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ABSTRACT
The effect of shock waves on the dispersion characteristics of a particle cloud is investigated both numerically and analytically. A one-
dimensional analytical model is developed for the estimation of the cloud topology in the wake of a shock wave, as a function of time,
space, and characteristic response time τp of the cloud based on the one-way formalism. The model is compared with the results obtained
with numerical simulations over a wide range of incident Mach numbers Ms and particle volume fraction τv ,0. An extension of the one-way
formalism to the two-way is proposed by taking into account the post-shock gas deceleration due to the presence of particles. A significant
increase in the cloud density is noticed. The effects of different parameters affecting the shock–spray interaction are elucidated and discussed.
The two-way formalism is seen to better describe the effects of the particles on the propagation of the shock wave.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5135774., s

I. INTRODUCTION

The interaction between shock waves and particles has been
an active research field for decades.1–5 Many theoretical and experi-
mental studies are conducted in order to understand the interaction
mechanisms of shock waves with droplets or solid particles,6–10 since
it is present and of major importance in various industrial applica-
tions. For instance, the compression waves can coalesce and generate
shock waves in internal engines.11 The shocked fuel spray has differ-
ent dispersion topologies, thus changing the combustion properties.
Other applications concern explosion in the confinement building,
where the shock waves can be initiated accidentally. In order to mit-
igate their effects, an aqueous foam12–15 or a water spray system16

can be used. In this case, the shock–spray interaction can change
dramatically the dispersion of droplets, leading to the change in
the mitigation capacity of the spray system.17–19 On the contrary,
the particle cloud can also affect the propagation of the shock
wave.20

Basically, as a result of the high velocity of the shocked gas, the
shock–droplet interaction can generate complex coupled phenom-
ena such as droplet deformation, atomization, collision, coalescence,
and evaporation.11,21,22 Moreover, the polydispersion of the droplets

adds further difficulties to the investigations. To simplify the prob-
lem, various studies focus on the interaction between a shock wave
and a single or an array of particles,23–25 where the effects of par-
ticles on gas flow are weak. Dense particle or particle curtains are
also investigated,3,26 in which the collision between the particles is
important.

Given the complexity of the droplet behavior during the inter-
action, rigid particles of uniform diameters are commonly used
to simplify the shock–particle interaction. Even though the qual-
itative phenomena are well known,1,3 the interaction mechanisms
between shock and particles are yet to be elucidated quantitatively
in both well-conducted experiments and in numerical simulations
and modelings.27 Particularly, the particle clouds of the volume
fraction O(10−4–10−3

) are of great interest in nuclear industrial
applications.

The integral properties of the particle cloud movements such
as volume fraction distribution and velocity distribution are also
important for the large-scale simulations.28 However, to the best
knowledge of the authors, the existing particle-resolved models for
simulations of large-scale geometries such as nuclear confinement
building are scarce, as a result of high computational expenses, espe-
cially for high Reynolds number flows. Thus, simple reduced-order
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modeling approaches and empirical correlations are considered to
be the alternative solutions.

In this study, a new analytical model is developed to quantify
the shocked gaseous flow impact on the dispersed phase using a one-
way formalism. An extended two-way theoretical model is proposed,
which takes into consideration the deceleration effect of the particles
on the gas phase. The objectives of this study are threefold: (i) pro-
vide a simplified analytical formulation of particle cloud dispersion
after the interaction with a shock wave, (ii) elucidate the importance
of the two-way formalism on the description of the shock–cloud
interaction, and (iii) identify the main parameters and their effects
on the shock–cloud interaction. The theoretical model is validated
with high-resolved numerical simulations.

This paper is organized as follows: Section II discusses the char-
acteristics of the particle cloud. Section III presents an analytical
formulation of particle dispersion with a shock wave. Section IV
discusses the assessment of the analytical model, and the compar-
isons between the analytical results and the numerical simulations
are presented in Sec. V. Finally, the main conclusions together with
recommendations for future work are given in Sec. VI.

II. CHARACTERISTICS OF THE CLOUD PARTICLES
In this study, assumptions are made so that the gas is consid-

ered as inviscid and follows the perfect-gas law, the particles are
supposed to be rigid and spherical, with small volume fractions, the
collisions between them are neglected,29 only viscous drag forces act
on the particles, and the heat transfer between gas and particles is
neglected.

Initially at rest, the particles are assumed to be uniformly dis-
tributed throughout the computational domain. After the passage
of the shock, the particles are accelerated by the gas flow. In order
to determine the evolution of the particles, we compute the force
applied by the flow of velocity u(x, t) on a spherical particle of coor-
dinate x, with a velocityV(t) and a diameter dp. The general equation
of motion reads

mp
dV(t)
dt
=∑F, (1)

wheremp = πρpd3
p/6 is the particle mass and ρp is the particle density.

Here, we neglect the gravity, the Magnus’ force, and the Basset force
as a result of the high ratio between the densities of the liquid and
gas phases. The viscous drag force gives

F =
π
8
ρp d2

p CD∣u(x, t) −V(t)∣(u(x, t) −V(t)), (2)

where CD is the drag coefficient of the particles defined as

CD =
24
Rep

, with Rep =
ρg ∣u(x, t) −V(t)∣dp

μg
, (3)

where Rep is the particular Reynolds number related to the flow
around the particle and μg is the dynamic viscosity of the gas. The
diameters of the particles considered in this study vary from 10 nm
to 50 μm. Due to the small size of particles, the drag coefficient is
given by the Stokes coefficient for laminar flow. The equation of
motion for each particle can be obtained as

dV(t)
dt
=

1
τp
(u(x, t) −V(t)), with τp =

ρpd2
p

18μg
. (4)

In the case of a two-way interaction, and in order to estimate the
effect of the particles on the gas, the momentum conservation is
taken into consideration. For a gas volume V containing one par-
ticle with a velocity variation dV

dt , the particle can decelerate the gas
with respect to the following equality:

du
dt
= −

mp

ρgV
dV(t)
dt

. (5)

III. ANALYTICAL DETERMINATION OF PARTICLE
DISPERSION WITH SHOCK WAVE
A. Eulerian cloud velocity

In the one-way formalism, the evolution of the particles allows
us to determine analytically their velocities and coordinates as a
function of time, when a constant velocity gas is applied. Let Ms
denote the Mach number of the shock wave. The pre- and the post-
shock gas properties can be found in Appendix A. Consider any
point in the particle-laden domain at a time t, with the position
x, denoted as (x, t). The time origin corresponds to the beginning
of the cloud interaction, with the shock initially at x = 0. For each
point in the (x, t) diagram (see Fig. 1), two configurations are pos-
sible, depending on whether the shock wave has already passed the
interface (x ≥ Ms c t) or not (c being the sound speed in the gas at
rest).

It is possible to calculate the initial position and time of each
particle. Let x′ be the distance covered by the particle after the inter-
action with the shock, and t′ the duration of the interaction. The
distance covered by the particle during t′ is x′ = x(t′) = x − x0, and
the distance covered by the shock wave is Ms ct′ = Ms ct − x0. Know-
ing the shock velocity, V s = Ms c, and the gas velocity behind the
shock ug , one can deduce from Eq. (4) the velocity as well as the dis-
tance covered by a particle x′ as a function of time t′ during which it
is exposed to the gas of a velocity ug ,

FIG. 1. Space–time diagram (x, t) of the considered system with xs the shock
position, x′ the distance covered by a particle located initially at x0, and t′ the
duration of the interaction of the particle with the shock.
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⎧⎪⎪
⎨
⎪⎪⎩

V(t′, τp,ug) = ug(1 − e−t
′/τp)

x(t′, τp,ug) = ∫
t′

0 V(t, τp,ug)dt = ug(t′ − τp(1 − e−t
′/τp)).

(6)

The two unknown variables x′ and t′ satisfy the following
relations:

{
x′ = x(t′, τp,ug) = x − x0

Ms ct′ =Ms ct − x0. (7)

By excluding x0 from Eq. (7) and substituting the expression for x′

from Eq. (6), one can deduce that

ugτp(e−t
′/τp − 1) + Ms c t − x = (Ms c − ug)t′ . (8)

Solving this equation (cf. Appendix B) gives the following
expression:

t′(x, t,ug) = τpW(
ug eη

Ms c − ug
) +

Ms ct − ugτp − x
Ms c − ug

, (9)

where

η =
ugτp −Ms c t + x
τp(Ms c − ug)

. (10)

The Lambert function W 30 is defined implicitly as the solution of the
equation α exp(α) = β (see Appendix B). It is also possible to obtain
the Eulerian velocity of the cloud u as

u(x, t, τp,ug) = V(t′(x, t,ug), τp,ug) = ug(1 − exp(−t′(x, t)/τp)).

(11)

B. Mean cloud density
Using the conservation of mass, it is possible to determine the

global spray characteristics in the post-shock area. If one considers
that the time t of the interaction of the shock with the cloud is very
large with respect to the response time τp, the first particle distance
covered can be approximated with x(t, τp/t → 0) = ug t. It allows us
to determine the cloud length in the post-shock area as

L(t, τp/t → 0,ug) =Ms ct − x(t, τp/t → 0,ug) = (Ms c − ug) t.
(12)

Considering that the particles are solid and undeformable, the initial
cloud length is Ms ct and becomes (Ms c − ug) t, we deduce that the
post-shock density of the particles τv can be linked to the pre-shock
density τv ,0 by

τv(t, τp,ug) = τv,0
Ms c

Ms c − ug
. (13)

The initial and the post-shock cloud lengths are represented in
Fig. 2(b). Using Eq. (A1), one can obtain

τv
τv,0
=

1
γ − 1
γ + 1

+
2

γ + 1
1
M2

s

. (14)

The evolution of the ratio τv/τv,0 as a function of Ms is given
in Fig. 2(a). One can see that when Ms → ∞, τv/τv,0 approaches
(γ + 1)/(γ − 1) = 6.0 for air, a value that τv/τv,0 can never exceed.

FIG. 2. Cloud density as a function of the Mach number and the length of cloud
in the post-shock area. (a) Evolution of τv/τv,0 as a function of Ms; the dashed
blue line represents the asymptotic limit given by (γ + 1)/(γ − 1) with γ = 1.4. (b)
Space–time diagram showing the cloud length pre- and post-shock.

When the inertia of the particles cannot be neglected, one
can obtain a mean load rate after the shock passage using Eqs. (6)
and (12),

τv(t, τp,ug) = τv,0
Ms c

Ms c − ug + ug
τp
t (1 − exp(−t/τp))

. (15)

Equations (13) and (15) show accumulation of particles after the
shock at the contact surface. The evolutions of the particle load rate
for different τp and for a fixed Ms = 1.1 are given in Fig. 3. We can see
that the time necessary to reach the asymptotic value for the particle
load rate increases with particle response time as expected.

C. Eulerian cloud density evolution
One more hypothesis is necessary to estimate the Eulerian

cloud density evolution. Let us assume that the particles are initially
regularly disposed with a mean distance of Δx0 between them. The

FIG. 3. Mean load rate evolutions for particles of different τp in air: τp = 3 × 10−6 s
(blue solid line), τp = 7.5 × 10−5 s (green solid line), τp = 3 × 10−4 s (red
solid line), τp = 1.2 × 10−3 s (orange solid line), ρp = 103 kg/m3, Ms = 1.1, and
ug = 55.19 m/s.
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FIG. 4. Initial configuration of the shock/particle interaction.

cloud is also initially structured according to a cubic particle shape.
The load rate τv ,0 of this cloud is also the ratio between the volume
taken by the particles and the volume of the gas. The initial organi-
zation of the particles and the initial load rate are shown in Fig. 4.
With such a cubic arrangement, the load rate is

τv,0 =
πd3

p

6Δx3
0

. (16)

Knowing that the shock propagates along the x-direction, the load
rate of the shocked particle-laden region can be

τv(t, τp,ug) =
πd3

p

6 Δx2
0 Δx(t, τp,ug)

. (17)

Let us consider two neighbor particles on the x-axis at initial posi-
tions x0

2 and x0
1 such as x0

2 − x0
1 = Δx0. With previous results, it is

possible to estimate the time t′ during which the particles are in
the post-shock area. Let us denote Δt = Δx0/Ms c, the interval time
taken by the shock to cover the inter-particle distance. The distance
between these two particles as a function of t′ is

Δx(t′, τp,ug) = x2(t′ − Δt, τp,ug) − x1(t′, τp,ug)

= (x0
2 + x(t′ − Δt, τp,ug)) − (x0

1 + x(t′, τp,ug))

= Δx0 + x(t′ − Δt, τp,ug) − x(t′, τp,ug). (18)

Substituting Eqs. (6) and (16) into (18) and according to the defini-
tion of Δt and τp, one can deduce

Δx = Δx0(1 −
ug
Ms c
) + ugτp exp(−t′/τp)

× [exp(
√

18μgτp
ρp

3

√
π

6τv,0

1
Ms cτp

) − 1] . (19)

Dividing Eq. (19) by x0, one can obtain according to Eqs. (16), (17),
and the definition of τp,

τv(t′, τp,ug)
τv,0

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 −
ug
Ms c
) +
√

ρp
18 μτp

3

√
6τv,0

π
ugτp exp(−t′/τp)(exp(

√
18μgτp
ρp

3

√
π

6τv,0

1
Ms cτp

) − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

. (20)

Two evident conclusions can be deduced. The term A is always
positive and

τv(t′, τp,ug) < τv,0
Ms c

Ms c − ug
= τv,max, (21)

which is the maximal value of the post-shock density estimated by
Eq. (15). In the one-way formalism, we can conclude that for any
physical parameters, the maximal density of the cloud can never
exceed the mean density that a null-inertia cloud could have. The
second point is that, for a very low τp, one can have A → 0. In
this case, the cloud density increases to a constant value τv ,max. This
model is applicable for various particle cloud density ratios ρp/ρg ,
provided that the gravity of the particles is negligible compared to
the drag force.

D. Extension to two-way formalism
With the existence of the particle–gas interaction, the gas veloc-

ity decreases due to the conservation of momentum. We can assume
that this velocity is reduced by a value ε(ug). The next particle will

relax to a velocity of ug − ε(ug). Figure 5 shows the acceleration of
two successive particles by the shock wave in the two-way model.
In this case, the load rate will severely increase at the cloud extrem-
ity. In addition, the presence of particles can slow down the post-
shock gas velocity. It is at the cloud extremity that the particles
slipping velocity is the highest. It is also at this location that the
gas is most impacted by the presence of particles, and that ε has the

FIG. 5. Sketch of two successive particle motion (a) before and (b) after the shock
passage.
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highest values. Knowing that the density and the local velocity of the
cloud have no analytical solutions, one can only determine the mean
characteristics of the cloud after the shock.

First, it is assumed that the Mach number of the transmitted
shock takes a constant value equal to Ms = 1.1 in the two-way model-
ing. According to numerical simulations, this assumption is justified
for small particle volume fractions τv ,0 < 10−3. Our attempt is to
obtain the mean post-shock gas velocity ũg . Let us consider a volume
element V inside, which is the particle volume τv,0V. This analysis is
considered in the case where the particles have completely relaxed
to the post-shock gas velocity ũg . With respect to the kinetic energy
conservation, one can directly deduce

ρgu2
gV = ρ

′
g ũ

2
gV
′ + τv,0V

′ρpũ2
g , where V ′ ≃ V (1 −

ug
Ms c
) (22)

and

ρ′g
ρg
=
(γ + 1)M2

s

2 + (γ − 1)M2
s

, (23)

where ρp is the density of the particles. So, we obtain

ũg =
ug

√
1 − ug

Ms c

√
(γ+1)M2

s
2+(γ−1)M2

s
+ τv,0

ρp
ρg

. (24)

Taking the mean load rate given by Eq. (15), we have

τ̃v = τv,0
Ms c

Ms c − ũg
. (25)

IV. ASSESSMENT OF THE ANALYTICAL MODEL
Here, we consider the numerical simulation of the interaction

between a shock wave and a gas–particle in the two-phase mixture
as illustrated in Fig. 6. This is a basic configuration commonly used
to study shock wave attenuation particle-laden regions.31 A piston
moving at a speed ug can generate a shock traveling at a velocity V s
(see Appendix A).

FIG. 6. Sketch of the shock and contact surface before (a) and after the interaction
(b); CG: compressed gas, D: droplets.

TABLE I. Post- and pre-shock gas flow characteristics, Ms = 1.1, ρp/ρg = 553.7.

Gas flow parameters Post-shock Pre-shock

ug (m/s) 58.21 0
ρg (kg/m3) 1.21 1.04
pg (bar) 1.25 1.01
Tg (K) 396 370

The simulations are conducted using an in-home compress-
ible Navier–Stokes code named Asphodele, developed in CORIA
laboratory Rouen France.32 The Eulerian–Lagrangian approach is
used with an Unresolved Discrete Particle Model (UDPM). The
space discretization uses a fifth-order WENO (weighted essentially
non-oscillatory) scheme with global Lax–Friedrichs splitting.33 A
third-order Runge–Kutta method is adopted for time marching. The
minimal storage time-advancement scheme34 is used to reconstruct
the Runge–Kutta method for the temporal resolution. The one-
dimensional computational domain L0 = 1 m consists of 1000 points,
with 1000 particles initially defined in each elementary cell.

The analytical model and the numerical results are compared
together in this section. The difference between theoretical and
numerical cloud velocities in the one-way formalism is first studied.
As illustrated in Fig. 6, the shock wave and the contact surface are
initially located at x0 = 0. These characteristics of the gas in the pre-
and the post-shock domain are given in Table I.

The cloud velocity and the gas velocity are studied for particles
with five distinct diameters ranging from nano to micro meters. The
particles have a mass density of ρp = 664.4 kg/m3 at atmospheric
temperature and pressure corresponding to a given gas (here, we
consider cycloheptene C7H16, as an example). Table II gives the
particle diameters and the related equivalent characteristic response
time τp. In what follows, we choose the initial pre-shock proper-
ties as characteristic scales such as ug ,0, τv ,0, and P0. The length of
the calculation domain L0 is chosen as the characteristic scale of the
coordinates.

For very small particles (dp = 10 nm and dp = 1 μm), one can
assume that their velocity increases rapidly toward the gas veloc-
ity and coincides with it. As a consequence, two areas are noted in
Figs. 7(a) and 7(b): the pre-shock area, where both particles and gas
are at rest, and the post-shock area, where the gas and the particles
velocity are equal to ug .

In the case where the particles inertia cannot be neglected,
they progressively accelerate to relax toward the gas velocity.

TABLE II. Diameter of particles and corresponding equivalent characteristic response
time τp.

Droplet diameter dp (μm) Response time τp (μs)

0.01 1.575 10−4

1 1.575
10 157.5
20 630
50 3 937
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FIG. 7. Eulerian cloud velocity within the
one-way formalism. Numerical results
(black circle), theoretical model (red solid
line), and their maximal value (ug) for
different diameters at t = 1.756 ms and
Ms = 1.1, ug ,0 = 58.21 m/s, ρp = 664.4
kg/m3; (a) dp = 10 nm, (b) dp = 1 μm, (c)
dp = 10 μm, and (d) dp = 50 μm.

FIG. 8. Droplet volume fraction in the
one-way formalism. Numerical results
(blue solid line), theoretical model (red
solid line), and maximum (τv ,max /τv ,0)
for different diameters at t = 1.756 ms,
Ms = 1.1, and ρp = 664.4 kg/m3; (a) dp

= 10 nm, (b) dp = 1 μm, (c) dp = 10 μm,
and (d) dp = 50 μm.
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FIG. 9. Comparison between the theoretical model and numerical simulations at
0.2 ms (orange solid line), 0.4 ms (dark blue solid line), 0.6 ms (blue solid line), the-
oretical results (red dashed line); τv ,0 = 5.2 × 10−4, dp = 1 μm, ρp = 664.4 kg/m3,
original contact surface (black dashed line); (a) droplet volume fraction and
(b) droplet velocity evolution.

The time necessary for this relaxation process is τp [see Figs. 7(c)
and 7(d)], which increases with their diameters. A comparison
between analytical and numerical results shows a good agreement
in terms of gas and particle velocities (see Fig. 7).

Figure 8 shows comparisons of the temporal evolutions of the
cloud density τv between the numerical simulations and the analyt-
ical model given by Eq. (21) for particle cloud of different diame-
ters. Different from the continuous solution given by the analytical
model, the numerical results show some oscillatory behavior as a
result of the random repartition of particles in the Lagrangian for-
malism used in the Navier–Stokes code. The mean cloud density is
seen to be close to the analytical prediction, which is limited by the
maximal cloud density obtained by Eq. (21).

The small particles respond immediately to the gas flow [see
Figs. 8(a) and 8(b)], while the larger ones accelerate progressively
[see Figs. 8(c) and 8(d)]. It can be concluded that the relation-
ship established before in a one-way formalism is validated by the
numerical simulations.

The extended two-way theoretical model is studied by com-
parison with the numerical simulations using two-way formalism
as given in Fig. 9. The volume fraction evolution of the particles is
shown in Fig. 9(a) for particles of diameter 1 μm. The maximal value
for the volume fraction increases from 5.2 × 10−4 to 6.08 × 10−4.
Similarly, Fig. 9(b) shows the comparison of particle velocities,
which increases sharply toward a maximal value that is lower than
the initial post-shock gas velocity. The theoretical particle velocity is
slightly smaller than the calculation, which results in a lower estima-
tion of the volume fraction as shown in Fig. 9(a). In fact, Eq. (24) can
only give a global estimation of the real particle velocity. The relative
error of the volume fraction is 2% in the case of 1 μm.

V. NUMERICAL RESULTS
A. One-way vs two-way simulations

In this section, the comparison of numerical results using one-
way and two-way formalisms is given. Figure 10(a) shows the evo-
lution of volume fraction of particles in the computational domain

FIG. 10. Comparison one-way/two-way for different time instants. One-way on
0.2 ms (dark blue dashed line), 0.4 ms (blue dashed line), and 0.6 ms (orange
dashed line) and two-way on 0.2 ms (dark blue solid line), on 0.4 ms (blue solid
line), 0.6 ms (orange solid line); τv ,0 = 5.2 × 10−4, dp = 10 μm, ρp = 103 kg/m3,
original contact surface (black dashed line); (a) droplet volume fraction, (b) gas
pressure, (c) gas velocity, and (d) droplet velocity.

for t = 200–600 μs. It can be seen that the volume fraction of the
particles increases after the passage of the shock. The amplification
of the high volume fraction is around 1.1 times the original volume
fraction. The interface of the pure gas and the particle-laden domain
is pushed downstream of the gas flow. The mass density of particles
takes the value of ρp = 103 kg/m3 in the following simulations.

Figure 10(b) shows the pressure evolution in the computational
domain. Results of the two-way simulations are highlighted by solid
lines, while the corresponding one-way simulations are depicted by
dashed lines. First, as a result of the attenuation effects of particles,
one can notice that the pressure of the post-shock gas is lower than
the one-way coupling. This shows that the strength of the shock
is decreased due to the presence of particles. Second, the reflec-
tion pressure waves are seen only in the two-way simulation. The
maximal value for the post-shock pressure is 1.27 bar located at the
interface of the two domains. Moreover, the reflection pressure wave
propagates at a velocity lower than the original shock wave.

Figure 10(c) shows the evolution of the gas velocity. The one-
way simulation indicates that there is no change in the post-shock
gas velocity, while this quantity is much reduced in the two-way
method, with a maximal velocity of gas smaller than 55 m/s. An
effective change of particle velocity can be seen in Fig. 10(d) for
the two-way simulation. After the passage of the shock, the parti-
cle velocities are smaller in the two-way simulation compared to the
one-way case.
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The comparison indicates that the two-way formalism should
be taken into account to better describe the interaction process
between the shock wave and the particle cloud.

B. Effects of particle response time
It is noted that several characteristics of the cloud such as the

characteristic response time τp and the volume fraction of particle
τv ,0 can have important effects on the interaction mechanism. These
effects are studied numerically in this part.

Figure 11(a) shows the gas velocity evolution after the passage
of the shock wave through the cloud. Different particle sizes are sim-
ulated to elucidate the effect of the response time. The interaction
between the particles and the shock can effectively decelerate the
post-shock gas velocity. For example, the velocity is reduced from
55 m/s to 50 m/s for particles having a diameter of 1 μm and a
volume fraction of τv ,0 = 5.2 × 10−4. The small particles respond
rapidly to the shock wave, and give a piece-wise structure of the gas
properties during the shock–particle interaction. The larger parti-
cles are more difficult to accelerate; thus, they reduce gradually the
gas velocity.

The evolution of the particle volume fraction after the passage
of the shock is given in Fig. 11(b). One can see that the small particles
can give an upper bound of cloud density for the larger ones, which
confirms the statement deduced from Eq. (21) through an analytical
model.

C. Effect of particle volume fraction
The last section concerns the study of the effect of the particle

volume fraction. Figure 12(a) shows the gas velocity evolution for
different particle volume fractions. The reduction of the gas velocity
is much reinforced by the increase in the particle volume fraction.
However, the reflected and the transmitted wave velocities seem to
be independent of the volume fraction. For a very dense cloud, where
τv ,0 = 5 × 10−3, the post-shock gas velocity reduces to zero at 600 μs,
which means that there is no more transmitted pressure wave.

FIG. 11. Evolutions of flow parameters for different particle diameters: dp = 1 μm
(dark blue solid line), dp = 2 μm (dark green solid line), dp = 4 μm (blue solid
line), dp = 6 μm (green solid line), dp = 8 μm (orange solid line), dp = 10 μm
(red solid line); t = 600 μs, τv ,0 = 5.2 × 10−4, Ms = 1.1, ρp = 103 kg/m3, original
contact surface (black dashed line); (a) gas velocity evolution, (b) droplet velocity
evolution.

FIG. 12. Evolutions of flow parameters for different particle volume fractions:
τv ,0 = 5 × 10−5 (dark blue solid line), τv ,0 = 1 × 10−4 (dark green solid line),
τv ,0 = 2 × 10−4 (blue solid line), τv ,0 = 5 × 10−4 (green solid line), τv ,0 = 1 × 10−3

(orange solid line), τv ,0 = 2 × 10−3 (dark orange solid line), τv ,0 = 5 × 10−3 (red
solid line); t = 600 μs, dp = 10 μm, Ms = 1.1, ρp = 103 kg/m3, original contact
surface (black solid line); (a) gas velocity and (b) gas pressure.

Figure 12(b) gives the pressure evolution after the interaction
between a shock and the cloud of diameter dp = 10 μm. One can
notice that the particles of volume fraction τv ,0 = 5 × 10−5 have
less influence on the pressure evolution. A higher volume fraction
τv ,0 = 5 × 10−3 shows an evident pressure increase at the interface
between the pure gas and the particle-laden region. It seems that the
transmitted pressure is completely attenuated at around x = 0.75 m
in this case. The reflection pressure wave can be noted for all particle
volume fractions, and the velocity of the reflected wave seems to be
very close.

The comparison shows that the particle volume fraction can
enhance the reflection pressure value and play an important role in
the attenuation of the transmitted shock.

VI. CONCLUSIONS
An analytical model is developed to study the cloud topology

after the passage of a shock wave in the framework of a one-way
interaction formalism. Special attention is made to the momen-
tum exchange between the shock and particles in order to elucidate
the dynamic aspects of the shock–cloud interaction mechanisms.
The assessment of the model is conducted through a compari-
son with numerical simulations performed using a high accuracy
Navier–Stokes solver.

The extension of the one-way analytical model to the two-way
formulation is proposed and compared to the numerical two-way
simulations. The two-way theoretical model shows less accuracy
than the one-way modeling, but still remains predictable in the scope
of this study.

The necessity of using the two-way formalism in the numer-
ical simulation of the shock–cloud interaction is discussed. Vari-
ous mechanisms such as shock reflection and attenuation can be
observed in the two-way simulations, which are neglected in the
one-way formalism.

Small particles of diameter O(1) μm are more sensitive to the
drag of the post-shock gas and the present piece-wise structures of
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the shock–cloud interaction. An important shock attenuation effect
is noticed for the particle cloud of high volume fractions O(10−3

).
More studies can be performed considering the two- or three-

dimensional shock–spray interactions to study the role of the trans-
verse waves on the spray dispersion. The polydispersion of the cloud
particles as well as the secondary breakup of the water spray can
also be included in the simulations to improve the spray dispersion
modeling.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial support from

Electricité de France (EDF) within the framework of the Generation
II and III reactor research program.

APPENDIX A: CHARACTERISTICS OF THE PLANAR
SHOCK

A planar shock wave can be generated by a piston as shown
in Fig. 13. The piston starts moving at t = 0 with a velocity Vp,
generating a shock wave with a velocity V s. Two areas are divided
by the shock wave: the post- (1) and the pre-shock area (2). Given
the sound speed in the pre-shock area, c2, one can obtain the piston
velocity, Vp, by the following relation:

2
γ + 1

M2
s − 1
Ms

=
Vp

c2
; Vs =Ms c2. (A1)

The post-shock gaseous flow is assumed to have the same veloc-
ity as that of the piston. Analytical solutions are available for the
relationship of the pre- and post-shock thermodynamic quantities,35

p1

p0
= Γ1(Ms, γ),

T1

T0
=
Γ1(Ms, γ)Γ2(Ms, γ)

M2
s

,
ρ1

ρ0
=
p1

p0

T0

T1
, (A2)

where

Γ1(Ms, γ) =
2

γ + 1
(γM2

s −
γ − 1

2
), Γ2(Ms, γ) =

2
γ + 1

(1 +
γ − 1

2
M2

s).

(A3)

APPENDIX B: RESOLUTION OF EQ. (8)
Equation (8) has the form

t′(Ms c − ug) = ugτp(exp(−
t′

τp
) − 1) + Ms ct − x, (B1)

FIG. 13. Shock wave generation in a piston tube.

which can be written, by the arrangement of terms, as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t′

τp
−
Ms c t − x − ugτp
τp(Ms c − ug)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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⎛
⎜
⎜
⎜
⎜
⎝

α
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t′

τp
−
Ms c t − x − ugτp
τp(Ms c − ug)

⎞
⎟
⎟
⎟
⎟
⎠

=
ug

Ms c − ug
exp(−

Ms c t − x − ugτp
τp(Ms c − ug)

)
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β

. (B2)

The previous equation can also be written as α exp(α) = β.
We obtain, thanks to the W Lambert function,30 α = W(β). As a
consequence, one can obtain

t′ = τpW[
ug

Ms c − ug
exp(−

Ms c t − x − ugτp
τp(Ms c − ug)

)] +
Ms c t − x − ugτp

Ms c − ug
.

(B3)
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