N

N
N

HAL

open science

Generative Music Using Reactive Programming

Bertrand Petit, Manuel Serrano

» To cite this version:

Bertrand Petit, Manuel Serrano. Generative Music Using Reactive Programming. International Com-

puter Music Conférence, Jul 2021, Santiago, Chile. hal-03105666

HAL Id: hal-03105666
https://hal.science/hal-03105666

Submitted on 11 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03105666
https://hal.archives-ouvertes.fr

Generative Music Using Reactive Programming

Bertrand Petit
Inria, Sophia Antipolis, France
bertrand.petit@inria.fr

ABSTRACT

Generative music, i.e., music produced using algorithms
or assisted by algorithms, can be created using may differ-
ent techniques and even methodologies. It can be gener-
ated from grammatical representations, using probabilis-
tic algorithms, neural networks, rule-based systems, con-
straint programming, etc. In our work, we are interested in
a new technique that combines complex combination of ba-
sic musical elements with stochastic phenomena, and that
is made possible by the use of synchronous reactive pro-
gramming. We have based our work on the HipHop.js pro-
gramming language that allows composers to create mu-
sic programs and that produces satisfying and unexpected
musical results. In this paper, we present this new way of
composing music and we comment some concrete realiza-
tions.

1. INTRODUCTION

Generative music or algorithmic music is a discipline that
dates to the 50s and the origins of computers. Today, it has
turned into an broad field of research that uses a wide range
of computer technologies such as grammatical representa-
tions, probabilistic methods, neural networks, rule-based
systems, constraint programming, etc. In this article we
describe a system based on the HipHop.js [1] synchronous
reactive programming language, a model invented in the
80s for programming complex automata has found in crit-
ical systems[2]. We use this system to evaluate the rel-
evance of a generative music production technique based
on automata, synchronous programming, and random phe-
nomena.

In Section 2, we briefly presents generative music. The
basic concepts of our generative music system are pre-
sented in Section 3. We briefly comment its implemen-
tation in Section 4. Section 5 presents synchronous pro-
gramming with HipHop.js that is illustrated by a simple
example in Section 6. We discuss two major musical as-
pects of our system in Section 7. We present the future
work in Section 8 and we conclude in Section 9.

2. GENERATIVE MUSIC

Composition based on algorithms has been an active do-
main since the early days of computing. A good survey can
be found in an article by Fernandez and Vico [3]. It deals

Copyright: (©2020 Bertrand Petit et al. This is an open-access article

distributed under the terms of the Creative Commons Attribution License

3.0 Unported, which permits unrestricted use, distribution, and reproduc-

tion in any medium, provided the original author and source are credited.

Manuel Serrano
Inria, Sophia Antipolis, France
manuel.serrano@inria.fr

with the state of the art of Artificial Intelligence techniques
applied to musical composition and, in general, to algorith-
mic composition. For French-speaking readers we recom-
mend the work of Christophe Robert [4] who presents the
subject in a synthetic and educational way. According to
Ch. Robert classification, our work falls in the category of
self-organized combinatorial systems and stochastic sys-
tems. Stochastic systems were widely studied by the com-
poser 1. Xenakis in the 1960s [5]. They are still used in the
form of Markov chains by the composer Philippe Manoury
for example. The combinatorial systems, in line with our
work, have a long history dating back to the Wiifelspiel
of the 18th century [6] and to Kircher’s Organum Mathe-
maticum [7]. The works of Frangois-Bernard Mache such
as Maponos [8] are among more recent reflections in the
field of combinatorial music. The “duo Auterecre” pro-
duces other examples of combinatorial music, but based
on permutations. We will see that our work follows the
same approach but adds a decisive technological element:
the programming of reactive systems.

3. BASIC CONCEPTS

Our system, called Skini, generates music by sequencing
patterns (or musical characters). These patterns are orga-
nized in sets according to scenarios, that react to stochastic
phenomena. These components are described in this sec-
tion.

3.1 Pattern

Patterns, or musical characters, are sound elements pro-
duced by a composer. They can be MIDI sequences, sound
samples, or even short scores. Our objective is to produce
musical works that will be combinations of these patterns
and that can, in addition to their combination, undergo
treatments. In the case of MIDI sequences, it will be possi-
ble, for example, to perform transpositions, retrogradations
or inversions. In the case of sound samples, filtering or an-
other signal processing can be carried out. The durations
of these patterns are important parameters of the system
on the speed of its evolution, and on the complexity of the
combinations. We generally use short patterns that last a
few seconds because it gives flexibility to the system, but
longer patterns could be used too.

3.2 Set of patterns

Set of patterns reflect the actual constraints of actual in-
struments, as a real instrument can only play one pattern
at a time. Using set of patterns greatly reduces the number
of possible combinations. For instance, a set of IV patterns
yields to 2V possible pattern combinations. That is, for a

mailto:bertrand.petit@inria.fr
mailto:manuel.serrano@inria.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

base of 10 patterns we have 1024 combinations, for 50 pat-
terns 1015, etc. For IV patterns divided into three groups of
I, J and K elements each with N = I + J 4 K, using set
of patterns reduced the number of possible combinations
from 2V to 27 +27 4- 2% For instance, for 10 patterns and
three groups of 2, 3 and 5 elements it reduces the initial
1024 combinations to only 44.

3.3 Stochastic Engine

The stochastic engine of Skini consists in randomly choos-
ing patterns among the sets of patterns which are made vis-
ible (we will also say activated) according to a scenario.
When the engine chooses a pattern, it generates an event in
Skini. We called this choice and event generation, selec-
tion.

3.4 Scenario

A scenario makes the patterns organized in sets visible to
the stochastic engine. It is implemented as a computer pro-
gram that reacts to events that can be clock events, selec-
tions of patterns, selections of pattern among specific sets,
random values, etc. The scenario controls the combina-
tions of sets and organizes the sequences of these combi-
nations to produce coherent and consistent music.

The patterns are played by instruments, synthesizers, or
musicians. We assume that an instrument can only play
one pattern at a time. This sequencing mechanism is neces-
sary to ensure a good independence between the operation
of the stochastic engine and the scenario.

4. IMPLEMENTATION

The architecture of the system is presented in Figure 1. It
consists of three layers. At the top, the music production
layer generates the final musical result. The music is gen-
erated by a Digital Audio Workstation (DAW) that is fed
with the patterns stored in a database. The middle layer
runs the scenario and the sequencing of patterns accord-
ing to the stochastic engine which select the patterns to be
played. The bottom layer is for the stochastic engine. Note
that this architecture can be adapted to interactive music
production by replacing the bottom layer with an audience
interaction layer.

Music production
layer Digital Audio
Workstation

[

Patterns
database

i

1/

Scenario
Automaton - o
(HipHop.js

Contol and decision layer

I Heros

/

Stochastic
engine

Figure 1. Architecture

4.1 Scenario Design

If the design of patterns and the organization of pattern sets
requires musical skills essentially, scenario design requires
technical skills. In our system, the scenarios triggers ac-
tions according to successive or random events. This type
of control is managed by automatons. For music to be gen-
erative, i.e., the result of an algorithmic process, these au-
tomatons must manage complex situations. The program-
ming of complex automata is known to be a delicate topic
that is the subject of many formalisms such as Petri’s net-
works [9], Grafcet[10], UML activity diagrams, or syn-
chronous languages [11]. But before tackling program-
ming, the composer can start by graphically representing
the possible paths of the pieces generated by the system,
much as he would draw the large structures of a score.

Figure 2 is an example of a representation of 3 sessions
in a scenario. Each session may be triggered according
to a random process, depending on time execution or the
occurrence of one or more patterns. This allows a single
scenario to yield to radically different generated music.

In this representation pattern sets are represented by their
names (ViolinScale, ViolasScale...). Vertical lines corre-
spond to the activation and deactivation of the sets. Ar-
rows between these lines are associated with sets. When
a number NV is associated with an arrow it means that the
automaton waits until IV occurrences of patterns belonging
to the set have been requested by the engine before moving
to the next step. For instance, in the “Tonal session”, the
automaton will activate the second sets after 5 occurrences
of “ViolinsTonal”. A single line means that any patterns of
a set can be selected by the stochastic engine. This graph
also used a particular type of set that are called tank. They
are noted in blue rectangles. These are sets containing pat-
terns that can be activated only once by the stochastic en-
gine. Using tanks limits the number of repetitions of the
same pattern and avoid monotony of the generated music.
The dotted lines refer to the measurement of time. For
example, in the “Scale session” the “TrumpetsScaleTank”,
“HornScaleTank” and “TromboneScaleTank” tanks are de-
activated after 20 ticks.

[

Chromatic
Session

Figure 2. An example of scenario

This graph also includes constraints in between pattern
sets. The Scale session will only activate the piano when
the three “FlutesScaleTank”, “OboeScaleTank” and “Clar-
inetsScaleTank” are empty. This representation is not as
precise, as an actual program executing the final scenario
could be, but it sketches the shape of the music to be gen-
erated.

The degrees of freedom, left to a random process of se-
lection, are expressed macroscopically with this represen-
tation. In addition to this representation of activation and
deactivation of sets, the composer will be able to add ran-
dom phenomena on tempi, on pattern processing processes
such as transpositions for example. It may also define rules
for combining different ‘sub-scenarios’. The particularity
of this way of producing a scenario is that the composer
can keep control over the combination of patterns and the
overall coherence of the music. The scenario definition
leads quickly to a complex automaton. And we have found
that it’s very difficult to think of all the combinations that a
scenario can create. We will see a little further how to effi-
ciently create scenarios by means of an adapted program-
ming language, from the family of synchronous reactive
languages.

4.2 The stochastic engine operation

The stochastic engine selects randomly and regularly pat-
terns amongst those activated by the scenario automata and
can, to some extent, modify the sequence of selections.

Globally, the patterns selected by the engine are trans-
mitted to the DAW (or any other sound system) for be-
ing played or recorded. The scenario automata is informed
about the patterns that have been selected by the engine.
This information impacts the next steps the scenario au-
tomata will executed.

More precisely, the behaviour of the stochastic engine is
controlled by two main parameters in order to avoid sys-
tem congestion and to control the speed at which the music
may evolve: a variable delay, that defines the rate at which
patterns are requested, and a waiting time limit . The delay
corresponds to the rate at which the patterns are selected
and entered in the FIFO (see figure 1). It is defined by a
minimum and a maximum value. According to these val-
ues, the stochastic engine randomly chooses the time at
which it requests the next pattern to be played.

The waiting times limit is a consequence of the fact that
an instrument can only play one pattern at a time. If, for
the same instrument, the engine requests a B pattern be-
fore a previous A pattern is completed, we risk losing part
of the A pattern. This is why we have set up a queuing
mechanism. Each instrument has its own queue (FIFO). A
selection by the engine adds a pattern execution request to
the queue that is destacked at a regular rate. This stacking
mechanism generates durations before a pattern is played.
The stochastic engine takes into account these durations
because they may have a strong impact on the behaviour
of the musical piece. For example, if the scenario allows
the selection of in a set of patterns for a fixed period, allow-
ing to select pattens without limit could lead to ‘saturate’
the FIFO of the instruments corresponding to the set.

The stochastic selection process is simply random. Nev-
ertheless, the engine includes an algorithm that avoids suc-
cessive repetitions of the same pattern. Its principle con-
sists in memorizing the last three selections for each instru-
ment, and to preferably select a pattern which has not been
selected during the last previous three selections. This has
a clear impact on the generated music when the number
of patterns in a set is low. In this case random selection
algorithms can easily repeat the same pattern.

5. SYNCHRONOUS PROGRAMMING

In the 80s and 90s, three languages adapted to automa-
ton programming appeared in France: Esterel [2], Lustre,
and Signal [11]. Lustre and Signal have been designed
for the processing of data flows. Esterel was designed for
flow control. Esterel and Lustre were marketed by “Esterel
Technologies” in an integrated environment called SCADE
(Safety Critical Application Development Environment).
SCADE is used for critical systems in the field of trans-
port or energy. Other languages have appeared following
the initial trio, such as Lucid Synchronous [12] which pro-
cess data streams like Lustre, or ReactiveC [13] and Reac-
tiveML [14] in the Esterel lineage.

The HipHop.js language [1] that we use, is a dialect of
Esterel meant for JavaScript. Its goal is to offer an efficient
way to combine synchronous and asynchronous tasks in-
side a same program. A program written in HipHop.js is
compiled in JavaScript and runs on unmodified JavaScript
engines. HipHop.js programs are based on two basic prin-
ciples.

e A HipHop.js program does not take conceptual time.
That is, the language semantics ensures that the pro-
gram behaves as if executed on an infinitely fast com-
puter. As executions take (conceptually) no time, ex-
ecutions are synchronous. Of course, when executed
on an actual computer, HipHop.js programs take an
observable wall clock time but the languages seman-
tics prevents programs to notice that actual physical
duration, whatever constructs, e.g., sequences, par-
allels, conditionals, or preemptions, they use.

e HipHop.js relies on signals that replace variables of
mainstream programming languages. A signal has
a status (emitted or not) and a value. A program
can emit a signal, receive it, wait for it, or test its
status. Most HipHop.js instructions deal with sig-
nals. HipHop.js programs have input signals that
are associated with external events such as network
events, timeouts, user interfactions, etc. The call of
a HipHop.js program and the response it provides is
called a reaction, hence the term reactive program-
ming frequently used for Esterel/HipHop.js program-
ming.

e Although parallel, HipHop.js programs are determin-
istic.

These principles enable the definition of instructions with
clear semantics and therefore allowing the development of
efficient and reliable compilers. The determinism of the
executions helps developing and maintaining programs.

6. APPLICATION OF SYNCHRONOUS
PROGRAMMING TO OUR PRINCIPLES

Let us consider a simple scenario session that could take
place in an actual score. This session could first activate
cellos, and violins playing staccato patterns. After five
ticks (where ticks are defined by the music tempo), per-
cussion patterns could be activated and then, after the first
percussion patterns have been played, the cellos could be

played five patterns and stopped. In parallel violins should
stop after 4 cello events or after 10 ticks.

This seems a mundane session and complete scenarios
are expected to be populated with many similar compo-
nents. However, although simple, the associated automata
is already complex. Figure 3 that shows the time events
of that orchestration, gives some hints on this complexity.
Traditional programming languages are not well suited for
implementing automaton because as the automaton states
have to be implemented with variables and functions, a
mere change in the specification generally requires a whole
re-programming. HipHop.js has been designed for solving
that problem. It implements automaton with higher level
constructs that can be composed one with another. Chang-
ing the specification of the automata then only requires lo-
cal changes to the program.

.

5 x Cellos

N

violin(true) violin(false)

5 x Ticks

M x Violins Y
T ... 10 x Ticks

WV Allow a group of events
A\ Disable a group of events

N x Percussions
>

Available groups

-

delay

Figure 3. Simple example.

A HipHop.js execution is split in a succession of reac-
tions that are triggered by external events generated by the
stochastic engine. A HipHop.js program is organized as a
list of modules that are loaded into a reactive machine. A
module specifies the signals it can receive and emit. The
module implementing our example is as follows:

hiphop module orchestration(
in Tick, out Perc, in PercPlaying, out Cello,
in CelloPlaying, out ViolinStacatto) {
emit ViolinStacatto (true);
emit Cello(true);
await count (5, Tick.now);
emit Perc(true);
await (PercPlaying.now);
fork {
await count (5, CelloPlaying.now) ;
emit Cello(false);
} par {
await count (4, CelloPlaying.now)
|| eount (10, Tick.now);
emit ViolinStacatto(false);

The module orchestration first emits two output sig-
nals violinStacatto and Cello with a value true. Then,
it waits for five ticks before emitting the signal Perc with
a value true. These emissions will be received by the
automaton that will modify the status of the scenario ac-
cordingly. The value true means that the patterns in a
set of patterns (here Cello, Perc and ViolinStacatto) is acti-
vated and can be selected by the stochastic engine. A value
false does the opposite. It deactivates a set of pattern.

The fork/par control structure runs its branches in par-
allel and waits for all of them to complete. The branches
can communicate and synchronize with each other by broad-
casting signals that are delivered instantly. During a reac-
tion, all branches of the all parallel constructions receive
the same information. The HipHop.js execution is syn-
chronous and deterministic.

HipHop.js can block on complex predicates. For instance,
in the second branch of the fork/par construct, it waits
for the first condition of 4 CelloPlaying events or 10
Tick. HipHop.js imposes no constraint on conditional ex-
pressions. They can mix arbitrary temporal expressions
and JavaScript expressions.

This example, although simple, illustrates the benefit of
HipHop.js. The constraints of the musical orchestration are
mapped directly into constructs of the language without
extra bookkeeping or encoding techniques. This greatly
alleviate the composer/programmer task as it dramatically
reduces the distance between the representation of his score
and its actual executable implementation.

7. DISCUSSION

Skini presents two main concerns for a composer: the bal-
ance between determinism and stochastics, and the evalu-
ation of the quality of the music.

Regarding the balance between determinism and stochas-
tics, HipHop.js allows the composer to create scenarios
whose results can range from relatively deterministic to
completely random. According to the artistic project and
the use that will be made of the work, the composer will
have to define the extent to which his music should leave
something to chance. If the scenario is very precise in its
behaviour, the different instances of the work produced by
different activations of the system will be close. A purely
sequential automaton in time, for example, will only al-
low the choice of patterns in successive sets as a degree of
freedom. If the number of patterns is not very high and if
the patterns are similar, different executions of the scenario
will give very similar musical results. Conversely, the de-
sign of a complex automaton can generate combinatorics,
that are impossible for a human brain to design and can
produce results that the composer/designer had not thought
of at all.

Regarding the second concern and the evaluation of gen-
erative music, Skini faces the same problem as all musi-
cal generative systems. How to evaluate a musical result,
which is essentially subjective? This is even more true for
Skini, which is not a solution to reproduce a musical style,
but a solution which proposes a specific pattern based com-
position method. Some Skini productions have been sub-
mitted to different people, experts or not in music. We
have noticed that for music structurally based on patterns,
such as most jazz styles for example, the results are con-
vincing even with simple scenarios. We experiment that
very linear constructions, such as pieces of tonal music,
are less suitable for random constructions based on sce-
narios than other types of music (modal, serial, atonal...).
For large-scale orchestral productions (symphony orches-
tra with hundreds of patterns) and complex scenarios, the
system gives results where the music produced does not
seem to be produced with the help of a computer.

As ademonstration, different music produced by the com-
poser Heidelein using HipHop.js are available on Sound-
Cloud . The recording “Opus2-2-5-Instances”? is an ex-
ample of 5 successive executions of the same automaton in
loop. This example of an orchestral piece shows how sev-
eral performances can produce very different results. This
example is based on 191 patterns divided into 30 groups.
The automaton code represents 800 lines of HipHop.js code.

8. FUTURE WORK

Programming using HipHop.js is powerful but requires com-
puter science skills that music composers are not expected
to have. Graphical programming could be a solution to this
problem. As seen in Figure 2 scenario can be naturally de-
scribed graphically, so it might be interesting and maybe
not too difficult to design a graphical language to trans-
late these graphical scenarios into synchronous program-
ming. Graphical programming will impose limits on the
complexity of automata, but it should allow non-computer-
litterate musicians to use this type of technique.

When using stochastic techniques one must evoke I.Xenakis.

The combinatorial and stochastic techniques he used, deal
mainly with the production of off-time structures [5], i.e.
basic materials for the design of a work than with the struc-
ture of the work itself. To make is short, while being glob-
ally in an approach that could be placed in the lineage of
1. Xenakis, we have reversed some roles. In Skini, the
off-time structure is musically conceived, and the in-time
structure, i.e. the transformation into a score, is the re-
sult of a stochastic process. In Xenakis’ work, the off-time
structure is built from probabilistic models, and the score,
therefore the final musical in-time gesture, is conceived by
the composer. Compare to the stochastic processes of Xe-
nakis, the stochastic engine we currently use is overly sim-
ple. It selects patterns randomly among those activated at a
given time using random and bounded delays. More elab-
orate engines could be used. Without going so far as Xe-
nakis in his book Formal Music [15], it would be interest-
ing to understand the impact of different random processes,
such as Markov chains, on the musical result by using them
as the engine of our solution.

9. CONCLUSION

This paper presented Skini, a solution for generative music
based on patterns and stochastic events. It follows the tra-
dition of combinatorial techniques and patterns to produce
music, which has a long history. Skini introduces an ab-
stract dimension resulting from reactive programming. We
have seen that this programming technique allows the cre-
ation of complex but coherent combinatorial and random
scenarios difficult to imagine for a composer.

Since Skini can produce a musical structure in real time,
one of its use cases is music for video games. Indeed, Skini
could be used to feed scenarios with information from a
real-time game. In the same way, by taking into account
different events coming from an environment, Skini can
be used to generate continuous and non-repetitive music in
public location, such as museums, exhibitions or shops.

! https://soundcloud.com/user-651713160
2 https://soundcloud.com/user-651713160/opus2-2-5-instances

Acknowledgments

Thanks to the composer Francois Paris and the CIRM who
accompanied us throughout our research.

10. REFERENCES

[1] B. G. and M. Serrano, “HipHop.js: (A)Synchronous
Web Reactive Programming,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2020),
London, UK, 2020.

[2] G. Berry, “Esterel v7 for the Hardware Designer draft
1.1,” 2008.

[3] J. D. Fernandez and F. Vico, “Ai methods in algorith-
mic composition: A comprehensive survey,” Journal of
Artificial Intelligence Research, vol. 48, pp. 513-582,
2013.

[4] C. Robert, “MusicAlgo,” 2017. [Online]. Available:
http://musiquealgorithmique.ftr/

[5] Xenakis, “Vers une Métamusique,” La Nef, vol. 29, pp.
117-140, 1967.

[6] F. Daxecker, “Der Jesuit Athanasius Kircher und sein
Organum mathematicum.” Gesnerus, 2000.

[7] P. Findlen, Athanasius Kircher:
knew everything, 2004.

The last man who

[8] F.-B. Mache, “Trois chants sacrés,” 1990. [Online].
Available: http://brahms.ircam.fr/works/work/10369/

[9]1 A. Choquet-Geniet and P. Richard, “Petri Nets,” in
Software Specification Methods, 2010.

[10] R. David, “Grafcet: A Powerful Tool for Specification
of Logic Controllers,” IEEE Transactions on Control
Systems Technology, 1995.

[11] P. A. Laplante and S. J. Ovaska, “Programming Lan-
guages for Real-Time Systems,” in Real-Time Systems

Design and Analysis, 2011.

[12] J. L. Colago, G. Hamon, A. Girault, and M. Pouzet,
“Towards a higher-order synchronous data-flow lan-
guage,” in EMSOFT 2004 - Fourth ACM International

Conference on Embedded Software, 2004.

[13] F. Boussinot, “Reactive C: An extension of C to pro-
gram reactive systems,” Software: Practice and Expe-

rience, 1991.

[14] G. Baudart, L. Mandel, and M. Pouzet, “Programming
mixed music in ReactiveML,” in the first ACM SIG-

PLAN workshop, 2013, p. 11.

[15] 1. Xenakis, Musiques formelles, Editions R, Ed. Paris:
Editions R, 1963, vol. 253 and 25.

http://musiquealgorithmique.fr/
http://brahms.ircam.fr/works/work/10369/

	 1. Introduction
	 2. Generative Music
	 3. Basic concepts
	3.1 Pattern
	3.2 Set of patterns
	3.3 Stochastic Engine
	3.4 Scenario

	 4. Implementation
	4.1 Scenario Design
	4.2 The stochastic engine operation

	 5. Synchronous programming
	 6. APPLICATION OF SYNCHRONOUS PROGRAMMING TO OUR PRINCIPLES
	 7. Discussion
	 8. FUTURE WORK
	 9. CONCLUSION
	 10. References

