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Abstract

To address the well-known noise sensitivity problems associated with high-gain observers, we insert a low-pass filter on the mea-
surement channel. Considering nonlinear plants in observability canonical form, we first motivate an architecture where the output
error is filtered by a linear system parametrized by its arbitrary order and a scalar positive gain. Our main result establishes an
exponential finite gain bound for the estimation error, from the measurement noise, this gain being dependent on the high-gain and
filter parameters. We also prove bounds depending on the filter parameters characterizing improved high-frequency gains from the
measurement noise to the estimation error. The proposed construction is shown to behave desirably in numerical simulations.

Keywords: High gain observers, Low-pass filters, Noise analysis

1. Introduction

High-gain observers appeared in the literature at the begin-
ning of the 90’s, see [19] and references therein for an histor-
ical survey. This class of observers is a popular tool for state
estimation of nonlinear dynamical systems, due to the remark-
able feature of having a convergence rate that can be arbitrarily
tuned by adjusting only one single “high-gain” parameter. As
showed in [8], this property is fundamental for establishing a
nonlinear separation principle in output feedback stabilization
of nonlinear systems. Nevertheless, due to their high sensitiv-
ity to measurement noise, high-gain observers are rarely ap-
plied in practice. Performance improvement in the presence of
noise is therefore one of the main motivations that pushed the
last years of research towards alternative designs preserving the
good features of high-gain observers, namely fast convergence
and good robustness properties with respect to model uncertain-
ties, while mitigating the effect of (high-frequency) measure-
ment noise at the steady state. In this context, it is fundamental
to recall that the performance of a high-gain observer in the
presence of colored measurement noise is mainly characterized
by its dominant linear behavior, if the frequency of the noise
is large enough, as showed in [5], [20]. In particular, the role
of the relative degree between the measurement and the state
estimate plays a fundamental role, and higher relative degrees
allows improving the high-frequency filtering properties. This
crucial observation has given a new impulse to the research on
high-gain observers, inspiring a number of solutions aimed at
augmenting this relative degree while preserving other features
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of the estimates, see [3, 4, 7, 6, 18, 20, 26, 27, 28]. The same
idea of using a filtered version of the output has been also pro-
posed in the design of Proportional Integral (PI) observers, see
[9, 10]. Therein, it is shown how to design an observer that
combines both the measurement and its filtered version. The
same idea has also been recently re-proposed, in the context of
linear observers, with the use of an arbitrary order of integral
actions, i.e. a PIρ observer, see [24], although the extension to
a nonlinear framework is not straightforward. In the context of
sliding-mode observers, the same idea of pre-filtering the out-
put injection term has been recently proposed in [23]. Finally,
alternative designs, making use of saturated and deadzonated
output injections with adaptive thresholds have been proposed
in [1, 13, 2].

In line with those works, we propose here a simple but effec-
tive solution that aims at increasing the relative degree between
the measurement and the observer, while maintaining its fun-
damental properties. In particular, the output injection term is
filtered by a low-pass filter of any desired order and re-injected
into the observer dynamics. This design is similar to [20] and
[28] but exhibits some fundamental differences. Differently
from [20], asymptotic convergence of the estimation error is
still preserved in the absence of measurement noise. Further-
more, differently from [28], the proposed design is simpler as
only one single parameter needs to be tuned. Furthermore, the
design presents a useful degree of freedom as the dimension
of the filter can be arbitrarily chosen. The proposed structure
is a simple “plug-and-play” tool that can be used in the design
of high-gain observers, which is simpler than the constructions
proposed in [6, 18, 26]. Finally, differently from [9], we do not
need here to duplicate the filter in the observer design.

The rest of the paper is organized as follows. The main re-
sults on high-gain observers are highligted in Section 2. We
explain the new proposed structure in Section 3 and we provide
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the main result analyzing the convergence properties of the new
observer in Section 4. The effect of high-frequency measure-
ment noise is discussed in Section 5. A numerical example is
given in Section 6. Conclusions are derived in Section 7.

Notation. We denote with R the set of real numbers, with N
the set of non-negative integers and N>0 = {1, 2, . . .}. A vector
x = [x1 · · · xn]> ∈ Rn is often denote by x = col(x1, . . . , xn)
or simply x = (x1, . . . , xn)>. We denote with | · | the stan-
dard Euclidean norm, and with ‖s‖∞ = supt∈[0,∞) |s(t)|. Given
a square matrix F, we denote pF(λ) its characteristic poly-
nomial, namely pF(λ) = det(λI − F) and σ(F) its spectrum.
For a symmetric matrix P, λmax(P) is its maximal eigenvalue.
We denote with Ii, or simply I, an identity matrix of dimen-
sion i ∈ N>0. We denote with 0i, j a zero matrix of dimen-
sion i × j, with i, j ∈ N>0. We denote with 1i the all-ones
i-vector 1i = col(1, 1, . . . , 1). We denote a triplet in prime form
(Ai, Bi,Ci) of dimension i ∈ N>0, (or simply (A, B,C) in the
case of no dimension ambiguity), matrices of the form

Ai :=
(
0i−1,1 Ii−1

0 01,i−1

)
, Bi :=

(
0i−1,1

1

)
, Ci :=

(
1 01,i−1

)
. (1)

Finally, given ` ∈ N>0, we define Dn(`) as the diagonal matrix
containing increasing powers of `, that is,

Dn(`) := diag(`, `2, . . . , `n). (2)

2. Background on High-Gain Observers

Consider a system in the observability canonical form1 [14]

ẋi = xi+1, i = 1, . . . , n − 1,
ẋn = ϕ(x, u),
y = x1 + ν,

equivalently written in the compact form

ẋ = Anx + Bnϕ(x, u), y = Cnx + ν, (3)

where x = (x1, . . . , xn)> ∈ Rn is the state, u ∈ Rm is a known
input, y ∈ R is a scalar measured output, (An, Bn,Cn) is a triplet
in prime form of dimension n, see (1), and ν : R≥0 → R is
some (bounded) measurement noise. In this work, we address
the observer design problem for system (3) in a semi-global
scenario, namely we suppose that function ϕ is locally Lipschitz
and that there exist compact setsU ⊂ Rm and X0, X satisfying
X0 ⊆ X ⊂ Rn, such that, for any initial condition x(0) ∈ X0 and
under the action of any control input u : R≥0 →U, the solution
of (3) remains in X for all t ≥ 0. When ϕ is globally Lipschitz,
then we can allow X = Rn.

A high-gain observer for system (3) can be therefore de-
signed as

˙̂x = An x̂ + Bnϕs(x̂, u) + Dn(`)Knη, (4)

1The results presented in this work can be easily extended to more general
systems where each component xi is governed by dynamics of the form ẋi =

xi+1 + ϕi(x1, . . . , xi, u) for all i = 1, . . . , n − 1.

where x̂ = (x̂1, . . . , x̂n)> ∈ Rn is the state of the observer with
initial conditions x̂(0) ∈ Rn, η ∈ R is the correction term defined
as

η = y − x̂1, (5)

Dn(`) is defined as in (2), with ` ≥ 1 being the so-called
high-gain parameter, matrices Ar, Br and Cr are defined in (1),
Kn := (k1, . . . , kn)> is a vector of gains chosen so that the ma-
trix (An − KnCn) is Hurwitz, and ϕs is a globally bounded and
locally Lipschitz function satisfying

|ϕ(x, u) − ϕs(x̂, u)| ≤ ϕ|x − x̂| (6)

for all x ∈ X, x̂ ∈ Rn, u ∈ U, and for some scalar ϕ > 0. For
instance, ϕs can be selected by saturating (component-wise or
globally) the function ϕ outside the compact sets X, U. When
the function ϕ is globally Lipschitz, then the function ϕs can be
selected equal to ϕ on all of its domain, thus relaxing the global
boundedness requirement. The subscript s resembles the fact
that a saturated version of function ϕ outside the compact sets
X andU is an adequate choice.

The high-gain observer (4)-(5) can be represented by a block
diagram scheme as in Figure 1. When ` is chosen large enough,
the following bound holds for each i = 1, . . . , n, see [19],

|xi(t) − x̂i(t)| ≤ α`i−1 exp(−β`t)|x(0) − x̂(0)| + γ`i−1‖ν‖∞ (7)

for all t ∈ R≥0, for all initial conditions (x(0), x̂(0)) ∈ X0 × Rn

and for some α, β, γ > 0 independent of `. Inequality (7) shows
that the estimation error converges exponentially to zero with an
arbitrarily fast convergence rate that can be tuned by increasing
the high-gain parameter `. In addition to this, the estimation
error satisfies an input-to-state stability property with respect
to the measurement noise ν, with a gain proportional to `n−1,
namely the faster the exponential rate of the observer, the worse
the asymptotic behavior in the presence of measurement noise.
In [5] it has also been shown that the low-pass filtering behavior
of the high-gain observer (4)-(5) can be established by model-
ing the measurement noise as a finite sum of sinusoids, namely

ν(t) :=
N∑

i=1

νi sin
(
ωi

ε
t + φi

)
, (8)

for some N > 0, where parameter ε > 0 shifts towards infinity
the basic frequencies ωi as it approaches zero, while νi > 0 and
φi characterize the amplitude and the phase of each component,
respectively. The measurement noise (8) has a high-frequency
behavior for ε small enough and the asymptotic behavior of the
high-gain observer can be characterized as

lim sup
t→+∞

|xi(t) − x̂i(t)| ≤ ε%`i‖ν‖∞ (9)

where scalar % > 0 is independent of `. It is readily seen that
bound (9) captures the low-pass filtering behaviour of the high-
gain observer (4)-(5) since limε→0 limt→+∞ |x(t) − x̂(t)| = 0. On
the other hand, bound (9) highlights that the asymptotic gain
at high-frequencies is proportional to `i and not to `i−1, as one
may expect from (7).
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Figure 1: Standard observer scheme.

3. Proposed architecture

In this work, we investigate the use of low-pass linear fil-
ters to improve the sensitivity properties (9) of the high-gain
observer (4) with respect to high frequency measurement noise,
without losing its desirable properties (7) in terms of asymptotic
and arbitrarily fast convergence rate and input-to-state stability
with respect to ν. The main idea that we pursue is to augment
the relative degree between the measured output y and the state
estimate x̂, in order to improve the asymptotic bound (9). To
this end, we replace the static correction term (5) with the fol-
lowing filtered version

ż1 = −
`

θ
(z1 − (y − x̂1)),

żi = −
`

θ
(zi − zi−1), i = 2, . . . , r,

η = zr.

As shown in Figure 3, this corresponds to adding a pool of

r identical first-order strictly proper filters with speed
`

θ
. To-

gether, they form a linear filter with speed
`

θ
and relative degree

r applied to the output error injection term η, equivalently writ-
ten in the compact form

ż = −
`

θ

(
Ir − A>r

)
z +

`

θ
C>r (y −Cn x̂),

η = B>r z,
(10)

where r ∈ N>0 is the dimension of the filter (and its rela-
tive degree), z = (z1, . . . , zr)> is its state, and matrices Ar, Br

and Cr are defined in (1). It is readily seen that filter (10) is
parametrized by the high-gain parameter ` of the high-gain ob-
server (4) and by a second parameter θ > 0 whose design is
rather straightforward, as characterized in the next section.

Remark 1 (Different filter positions) The motivation for ap-
plying the filtering action directly to y − ŷ, rather than applying
it only to the output y is clearly explained in Figure 3, showing
that any filtering action on y should be reproduced also at the
output of the high-gain observer, so that the forward invariance
of the zero-estimation error manifold is preserved (a necessary
condition for asymptotic estimation), as proposed in the case
of PI-observers, see, e.g., [9, 10]. This condition can be equiv-
alently interpreted, for linear systems, by noting that the pres-
ence of a low-pass filter introduces a high-frequency phase-shift
that causes distortions of the estimate, if the filter is not suitably
replicated. As a consequence, applying the pink “filter” block
to the output y as in Figure 3 requires introducing an additional

Plant y Filter Observer
η x̂

ŷ

−

Figure 2: Output injection redesign via linear filtering.

Plant Filtery Observer
Filter
Copy

x̂, ŷ−

Figure 3: Pre-filtering the measure y before using an observer.

filtering action at the output ŷ of the observer (the block called
“filter copy” in that figure), resulting in the same scheme as
that of Figure 2 via a non-minimal representation, which does
not require implementing in the observer powers of ` of or-
der `n+r. An alternative approach is proposed in [20], where
only the measurement y is filtered. However in that case, the
asymptotic behavior of the high-gain observer in the absence
of measurement noise is only preserved in an output feedback
stabilization framework and not in the pure observation context
addressed here. y

Remark 2 (Overall observer dimension) There are a number
of existing results about dynamic augmentations of state ob-
servers, such as those proposed in [3], [4], [6], [18], [26], [28].
We highlight next some of the main differences and advantages
arising from our approach. First of all, the overall dimension of
the augmented observer (4), (10), is n + r where r ∈ N>0 can
be freely selected, to improve the sensitivity to high-frequency
measurement noise. Similarly, the dimension of the observer
proposed in [26] is n + r but the filter design is more involved
than what we propose here. Conversely, in [4] the overall di-
mension of the observer is fixed as 2n − 2 and in [3] and [28]
the dimension is 2n. Finally, in the solution proposed in [18]
the overall dimension of the observer is n, but the relative de-
gree between the measurement noise and the state estimate is 1.
Instead, our solution (4), (10) shows by design a relative de-
gree of at least r + 1 (depending on the specific component
under consideration), thus resulting in better performance with
high-frequency measurement noise, as well characterized later
in Section 5. y

4. Stability of the error dynamics

4.1. Main stability result

As mentioned after introducing (10), once the (relative) de-
gree r ∈ N>0 is fixed, the only parameter that must be selected
in our redesign law is the scalar θ > 0. We illustrate here a
simple tuning rule for this design. The following is our main
stability result for the estimation error dynamics.

3



Theorem 1 Consider system (3) and a high-gain observer (4)
with a matrix gain Kn such that An − KnCn is Hurwitz. Fix
the order r ∈ N>0 of filter (10) and consider the solution of the
redesigned observer (4), (10). There exists θ? > 0 such that, for
each θ ∈ (0, θ?), there exist `? ≥ 1 and α, β, γ > 0 such that, for
any ` > `?, bound (7) holds along all solutions starting from
(x(0), x̂(0)) ∈ X0 × Rn and z(0) = 0.

We emphasize that the tuning rule characterized by Theo-
rem 1 is intuitive and simpler than the constructions [4], [6],
[28] and [26]. We also remark that with z(0) , 0, bound (7)
would simply involve an extra decaying term proportional to
`i−1|z(0)|, due to the transient response of the stable filter.

4.2. Proof of Theorem 1
Consider the change of coordinates

(x, x̂, z) 7→ (x, e, z) := (x, `Dn(`)−1(x − x̂), z), (11)

with Dn(`) defined after (5). With (An, Bn,Cn) as in (1), we
recall the following properties

D−1
n (`)AnDn(`) = `An, `D−1

n (`)Bn = `−(n−1)Bn,
Cn`

−1Dn(`) = Cn.
(12)

By compactly denoting ξ := (e>, z>)>, and by using the time-
rescaling t 7→ τ(t) := `t, similarly to [1], the dynamics of sys-
tem (4), (10) reads

dξ
dτ

= F(θ)ξ + `−1H∆(e, x, u) + θ−1Gν (13)

where we defined

F(θ) :=
(

An −KnB>r
1
θ
C>r Cn − 1

θ
(Ir − A>r )

)
,

G := (01×n,Cr)>,
H := (B>n , 01×r)>,

(14)

∆(e, x, u) :=
1
`n−1

[
ϕ(x, u) − ϕs(x − `−1Dn(`)e, u)

]
. (15)

In view of (6), if ` ≥ 1, we have |∆(e, x, u)| ≤ ϕ|e|, for all x ∈ X,
e ∈ Rn and u ∈ U. The coordinate system (13) and specifically
the structure of matrix F(θ) in (14) are key to proving Theo-
rem 1, specifically through the following result, whose proof is
postponed to the end of the section, to avoid breaking the flow
of the exposition.

Lemma 1 Let Kn be such that An − KnCn is Hurwitz. Then, for
each r ∈ N>0, there exists θ? > 0 such that, for any θ ∈ (0, θ?),
the matrix F(θ) in (14) is Hurwitz. Moreover, there exists a
symmetric positive definite matrix P(θ) ∈ R(n+r)×(n+r) such that

P(θ)F(θ) + F>(θ)P(θ) = −In+r. (16)

The matrix P(θ) is structured as follows:

P(θ) =

(
P0 + rP̃0 0n,r

0r,n 0r

)
+ O(θ), (17)

where O(θ) is a symmetric matrix whose entries are small terms
of order θ, and P0 ∈ Rn×n and P̃0 ∈ Rn×n are respectively the
unique symmetric positive definite solutions to

P0(An − KnCn) + (An − KnCn)>P0 = −In, (18)
P̃0(An − KnCn) + (An − KnCn)>P̃0 = −C>n Cn. (19)

In order to complete the proof of Theorem 1, denote by p
and p̄ the smallest and the largest eigenvalues of P(θ) defined in
Lemma 1 and consider the Lyapunov function V(ξ) = ξ>P(θ)ξ.
Differentiating V along the solutions of (13) yields

d
dτ

V(ξ) = 2ξ>P(θ)(F(θ)ξ + `−1H∆(ξ, x, u) + θ−1Gν).

In order to upper bound the latter derivative, consider sepa-
rately the three terms (see, e.g., [1]). Thanks to (16), we have
2ξ>P(θ)F(θ)ξ = −|ξ|2. By using the inequality |e| ≤ |ξ| and the
Lipschitz properties of ∆, we have

2`−1|ξ>P(θ)| |H∆| ≤ 2`−1 p̄|ξ|ϕ|ξ|.

Finally, the following Young inequality

2|ξ>P(θ)θ−1Gν| ≤ |ξ>||2θ−1P(θ)Gν|,

≤ 1
2 |ξ|

2 + θ−2 1
2 |2P(θ)Gν|2,≤ 1

2 |ξ|
2 +

2 p̄2

θ2 |ν|
2,

leads to

d
dτ

V(ξ) ≤ − 1
2 (1 − 4`−1 p̄ϕ)|ξ|2 + c1|ν|

2,

where c1 = 2 p̄2/θ2. Now, choose any `? > max{1, 4ϕ p̄} so
that there exists β > 0 satisfying, for any ` ≥ `?, the inequality
1 − 4`−1ϕ p̄ ≥ 4β p̄. Then we obtain, for all ` ≥ `?,

d
dτ

V(ξ(τ)) ≤ −2βV(ξ(τ)) + c1|ν(τ)|2.

Hence, by using the comparison principle, we have

V(ξ(τ)) ≤ exp(−2βτ)V(ξ(0)) +

∫ τ

0
exp(−2β(τ − s))c1|ν(s)|2ds

≤ exp(−2βτ)V(ξ(0)) + c2‖ν‖
2
∞ . (20)

where c2 = c1/(2β) = p̄2/(θ2β). Recall now that z(0) = 0 and
use the following inequalities, derived from (11), and ` ≥ 1,

|x̂i − xi| ≤ `
i−1|ei| ≤ `

i−1|ξ|, |ξ|2 ≤ |x̂ − x|2 + |z|2.

By using (20), the definition of V , and τ = `t, we therefore
obtain (7), with α =

√
p̄/p, γ =

√
c2/p = p̄/(θ

√
pβ). Note

that the values of `?, α and γ do not depend on ` but depend, in
general, on θ because of F(θ) in (14), and therefore of P(θ). �

4.3. Proof of Lemma 1

Let r ∈ N>0 be fixed and consider the matrix F(θ) defined
by (14). We recognize in F(θ) a structure found in singularly
perturbed linear systems and follow the approach in [21] to in-
vestigate its stability for a small enough parameter θ. Before
establishing the result, let us investigate the Parametrized Non-
symmetric Algebraic Riccati Equation (PNARE), in the param-
eter θ and the rectangular variable L(θ) ∈ Rr×n [17, 16]:

C>r Cn − (Ir − A>r )L(θ)− θL(θ)An + θL(θ)KnB>r L(θ) = 0r,n. (21)

4



For θ = 0, the PNARE (21) becomes affine in L and admits
a unique solution L(0) = (Ir − A>r )−1C>r Cn = 1rCn, because
(Ir − A>r ) is invertible (it is lower triangular).

Following [17], we may denote the left-hand side of (21) as
f (M(θ), L(θ)), where the characteristic matrix M(θ) is given by

(
M11(θ) M12(θ)
M21(θ) M22(θ)

)
= θF(θ)

=

(
θAn −θKnB>r

C>r Cn −(Ir − A>r )

)
∈ R(n+r)×(n+r), (22)

which satisfies(
−L(θ) Ir

)
M(θ)

(
In

L(θ)

)
= f (M(θ), L(θ))). (23)

Observe now that σ (M11(0) + M12(0)L(0)) ∩

σ (M22(0) − L(0)M12(0)) = σ
(
0n,n

)
∩ σ

(
A>r − I>r

)
= ∅,

therefore the assumptions of [17, Lemma 2.3] are satisfied and
there exist an open neighborhood Θ of 0 and a neighborhood2

N ⊂ Rr×n of L(0) such that for each θ ∈ Θ, the PNARE (21) has
a unique solution L(θ) ∈ N . Moreover, L(θ) is differentiable
with respect to θ and admits the zero-order Taylor series:
L(θ) = 1rCn + O(θ).

Introduce now the Parametrized Non-symmetric Algebraic
Sylvester Equation (a special case of the PNARE), in the pa-
rameter θ and the rectangular variable X(θ) ∈ Rn×r:

θ(An − KnB>r L(θ))X(θ) − θKnB>r
+ X(θ)((Ir − Ar)> − θL(θ)KnB>r ) = 0n,r. (24)

Thanks to the same arguments as for the PNARE (21), we con-
clude that, for θ = 0, Equation (24) becomes affine in X and
admits a unique solution X(0) = 0n,r. In addition, there ex-
ist an open neighborhood Θ of θ = 0 (which we may con-
sider to be the same as the one above, without loss of gener-
ality) and a neighborhood of X(0) = 0n,r such that, for each
θ ∈ Θ, Equation (24) admits a unique and differentiable solu-
tion X(θ) = θX̃(θ), for a suitable matrix function X̃.

Let us use these solutions L(θ) and θX̃(θ) to apply the Chang
transformation

T (θ) =

(
In −X(θ)

0r,n Ir

) (
In 0n,r

−L(θ) Ir

)
,

=

(
In − θX̃(θ)L(θ) −θX̃(θ)

L(θ) Ir

)
, (25)

introduced in [11] and which is invertible:

T−1(θ) =

(
In 0n,r

L(θ) Ir

) (
In X(θ)

0r,n Ir

)
,

=

(
In −θX̃(θ)

L(θ) Ir + θX̃(θ)L(θ)

)
. (26)

2The neighborhoods are complex in [17] but can be projected on Rr×n.

We obtain, by exploiting (21) and (24),

F̃(θ) =T (θ)F(θ)T−1(θ),

=

(
An − KnB>r L(θ) 0n,r

0r,n −θ−1(Ir − A>r ) + L(θ)KnB>r

)
,

=

(
An − KnCn + O(θ) 0n,r

0r,n −θ−1(Ir − A>r ) + O(1)

)
. (27)

Since An − KnCn and −(Ir − A>r ) are Hurwitz by construction,
the matrix F(θ) in (14) is Hurwitz for θ small enough.

Let us now focus on the structure of the matrix P. The Lya-
punov equation (16) is equivalent to

P̃(θ)F̃(θ) + F̃>(θ)P̃(θ) = −T−>(θ)T−1(θ), (28)

with P̃(θ) = T−>(θ)P(θ)T−1(θ). By noticing that, from (26),

T−>(θ)T−1(θ) =

(
In + L>(0)L(0) L>(0)

L(0) Ir

)
+ O(θ)

and by considering the block diagonal structure of F̃(θ) in (27),
we can follow [21, Section 2.6] (see, in particular, [21, eq.
(6.36)]) to prove that the next structured matrix

P̃(θ) =

(
P̃1(θ) θP̃2(θ)
θP̃>2 (θ) θP̃3(θ)

)
,

satisfies the Lyapunov equation (28), where P̃1(θ) is the solution
of the Lyapunov equation

P̃1(θ)
(
An − KnB>r L(θ)

)
+

(
An − KnB>r L(θ)

)> P̃1(θ) =

= −(In + L>(0)L(0)) + O(θ) = −(In + rC>n Cn) + O(θ).

Returning to the original basis, P(θ) = T>(θ)P̃(θ)T (θ) and using
the linearity of the Lyapunov equation, the proof is completed.

�

5. Performance with high-frequency noise

For the high-gain observer (4)-(5), it is shown in [5] that the
steady-state behavior of the estimation error in the presence of
high-frequency measurement noise (8) can be characterized as
a low-pass filter behavior of order 1, as in (9). Furthermore, the
proof technique proposed in [5] has been applied to low-power
high-gain observers in [4] and [6], to show how to capture the
relative degree effect in the characterization of the steady-state
behavior (9). As a consequence, by following the ideas pro-
posed in [5], [6], we show below that the high-gain observer (4)
with filter (10) improves the bound (9) in the sense character-
ized next.

Theorem 2 Consider system (3) and observer (4), (10), and
any stabilizing selection of Kn, r, θ and `, according to Theo-
rem 1. Then there exists ε? > 0 such that, for any ε ∈ (0, ε?),
the closed loop perturbed by the measurement noise ν in (8),
with the frequencies ωi being pairwise incommensurable, the
following bound holds

lim sup
t→+∞

|xi(t) − x̂i(t)| ≤
(
ε`

θ

)r

ε%`i‖ν‖∞, ∀i = 1. . . . , n, (29)
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for all initial conditions (x(0), x̂(0), z(0)) ∈ X0 × Rn × Rr, and
for some % > 0 independent of θ, `.

Theorem 2 establishes that, once parameters ` and θ have
been selected according to Theorem 1 to ensure convergence
to zero of the estimation error, the asymptotic norm of the es-
timation error at high frequencies (namely as ε → 0) goes to
zero increasingly fast for larger values of r (due to the term
εr+1). Similar conclusions were drawn in [6]. Comparing the
bound (9) given by the standard high-gain observer (4), (5),
with the bound (29) one may also see that the proposed filtering
action negatively affects the estimate due to the term

(
`
θ

)r
(note

that ` is typically large and θ is typically small, as character-
ized in Theorem 1). However, due to the effect of the relative
degree, the asymptotic gain is also multiplied by εr+1 (while in
(9) there is only ε), thus mitigating the total impact of the noise
v on the estimation error at high-frequencies (i.e. for small ε).
Finally, note that, for r = 0, namely when no filter is used, the
inequality (29) boils down to (9), thus recovering the asymp-
totic properties of the standard high-gain observer (4)-(5).

As in [5], to prove Theorem 2, we represent the measurement
noise (8) as the output of the following autonomous system

εẇ = S w, ν = Rw, (30)

where S is a neutrally stable matrix (having simple eigenval-
ues on the imaginary axis) and R is a row vector. System (30)
can be conveniently seen as generator of N > 0 harmonics at
frequencies ωi/ε > 0, i = 1, . . . ,N, namely, the matrix S is a
block diagonal matrix of the form

S := blkdiag(S 1, . . . , S N) , S i :=
(

0 ωi

−ωi 0

)
and R := ((0 1) (0 1) · · · (0 1)). In the following we assume
that w = col(w1, . . . ,wN) ranges in a compact invariant setW ⊂

R2N . The assumption stated in Theorem 2 that frequencies ωi

are pairwise incommensurable, is motivated by the fact that we
may conveniently represent the overall size of the oscillators as
the L∞ norm of the output v, namely

‖ν‖∞ =

N∑
i=1

νi =

N∑
i=1

|wi(t)| =
N∑

i=1

|wi(0)|, ∀t ≥ 0. (31)

The first equality in (31) (existence of the supremum and its
value) comes from a property of quasi-sinusoidal signals (see
for instance [25, Lemma 1, Theorem 1 and eq. (4.3) page 11]),
which is the case of the noise ν, defined in (8) with pairwise
incommensurable frequencies ωi. The other equalities in (31)
are obtained by recalling that, being wi ∈ R2 the state of each
oscillator, then t 7→ |wi(t)| = νi is constant for each i = 1, . . . ,N.
Equality (31) helps in dealing with the right hand side of (29)
based on the properties of the exosystem (30). In particular, in
the proof of Theorem 2 we use the following “observability-
like” property

|w(0)| = |w(t)| ≤
N∑

i=1

|wi(t)| = ‖ν‖∞, ∀t ≥ 0, (32)

obtained from standard properties of vector norms. Again, we
emphasize that the Euclidean norm t 7→ |w(t)| is constant along
the revolving solutions of (30).

Proof of Theorem 2. The proof follows the same argument pre-
sented in [5], adapted to the structure (4), (10). As shown in [5],
it is enough to analyze the “linear” case ϕ(x, u) = ϕs(x, u) = Φx,
with |Φ| ≤ ϕ̄. Indeed, it is shown in [5] that the obtained bounds
can be extended also to the nonlinear context. The correspond-
ing derivations are omitted because they would re-propose the
same arguments as those developed in [5] for the high-gain ar-
chitecture (4)-(5) and in [6] for the low-power high-gain archi-
tecture.

Within this linear setting, consider the change of coordinates
(x, x̂) 7→ (x, x̃) := (x, x − x̂). Then observer (4), (10), forced by
system (30) reads

˙̃x = (An + BnΦ)x̃ + Dn(`)KnB>r z,

ż = − `
θ
(Ir − A>r )z + `

θ
C>r Cn x̃ + `

θ
C>r Rw,

which can be written in compact from, using ξ̃ := col(x̃, z), as

εẇ = S w,
˙̃ξ = Λξ̃ + ΓRw, (33)

where Λ :=
(
An + BnΦ −Dn(`)KnB>r
`
θ
C>r Cn − `

θ
(Ir − A>r )

)
, Γ :=

`

θ

(
0n×1
C>r

)
.

Let us now show that matrix Λ is Hurwitz by way of equiv-
alently showing that (we use below the identities in (12)) the
transformed matrix

Λ := `−1 diag(`D−1
n (`), Ir)Λ diag(`−1Dn(`), Ir)

=

(
An + Bn`

−1ΦDn(`)`−n −KnB>r
1
θ
C>r Cn − 1

θ
(Ir − A>r )

)
is Hurwitz for small enough θ. To this end, since parameters
Kn, r, θ, ` are selected according to Theorem 1, using the nota-
tion in the proof of Theorem 1 and denoting ξ := col(e, z), we
may write Λξ = Fξ + `−1Hδ, where δ := ΦDn(`)`−ne satisfies
|δ| ≤ ϕ̄|e|, due to the assumptions on Φ. We may then follow the
same steps as those leading to (20) to show that 2ξ>PΛξ < 0
for all ξ , 0, with P > 0 given by (16). By standard linear
stability theory, this proves that Λ (therefore Λ) is Hurwitz.

Since Λ is Hurwitz, from standard regulation theory [15] the
steady-state response of system (33) is given by ξ̃ss := Πεw,
where Πε solves the following Sylvester equation (the regulator
equation)

ΠεS = εΛΠε + εΓP. (34)

Indeed, if there exists such a Πε, the dynamics of (ξ̃ − Πεw) is
given by

d
dt

(ξ̃ − Πεw) = Λ(ξ̃ − Πεw),

and stability of Λ implies asymptotically convergence of ξ̃ −
Πεw to zero. Now, the Sylvester equation (34) admits a unique
solution because the eigenvalues of S are all on the imaginary
axis while the ones of Λ are in the negative real half plane (they
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are therefore disjoint). As discussed in [5], since S is not sin-
gular, the unique solution of (34) is given by

Πε =

+∞∑
k=1

εkΠk, Πk = Λk−1ΓRS −k. (35)

In (35), the series is convergent as long as ε is taken sufficiently
small, because |Πε| ≤ |Λ

−1ΓR|
∑+∞

k=1(ε|Λ||S |)k, leading to a geo-
metric series if ε−1 is larger than the product of the spectral radii
of Λ and S . Moreover, to prove that (35) is a solution (therefore
the unique solution) of (34) it suffices to plug it into (34) to get

ΠεS =

+∞∑
k=1

εkΛk−1ΓRS −k+1 = εΓR +

+∞∑
k=2

εkΛk−1ΓRS −k+1

= εΓR +

+∞∑
h=1

εh+1ΛΛh−1ΓRS −h = εΓR + εΛΠε.

Let us now focus on (29) and observe that, with ei denoting the
i-th column of the identity matrix, we obtain e>i ξ̃ = x̃i = xi − x̂i,
i = 1, . . . , n. In particular, since limt→+∞(ξ̃(t) −Πεw(t)) = 0 (by
the definition of steady-state behavior), we have that

lim sup
t→+∞

|xi(t) − x̂i(t)| = lim sup
t→+∞

|e>i Πεw(t)|, i = 1, . . . , n. (36)

To establish a bound on the right-hand side of (36), we use the
expression given by (35), obtaining

∣∣∣e>i Πε

∣∣∣ =

∣∣∣∣∣∣∣e>i
+∞∑
k=1

εkΛk−1ΓRS −k

∣∣∣∣∣∣∣ . (37)

We need to analyze more carefully the structure of the right-
hand side of (37). From (1), we easily get Cr(Ir − A>r )k−1Br = 0
for all k = 1, . . . , r − 1 and Cr(Ir − A>r )r−1Br = 1. Therefore,
using the expressions in (33) we get

e>i Λk−1Γ = e>i

 0n×1(
`
θ

)k
(Ir − A>r )k−1C>r

 = 0, ∀k = 1, . . . , r

(38)

e>i ΛrΓ = e>i

 Dn(`)Kn

(
`
θ

)r(
`
θ

)r+1
(Ir − A>r )rC>r

 = `iki

(
`

θ

)r

,

for all i = 1, . . . , n. Hence, combining bounds (37) with expres-
sion (38) gives, for all i = 1, . . . , n,

∣∣∣e>i Πε

∣∣∣ = εr+1`iki

(
`
θ

)r
|RS −(r+1)| +

+∞∑
k=r+2

εk
∣∣∣e>i Πk

∣∣∣ . (39)

Since matrices Πk in (35) do not depend on ε, for ε small
enough, the dominant terms in (39) are the ones with smallest
power of ε. As a consequence, by combining (39) with (36),
and also using bound (32), we directly obtain bound (29) for ε
sufficiently small, for a scalar % independent of `, θ, ε. �

6. Numerical Discussion

For a nominal high-gain observer (4), (5), it can be proved
(see, for instance, [19]) that the minimum value of ` to en-
sure bound (7) is proportional to the maximum eigenvalue
p̄0 = λmax(P0) of the symmetric positive definite matrix P0 so-
lution to (18). For the proposed observer (4), (10), the min-
imum value of `? is proportional to the maximum eigenvalue
p̄ = p̄(θ) = λmax(P(θ)) of the matrix P(θ) solution to (16). Such
a value depends in general on the choice of θ. Furthermore, as
shown in Lemma 1, this choice is critical as large values of θ
may lead to instability of F.

As a consequence, we investigate numerically the following
aspects: 1) the impact of the dimension of the filter r on the
choice of θ; 2) the impact of θ on p̄; 3) the limit of p̄ as θ
converges to zero; 4) a possible optimal selection for θ.

We recall that the literature dealing with upper and lower
bounds of the maximum eigenvalue of the positive definite so-
lution of a Lyapunov equation (16) is rich and may be conser-
vative, as emphasized in the survey [22]. As a consequence,
to facilitate the qualitative discussion about these questions, we
study here the impact of r and θ on p̄ via numerical simulations.

As a simple example, we consider n = 3, and K3 = (6, 11, 6)>

in (4) so that the eigenvalues of (A3 − K3C3) are {−1,−2,−3}.
We compute the θ? of Lemma 1 as the largest real number en-
suring that F in (14) is still Hurwitz. The values for r = 1, 2, 3
are reported in Table 1. The values of p̄ as a function of θ,
for r = 1, 2, 3, are depicted in Figure 4. Such graphs confirm
that when θ → θ? then p̄(θ) tends to +∞ (as expected since
F(θ) tends to instability). In addition, thanks to the structure
of P(θ) given in (17), we verify that, when θ → 0, p̄(θ) con-
verges to λmax(P0 + rP̃0) > p̄0, due to the positive definiteness
of P̃0. Numerical simulations for different selections of n, r and
eigenvalues of the matrix An − KnCn (for instance with some
imaginary part) confirmed the same type of results and curves.

Then, in order to find a criterion to select an optimal θ, we
focus on the ratio characterizing the high-frequency asymptotic
gain in (29). Since ` is proportional to p̄, it is reasonable to look
at the ratio

p̄n+r(θ)
θr . (40)

Then, a possible optimal choice θopt is the minimizer of (40).
The graph of (40) for r = 1, 2, 3, is depicted in Figure 5. For
the considered example, the numerical values of θopt and the
corresponding value of p̄(θopt) minimizing (40) are reported in
Table 1. Similar curves have been obtained also for different
choices of n, r and Kn.

Finally, in order to compare the proposed technique (4), (10)
to the standard high-gain observer (4), (5), we consider the
Rössler (chaotic) oscillator [12, §3.3] described by

ẋ1 = ax1 + x2
ẋ2 = −x1 + x3
ẋ3 = u − bx3 + x2x3
y = x1 + ν,

(41)

which is chaotic for a = 0.5, b = 3 and u(t) = −1, ∀t ≥ 0.
The initial conditions of (41) are selected as (2,−3, 4)> and the
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HGO r = 1 r = 2 r = 3

θ? - 0.495 0.149 0.087

θopt - 0.130 0.061 0.039

p̄(θopt) - 2.876 3.133 3.368

λmax(P0 + rP̃0) - 2.3888 2.4571 2.5276

p̄0 2.32 - - -

lim sup
t→+∞

|x(t) − x̂(t)| 4.85 0.34 0.11 0.067

Table 1: Comparison between a high-gain observer (HGO) (4), (5) with a fil-
tered one (4), (10), for r = 1, 2, 3. The table provides the largest θ? ensuring
stability of F(θ) in (14), and the values of the optimal section of θopt minimiz-
ing the ratio (40) and the corresponding value of the largest eigenvalue p̄(θopt)
of the matrix P(θopt) defined in (16). The largest eigenvalue λmax(P0 + rP̃0)
is provided to check the limit of p̄(θ) when θ tends to 0. For the HGO, the
value p̄0 = λmax(P0) is computed with the Lyapunov equation (18). Finally,
the last row provides the asymptotic error amplitude of the different observers
estimating system (41) with measurement noise generated as (8), (42).

measurement noise is generated as in (8) with

N = 2. v1 = 3, ω1 = 1, φ1 = 0,
ε = 0.004, v2 = 5, ω2 =

√
3, φ2 = 0.

(42)

We compare the behavior of a standard high-gain observer (4),
(5) with the filter redesign (10) for r = 1, 2, 3. As before, we
select K3 = (6, 11, 6)>, while θ is selected as in Table 1. Such
values have been taken in order to minimize the ratio (40), as
shown in Figure 5. The high-gain parameter is selected in all
the scenarios as ` = 3. Since convergence of both observers is
guaranteed for any initial condition, without loss of generality,
we select x̂(0) = 0 and z(0) = 0. Figure 6 depicts the transient
behavior of the norm of the estimation error |x(t)− x̂(t)| of all the
observers. Note that the peaking phenomenon3 is augmented:
indeed, the value of α in (7) is proportional to p̄, which is larger
in the presence of the filters, as reported in Table 1. Then, Fig-
ures 7, 8, and 9, depict the behaviors of the high-gain observer
(4), (5) and the proposed redesign (4), (10) for r = 1, 2, show-
ing the advantages in using the low-pass filter. The asymptotic
values for all the considered cases are also reported in Table 1.

Comparisons with alternative schemes using filtered versions
of high-gain observers are not reported in this work, as it would
be difficult to perform a fair parameter selection (positions of
the poles, choice of the high-gain parameter, and so on). Fur-
thermore, this is out of scope as our objective, discussed in
the introduction, is to propose a simple “plug-and-play” design
without any claim of outperforming existing techniques.

From the numerical results we may draw some preliminary
conclusions on the general impact of different choices of r. First
of all, Figures 4 and 5 clearly illustrate the fact that augmenting
r leads to higher values of `?. On the other hand, augmenting
r desirably reduces the asymptotic gain with respect to high-
frequency measurement noise, as predicted by the term εr in

3The peaking phenomenon is a large deviation of the estimation error caused
by the wrong choice of initial conditions and is typical of standard high-gain
observers, see [19] after equation (8). Such a behavior can be observed in
Figure 6 during the first 0.5 seconds of simulations.

in equation (29). As a consequence, a trade-off between these
two effects must be performed: moderate values of `? and small
enough high-frequency asymptotic gains. An interesting future
direction is to cast a nonlinear optimization problem for opti-
mally choosing r. An additional degree of freedom that is not
exploited in this work is the possibility of a co-design of the
gain Kn and the filter parameters, as done, e.g., in [28] but for
the filter structure proposed in this paper. We regard these ideas
as interesting future research directions.
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0 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 4: Value of the maximum eigenvalue p̄ of P (16) as a function of θ, for
r = 1, 2, 3. Top figure, in logarithmic scale: Vertical asymptotes for θ? given in
Table 1. Bottom figure, in linear scale: p̄0 computed from (18).
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Figure 5: Value of ratio (40), with p̄ computed as the maximum eigenvalue of
P in (16), for r = 1, 2, 3. The figure is in logarithmic scale. The values of θ
corresponding to the minimum of each curve are reported in Table 1.

7. Conclusion

We considered high-gain observers for nonlinear plants in
observability canonical form and well characterized the simple,
yet effective, idea of inserting a linear filter with a parametric
relative degree in the output injection channel. The proposed
filter is suitably parametrized by the high-gain parameter of the
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Figure 6: Norm of the estimation error |x(t)− x̂(t)| of system (41) for a high-gain
observer (4), (5), and a filtered high-gain observer (4), (10) with r = 1, 2, 3.

observer and an additional parameter whose tuning rule is sim-
ple and intuitive. For the proposed architecture, we first proved
a parametric exponential finite-gain bound on the estimation er-
ror from the measurement noise. Then we characterized the
effect of high-frequency noise using a parametric exosystem
approach, showing that the high-frequency gain depends in a
desirable and convenient way on the filter parameters. The the-
oretical results about the trends of the amplitude of the estima-
tion error induced by high-frequency noise are confirmed by
numerical simulation studies. Since the proposed filtering tech-
nique is based on a suitable time-scale separation, as a future
work it would be interesting to use a similar idea for different
observer design techniques.
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[27] C. Tréangle, M. Farza, M. M’Saad. A simple filtered high gain observer
for a class of uncertain nonlinear systems. 18th International Conference on
Sciences and Techniques of Automatic Control and Computer Engineering
(STA), pp. 396–401, 2017.

[28] C. Tréangle, M. Farza, M. M’Saad. Filtered high gain observer for a class
of uncertain nonlinear systems with sampled outputs. Automatica, vol. 101,
pp. 197–206, 2019.

10


