This algo-399

rithm is particularly attractive, since the integration of damage update into400

the mechanical loop makes the two problems coupled in a stronger401

manner and should be helpful for the global convergence. In addition,402

the acceleration techniques [39] available for the mechanical convergence can403

be easily applied to accelerate the global convergence.404

This approach has been implemented for a phase field modeling of nuclear405

fuel [30]. For overcoming the discontinuous propagation steps, a fictive406
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path loading method [40] is employed in that implementation. This method407

consists in accepting unstable states during the propagation and re-starting408

the iteration by considering the displacement increment δu0 equals to zero.409

It is shown that this implicit scheme can find a solution of the non-convex410

problem with an important number of iterations for the discontinuous411

crack propagation. Furthermore, we observed that many iterations are per-412

formed after the convergence of damage field, if a large jump of crack413

occurs. The reason is multi-fold. First, due to the jump of crack,414

the displacement solution is far from the current estimate, this415

challenges the standard Newton procedure. Second, as mention416

previously, the splitting of the strain energy increases the non-417

linearity of the problem. Even if the damage field remains stable,418

numerous iterations are still needed. In addition, a large crack may419

lead to ill-conditioned mechanical systems, the integration of the dam-420

age update can strongly perturb the mechanical convergence. Numerically,421

small damage variations can lead to a significant change of mechanical state.422

From a physical point of view, the total dissipated energy in a discontinuous423

cracking step should be larger than the amount due to the crack growth.424

Therefore, the crack stability may be reached before the system falls into its425

equilibrium state. In order to solve the convergence problem, especially for426

the mechanical equilibrium, a semi-implicit scheme is proposed.427

3.4. A semi-implicit scheme428

The basic idea is to start with a purely implicit solution for the damage429

prediction, and then switch to an explicit solution once the damage con-430

verged. As mentioned earlier, many iterations are required for the mechanical431

equilibrium after the damage convergence, and the decoupling of these two432

problems should help to accelerate this procedure. Therefore, appropriate433

convergence criteria are needed for detecting the instabilities as well as the434

convergence of each problem (mechanical and damage). We can summarize435

the solution scheme as follows:436

• At time step t, u0 = ut−1, d0 = dt−1437

• Mechanical Newton loop on i = 0, 1, 2, , . . .438

1. Compute a displacement increment δui+1 = −K−1
u Ru(ut−1, d

i, t)439

2. Update ui+1 = ut−1 + δui+1 and internal variables440
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3. Loop for the damage problem: find d by minimizingRd(ui+1, d)441

with ḋ ≥ 0442

4. Update the damage field: di+1 = d443

5. Convergence check:444

If ‖di+1 − di‖ > εd and ‖Ru(ui+1, di, t)‖ > εu, then (·)i ← (·)i+1,445

return to step 1 for next iteration.446

If ‖di+1 − di‖ ≤ εd and ‖Ru(ui+1, di, t)‖ ≤ εu, then (·)t = (·)i+1,447

pass to next time step.448

If ‖di+1 − di‖ ≤ εd and ‖Ru(ui+1, di, t)‖ > εu, then dt = di+1, end449

of iterations and pass to the explicit solution step.450

• Explicit solution at the constant damage dt: find u by minimizing451

Ru(u, dt, t)452

• If convergence, then ut = u, pass to next time step and start453

from the implicit loop454

ContrarilyContrary to purely explicit schemes, the semi-implicit solu-455

tion is obtained at a converged damage state. Hence, some characteristics456

(e.g. large time steps) of the implicit scheme are conserved in this semi-457

implicit method. In the meantime, the explicit solution at a constant damage458

allows to efficiently overcome the difficulties due to the discontinuous prop-459

agation. This will be illustrated in numerical experiments with comparison460

to the modified implicit method.461

Remark that the solution schemes presented in this section are indepen-462

dent of the irreversibility implementation. They can be used for any stag-463

gered phase field model.464

3.5. Discussion on the accuracy of different solution schemes465

Assuming the spatial discretization error is small enough, a nec-466

essary condition to accurate solutions is full-filling the convergence467

criteria for both mechanical and damage problems: Ru = 0 and468

Rd = 0 for ḋ > 0 and Rd > 0 for ḋ = 0.469

As shown previously, the explicit schemes only update displace-470

ment and damage fields at staggered steps. The convergence crite-471

ria on Ru(u, d, t) and Rd(u, d) are never strictly verified . In general,472

explicit schemes only approximate the accurate solutions with suf-473

ficiently small time steps.474
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Fully implicit schemes, both alternate minimization and the475

modified one-loop scheme, should be able to provide accurate re-476

sults as they can strictly full-fill the necessary condition at each477

time step.478

The semi-implicit scheme can be regarded as a trade-off between479

them. At each time step, the scheme starts from a purely implicit480

solution, but activates an explicit solution as long as the damage481

field is converged. In discontinuous cracking steps, the converged482

solution always verifies the Ru(u, d, t) = 0, but not necessarily the483

one on Rd(u, d). Indeed, the explicitly computed displacement may484

introduce a new energy state that can affect the previously com-485

puted damage field. However, the influence is expected to be small486

and limited, since the semi-implicit solution is obtained with a con-487

verged damage field at each time step. In other words, the criterion488

on Rd(u, d) is expected to be verified if the damage field has well489

converged. The semi-implicit solution should globally approximate490

the accurate fully implicit solution. In particular, we have the fol-491

lowing result.492

Proposition 1. If the explicit and implicit solutions can both converge to the493

exact solution with time refinement, then the semi-implicit solution converges494

to the exact solution with time refinement.495

Proof. Let u ∈ V ⊂ H1(Ω) denote the exact solution, uh ∈ Vh ⊂ H1(Ω)
the discretized one. uExpl

h , uImpl
h , uSemi-Impl

h are defined to be the solutions
computed respectively by the explicit, implicit and semi-implicit schemes for
the same spatial and time discretization h. Assuming u 6= 0, the following
relation can be obtained by Hölder’s inequality

n∑
t=1

‖uh(t)− u(t)‖L1(Ω) =
n∑
t=1

‖(uh(t)
u(t)

− 1)u(t)‖L1(Ω)

≤ ‖(uh(t)
u(t)

− 1)‖L2(Ω×ΩT )‖u(t)‖L2(Ω×ΩT )

≤ Ch‖u(t)‖L2(Ω×ΩT )

(27)

where we introduce an error discrepancy factor Ch which only depends on the
discretization factor h, ΩT denotes the time domain. Assuming the spatial
discretization error is neglectable, the convergence of uh with respect to time
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refinement is defined as: limh→0Ch = 0. Hence, the convergence of explicit
and implicit solutions can be defined as

n∑
t=1

‖uExpl
h (t)− u(t)‖L1(Ω) ≤ C1

h‖u(t)‖L2(Ω×ΩT )

n∑
t=1

‖uImpl
h (t)− u(t)‖L1(Ω) ≤ C2

h‖u(t)‖L2(Ω×ΩT )

(28)

By definition, we have

n∑
t=1

‖uImpl
h (t)− u(t)‖L1(Ω) ≤

n∑
t=1

‖uSemi-Impl
h (t)− u(t)‖L1(Ω)

≤
n∑
t=1

‖uExpl
h (t)− u(t)‖L1(Ω)

(29)

Therefore, if limh→0C
1
h = 0 and limh→0C

2
h = 0, then

lim
h→0

n∑
t=1

‖uSemi-Impl
h (t)− u(t)‖L1(Ω) = 0 (30)

Analogically, the above equality holds for u = 0. The proof is closed.496

3.6. Implementation in Cast3M497

The proposed method can be easily implemented in the code Cast3M498

without supplementary developments. Particularly, the material behavior499

generator MFront [41] is used here for implementing the softening mechan-500

ical response due to the cracking. For summarizing, the overall phase field501

algorithmic implementation is illustrated in Algorithm 1. In addition, this502

work makes use of the convergence acceleration tools available in Cast3M,503

i.e. the fix point acceleration techniques [39], when solving the mechanical504

problem.505

3.7. Discussion on the choice of convergence criteria506

The proposed semi-implicit solution scheme requires several convergence507

checks. Generally speaking, different criteria can be used. For example,508

for the mechanical loop, we can check also the convergence on displacement509
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Algorithm 1: Semi-implicit staggered phase field implementation
Input: Solution at previous instant: ut−1, dt−1

Output: Solution at current instant: ut, dt
1 Initiation: δu0 = 0, δd0 = 0
2 for i = 0, . . . , imax do
3 Compute a displacement increment: δui+1

4 Update displacement: ui+1

5 Update and internal variables: σ, ψ+
e // via MFront

6 Update damage variable: di+1 // Algorithm 2
/* Check convergence: */

7 if ‖di+1 − di‖ ≤ εd & ‖Ru(ui+1, di)‖ ≤ εu then
8 (·)t ← (·)i+1

9 End Loop

10 else if ‖di+1 − di‖ ≤ εd & ‖Ru(ui+1, di)‖ > εu then
11 dt ← di+1

12 Solve ut at constant damage dt // Algorithm 3
13 End Loop

14 else
15 (·)i ← (·)i+1

16 Return ut, dt

variation: ‖δui+1‖ in addition to the global equilibrium Ru = 0, or just use510

one of these two criteria instead. In principle, the global equilibrium511

ensures automatically the convergence on displacement variation.512

Conversely, it is not true. The influence of different criteria on computa-513

tional cost can be studied, but is out of the scope of this work. In any cases,514

the relative tolerance for mechanical and damage convergence check, re-515

spectively related to εu and εd (Algorithm 1 and 3), should be at least516

of order 10−4 for a good accuracy. The irreversibility tolerance εc used517

in Algorithm 2 should be at least of order 10−2. In the following numerical518

examples, both displacement stability and equilibrium residual are used for519

the mechanical convergence. The damage convergence is considered by the520

crack stability, as shown in the algorithms.521
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Algorithm 2: Phase field solution under irreversibility condition
Input: Solution at previous instant: dt−1, reference energy: ψ+

e

Output: Damage prediction: d
1 Initiation: p(x) = 0, ∀x ∈ Ω, D = ∅
2 for i = 1, . . . , imax do
3 Compute di with p and di = dt−1 on D // Equation (26)
4 Detect new constraint set: D∗ = {x ∈ Ω| di < dt−1}

/* Check convergence: */
5 if D∗ = ∅ or ‖di − di−1‖∞ ≤ εc then
6 d = di

7 End Loop

8 else
9 Update the constraint set D = D

⋃
D∗

10 Update the indicator function p(x) = 1, ∀x ∈ D
11 (·)i−1 ← (·)i

12 Return d

Algorithm 3: Explicit solution under constant damage
Input: Solution at previous instant: ut−1, constant damage: dt
Output: Solution at current instant: ut

1 Initiation: δu0 = 0
2 for i = 0, . . . , imax do
3 Solve the mechanical problem with dt: δui+1

4 Update displacement: ui+1

5 Update internal variables: σ // via MFront
/* Check convergence: */

6 if ‖Ru(ui+1, dt)‖ ≤ εu then
7 (·)t ← (·)i+1

8 End Loop

9 else
10 (·)i ← (·)i+1

11 Return ut
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4. Numerical experiments522

4.1. Single edge notched tensile test523

The first test concerns the well known single edge notched tensile test524

[10]. Figure 2 illustrates the geometry and prescribed boundary conditions.525

The displacement loading is imposed on the top side of the specimen while526

keeping the bottom side fixed. The material properties are set to the same527

as [10]: Young’s modulus E = 210 kN/mm2, Poisson’s ratio ν = 0.3, critical528

energy release rate Gc = 2.7×10−3 kN/mm. The FE mesh is generated using529

linear triangular elements and refined around the expected crack path for a530

size about twice smaller than the concerned regularization length.531

y

x

Tensile

0.5 mm

0.5 mm

0.5 mm 0.5 mm

Figure 2: Geometry and boundary conditions for single edge notched test [mm]

4.1.1. Comparison of different irreversibility implementations532

In order to demonstrate the capability of the proposed irreversibility im-533

plementation, we compare three different methods: the method introducing534

H [10] (referred to as H-model), standard Lagrangian method [28] (referred535

to as variational model), and the proposed method of this work. Particularly,536

the explicit solution scheme is employed here for its robustness to discontin-537

uous crack propagation. In the following experiments, relatively fine loading538

steps have to be used, which are considered as follows: δu = 6.71× 10−5 mm539

for the first 80 steps, then δu = 6.71×10−6 mm. The Lagrangian method540

is implemented in Cast3M using an active-set method.541
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Figure 3 illustrates the crack patterns for different models. Due to the loss542

of equivalence to the original variational formulation, the H-model leads to a543

crack profile different from the variational model. Although the crack length544

at the current loading stage is overall the same in this example, this difference545

in crack profiles shows that the different models can result in completely546

different cracking behaviors different numerical behaviors and po-547

tentially lead to different local minima and convergence rates. As548

expected, the proposed method can produce a very similar result to the vari-549

ational model, which confirms the equivalence between them. However, the550

proposed method is much more efficient than the variational model using the551

existing implementation for the variational inequality, as shown in Table 1.552

We remark here that the validity of these solutions is out of the scope553

of this discussion. For obtaining a realistic crack pattern with an explicit554

scheme, a much finer time discretization is needed. However, this is not a555

problem for the comparison of different numerical behaviors conducted by556

different phase field models. The use of explicit scheme is for the pur-557

pose of giving similar constant input energies to different models558

at each time step.559

At the end of the first comparison, we illustrate additionally the numerical560

dissipation energy of the proposed model during the crack propagation (see561

Figure 4). The dissipation is computed as follows562

Ĝc =
δ(Πext − Πe)

2δ crack length
(31)

we recall that Πext and Πe stand for the external work and the elastic energy563

stored in the cracked body respectively. In a continuous cracking step, the nu-564

merical dissipation should be equal to the theoretical one that is prescribed in565

the phase field formulation. As shown in the figure, the initiation of cracking566

needs a much higher energy. Then, due to the discontinuous crack propa-567

gation, the computed dissipation differs significantly from the theoretical one568

at the beginning of propagation. As the cracking becomes continuous, the569

numerical dissipation converges to the theoretical reference. This confirms570

the energetic aspect of the proposed irreversibility implementation.571

4.1.2. Comparison of different solution schemes572

In the second part of this test-case, we compare different solution schemes:573

explicit, implicit (the modified one) and semi-implicit schemes. The proposed574

irreversibility implementation is adopted, as an alternative implementation575
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(a) H-model, lc = 0.0075 mm (b) H-model, lc = 0.00375 mm

(c) Variational model, lc = 0.0075 mm (d) Variational model, lc =
0.00375 mm

(e) This work, lc = 0.0075 mm (f) This work, lc = 0.00375 mm

Figure 3: Crack patterns at u = 6.71× 10−3 mm provided by the explicit solution scheme
for different models 24



Table 1: Computational cost for different models in the tensile test
Model Solver lc (mm) CPU Time

Variational model Expl. 0.0075 225 min
0.00375 703 min

This work Expl. 0.0075 55 min
0.00375 160 min

Figure 4: Numerical dissipation during the crack propagation with the proposed irre-
versibility implementation
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for the variational inequality. The internal characteristic length lc = 0.015576

mm is used here. The loading increment is considered as follows: δu =577

6.1× 10−4 mm for the first 8 steps, δu = 6.1× 10−5 mm for the remaining 20578

steps until u = 6.1× 10−3 mm. It should be noticed that these loading steps579

are usually considered too large for an explicit solution in such experiments.580

Suitable loading steps for accurate explicit solutions should be at the most581

of the order of 10−6 mm [10].582

As shown in Figure 5, these loading steps are too large for an explicit583

scheme. The final crack patterns are strongly dependent of the time dis-584

cretization. For obtaining a full crack, the loading steps have indeed to be585

100-times smaller. On the contrary, the implicit scheme does not impose such586

requirement for the loading steps. The full crack is obtained without refining587

time discretization. The proposed semi-implicit scheme has similar proper-588

ties. Figure 6 illustrates the crack evolution in the specimen. It is shown that589

the crack initiates around u = 5.612× 10−3 mm and goes through the entire590

specimen within one time step. This discontinuous propagation appears in591

explicit solutions only when the time step decreases sufficiently. We can see592

that the final crack pattern is completely independent of loading steps with593

the semi-implicit method in this example. Larger loading steps can be594

used without perturbing the final crack pattern.595

However, if we take a look at Figure 7, the reaction force is596

still sensible to the time discretization, even with implicit or semi-597

implicit schemes. In order to have a good representation of loading598

history, the time steps should not be too large. In general, semi-599

implicit solutions should converge with time refinement at a better600

rate than explicit solutions. Taking the maximal reaction force of601

the implicit solution as a reference, we can illustrate the conver-602

gence trends (see Figure 8). It is shown that the semi-implicit603

solutions converge much faster than the explicit solutions by refin-604

ing the time steps.605

In this example, the discontinuous propagation causes a sudden drop of606

external forces and a big jump of state on displacement field. Therefore,607

numerous iterations are needed to find mechanical equilibrium, and some-608

times, no convergence can be found within a limited time with the purely609

implicit scheme.610

The semi-implicit scheme is notably more efficient than the implicit one.611

As shown in Table 2, the semi-implicit solutions take only several hours in612

this experiment, whereas the implicit solutions encounter severe difficulties613
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of convergence and need more than 20 hours to find global mechanical614

equilibrium. This implicit scheme is able to bypass the discon-615

tinuous cracking step with numerous iterations, but still hardly616

converges in the following steps. This happens as well in other617

experiments, this point will be more discussed in the second exam-618

ple. The semi-implicit scheme is able to overcome these difficulties619

by fixing the damage variable. For the same reason, explicit solutions620

are also very robust for the discontinuous crack propagation. However, as621

shown in Table 2, the computational cost of explicit solutions increases ex-622

ponentially as the time step decreases and can rapidly become un-affordable623

if a high accuracy of results is demanded.624

(a) Explicit, δu (b) Explicit, δu/10 (c) Explicit, δu/100

(d) Implicit, δu (e) Semi-implicit, δu (f) Semi-implicit, δu× 2

Figure 5: Final crack patterns in the single edge notched tensile test with different solution
schemes
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(a) u = 5.551× 10−3 mm (b) u = 5.612× 10−3 mm (c) u = 6.1× 10−3 mm

Figure 6: Discontinuous crack evolution in the single edge notched tensile test

Figure 7: Evolution of reaction force in the single edge notched tensile test

Table 2: Computational cost for the single edge notched tensile test
Model Solver Step size Full crack Iterations CPU Time

This work

Expl.

δu No 229 2 min
δu/2 No 756 4 min
δu/10 No 6462 43 min
δu/100 Yes 97691 506 min

Impl. δu Yes - >1000 min

Semi-impl. δu Yes 17467 348 min
δu× 2 Yes 14329 306 min
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Figure 8: Convergence studies with respect to time step refinement

4.2. Asymmetric double notched tensile specimen625

The second experiment consists in the well studied asymmetric double626

notched specimen [42, 27, 43]. Figure 9 illustrates the geometry and pre-627

scribed boundary conditions. The used materials properties are the same as628

[27]: E = 210 kN/mm2, ν = 0.3, Gc = 2.7×10−3 kN/mm, lc = 0.2 mm. The629

FE mesh is generated using linear triangular elements and refined around630

the expected crack paths for a mesh size up to 0.1 mm, which is twice infe-631

rior to the internal characteristic length lc. This model contains 26297 nodes632

and 52520 elements. The displacement increment is considered as follows:633

δu = 5.01 × 10−3 mm for the first 8 steps, δu = 5.01 × 10−4 mm for the634

remaining 20 steps until u = 5.1× 10−2 mm.635

Figure 10 illustrates the crack evolution obtained with the proposed phase636

field implementation and semi-implicit scheme. The final crack pattern shows637

an excellent agreement with the experimental observation in many brittle ma-638

terials [43]. Similar numerical results can be obtained with explicit639

schemes using small time steps, as reported in [27]. Physically,640

this repulsive behavior of two parallel cracks is completely possible641

within linear elastic fracture mechanics theory, as explained by the642

work [43], although the attraction or repulsion depends strongly on643

the geometry condition of the two approaching cracks. One expla-644

nation is that the propagation direction is altered by the interaction645

between the stress fields around the crack tips, as they get closer.646

The crack angle θ with respect to initial direction intends to pro-647

mote the pure opening mode, i.e. stress intensity factor KII(θ) = 0.648
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Interested readers can refer to [43] for more details.649

In the numerical experiment, initial cracks start propagating650

around u = 4.11 × 10−2 mm and the en passant cracks appear within651

one time step. This discontinuous propagation requires many iterations652

for the convergence of solutions, as shown in Figure 11. Figure 11(a) depicts653

the iteration numbers of each time step with the one-loop implicit654

and the semi-implicit schemes. The most difficult time step for the im-655

plicit scheme turns out to be the one (step 11) right after the discontinuous656

cracking. Thismay be explained by the fact that the system becomes highly657

nonlinear with respect to the displacement due to the splitting of658

strain energy and ill-conditioned with a large crack. The strong659

coupling of displacement and damage fields amplifies the perturba-660

tion of damage variation on the mechanical convergence. Experience661

shows that even small variations in the damaged region can severely perturb662

the iterative Newton procedure. As shown in Figure 11(b), the mechanical663

problem converges very slowly with the purely implicit scheme, despite of664

the globally stable damage field. However, by decoupling the mechanical665

and damage problems and considering that the damage solution has been666

found, the solution can quickly converge to a local minimum. This is667

shown by the excellent convergence behavior of the semi-implicit solution.668

Table 3 summarizes the computational cost for different solution cases.669

The implicit scheme did not converge after a long time for the discontinuous670

cracking steps. It is shown that the semi-implicit scheme is much more671

robust and efficient than the purely implicit scheme with a significant speed-672

up.673

Table 3: Computational cost for the double notched tensile test
Model Solver Iterations CPU Time

This work Impl. >17685 >1000 min
Semi-impl. 7673 269 min

4.3. Symmetric three points bending test674

Next, we investigate the performance of proposed methods in a different675

loading case. The symmetric three points bending test is used (see Fig-676

ure 12). In order to avoid the damage around the loading points, a small677

region closed to the loading is considered purely elastic, while the remaining678
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Figure 9: Geometry and boundary conditions for double notched tensile specimen [mm]

(a) u = 4.06× 10−2 mm (b) u = 4.11× 10−2 mm (c) u = 5.01× 10−2 mm

Figure 10: Crack evolution in the double notched tensile specimen
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(a) Iteration number per time step

εu

(b) Iterative residual in the step t11

Figure 11: Iteration number and iterative residual
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part of specimen is considered damageable. The used materials properties679

are the same as [10]: E = 20.8 kN/mm2, ν = 0.3, Gc = 5 × 10−4 kN/mm.680

The mesh is refined around the expected crack path. The resulting FE model681

contains 19694 triangular elements. Taking advantage of the semi-implicit682

scheme, a uniform large displacement increment is used: δu = 6× 10−3 mm.683

Figure 13 shows the evolution of crack for a maximum displacement loading684

u = 6×10−2 mm. As expected, the crack grows vertically and stops near the685

elastic region. Figure 13 shows the crack evolution for two internal lengths.686

Similar results have been reported in the literature (see e.g. [10]).687

In our numerical experiments, a smaller internal length leads to688

stronger numerical instabilities, which causes therefore a higher689

computational cost (see Table 4). One of the reasons may relate690

to the mesh size effect, as the mesh becomes closer to the internal691

length when decreasing the latter. Regardless of the strong nu-692

merical instabilities, the semi-implicit scheme is able to converge693

at a limited time cost.694

4 4

2
0.2

elasticnonlinear

u

0.4

0.2
0.4

Figure 12: Geometry and boundary conditions for three points bending test [mm]

Table 4: Computational cost for the bending test
Model Solver Lc (mm) Iterations CPU Time

This work Semi-impl. 0.06 6653 137 min
0.03 70959 780 min

4.4. Crack nucleation and propagation in a two-phase concrete material695

Then, we consider a heterogeneous specimen. Figure 14 illustrates a two-696

phase simplified concrete material without any initial crack. Particularly,697
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(a) lc = 0.06 mm, u = 4.2× 10−2 mm (b) lc = 0.03 mm, u = 4.2× 10−2 mm

(c) lc = 0.06 mm, u = 4.8× 10−2 mm (d) lc = 0.03 mm, u = 4.8× 10−2 mm

(e) lc = 0.06 mm, u = 6× 10−2 mm (f) lc = 0.03 mm, u = 6× 10−2 mm

Figure 13: Crack evolution in the three points bending test

the inclusions are considered purely elastic with E = 100 kN/mm2, ν = 0.2.698

Hence, no damage equations are solved within the inclusion phase.699

The matrix is considered damageable with the following properties: E = 20700

kN/mm2, ν = 0.3, Gc = 5 × 10−5 kN/mm, lc = 0.025 mm. A displacement701

loading is applied on the top side, while the bottom side is fixed. The FE702

mesh is generated using triangular elements for a uniform size of 0.017 mm.703

This results in 88241 elements. The proposed phase field implementation is704

used with three different large uniform loading steps: δu = 1 × 10−3 mm,705

δu/5, and δu/10.706

Figure 15 illustrates the final crack patterns obtained with different load-707

ing steps. The evolution of the reaction forces is shown in Figure 16. In708

this example, a loading step dependency is observed. This is associated709

with the intrinsic history-dependence nature of the underlying fracture prob-710

lem. In previous examples, where the materials are considered homogeneous,711

stresses induced by the applied loading are uniform and monotonically in-712

crease. Therefore, we can adopt large time steps without modifying final713

crack patterns, using the implicit or semi-implicit schemes. However, this714

is not the case for this heterogeneous material, loading steps have to be care-715

fully chosen for accurately representing the loading history. Numerically, it716

can be noticed that the irreversibility condition is implemented in a time-717
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discrete manner. which clearly shows the history-dependence nature718

of the underlying problem. We remark that this dependency is719

true for any kind of solution schemes. The semi-implicit scheme720

can accept relatively larger time steps in any cases, compared to721

explicit ones. This example emphasizes the adequate choice of time722

steps, even with the implicit or the proposed semi-implicit schemes.723

However, we can expect better convergence rates against the ex-724

plicit schemes. Indeed, explicit schemes have been tested with the725

finest time steps: δu/10, the solution is far from convergence.726

The computational cost of each solution is summarized in Table 5. This727

shows again the efficiency of the proposed phase field implementation.728

Tensile

matrix

inclusion

5

5

φ = 0.6

Figure 14: Geometry and boundary conditions for the two-phase concrete material [mm]

Table 5: Computational cost for the two-phase concrete specimen
Model Solver Step size Iterations CPU Time

This work Semi-impl.
δu 1002 132 min
δu/5 4344 391 min
δu/10 8649 387 min

4.5. Thermal shock test729

The final test concerns a thermal shock problem [44, 45], which is well730

studied both experimentally and analytically. The geometry and boundary731

35



(a) δu (b) δu/5 (c) δu/10

Figure 15: Final crack patterns of the concrete material obtained with different step sizes.

Figure 16: Evolution of the reaction force in the concrete material
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conditions for numerical analysis is illustrated in Figure 17. The plate is732

initially subjected to a uniform temperature T0. From time t > 0, a colder733

temperature T1 is prescribed on the upper side. All the exposed surfaces are734

considered adiabatic. Assuming the length of plate is sufficiently long, the735

temperature field at t > 0 can be analytically given by736

T (x, y) = T0 − (T1 − T0)fc(
y

2
√
kct

), ∀t > 0 (32)

where kc is the thermal conductivity, fc is the complementary error function:737

fc(x) = 2√
π

∫∞
x
e−s

2
ds. Therefore, the temperature is uniform in the direction738

x, while a high temperature gradient appears in the direction y. The elastic739

strain induced by the thermal expansion reads then740

εe = ε− εth = ε− α(T − T0)I (33)

where α is the thermal expansion coefficient, I is the second order identity741

matrix.742

In this work, the loading parameters and material properties are con-743

sidered as the same as in [45]. Some important loading parameters and744

material properties are given in Table 6. In order to have results comparable745

with those reported in [44, 45], we do not differentiate the compression and746

traction effect in the phase field model. The FE model is generated using747

linear triangular elements with a plane stress assumption. In order to well748

represent the thermal shock history, the time steps are considered as follows:749

δt = 5 × 10−4 for the first two steps, then δt = 1 × 10−3 for the remaining750

steps.751

As shown in Figure 18, the crack starts being homogeneous in the direc-752

tion parallel to the surface of the thermal shock. At some critical time, the753

homogeneous solution bifurcates towards a periodical solution with equal dis-754

tance cracks penetrating inside the specimen. The wave length, which stands755

for the distance between two neighboring cracks, is initially equal to 7.4 times756

of the internal characteristic length. After some time, some cracks stop to757

propagate whereas the others continue with a wave length approximately two758

times higher than the original one. These results show an excellent agreement759

with both analytical analyses [44] and experimental results [45]. In terms of760

computational cost, this experiment takes only several hours with the pro-761

posed phase field implementation. However, full Lagrangian methods762

will take several days for this kind of computations.763
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Figure 17: Geometry and boundary conditions for thermal chock test [mm]

Table 6: Loading parameters and material properties for the thermal chock test
T0 (K) T1 (K) E (GPa) ν α (K−1) Gc (kN/mm)
673 293 370 0.22 8.4× 10−6 12.16×10−6

5. Conclusion764

A novel phase field method for quasi-static brittle fracture analysis has765

been developed. This method is based on two novel algorithmic implemen-766

tations: a novel efficient algorithm for imposing the irreversibility condition767

and a robust staggered semi-implicit solution scheme for overcoming the dis-768

continuous propagation and time step constraints.769

The irreversibility implementation is based on an efficient implementation770

of the inequality constrained optimization procedure with vanishing energetic771

driving force. Unlike the H field based model, the proposed method can keep772

the original variational nature of the phase field solution. Moreover, this773

method does not introduce any supplementary numerical coefficient which774

may result in ill-conditioned systems. This method can be considered as a775

variant to conventional variational phase field models.776

The proposed semi-implicit staggered scheme relies on two ingredients:777

the integration of phase field solution into the mechanical loop, and the com-778

bination of the purely implicit and explicit solution schemes. This method779

allows to alleviate the time step constraints, while being very robust with780

the numerical instabilities associated with the discontinuous propa-781

gation.782
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(a) t = 5× 10−4 s

(b) t = 1× 10−3 s, wave length ≈ 7.4lc

(c) t = 1.8× 10−2 s, wave length ≈ 15lc

(d) Crack pattern on both faces after a thermal shock

Figure 18: Crack evolution in the thermal shock test. (a) (b) (c): Simulated cracks with
lc = 5× 10−2 mm, (d): Experimental results [45].
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The proposed phase field method can be easily implemented. Numerical783

examples considering different materials, loading cases and geometries have784

demonstrated the efficiency and robustness of the proposed method. The785

proposed method is expected to provide a novel efficient tool for brittle frac-786

ture analysis by phase field methods. Applications of the proposed method787

to 3D heterogeneous concrete materials and nuclear fuel elements that are788

subjected to a long-term loading (up to years) are ongoing.789
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797

Appendix A. Numerical study of the impact of the irreversibility798

implementation799

The important features of the proposed implementation are:800

irreversible updating of the constrained set and vanishing energetic801

force. The impact of the first feature is easier to see. Due to the802

updating strategy, the resulting constraint set may not be optimal803

for a given energy state. Consequently, the computed damage field804

may be somehow degraded.805

The impact of vanishing energy is less obvious. Unlike the an-806

alytic formulation, the vanishing energy ψ+
e = 0 can not be directly807

imposed with discretized formulation for the constrained nodes,808

since the strain energy is usually computed inside an element for809

integration points. To do this, a mapping of the energy between its810

nodal and element-based values is needed. Denoting byM : R→ R811

the mapping from the element-based value to the nodal value, and812

M−1 its inverse mapping, the proposed irreversibility implementa-813

tion requires first a nodal representation of the strain energy814

ψ+nodal
e =M(ψ+

e ) (A.1)
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then applying the vanishing energy condition for constrained set:815

ψ+nodal
e (x) = 0, ∀x ∈ D, the final strain energy used for computing816

damage field is obtained by817

ψ+∗
e =M−1(ψ+nodal

e ) (A.2)

In the above procedure, the mapping introduces naturally an in-818

terpolation error, but we can expect this error is controllable by819

refining the mesh and choosing appropriate interpolation methods.820

When applying the vanishing energy condition to a constrained821

point, a part of the reference energy ψ+
e will be removed from its822

surrounding elements. Hence, the computed damage can be less823

important than that of full Lagrangian method.824

In order to illustrate the impact of the method, let us consider a825

1D bar with Gc = 2.7× 10−3 kN/mm and lc = 0.015 mm. We assume826

a piece-wise constant element-based reference energy ψ+
e is given827

in different time steps. Initially, a predefined crack is computed828

with the following energy distribution829

ψ+
e (x, t = 0) = 0.5e−

|x−3|
0.2 (A.3)

At the first time step t = 1, the strain energy is changing to830

ψ+
e (x, t = 1) = 5e−

|x−3|
0.05 + e−

|x−7|
0.2 (A.4)

This energy intends to create a thinner crack at x = 3 mm with a831

higher peak value and initiate a new crack at x = 7 mm. Hence,832

the damage field around the initial crack is decreased if the irre-833

versibility condition is not imposed. We use the proposed method834

to compute the corresponding damage fields. Figure A.19 depicts835

the crack profiles of different time steps. We can see that the dam-836

age field did not decrease with the proposed irreversibility imple-837

mentation. Compared to the full Lagrangian method, the damage838

field is indeed degraded with the proposed method, as shown in839

Figure A.19(b). Fortunately, the difference is limited by refining840

the mesh (Figure A.19(c)). The final mesh size is reasonable, as it841

is only slightly inferior to the internal crack length.842

843
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Figure A.19: Crack evolution in two meshes with comparison to full Lagrangian method
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