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ABSTRACT
Observational evidence of white dwarf planetary systems is dominated by the remains of
exo-asteroids through accreted metals, debris discs, and orbiting planetesimals. However,
exo-planets in these systems play crucial roles as perturbing agents, and can themselves be
perturbed close to the white dwarf Roche radius. Here, we illustrate a procedure for computing
the tidal interaction between a white dwarf and a near-spherical solid planet. This method
determines the planet’s inward and/or outward drift, and whether the planet will reach the
Roche radius and be destroyed. We avoid constant tidal lag formulations and instead employ
the self-consistent secular Darwin–Kaula expansions from Boué & Efroimsky (2019), which
feature an arbitrary frequency dependence on the quality functions. We adopt wide ranges of
dynamic viscosities and spin rates for the planet in order to straddle many possible outcomes,
and provide a foundation for the future study of individual systems with known or assumed
rheologies. We find that (i) massive Super-Earths are destroyed more readily than minor planets
(such as the ones orbiting WD 1145+017 and SDSS J1228+1040), (ii) low-viscosity planets
are destroyed more easily than high-viscosity planets, and (iii) the boundary between survival
and destruction is likely to be fractal and chaotic.

Key words: methods: numerical – celestial mechanics – planets and satellites: detection –
planets and satellites: dynamical evolution and stability – planet–star interactions – white
dwarfs.

1 IN T RO D U C T I O N

The discovery of bona fide asteroids surrounding two white dwarfs
on low-to-moderate eccentric orbits (Vanderburg et al. 2015; Manser
et al. 2019) has refocused efforts to understand the fate of planetary
systems. Debris from destroyed planetesimals both surround and
accrete on to the white dwarf. This destruction is preceded by the
close gravitational interaction between a white dwarf and a planetary
body, a process which has been investigated only sparsely. Hence,
the near-complete dearth of dedicated investigations into tidal
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† STFC Ernest Rutherford Fellow.

effects between white dwarfs and planets necessitates a remedy; this
paper represents an initial step towards addressing this deficiency.

1.1 Planetary system evolution

When a main-sequence exo-planet host becomes a giant branch star,
violent changes ensue, transforming the planetary system (Veras
2016). The star loses most of its mass, expanding the orbits of
surviving planets, moons, asteroids, and comets (Omarov 1962;
Hadjidemetriou 1963; Veras et al. 2011; Adams, Anderson &
Bloch 2013; Veras, Hadjidemetriou & Tout 2013a). This expansion
may trigger gravitational instabilities (Debes & Sigurdsson 2002)
– even without the presence of any stellar companions – with
important consequences for destruction, escape, and, in general,
orbital rearrangement (Bonsor, Mustill & Wyatt 2011; Debes,
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Walsh & Stark 2012; Mustill et al. 2013; Portegies Zwart 2013;
Veras et al. 2013b; Voyatzis et al. 2013; Frewen & Hansen 2014;
Mustill, Veras & Villaver 2014; Veras et al. 2016; Mustill et al.
2018; Smallwood et al. 2018).

Further, giant branch stars exhibit luminosities that exceed the
Sun’s by several orders of magnitude. Hence, pebbles and dust
are propelled and dragged at different rates and can also cross
stability boundaries with planets (Dong et al. 2010; Veras, Eggl &
Gänsicke 2015b). The consequences for asteroids are perhaps
more dramatic: they can be spun up to the point of rotational
fission (Veras, Jacobson & Gänsicke 2014b) through the YORP
(Yarkvosky–O’Keefe–Radzievskii–Paddack) effect. The survivors
can be thrust inwards or outwards, speeding past planets, due to a
supercharged Yarkovsky effect (Veras et al. 2015b; Veras, Higuchi &
Ida 2019). The end result is a widely dispersed debris field ranging
from pebbles to planets at distances from a few au to hundreds or
thousands of au.

The inner boundary of this debris is set by the physical expansion
of the giant branch star itself, which can reach several au in
size. Tidal effects could even draw in and engulf planets that are
further away than the stellar radius. This critical tidal engulfment
distance has been the subject of much interest and investigation
(Villaver & Livio 2009; Kunitomo et al. 2011; Mustill & Villaver
2012; Adams & Bloch 2013; Nordhaus & Spiegel 2013; Valsecchi &
Rasio 2014; Villaver et al. 2014; Madappatt, De Marco & Villaver
2016; Staff et al. 2016; Gallet et al. 2017; Rao et al. 2018; Sun et al.
2018). The actual destructive spiral-in process and time-scale for
planets within the stellar envelope have also been estimated (Jia &
Spruit 2018; MacLeod, Cantiello & Soares-Furtado 2018), as well
as the consequences for the giant star (Nelemans & Tauris 1998;
Massarotti 2008; Carlberg et al. 2012, 2013).

The star eventually transitions into a white dwarf, which is
comparable in size to the Earth but has a Roche radius that extends
outwards to about one Solar radius for a wide range of orbiting
secondary structures (Veras et al. 2017). Within this Roche radius,
observations are abundant. Metallic debris is seen in the white dwarf
photosphere (e.g. Zuckerman et al. 2007; Gänsicke et al. 2012;
Jura & Young 2014; Koester, Gänsicke & Farihi 2014; Harrison,
Bonsor & Madhusudhan 2018; Hollands, Gänsicke & Koester 2018)
and just outside is the presence of Solar radii-scale debris discs
(Farihi 2016).

Perhaps most eye-catching are the discoveries of minor planets
orbiting white dwarfs. At least one planetesimal is currently
disintegrating around WD 1145+017 with an orbital period of
about 4.5 h (Vanderburg et al. 2015) and one other planetesi-
mal is intact and embedded inside the disc surrounding SDSS
J1228+1040 with an orbital period of about 2.06 h (Manser et al.
2019). The orbits of the disintegrating planetesimals are thought
to be nearly circular (Gurri, Veras & Gänsicke 2017; Veras et al.
2017), whereas the embedded planetesimal’s eccentricity is likely
to be many tenths (potentially 0.53), and accompanies a disc-
based intensity pattern with a likely eccentricity of 0.4 (Manser
et al. 2019).

How objects can be emplaced at one Solar radius from several
au – and then circularized – is still subject to debate. Although
dust particles can be drawn into the white dwarf through Poynting–
Robertson drag, larger objects need to be gravitationally perturbed
on to highly eccentric (>0.99) orbits. In order to reach the white
dwarf’s Roche radius, Graham et al. (1990) and Jura (2003)
proposed that these objects are perturbed there (from distances of
a least a few au) and then break up into discs, an idea which has
been realized through numerical simulations (Debes et al. 2012;

Veras et al. 2014a, 2015a; Malamud et al., in preparation) and
purely analytic formulations (Wyatt et al. 2014; Brown, Veras &
Gänsicke 2017; Kenyon & Bromley 2017a,b). Veras, Xu & Rebassa-
Mansergas (2018b) argued extensively that the presence of a planet
is a near-necessity to perturb asteroids close to the white dwarf in a
single-star system.

Nevertheless, the major planets themselves can be perturbed close
to and on to the white dwarf, particularly when the planets are
comparable in mass to one another (Veras & Gänsicke 2015; Veras
et al. 2016); a deficiency with those two studies is the absence
of tidal modelling, which can introduce uncertainties in the orbital
behaviour of a planet passing close to the white dwarf. These planets
would play major roles in perturbing smaller objects and dust on to
the star, with implications for fragmentation, sublimation, and the
resulting debris size distributions (Wyatt et al. 2014; Brown et al.
2017).

Additional motivations for studying tides between a white dwarf
and a planet include the prospect of the formation of second- or
third-generation planets, which may even arise from second- or
third-generation debris discs (Perets 2011; Schleicher & Dreizler
2014; Völschow, Banerjee & Hessman 2014; Hogg, Wynn & Nixon
2018; van Lieshout et al. 2018). Such planets would reside on near-
circular orbits, and may be out of reach of detection. Further, the
destruction of a planet, either through collisions with other planets or
by intersecting the white dwarf Roche radius, could result in easily
detectable events (Bear & Soker 2013; Vanderburg et al. 2015) and
smaller planets orbiting near the white dwarf. Finally, moons of
planets can be stripped, perturbed towards the white dwarf, and as a
result interact with the white dwarf in close proximity (Payne et al.
2016, 2017).

In the year 2018, the number of known white dwarfs increased
by an order of magnitude (Gentile Fusillo et al. 2019). An accom-
panying increase in the number of previously known white dwarf
planetary systems (Kleinman et al. 2013; Kepler et al. 2015, 2016;
Hollands et al. 2017) is likely to follow with the next generation
of spectroscopic initiatives and other missions. This current study
may be particularly impactful if planets are discovered orbiting
white dwarfs either spectroscopically from ground-based facilities,
or through TESS, LSST (Cortes & Kipping 2018; Lund et al. 2018),
Gaia (Perryman et al. 2014), and LISA (Steffen, Wu & Larson 2018;
Tamanini & Danielski 2018). Whether tidal effects had or will have
a role in these systems can then be estimated through orbital proxies
and stability analyses (Veras et al. 2018a).

1.2 Tidal formulations

Despite these numerous motivations, tidal investigations of white
dwarfs have been limited to star–star interactions (Fuller & Lai
2011, 2012, 2013, 2014; Valsecchi et al. 2012; Sravan et al. 2014;
Vick, Lai & Fuller 2017; McNeill, Mardling & Müller 2019). In
contrast, abundant studies of the main-sequence and giant-branch
phases of evolution have analysed the star–planet interaction, and
have adopted a variety of approaches with both equilibrium and
dynamical tides.

Two commonly used star–planet tidal models are the constant
phase lag (CPL) model pioneered by MacDonald (1964) and
Goldreich (1966), and the constant time lag (CTL) model suggested
in Hut (1981) and Eggleton, Kiseleva & Hut (1998). Introduced for
the ease of analytical treatment and for illustrative purposes, these
models have very limited application in quantitative analysis. For
example, the CPL model is both physically and mathematically
inconsistent (Efroimsky & Makarov 2013). The CTL model may
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(arguably) render a tolerable approximation for stars, but its appli-
cation to terrestrial bodies is possible only in the situations when
these bodies are hot and plastic (Makarov 2015). Under normal
conditions, these models are applicable neither to solids nor to
solids with partial melt.

Generally, employment of an incorrect tidal model results in
distortions of the true tidal evolution time-scales and fails to describe
correctly the process of tidal capture in spin-orbit resonances (for
details, see Noyelles et al. 2014). Also, the use of simplistic
models sometimes leads to qualitatively wrong conclusions, like
with the emergence of the so-called pseudo-synchronous rotation
state (Makarov & Efroimsky 2013). Perhaps most importantly, the
use of an incorrect tidal model prevents the correct assessment of
the tidal heat produced in a body.

Although some of the hitherto published far-reaching conclusions
on tidal dynamics of celestial bodies were based on simplistic ad
hoc models, here we wish to avoid such flaws. Hence, we rely
on a versatile formalism that can accurately reflect the increasing
detail with which the community has been characterizing planets
and stars.

In order to accommodate such detail, consistent analytical
modelling of linear bodily tides should comprise two steps: (1)
Fourier expansion of both the perturbing potential and the induced
incremental potential of the tidally perturbed body. Each of these
two expansions is an infinite sum over the tidal Fourier modes ωlmpq

that are numbered with aid of some integers l, m, p, q (so that,
technically, each such expansion becomes a sum over l, m, p, q).
Appendix C describes the nature of these indices in more detail. (2)
Linking each Fourier component of the incremental tidal potential
to a corresponding Fourier component of the perturbing potential.
This link implies establishing – for each Fourier mode ωlmpq – both
the phase lag εl(ωlmpq) and the ratio of the magnitudes, termed
the dynamical Love number and denoted by kl(ωlmpq). Owing
to the interplay of rheology and self-gravitation, the phase lags
and Love numbers possess non-trivial frequency dependences (see
Section 2.2).

The construction of a consistent mathematical theory of bodily
tides was begun by Darwin (1879) who wrote down partial sums
of the Fourier expansions of both the perturbing potential and
the incremental potential of a tidally perturbed sphere. A great
development of this theory was achieved by Kaula (1964), who
managed to derive complete series expansions for these potentials.
The paper by Efroimsky & Makarov (2013) offers a relatively
simple introduction to the Darwin–Kaula theory and also explains
how tidal friction and lagging should be built into that theory.

With these tools at hand, it is possible to develop similar Fourier-
type expansions for the orbital elements’ rates (Kaula 1964) and the
tidal torque (Efroimsky 2012a). Fortuitously, Boué & Efroimsky
(2019) recently executed a complete rederivation of the expressions
for the Keplerian elements’ tidal rates. They pointed out a minor
omission in Kaula’s old treatment and also explained that Kaula’s
expression for the inclination rate contained a more important flaw.
We use the Boué & Efroimsky (2019) formulae in this paper. For
readability purposes for a wide audience, these formulae and a few
others have been relegated to Appendices B and C.

Computation of these equations, however, pose a challenge. As
the eccentricity of the orbit approaches unity, the number of terms
that should be included to obtain an accurate solution increases non-
linearly. Calculations show that at an orbital eccentricity of 0.95,
more than 700 terms of G2

31q (see Appendix A for the definitions of
symbols used throughout the paper) are greater than 0.01 times the
maximum value.

Therefore, because the first approach of a planet to a white dwarf
must be on an orbit with an eccentricity that exceeds 0.99, we cannot
yet model the initial damping phase. Also, the planetary rotation
becomes chaotic and unpredictable after the first passage close
to the star, which makes the tidal evolution scenarios essentially
probabilistic. Although eccentricities of about 0.8 can be feasibly
modelled for individual systems, here we wish to perform an
ensemble of simulations over a broad region of parameter space
and to resemble the low-to-moderate eccentricities of the known
planetesimals orbiting WD 1145+017 (Vanderburg et al. 2015) and
SDSS J1228+1040 (Manser et al. 2019). Therefore, we consider
orbital eccentricities in the range of 10−4−0.4. In contrast to
high eccentricities, high inclinations do not impose computational
restrictions.

1.3 Plan for paper

In Section 2 and Appendices A–C, we set up and describe our
planet–star set-up, the equations of motion, and the meaning of the
various components of those equations. Appendix A, in particular,
is composed of two tables that describe all of the variables used
in this paper. In Section 3, we identify results that can be gleaned
through an inspection of the equations alone. Section 4 is devoted to
elucidating our initial conditions and parameters for the simulations.
In Section 5, we run the simulations and report the results. We
conclude in Section 6.

2 SET-U P

In order to carry out our orbital simulations, we rely on the for-
malism presented in Boué & Efroimsky (2019). That investigation
corrects earlier work and provides equations for the evolution of
semimajor axis, eccentricity, and inclination of the mutual orbit
of two bodies due to tides raised on both. The formalism in that
paper is general enough so that (i) either or both bodies may be
stars or planets, and (ii) the expansions do not diverge for high
values of eccentricity nor inclination, unlike for some classical
expansions of planetary disturbing functions for the three-body
problem (Murray & Dermott 1999).

Our consideration will be limited to terrestrial planets (like exo-
asteroids and exo-Earths) and ice giants (like exo-Neptunes) as
long as they do not have any surface continents nor surface oceans.
Internal oceans are allowed because tidal dissipation in internal
oceans is much lower than in mantles (table 3 of Chen, Nimmo &
Glatzmaier 2014). Surface oceans and continents are not allowed
because tidal dissipation in such planets is dominated by friction
in shallow seas and cannot be described by rheological models
borrowed from continuum mechanics. Our method is not applicable
to gas giants (like exo-Jupiters); for descriptions of tidal friction
on such objects, see the review by Mathis (2018) and references
therein.

2.1 Orbital evolution owing to tides

We consider a planet orbiting a white dwarf. Physical variables with
an asterisk (�) subscript or superscript refer to a stellar physical
property, and those without a superscript or subscript refer to a
planetary physical property. As usual, the notations a and e refer
to the semimajor axis and eccentricity of the mutual orbit. For
inclination, i refers to the orbit’s inclination with respect to the
planetary equator, whilst i′ denotes the orbit’s inclination with
respect to the stellar equator. With this notation, the rates of a,
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e, i, and i ′ are given by equations (C1–C4) in Appendix C. We
do not consider the time evolution of the arguments of pericentre,
longitudes of ascending node, and times of pericentre passages; the
Lagrange-type orbital equations describing their rates are written
down in Boué & Efroimsky (2019).

The four orbital equations (C1–C4) are secular. They are not
explicit functions of the mean anomaly, true anomaly, nor mean
longitude. This secular property allows us to model the system for
longer times than if we considered the oscillatory and libratory
behaviour on a per-orbit basis. We have used the bra-ket delimiters
to indicate the secular nature of these equations. Also, these
four evolution rates all receive double sets of delimiters because
averaging is carried out not only over one orbit but also over one
cycle of the apsidal precession.

The expansions for each of the four orbital rates contain the in-
clination functions Flmp(i) and the eccentricity functions Glpq (e) ,
which are given in equations (B1) and (B4). These functions are
not dependent on any physical parameters and contain only a
single orbital parameter each. Therefore, we pre-compute these
functions before running any simulations. The values of Flmp(i)
are straightforwardly computed for any inclination. The finite limits
of the summation in equation (B4) allow us to produce compact
explicit formulae.

However, convergence of the Glpq (e) values becomes computa-
tionally onerous for eccentricities near unity, because of the often
infinite upper limit in one of the summations in equation (B1). To
speed up computations, Noyelles et al. (2014) tabulated values of
Glpq (e) for different eccentricities and values of l, p, and q, and used
the resulting look-up table in their simulations. Here, instead, for
each given set of l, p, and q, we fit Glpq(e) to an explicit function of
e. We then insert these explicit functions into the simulation arrays
so that no look-up as a function of eccentricity is necessary.

2.2 Link to physical parameters

In Appendix C, we write down the expressions (C1–C4) for the
tidal evolution rates of four orbital parameters: the mutual orbit’s
semimajor axis a, eccentricity e, inclination i with respect to the
planetary equator, and inclination i ′ with respect to the stellar
equator. Each of those expressions is an infinite sum – over some
integers l, m, p, q – of terms proportional to the so-called quality
functions. A quality function of degree l equals the product of the
degree-l dynamical Love number and the sine of the degree-l phase
lag, both understood as functions of an lmpq tidal Fourier mode.

Specifically, the quality functions of the planet,
kl(ωlmpq)sin εl(ωlmpq), are functions of the tidal Fourier modes1

ωlmpq ≈ (l − 2p + q) n − m
dθ

dt
, (1)

1Be mindful that the functional form of a quality function is parametrized
with the degree l only, whilst the dependence on the other three integers
comes through the arguments ωlmpq or ω�

lmpq . This simplification is avail-
able only if we approximate the body with a homogeneous sphere. The
general case is more complex. For example, if we take into account the
permanent oblateness of a body, its quality functions will be parametrized
not only with the degree l but also with the order m, and will read
as klm(ωlmpq ) sin εlm(ωlmpq ) and k�

lm(ω�
lmpq ) sin ε�

lm(ω�
lmpq ). In this paper,

however, we will not delve into this level of complexity.

which are exerted on the planet by the star. Their absolute values
are the actual forcing frequencies of deformation in the planet:2

χlmpq = ∣∣ωlmpq

∣∣ . (2)

Similarly, the quality functions of the star,
k�

l (ω�
lmpq ) sin ε�

l (ω�
lmpq ), are functions of the modes

ω�
lmpq ≈ (l − 2p + q) n − m

dθ�

dt
, (3)

which are excited inside the star by the planet. The absolute values
of these modes

χ�
lmpq = ∣∣ω�

lmpq

∣∣ (4)

are the physical frequencies of deformation inside the star.
For both the planet and the star, the shapes of the quality functions

are determined by interplay of self-gravitation and rheology in the
appropriate body. Therefore, for each of the two bodies, the shape
of an lth quality function depends on this body’s key kinematic
and physical parameters, such as the spin rate, density, radius,
surface gravity, shear viscosity, and shear compliance (which is
the reciprocal of shear rigidity, or shear elastic modulus).

Assume for simplicity that the tidally perturbed celestial body is
homogeneous and near-spherical, and also that its rheology is linear
(which is usually the case). A general expression for a degree-l
quality function of such a body was derived in Efroimsky (2012a,
equation 169) and Efroimsky (2015, equation 40a). That expression
is valid for an essentially arbitrary linear rheology. Mathematically,
that expression is a simple algebraic functional of two functions
representing the real and imaginary parts of the complex compliance
of the material of which the celestial body is composed. Recall that
these parts of the complex compliance contain the entire information
about the (linear) rheology.

Under the additional assumption that the planet’s material adheres
to the Maxwell model,3 the quality functions of the planet become
equations (31) and (50a) from Efroimsky (2015):

kl(ωlmpq ) sin εl(ωlmpq )

= 3 Sgn
(
ωlmpq

)
2 (l − 1)

Bl
η χlmpq

(J + Bl)
2 + (

ηχlmpq

)−2 , (5)

where

Bl = 3
(
2l2 + 4l + 3

)
4lπGρ2R2

= 2l2 + 4l + 3

lgρR
. (6)

2The physical meaning of the modes ωlmpq and frequencies χlmpq can be
easily understood through equation (15) in Efroimsky & Makarov (2013).
3This assumption restricts our planets to those where most of the tidal
dissipation is taking place in the rocky material. The tidal response of
terrestrial mantles is viscoelastic (Maxwell) at sufficiently low frequencies
(for the Earth, up to about the Chandler frequency). At higher frequencies,
the behaviour of these mantles is more adequately described by the Andrade
model (Efroimsky 2012a,b) or, even better, by its generalization named the
Sundberg–Cooper model (Renaud & Henning 2018). It is very important
that both models are firmly rooted in physics, and reflect actual physical
mechanisms of friction emerging at seismic frequencies. It is also convenient
that, mathematically, both models are extensions of the Maxwell model.
Because the current paper is our pilot tidal publication on the topic of planets
around white dwarfs, we take the liberty of omitting some technicalities with
the understanding that these may be built in the theory later. Amongst these
omitted items is the switch to more complex rheologies which is to be left
for future work.
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Here G is Newton’s gravitational constant, whilst ρ, R, g, η, and J
are the planet’s mean density, radius, surface gravity, shear viscosity,
and shear compliance, correspondingly.

Under the assumption that the star, too, has a Maxwell rheology, 4

the quality functions of a star approximated with a homogeneous
Maxwell sphere are

k�
l (ω�

lmpq ) sin ε�
l (ω�

lmpq )

= 3 Sgn
(
ω�

lmpq

)
2 (l − 1)

B�
l

η� χ�
lmpq(

J � + B�
l

)2 + (
η� χ�

lmpq

)−2 , (7)

where

B�
l = 3

(
2l2 + 4l + 3

)
4lπGρ2

�R
2
�

= 2l2 + 4l + 3

lg�ρ�R�

, (8)

with ρ�, R�, g�, η�, and J � being the stellar mean density, radius,
surface gravity, shear viscosity, and shear compliance, accordingly.

For a comprehensive list of variable definitions, see Tables A1
and A2.

2.3 Spin equations of motion

The orbital evolution equations of motion (C1–C4) contain explicit
dependences on the spin evolution of the planet and star (dθ /dt and
dθ�/dt) through equations (1–3). Therefore, spin evolution must
be solved self-consistently with orbital evolution. We provide the
general spin evolution equations for both the star and the planet in
equations (C5–C6).

These equations represent the sum of the contributions from both
the triaxial and tidal torques. The secular triaxial torque (as opposed
to the non-secular version) is conventionally accepted to equal zero
(equations C9–C10) because the averaging (i) would otherwise
be certain to yield a non-zero secular term only in physically
questionable circumstances (synchronicity and nonzero net tilt) and
(ii) might yield a non-zero secular term in other largely unexplored
circumstances (e.g. due to the variation of the initial mean anomaly,
argument of pericentre, and θ̇ from oblateness terms). The secular
tidal torque is given by equations (C7–C8).

3 PRO P E RT I E S O F T H E EQUAT I O N S
O F M OT I O N

Some results may be gleaned just through inspection of equa-
tions (C1)–(C6), without needing to run any numerical simulations.

3.1 Synchronization

The spin and orbital element evolution dependences on multiple
variables suggest that a simple characterization of spin-orbit reso-
nances is difficult to attain. A direct comparison of the spin periods

4Stars are commonly assumed to be viscous (Stix 2002). Simultaneously,
there exist theoretical indications that they may possess magnetic rigidity
(Williams 2004, 2005, 2006; Ogilvie 2008; Garaud et al. 2010). We are hence
motivated to treat a stellar material, at large, as a Maxwell body, though with
a very small shear compliance J �. Not knowing how small the compliance
value may be, we assume that J � is much smaller than 1/(η�χ�), where
η� and χ� are the mean viscosity of the star and a typical tidal frequency,
correspondingly. This approximation simplifies the expression for the stellar
quality functions (Equation 60 of Efroimsky 2015).

of the white dwarf and planet, along with their mutual separation,
would alone be insufficient to claim synchronicity or not. Resonant
trapping of an individual system is best devoted to a dedicated
study (e.g. Noyelles et al. 2014 for Mercury or Makarov, Berghea &
Efroimsky 2012 for GJ 581d). Further, the secular (averaged) nature
of the equations applied here might miss important librational
behaviours that occur on orbital time-scales, and can play a role
in resonant capture.

3.2 Circularization

Strictly, a perfectly circular orbit will remain circular in the midst
of tidal interactions, as can be demonstrated formally by taking the
limit of equation (C2) as e → 0. However, realistically, this situation
does not occur: even a minuscule occasional interaction capable of
generating a non-zero value of e, will, under some circumstances,
initiate a secular growth in e. Therefore, equation (C2) should be
integrated simultaneously with the other orbital and spin equations
regardless of how small e is thought to become.

3.3 Planarization

When the equators of both the planet and the white dwarf are
perfectly aligned with the orbit, then this situation will remain
unchanged in the midst of tidal interactions. Importantly, however,
in this case (when i = i′ = 0), the inclination Flmp functions do not
vanish for all l, m, and p. Nevertheless, the coplanar case does help
reduce computational cost because in that case, only those sets of l,
m, and p for which Flmp does not vanish need to be included in the
summations in equations (C1–C2).

3.4 Contributions from stellar quality functions

The semimajor axis and eccentricity rates (C1–C2) feature distinct
terms associated with each quality function. Orbital evolution is
then said to be driven by planetary tides when the planetary
quality function dominates, and driven by stellar tides when the
stellar quality function dominates. When both tidally interacting
bodies are of similar types (such as in a binary star system or a
binary asteroid system), then a degree-l term owing to the tides
in one body and an analogous degree-l term owing to the tides in
another body may make comparable contributions to the overall
evolution.

However, for star–planet systems, the stellar quality function
coefficients M/M� and (R�/a)2l + 1 are small. The second term
becomes even smaller for white dwarfs, because their radii are
comparable to the Earth’s radius rather than the Sun’s radius. The
smallness of these coefficients often – but not always – makes
negligible the stellar quality function terms. Exceptions include
when the stellar quality function itself is large, which occurs when
the stellar viscosity is large and/or when the star spins quickly. One
potential manifestation of this exception is an eccentricity increase
when the stellar spin is faster than (3/2)n (Boué & Efroimsky
2019).

For the numerical investigations in this paper, the stellar quality
function remains small – primarily because of our adopted white
dwarf viscosity – greatly helping to facilitate the reduction of the
phase space that we explore. Hence, because the equations for spin
evolution (C5–C6) are each a function of just one of the quality
functions, we find that the white dwarf spin rate changes negligibly
due to tidal effects with a planet, and can be considered fixed.
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Similarly, each term in the evolution of i ′ (equation C4) is a function
of the white dwarf quality function, but not the planetary quality
function. Hence i ′ may also be considered fixed. The integrations
of the full equations of motion in Section 5 confirm the resistance
of dθ�/dt and i ′ to change.

3.5 Asteroidal tides

The expressions for the orbital elements’ rates from Boué &
Efroimsky (2019) apply to any two near-spherical bodies, asteroids
included. As mentioned in Section 1, asteroids play a key role
in white dwarf planetary systems. The asteroid (or asteroids)
discovered disintegrating around WD 1145+017 (Vanderburg et al.
2015) has now been the subject of over 20 dedicated refereed
papers (Alonso et al. 2016; Gänsicke et al. 2016; Rappaport et al.
2016; Xu et al. 2016; Zhou et al. 2016; Croll et al. 2017; Farihi,
von Hippel & Pringle 2017; Gary et al. 2017; Gurri et al. 2017;
Hallakoun et al. 2017; Kjurkchieva, Dimitrov & Petrov 2017; Veras
et al. 2017; Redfield et al. 2017; Cauley et al. 2018; Farihi et al. 2018;
Izquierdo et al. 2018; Rappaport et al. 2018; Xu et al. 2018; Duvvuri,
Redfield & Veras 2019; Karjalainen et al. 2019). Further, the asteroid
embedded well-within the Roche radius (for rocky compositions)
of the white dwarf SDSS J1228+1040 (Manser et al. 2019) resides
in one of the most dynamically active white dwarf planetary
systems.

Nevertheless, an outstanding question remains about the origin
and dynamical pathways of these asteroids. If an asteroid were
originally spherical, could it have been tidally torqued into the
white dwarf Roche radius? The equations here cast doubt on this
scenario. The effect of tides become weaker as the planetary radius
decreases: for a constant density, the planetary quality function
∼ 1/Bl ∼ gρR ∼ M/R , and its coefficients are ∼ R2l+1/M ,
giving

〈〈
da

dt

〉〉
∼ R2l , (9)

〈〈
de

dt

〉〉
∼ R2l , (10)

〈〈
di

dt

〉〉
∼ R2l , (11)

where l ≥ 2. The steep dependence of these rates on the planetary
radius illustrates that the tides in near-spherical asteroids are
negligible and could not push the asteroids into the white dwarf
Roche radius. Other mechanisms must be invoked (see Section
1.1).

4 IN I T I A L C O N D I T I O N S A N D PA R A M E T E R S
F O R SI M U L AT I O N S

An important feature of this paper is not only the establishment
of the tidal equations but also the determination what physical
situations to integrate. Our simulations require 16 initial conditions
and parameters to be established:

(i) 4 for the orbit: a(0), e(0), i(0), i′(0);

(ii) 6 for the planet: θ (0), dθ
dt

(0), M, R, J , η;

(iii) 6 for the star: θ�(0), dθ�

dt
(0), M�, R�, J �, η�.

The masses, radii, shear viscosities, and shear compliances5

(equalling eight variables) are all assumed to remain fixed in
time throughout each individual simulation. Hence, we ignore the
potential change in planetary viscosity as the planet approaches the
white dwarf, a phenomenon that has been speculated to occur in the
TRAPPIST-1 system (Makarov, Berghea & Efroimsky 2018). We
also ignore the plausible possibility that a planet’s mass and radius
will change due to, for example, sublimation. Such sublimation,
however, has been shown to have a negligible effect on the orbital
pericentre (Veras, Eggl & Gänsicke 2015c) but could have a larger
effect through the reduction of planetary mass. Stellar evolution
is irrelevant for white dwarfs on the maximum time-scale of our
simulations (100 Myr).

Both the star and planet are assumed to be represented fully by
the 12 physical parameters above. For example, a single value of η

must be applied for the entire planet (as opposed to, for example,
separate values for its mantle and core).

We cannot, in this paper, cover the entire phase space encom-
passed by these parameters. Therefore, we must carefully choose
which ensembles of variables to vary across our simulations,
and do so with computational limitations in mind (see Appendix
C).

4.1 Fixed initial conditions and parameters across simulations

In total, we choose to fix 10 variables (J , J �, i(0), i′(0), θ (0), θ�(0),
(dθ�/dt)(0), M�, R�, η�) of the 16, for the following reasons:

(i) Compliances. As explained in Footnote 4, a star may possess
some effective magnetic rigidity. We, however, assume that the
inverse of rigidity – the compliance – is small (J � � 1/(η�χ�)),
such that the elastic reaction of the stellar material to the tidal stress
is much less important than its viscous reaction (see equation 7).
Therefore, we set J � = 0 (1/Pa).

The real compliance J of planets, asteroids, and comets is a
better known quantity: for the solid Earth, 1/J ≈ 0.8 × 1011 Pa;
for ices, 1/J ≈ 4 × 109 Pa; and for snow, 1/J ≈ 106 Pa. The
corresponding values for Bl are such that, for small bodies and for
terrestrial planets smaller than Earth, J � Bl , so that J plays no
role in equation (5) (provided that the rheology is Maxwell). For
overheated super-Earths (which are expected to obey the Maxwell
model, see Makarov 2015), we still can neglect J , because both
J and Bl are much smaller than 1/(ηχ lmpq) in the denominator of
the right-hand side of equation (5). However, in the case of colder
super-Earths, the term J in the denominator of that expression
cannot be neglected.

(ii) Initial spin orientations. Our numerical integration results
are insensitive to θ (0) and θ�(0), at least for the outputs of interest.
Therefore, we set θ (0) = θ�(0) = 0◦.

(iii) Initial spin rate of white dwarf. Because equation (C5) is
a second-order differential equation, we must set the initial spin
rate (dθ�/dt)(0) of the white dwarf in addition to initial orientation
θ�(0). As argued in Section 3.4, in most cases the white dwarf’s
spin rate will change negligibly due to tidal interactions with a
planet, and will negligibly affect other values of interest through
the white dwarf quality function. Nevertheless, we still must set a
value.

5We remind the reader that the shear compliance is the inverse of the shear
elastic modulus.
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White dwarf spin rates range from 0 to 1 revolution/hour, where
the upper bound corresponds to the shortest rotational periods found
from the observed population of single pulsating white dwarfs
(fig. 4 of Hermes et al. 2017).6 However, a more typical upper
bound is likely to be 1 revolution per day (corresponding to an
equatorial rotational speed of about 0.6 km/s), as 1 revolution per
hour represents extreme cases where the white dwarf’s spin was
likely kicked due to a former binary companion. Hence, we adopt
(dθ�/dt)(0) = 1 revolution per 20 h.

(iv) Initial orbital inclinations. As argued in Section 3.4, the
evolution of i′ negligibly affects a and e and does not affect i nor
dθ /dt at all. Hence, here we arbitrarily set i′(0) = 10−4◦.

In our preliminary simulations, we found that the orbital inclina-
tion i usually either decreases to the coplanar limit sharply relative to
the semimajor axis and eccentricity evolution, or increases slightly.
This distinction depends on the relative strength of the two terms
in equation (C3), and was consistent across all of our preliminary
simulations. Further, the magnitude of the inclination, even if above
90◦, does not affect this bimodal outcome, and does not substantially
affect the semimajor axis nor eccentricity evolution. Therefore, we
do not learn enough by varying i(0) to justify doing so. Hence,
purely for demonstration purposes, we set i(0) = 140◦.7

(v) White dwarf mass. Conveniently, the mass distribution of the
population of white dwarfs is highly peaked around 0.60–0.65M

(Tremblay et al. 2016), and here we adopt M� = 0.60M
.

(vi) White dwarf radius. White dwarf radii are closely linked
with their masses (see e.g. equations 27 and 28 of Nauenberg 1972;
equation 15 of Verbunt & Rappaport 1988; Boshkayev & Quevedo
2018). Consequently, given our choice of M� = 0.60M
, we choose
R� = 0.01280R
 = 8900 km.

(vii) White dwarf viscosity. The star’s dynamic shear viscosity is
a parameter for which observational constraints have proven largely
elusive. We employ a simple approximation and treat the entire star
as a viscous sphere (with a constant viscosity). Even this simple
approximation, however, cannot hide the gaping uncertainty in our
knowledge of white dwarfs’ viscosity. Dall’Osso & Rossi (2014)
suggest that η� ∼ 107–1017 Pa·s, depending on whether the main
driver of the viscosity is radiation, plasma, magnetism, turbulence
or a combination thereof. Despite this large range, we fix a specific
value through the following procedure.

A method to reduce this uncertainty is to treat the shear viscosity
as the product of the star’s average density (ρ�), the typical scale
of convective flows (d�, which is comparable to the typical size of
supergranules), and the typical speed in the supergranules (v�). An
extension of equation 7.32 of Stix (2002) gives

η� = ρ�d�v�. (12)

For the Sun, v
 ≈ 300 m s−1, d
 = 1.6 × 107 m, and ρ
 =
200 kg m−3, yielding η
 = 1.0 × 1012 Pa·s.8

6These values give an equatorial rotational speed range of about 0–
15 km s−1.
7Although this retrograde value might seem high, planets have been
shown to reach near the white dwarf Roche radius on arbitrarily highly
inclined orbits in both single or binary systems (Veras & Gänsicke 2015;
Hamers & Portegies Zwart 2016; Petrovich & Muñoz 2017; Stephan, Naoz &
Zuckerman 2017; Veras et al. 2018a).
8Although Stix (2002) states on page 267 that a typical cell diameter is
1.6 × 104 km, we assume that he meant radius because his ensuing estimate
for the mean spacing between cell centres is 3 × 104 km.

Table 1. Self-consistent estimations of DA white dwarf dynamic (or shear)
viscosities in the convective zone (column 3), masses (column 4), and radii
(column 5) for given values of effective temperatures (column 1), and stellar
luminosities (column 2). A surface gravity of g� = 106 m s−2 was assumed.
Values were taken at a depth corresponding to a convection zone mass above
that layer which is 10 orders of magnitude smaller than the white dwarf
mass.

T �
eff /K L�/L
 η�/(Pa·s) M�/M
 R�/R


5000 9 × 10−4 2.49 × 106 0.579 0.01260
5500 1.3 × 10−3 4.02 × 106 0.583 0.01264
6000 1.9 × 10−3 5.46 × 106 0.588 0.01269
6500 2.6 × 10−3 6.85 × 106 0.590 0.01272
7000 3.5 × 10−3 8.23 × 106 0.592 0.01273
7500 4.7 × 10−3 9.38 × 106 0.593 0.01275
8000 6.1 × 10−3 9.95 × 106 0.596 0.01278
8500 7.7 × 10−3 1.20 × 107 0.596 0.01278
9000 9.8 × 10−3 1.33 × 107 0.598 0.01280

We perform a similar computation for a variety of potential
hydrogen-atmosphere-based white dwarf hosts (known as ‘DA
white dwarfs’) by using the stellar models from Koester (2009,
2010). DA white dwarfs are the most common types of white dwarfs.
These models output convective speeds (v�) and the density in the
envelope, which is more appropriate to use than the overall white
dwarf density in order to model the convection zone. The models
also output pressure, which can be combined with a given surface
gravity to obtain the pressure scale height (equation 1 of Tremblay
et al. 2013), which in turn can be used to represent d�.

In Table 1, we list dynamic viscosities for DA white dwarfs at a
location in the convection zone where the total white dwarf mass is
a factor of 10 orders of magnitude more than the convective zone
mass above that layer. The effective temperature range in the table
from 5000 to 9000 K corresponds to cooling ages of about 1–5 Gyr
(‘cooling age’ is the time since the white dwarf was born). The table
illustrates overall that the dynamic viscosities of these white dwarfs
are near the lower end of the range proposed by Dall’Osso & Rossi
(2014), but are nevertheless relatively well confined. Hence, we fix
η� = 107 Pa·s.

4.2 Variable initial conditions and parameters across
simulations

We vary only six variables [a(0), e(0), M, R, (dθ /dt)(0), η] amongst
the different simulations:

(i) Initial semimajor axis and eccentricity. Planets are assumed to
approach the white dwarf in the first instance on a highly eccentric
(>0.99) orbit. Although the Darwin–Kaula expansion can model
any eccentricity under unity, practically the number of terms that
would need to be retained to compute an accurate solution for e =
0.99 renders such simulations computationally infeasible. Details
of the initial damping period hence remain unknown for now,
and would be enlightened in a future study that could perhaps
reformulate the Darwin–Kaula formalism by building an expansion
over e not about the value e = 0, but about e = 1.

Therefore, here we consider the planet at a later stage, after
its eccentricity and semimajor axis have already been moderately
damped. Of interest to us is the rate of the subsequent inward or
outward drift and whether or not the planet will reach the white
dwarf’s Roche radius rRoche. If we assume the planet is solid and
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Figure 1. Two examples (left-hand and right-hand panels) of the orbital evolution of a planet tidally interacting with a white dwarf, where definitions of σ a,
σ e, and σ i are given in equations (14)–(16). In both examples, a(0) = 5rRoche, e(0) = 0.20, M = 10M⊕, ρ = ρ⊕, and (dθ /dt)(0) = 360◦/(20 h). In the left-hand
panels, η = 1020 Pa·s, whereas in the right-hand panels, η = 1019 Pa·s; i.e. the only difference in the simulations is a one order of magnitude variation in the
planetary viscosity. In the left-hand panels, over 100 Myr, the semimajor axis evolution is increased overall, but in a non-uniform manner and only after shifting
direction. In contrast, in the right-hand panels, the planet changes direction twice, and is eventually destroyed by entering the Roche radius after 54 Myr. In
both panels, the initial inclination of the orbit i(0) = 140◦ with respect to the planet’s equator is quickly reduced to within 1◦. The damping of i′ (inclination
with respect to the stellar equator) is even quicker (note the different scales of the time axes).

spinning, then we could use the relevant Roche radius coefficient
from Veras et al. (2017), and with M� = 0.60M
, we then obtain

rRoche

R

≈

(
ρ

3 g cm−3

)−1/3

. (13)

By using the Roche radius as a scaling, we adopt a(0) values ranging
from 2rRoche to 30rRoche, with 10−4 ≤ e(0) ≤ 0.4. As explained in
Section 3.2, the eccentricity is never realistically exactly zero.

(ii) Planet mass. One advantage of utilizing the Darwin–Kaula
expansion of Boué & Efroimsky (2019) is that the primary and
secondary could be any objects, including ones of asteroid-size
(which is particularly relevant for white dwarf planetary systems).
Regardless, as explained in Section 3.5, orbital evolution of spher-
ical asteroids is unaffected by tidal torques. Hence, we explore a
selection of higher rocky masses. We vary the planet mass (M)

from 101M⊕ (representative of a ‘Super-Earth’) to 10−3M⊕ (about
the mass of Haumea or Titania). The trends in the results become
obvious enough that reducing the lower limit further is not worth
spending the computational resources.

(iii) Planet radius. We then obtain R by assuming an appropriate
value of ρ. Here, we simply adopt Earth’s density for all values of
M.

(iv) Initial spin rate of planet. As evidenced by the major planets
in our Solar system, planetary spin periods can range from about 10 h
to −243 d (with the minus indicating retrograde motion); extrasolar
planets may have a larger range, but their spins are currently not
as well constrained. The direction of planetary spin may alter the
results, and hence we take that case into account. Here, we adopt
a slightly smaller range to what is seen in the Solar system, with
(dθ /dt)(0) = 1 revolution per 10–103 h, in both the prograde and
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retrograde senses with respect to the orbital motion around the
star.

(v) Viscosity of planet. The final parameter to specify, η, can vary
significantly depending on the planet type. One recent estimate of
stagnant lid planets (Thiriet et al. 2019) sets η = 1020–1021 Pa·s
for dry mantle rheologies. On Earth, for the Tibetan crust and
lithosphere, η = 1018–1020 Pa·s (Henriquet, Avouac & Bills 2019),
whereas for the Earth’s mantle, η = 1020−1024 Pa·s (Mitrovica &
Forte 2004).

Several recent papers on the icy satellites in the Solar system
specify a wide range of dynamic viscosities. Table 2 of Hurford
et al. (2018) lists η = 1021, 1021, 1020, and 1014 Pa·s, respectively,
for Europa’s iron core, brittle ice layer, silicate mantle, and ductile
ice layer. Cameron et al. (2019) give similar values for Ganymede,
whereas table 1 of Patthoff, Kattenhorn & Cooper (2019) lists η =
1028, 1022, 1014 Pa·s, respectively, for the core, upper ice layer and
lower ice layer of Enceladus. The latter two values actually were
chosen from wide ranges previously reported in the literature of
1019–1026 Pa·s for the upper ice layer and 1012–1017 Pa·s for the
lower ice layer.

Overall, the values given in the last paragraph indicate that
adopting a range of η = 1016–1024 Pa·s is representative of most
cases, and we do so.

5 SIMULATION R ESULTS

The simulation output of primary interest is how the planet drifts
relative to the Roche radius, and whether or not the planet reaches
the Roche radius. Therefore, we report the semimajor axis drift in
terms of the parameter

σa ≡ final distance − initial distance

initial distance − Roche radius
. (14)

The sign of σ a indicates if the planet has drifted outwards (positive)
or inwards (negative); σa = −100 per cent indicates entering the
Roche radius (with presumed destruction subsequently). Further,
we define

σe ≡ eccentricity change

initial eccentricity
(15)

and

σi ≡ inclination change

initial inclination
. (16)

Both σ e and σ i may be positive or negative.
Before reporting on our ensemble results, we first illustrate a

couple examples of time evolution in Fig. 1. The figure helps exhibit
that the orbital evolution is not necessarily monotonic with time,
and how the final outcomes reported can be strongly dependent on
the stopping time of the simulation. Therefore, characterizing the
entire phase space within the space of one paper is challenging. The
planet can change direction due to tides, with the semimajor axis
and eccentricity evolving in a non-obvious manner. The figure also
illustrates how qualitatively different behaviour can result just by
decreasing the planet’s viscosity by an order of magnitude.

That figure alone flags the danger of attempting to characterize
tidal effects in an individual white dwarf planetary system by
appealing to simplified comparisons (Section 3.1) or by identifying
a particular point on a phase portrait. Nevertheless, here we do
now construct phase portraits. These are intended only for order-
of-magnitude use, and to detect general trends that remain robust
amidst the complexities.

Of primary interest to us is the final value of σ a. We integrated
the equations of motion for 100 Myr and recorded the values of
σ a after the time has elapsed. For these simulations, we adopted
the fixed initial conditions and parameters reported in Section 4.1
[J � = 0 (1/Pa), i(0) = 140◦, i′(0) = 10−4◦, θ (0) = θ�(0) = 0◦,
(dθ�/dt)(0) = 360◦/(20 h), M� = 0.60M
, R� = 8900 km, η� =
107 Pa·s] and a fiducial set of initial conditions and parameters in
Section 4.2 from which we vary selected parameters. This fiducial
set is [e(0) = 0.2, M = M⊕, R = R⊕, (dθ /dt)(0) = 360◦/(20 h), and
η = 1020 Pa·s].

We report our results in a series of pictographs (Figs 2–5). In every
figure, we sampled 12 initial values of a(0) where relevant behaviour
occurs. Red crosses indicate that a ≤ rRoche at some point during
the simulation, suggesting complete destruction of the planet.9 The
other figure entries feature a red ‘V’ or green caret; the former indi-
cates that the semimajor axis has decreased (σ a < 0) after 100 Myr,
and the latter indicates that the semimajor axis has increased (σ a

> 0) after 100 Myr. The number given inside the symbols is the
order of magnitude of the change: −1 refers to 10 per cent ≤ |σa | <

100 per cent; −3 refers to 0.1 per cent ≤ |σa | < 1 per cent, and so
forth. In one case, a 0 indicates 100 per cent ≤ σa < 1000 per cent.

The figures are ordered according to the variables that most
strongly dictate the final outcome. The first figure, Fig. 2, illustrates
the importance of knowing, estimating or being able to guess the
planet’s dynamic viscosity. Recall that all viscosity values in the
figure are within the ranges suggested for various components of
Solar system bodies. The critical destruction distance can vary
significantly, and planets that just avoid destruction (bordering
the red crosses) may be shuffled about significantly. The plot
demonstrates a clear trend against destruction as the planet viscosity
increases. For the highest viscosities, even planets initially within
2rRoche can survive.

Fig. 3 reinforces the arguments presented in Section 3.5: as
planetary mass (and radius) decreases, tidal effects quickly become
negligible. Similarly, Super-Earths (10M⊕) are particularly suscep-
tible to white dwarf tides, with a (100 Myr) destruction radius
reaching out to 4rRoche for η = 1020 Pa·s and 10rRoche for η =
1016 Pa·s. Because asteroids are many orders of magnitude less
massive than 10−3M⊕, extrapolating from the figure indicates that
spherical asteroids would be virtually unaffected by white dwarf
tidal torques, even when assuming our lower bound for dynamical
viscosities.

Fig. 4 contains one grid for prograde planetary spins (top)
and one for retrograde planetary spins (bottom): differences are
highlighted by grey squares. The grids are 79 per cent coincident
with each other, indicating that on an order-of-magnitude scale,
the direction of spin makes little difference to the final outcome.
The likely reason is that the planet’s rotation becomes quickly
synchronized or pseudo-synchronized. Most of the differences
occur at the highest a(0) values sampled and hence are small, but
there are a few important exceptions close to the critical destruction
distance.

The general dependence of destruction and drift with the mag-
nitude of the spin period is not obvious, at least from the figure.
Nevertheless, the top rows in each grid are well ordered and perhaps

9We do not report when the orbital pericentre a(1 − e) first intersects the
Roche radius, because (i) the resulting destruction could be intermittent,
and (ii) the eccentricity is small enough within 2rRoche such that uncertainty
in the Roche radius coefficient (Veras et al. 2017) would dominate the
difference between orbital pericentre and semimajor axis.
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Figure 2. Outcomes of planetary movement due to tidal interactions with a white dwarf. For our adopted rheological model, a single value for planetary
dynamic viscosity (y-axis) does not easily map to a specific known rocky and differentiated body, although a relatively homogenous dirty snowball like
Enceladus corresponds well with η ≈ 0.24 × 1014 Pa·s (Efroimsky 2018). Each box represents the state of a single simulation after 100 Myr of evolution. Red
crosses indicate that the planet’s semimajor axis has come within the white dwarf’s Roche radius rRoche, destroying the planet. Otherwise, the net migration of
the planet after 100 Myr is either outwards (green carets) or inwards (red ‘V’s). The number within those symbols gives the magnitude of the migration, and is
of the order of log|σ a|. Other variables that were assumed for these simulations are e(0) = 0.2, M = M⊕, R = R⊕, and (dθ /dt)(0) = 360◦/(20 h). This figure
illustrates that the outcome is strongly dependent on planetary viscosity and suggests the existence of a fractal boundary and chaos due to the largest outward
migrations neighbouring destructive spiral-ins.

suggests predictable asymptotic behaviour as the spin period tends
towards infinity.

Fig. 5 illustrates how the critical engulfment distance is a weak
function of e(0), at least for e(0) < 0.4. For the lowest values of e(0),
the results are non-obvious: the boundary between being engulfed
and remaining nearly stationary is sharp, and not adequately
sampled with our choices of a(0). These results emphasize the
importance of performing dedicated studies for individual systems
due to the chaotic nature of the phase space.

6 SU M M A RY

Exo-asteroids are already observed orbiting two white dwarfs in
real time, and almost every known exo-planet currently orbits
a star that will become a white dwarf. Planets which then sur-
vive to the white dwarf phase play a crucial role in frequently
shepherding asteroids and their observable detritus on to white
dwarf atmospheres, even if the planets themselves lie just outside
of the narrow range of detectability. Further, planets themselves
may occasionally shower a white dwarf with metal constituents
through post-impact crater ejecta and when the planetary orbit

grazes the star’s Roche radius (Veras & Gänsicke 2015; Brown et al.
2017).

Here, we undertook one of the first dedicated studies of tides in a
two-body system comprising a solid planet and a white dwarf. We
adopted the Fourier-mode tidal formalism of Boué & Efroimsky
(2019), which provides complete equations (C1–C4) for the secular
evolution of the orbital semimajor axis, eccentricity and inclination
with frequency dependences on the quality functions. By combining
these equations with secular parts of the tidal torque from Efroimsky
(2012a) and Makarov (2012), and typical physical parameters
for the two bodies (Section 4.1), we generated a computational
framework for future, more detailed consideration of individual
systems.

A broad sweep of phase space has revealed the following
trends:

(i) Massive Super-Earths are more easily destroyed than low-
mass planets.

(ii) Planetary survival is boosted with higher viscosities.
(iii) Orbital evolution is in general non-monotonic, and cannot

usually be described by a straightforward comparison of spin period
versus orbital period.
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Figure 3. Same as Fig. 2 but for planet mass dependence, and assuming ρ = ρ⊕ in all cases, with η = 1020 Pa·s for the top panel and η = 1016 Pa·s for the
bottom panel. The final outcome is strongly dependent on planetary mass.

(iv) The boundary between destruction and survival appears to
be chaotic.

(v) Because the magnitude of the stellar tides scales as the mass
of the perturber, the orbital dynamics of the asteroids in the WD
1145+017 and SDSS J1228+1040 systems are unaffected by stellar
tides.

(vi) The relatively small range of white dwarf physical parame-
ters, as compared to those of main-sequence stars, helps constrain
variable explorations and ensure that semimajor axis, planetary
mass, planetary viscosity, and planetary spin rates are the four key
variables that influence the evolution.

(vii) Conservatively, even for low values of the planetary viscos-
ity, planets that do not achieve a semimajor axis of under about
10rRoche will survive for at least 100 Myr of white-dwarf cooling.

(viii) The planet’s evolution is largely independent of the direc-
tion but not magnitude of the spin of the planet.

(ix) Despite the varied ways in which the orbit can be stretched
(Fig. 1), the critical engulfment distance is largely independent
of the orbital eccentricity when it takes on low and moderate
values.
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Figure 4. Same as Fig. 2 but for planetary spin period dependence, and assuming η = 1020 Pa·s. The upper grid gives results for prograde planetary spins
(relative to orbit orientation), and the bottom grid for retrograde planetary spins. The grids are 79 per cent coincident; grey squares in the bottom grid locate
the discrepancies. The final outcome has a complex dependence on planetary spin period.
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Figure 5. Same as Fig. 2 but for planetary eccentricity dependence, and assuming η = 1020 Pa·s. The critical engulfment distance appears to be weakly
dependent on initial eccentricity, and near-circular orbits produce non-obvious outcomes as a function of a(0).
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APPENDIX A : PARAMETER TA BLES

Table A1. Unstylized and stylized Roman variables used in this paper, with notation that assumes a stellar primary and planetary secondary. No functional
dependences are shown. Variables with an asterisk (�) subscript or superscript refer to a stellar physical property.

Variable Explanation Units Reference

a Semimajor axis of the mutual orbit length equation (C1)
B Auxiliary variable 1/pressure equation (6)
B� Auxiliary variable 1/pressure equation (8)
d� Typical lengthscale of stellar convective flows distance equation (12)
e Eccentricity of the mutual orbit dimensionless equation (C2)
F Inclination function dimensionless equation (B4)
g Acceleration due to gravity on planet surface length time−2

g� Acceleration due to gravity on stellar surface length time−2

G Eccentricity function dimensionless equation (B1)
G Gravitational constant length3/(mass×time2)
i Inclination of the mutual orbit with respect to the planet’s equator angle equation (C3)
i′ Inclination of the mutual orbit with respect to the star’s equator angle equation (C4)
J Bessel function of the first kind dimensionless
J Compliance of the planet 1/pressure
J � Compliance of the star 1/pressure
k Love number of the planet angle time−1

k� Love number of the star angle time−1

l Positive integer used as Love number index (‘degree’) dimensionless
L� Luminosity of star power Table 1
m Integer used as tidal mode index and inclination function index (‘order’) dimensionless
M Mass of planet mass
M� Mass of star mass
n Anomalistic mean motion angle time−1

p Integer for tidal mode index, eccentricity function index, and inclination function index dimensionless
q Integer for tidal mode index and eccentricity function index dimensionless
R Radius of planet distance
R� Radius of star distance
s Integer used as summation index for the eccentricity function dimensionless
s1 Integer used as summation index limit for the eccentricity function dimensionless
t Time time
T �

eff Effective temperature of star temperature Table 1
T Torque mass×length2 time−2

u Integer used as summation index for the eccentricity and inclination functions dimensionless
v� Typical speed of stellar supergranules length time−1 equation (12)

Table A2. As in Table 1, but with Greek variables.

Variable Explanation Units Reference

δ Delta function dimensionless
ε Phase lag of the planet dimensionless
ε� Phase lag of the star dimensionless
η Dynamic viscosity of the planet pressure×time
η� Dynamic viscosity of the star pressure×time equation (12)
θ Rotation angle about the instantaneous shortest axis of planet angle equation (C5)
θ� Rotation angle about the instantaneous shortest axis of star angle
ξ Coefficient for planet’s moment of inertia (= 2

5 for a homogeneous sphere) dimensionless
ξ� Coefficient for star’s moment of inertia (= 2

5 for a homogeneous sphere) dimensionless
ρ Density of planet mass length−3

ρ� Density of star mass length−3

σ a Semimajor axis decrease divided by the initial distance to the Roche radius dimensionless equation (14)
σ e Eccentricity decrease divided by the initial eccentricity dimensionless equation (15)
σ i Inclination decrease divided by the initial inclination dimensionless equation (16)
χ lmpq Positive definite physical forcing frequency in the planet angle time−1 equation (2)
χ�

lmpq Positive definite physical forcing frequency in the star angle time−1 equation (4)
ωlmpq Fourier tidal mode in the planet angle time−1 equation (1)
ω�

lmpq Fourier tidal mode in the star angle time−1 equation (3)

kl sin εl Quality function of the planet angle time−1 equation (5)
k�
l sin ε�

l Quality function of the star angle time−1 equation (7)
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A P P E N D I X B: EC C E N T R I C I T Y A N D I N C L I NAT I O N FU N C T I O N S

The eccentricity and inclination functions are utilized in the equations of motion, and may be precomputed regardless of the physical set-up.
Doing so helps speed up the integrations.

B1 Eccentricity function

We utilize the useful form of the eccentricity function Glpq(e) which is given in the appendix of Celletti et al. (2017). Their formulae are based
on those from Giacaglia (1976). Transforming their notation into our formalism yields the following results for the eccentricity function

Glpq (e) =
[

1 +
(

e

1 + √
1 − e2

)2
]l s1∑

s=0

u1∑
u=0

(
2p − 2l

s

)(−2p

u

)(
− e

1 + √
1 − e2

)s+u

Jq−s+u ((l − 2p + q) e) , (B1)

where

s1 = 2p − 2l, if p − l ≥ 0

s1 = ∞, if p − l < 0
(B2)

and

u1 = −2p, if p ≤ 0

u1 = ∞, if p > 0.
(B3)

Note that because 0 ≤ p ≤ l, always here s1 = 2p − 2l and u1 = ∞. This last relation creates an additional parameter in numerical computations
that must be explored in order to achieve the desired accuracy.

B2 Inclination function

We use the inclination function given in equation 4 of Gooding & Wagner (2008), which corrects some sign errors from the exposition in
Kaula (1962) and conveniently does not include integer parts. Translating the Gooding & Wagner (2008) variables into ours yields

Flmp(i) = (l + m)!

2lp! (l − p)!

min(2l−2p, l−m)∑
u=max(0, l−2p−m)

(−1)u
(

2l − 2p

u

)(
2p

l − m − u

)
cos3l−m−2p−2u

(
i

2

)
sinm−l+2p+2u

(
i

2

)
. (B4)

A P P E N D I X C : EQUAT I O N S O F M OT I O N

The following equations of motion (equations C1–C8) include the integers l, m, p, and q explicitly through summation limits; note that n
here refers to mean motion (specifically, the anomalistic mean motion) and is not an index.

Known in tidal investigations as the ‘degree’, the positive integer l in particular sets the scene: (a) it represents the index for the first
summation that appears in these equations of motion, and (b) it establishes the maximum possible values of m and p.

For point (a), the truncation of the tidal expansions by setting l = 2 (the quadrupole approximation) represents a very common approximation
for the evolution of the orbital elements and the spin. The suitability of the quadrupole approximation is discussed in Boué & Efroimsky
(2019). Although for highly eccentric orbits around white dwarfs this approximation might not be adequate, it remains sufficient for the
eccentricities considered here (<0.40).

For point (b), because l = 2, then p = 0, 1, 2 and m = 0, 1, 2. The only index which then remains a free parameter is q. Consequently, the
range of q must be chosen to encompass all of the eccentricity terms of a given order. Although a typical approximation is to assume that |q|
is equal to the highest power of the eccentricity sampled, actually the distribution of q which must be considered to achieve a given accuracy
is strongly asymmetric (Noyelles et al. 2014 use −1 ≤ q ≤ 7). We did not employ the typical approximation for q, nor consider the concept of
order, which can introduce pitfalls in series expansions (Veras 2007). We created fits to Glpq(e) for e < 0.4 by choosing, quite conservatively,
−28 ≤ q ≤ 43. However, preliminary numerical testing indicated that we need only choose −7 ≤ q ≤ 7 for our primary integrations; this
range of values allowed us computationally to sample several regions of phase space.

All of the equations in this section include tidal contributions from both the star and planet, and are not truncated in any way.

C1 Equations of orbital motion

The secular semimajor axis evolution of the mutual orbit is given by Boué & Efroimsky (2019) as〈〈
da

dt

〉〉
= −2an

∞∑
l=2

l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)

l∑
p=0

∞∑
q=−∞

G2
lpq (e) (l − 2p + q)

×
[(

R

a

)2l+1
M�

M
F 2

lmp(i)kl(ωlmpq ) sin
[
εl(ωlmpq )

] +
(

R�

a

)2l+1
M

M�

F 2
lmp(i ′)k�

l (ω�
lmpq ) sin

[
ε�
l (ω�

lmpq )
]]

, (C1)

where the double averaging indicates averaging over both one orbital cycle and one cycle of the apsidal precession.
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The secular eccentricity evolution of the mutual orbit is given by Boué & Efroimsky (2019) as〈〈
de

dt

〉〉
= −1 − e2

e
n

∞∑
l=2

l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)

l∑
p=0

∞∑
q=−∞

G2
lpq (e) (l − 2p + q)

×
[(

R

a

)2l+1
M�

M
F 2

lmp(i)kl(ωlmpq ) sin
[
εl(ωlmpq )

] +
(

R�

a

)2l+1
M

M�

F 2
lmp(i ′)k�

l (ω�
lmpq ) sin

[
ε�
l (ω�

lmpq )
]]

+
√

1 − e2

e
n

∞∑
l=2

l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)

l∑
p=0

∞∑
q=−∞

G2
lpq (e) (l − 2p)

×
[(

R

a

)2l+1
M�

M
F 2

lmp(i)kl(ωlmpq ) sin
[
εl(ωlmpq )

] +
(

R�

a

)2l+1
M

M�

F 2
lmp(i ′)k�

l (ω�
lmpq ) sin

[
ε�
l (ω�

lmpq )
]]

. (C2)

The secular inclination evolution of the mutual orbit with respect to the planetary equator is given by Boué & Efroimsky (2019) as

〈〈
di

dt

〉〉
= − n√

1 − e2

M�

M

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)

×
l∑

p=0

(l − 2p) cos i − m

sin i
F 2

lmp(i)
∞∑

q=−∞
G 2

lpq (e) kl(ωlmpq ) sin
[
εl(ωlmpq )

]

+
〈

dθ

dt

〉−1
n2a2

ξMR2

M2
�

M + M�

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)

×
l∑

p=0

m cos i − (l − 2p)

sin i
F 2

lmp(i)
∞∑

q=−∞
G 2

lpq (e) kl(ωlmpq ) sin
[
εl(ωlmpq )

]
. (C3)

With respect to the stellar equator, we instead have

〈〈
di ′

dt

〉〉
= − n√

1 − e2

M

M�

∞∑
l=2

(
R�

a

)2l+1 l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)

×
l∑

p=0

(l − 2p) cos i ′ − m

sin i ′ F 2
lmp(i ′)

∞∑
q=−∞

G 2
lpq (e) k�

l (ω�
lmpq ) sin

[
ε�
l (ω�

lmpq )
]

+
〈

dθ�

dt

〉−1
n2a2

ξ�M�R2
�

M2

M + M�

∞∑
l=2

(
R�

a

)2l+1 l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)

×
l∑

p=0

m cos i ′ − (l − 2p)

sin i ′ F 2
lmp(i ′)

∞∑
q=−∞

G 2
lpq (e) k�

l (ω�
lmpq ) sin

[
ε�
l (ω�

lmpq )
]
. (C4)

C2 Equations of spin motion

The secular spin evolutions of the planet and star are given by equation 1 of Makarov (2012) as〈〈
d2θ

dt2

〉〉
=

〈
T (tri)

z

〉 + 〈〈
T (tide)

z

〉〉
ξMR2

, (C5)

〈〈
d2θ�

dt2

〉〉
=

〈
T (tri)

z,�

〉 + 〈〈
T (tide)

z,�

〉〉
ξ�M�R2

�

, (C6)

and the secular part of the polar component of the tidal torque is given by equation (109) of Efroimsky (2012a) as

〈〈
T (tide)

z

〉〉 = 2 GM2
∞∑
l=2

R2l+1

a2l+2

l∑
m=1

(l − m)!

(l + m)!
m

l∑
p=0

F 2
lmp(i)

∞∑
q=−∞

G2
lpq (e)kl sin εl

(
ωlmpq

)
, (C7)

〈〈
T (tide)

z,�

〉〉 = 2 GM2
�

∞∑
l=2

R2l+1
�

a2l+2

l∑
m=1

(l − m)!

(l + m)!
m

l∑
p=0

F 2
lmp(i ′)

∞∑
q=−∞

G2
lpq (e)k�

l sin ε�
l

(
ω�

lmpq

)
. (C8)
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A detailed derivation of the polar component of the permanent-triaxiality-generated torque is provided in Frouard & Efroimsky (2017,
appendix D). Equation (116e) of that paper reveals that under steady rotation and, importantly, outside of a spin-orbit resonance , the secular
part of this torque vanishes. In realistic situations, the equation further reveals that when the apsidal precession is much slower than the orbital
motion, then orbital averaging is sufficient to nullify the torque. For these reasons, we equip these secular parts with only one pair of angular
brackets:〈
T (tri)

z

〉 = 0, (C9)

〈
T (tri)

z,�

〉 = 0. (C10)

Both these equalities no longer imply that a rotator is captured in a spin-orbit resonance. In such a resonance, the triaxiality-generated torque
is leading for non-liquid bodies (much larger than the tidal torque) and becomes the driver of longitudinal libration.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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