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Universal G′ ∼ L -3 Law for the Low-Frequency Shear Modulus of Confined Liquids

Recommendations in crystalline solids. Therefore, it is difficult to find a 48 mathematical description of the atomic or the molecular 49 dynamics in a liquid, from which quantitative explanations of 50 the macroscopic properties of liquids could be deduced. 51 As a consequence of this state of affairs, it has been impossible 52 so far to rationalize the mechanics of liquids on microscopic 53 scales. Already in 1989-1990, using the newly developed piezo-54 quartz resonance device, it was experimentally observed that a 55 liquid film confined at a several micrometers scale exhibits an 56 unexpected shear elasticity at low frequency/rate of deforma-57 tion, a behavior much more akin to solids than to liquids. 3,4 In 58 spite of the fact that these experiments were led by Boris 59 Derjaguin, one of the most prominent Russian physico-chemists 60 of the 20th century, the observation was met with skepticism and 61 abandoned by the scientific community because of the 62 preconceived notion that liquids must have a zero shear 63 modulus. From the early 2000s, many other experiments 64 conducted by different teams across different length scales, 65 however, resulted in the same observation, extending the 66 identification of the "Derjaguin" shear elasticity up to the

ABSTRACT: Liquids confined to sub-millimeter scales have remained poorly understood. One of the most striking effects is the large elasticity revealed using good wetting conditions, which grows upon further decreasing the confinement length, L. These systems display a low-frequency shear modulus in the order of 1-10 3 Pa, contrary to our everyday experience of liquids as bodies with a zero low-frequency shear modulus. While early experimental evidence of this effect was met with skepticism and abandoned, further experimental results and, most recently, a new atomistic theoretical framework have confirmed that liquids indeed possess a finite low-frequency shear modulus G′, which scales with the inverse cubic power of confinement length L. We show that this law is universal and valid for a wide range of materials (liquid water, glycerol, ionic liquids, non-entangled polymer liquids, isotropic liquids crystals). Open questions and potential applications in microfluidics mechanochemistry, energy, and other fields are highlighted.

O ur daily life experience and education tell us that when a liquid, e.g., liquid water, is subjected to an infinitesimal shear stress, it flows. In physics, the absence of noticeable mechanical resistance can be expressed by saying that the shear elastic modulus G of liquids is exactly zero, where the shear modulus represents the proportionality coefficient between the applied shear stress (σ) and the resulting deformation of a solid body (γ), i.e., Hooke's law, σ = Gγ. Here, a first important distinction comes into play, as the above statement is true for nearly static measurements, i.e., at low frequency or low deformation rate, where the shear modulus is zero, but at high frequency or high rate of deformation the shear modulus of liquids is large (as one would experience by diving into a swimming pool from a considerable height, a possibly painful experience if one is not an experienced diver!). This observation reflects the fact that liquids at high frequency of external drive behave like amorphous solids (e.g., glasses), because the atoms or molecules are made to oscillate at such high speed by the external field that they cannot escape the liquid cage made by their nearest neighbors. This goes along with the ability of liquids to sustain transverse acoustic waves at sufficiently high momenta or high frequencies, as predicted in early work by Yakov Frenkel in the 1940s. 1 Besides this basic notion, which defines the essential property of a liquid, our understanding of the physics of liquids is incomplete. 2 This is due to the fact that atoms and molecules in a liquid are in a state of disorder and random motions, which is very different from atoms or molecules sitting on a regular lattice 67 millimeter scale, 5 using different experimental techniques and 68 different liquids (from liquid water to liquid crystals to ionic 69 liquids and polymer melts). 6-12 A theoretical explanation for 70 these phenomena, however, has remained elusive (despite the 71 keen interest in this problem by Nobel laureate Pierre-Gilles de 72 Gennes, a former colleague of one of us, before his untimely 73 death in 2007). f1 74

In Figure 1 is shown the typical viscoelastic response of a sub-75 millimeter confined liquid (glycerol at room temperature), in 76 terms of the storage shear modulus G′(ω) and the dissipative 77 loss modulus G″(ω), which represent, respectively, the real and 78 imaginary parts of the complex shear modulus, G* = G′(ω) + 79 iG″(ω). Here, ω is the frequency of the externally applied 80 mechanical oscillation field (oscillatory strain), γ = γ 0 sin(ωt). 81 The shear strain γ is now time-dependent and triggers, under 82 conditions of the linear response, a stress response, σ = σ 0 sin(ωt 83 + δ), where δ is a phase which is δ = 0 for a perfectly elastic 84 response (Hooke's law) and δ = π/2 for a perfectly fluid 85 response. The situation is summarized in Figure 1a. Exper-86 imentally, the solid-like response displays G′ > G″, and a flat 87 plateau of G′ at low frequency. The hallmark of a liquid-like 88 viscous response, instead, is that G′ ≪ G″ = ηω (where η is the 89 shear viscosity) at low frequency. While bulk liquids have δ = π/ 90 2 (perfectly viscous response) for low frequencies of oscillation 91 (in the range 0.001-10 Hz), liquids in confined geometry and/ 92 or strongly in interaction with the substrate (wetting conditions) 93 may display δ values much smaller than π/2, which indicates a 94 solid-like viscoelastic response. This goes along with a 95 substantial low-frequency plateau value of storage modulus, G′ 96 > G″. An experimental example which illustrates the solid-like 97 response of confined liquids is provided in Figure 1b,c, showing 98 the mechanical response of a small-molecule liquid, glycerol, at 99 low frequency and room temperature. Among other simple 100 liquids, very similar mechanical responses at low frequency have been measured for water, 6 for o-terphenyl (OTP), 7 and for ionic liquids. 8 Similar solid-like properties have also been observed with higher-molecular-weight liquids, such as linear alkanes, 9 isotropic liquids crystals, 10 side-chain liquid crystals, 11,12 entangled 7 and non-entangled polymers, 10,13 and supercooled polypropylene glycol. 14 The same phenomena have also been observed at the nanoscale in nano-confined liquids. [15][16][17][18] It is important to note the role of boundary conditions, i.e., of the surface energy. For certain solid surfaces in direct contact with the liquid, the liquid molecules are firmly anchored to the solid surface. This is typically associated with high wettability, or good wetting, of the surface, and implies strong attractive interactions between the liquid molecules and the surface. In order to implement these conditions, therefore, it is also necessary to consider the surface energy of the solid, in addition to cleaned, atomically smooth conditions. If that is not the case, e.g., for non-wetting surfaces, the liquid molecules in direct contact with the surface are instead more free in their relative motion with respect to the solid surface. This makes a big difference in order to access the elastic response. It turns out that, in the case of wetting surfaces, the mechanical response of the confined liquid is higher and solid-like, whereas for nonwetting surfaces, the standard purely viscous response is observed. This phenomenon can be mechanistically explained in terms of plane-wave null boundary conditions for the wetting surfaces (or absence thereof, for non-wetting surfaces) in the following theoretical analysis. These experimental findings have recently been rationalized from the point of view of theory. Theories of liquids have normally focused on the high-frequency shear modulus for which atomistic or molecular-level expressions are available, such as the Zwanzig-Mountain formula, 20 precisely because the low-frequency mechanical of bulk liquids was not supposed to exist. In the allied field of amorphous solids, such as glasses, instead, the mechanical response has been studied across the entire frequency range, since amorphous solids obviously exhibit a finite zero-frequency shear modulus. In particular, lattice dynamics can be extended to deal with disordered systems where the positions of atoms/molecules are completely random, to arrive at theoretical expressions for the elastic constants and for the viscoleastic moduli. 21 The resulting theoretical framework is sometimes referred to as non-affine lattice dynamics, or NALD. 22,23 The theory has proved effective in quantitatively describing elastic, viscoelastic, and plastic responses of systems as diverse as jammed random packings and random networks, 21 glassy polymers, 24-26 metallic glass, 27 and colloidal glasses. 28 Furthermore, NALD intrinsically takes into account long-range correlation phenomena 29,30 that are present also in liquids and give rise to acoustic wave propagation.

The usual starting point is the equation of motion of a microscopic building block, i.e., an atom or a molecule for atomic liquids or molecular liquids, respectively. In the case of polymers, the building block could be identified with a monomer of the polymer chain. 24 Following previous literature, 21,22 we introduce the Hessian matrix of the system ̲ ̲

H ij = -∂ ∂ ̲ ̊∂ ̲ q q / i j 2 ,
where is the internal energy, and the affine force field

Ξ̲ κχ i, = η ∂ ̲ ∂ κχ f / i
, where η κχ is the strain tensor. For example, for simple shear deformation the xy entry of tensor η κχ is given by a scalar γ, i.e., the shear strain introduced above, which coincides with the angle of deformation.

Furthermore, ̲ q i is the coordinate of atom i in the initial undeformed frame (denoted with the ring notation), while

̲ f i = ∂ ∂ ̲ q / i
denotes the force acting on atom i in the affine position, i.e., in the initial frame acted upon by the macroscopic f2 deformation, hence the name "affine" force-field. See Figure 2a for a visual representation of affine positions in a deformed frame. Greek indices refer to Cartesian components of the macroscopic deformation (e.g., κχ = xy for shear). For liquids (and to a lesser extent, also for glasses 24 ), the Hessian ̲ ̲ H ij is normally evaluated in a reference state obtained from averaging over MD configurations to include instantaneous normal modes, or INMs (purely imaginary vibrational frequencies). 24 For more details about INMs, see ref 31.

As shown in previous works, the equation of motion of atom i in a disordered medium subjected to an external small amplitude strain, in mass-rescaled coordinates, can be written as follows: 22,24 

ν η ̲ + ̲ + ̲ ̲ ̲ = Ξ̲ κχ κχ x t x t H x d d d d i i ij j i 2 2 , (1) 
where the summation convention is operative for both Latin and Greek indices. Also, η κχ are the components of the Green-Saint Venant strain tensor, and ν is a microscopic friction coefficient which arises from long-range dynamical coupling between atoms mediated by anharmonicity of the pair potential. The term on the right-hand side physically represents the effect of the disordered (non-centrosymmetric) environment leading to non-affine motions: a net force acts on atom i in the affine position (i.e., the position prescribed by the external strain tensor η κχ ). The situation is schematically depicted in Figure 2b, which contrasts a centrosymmetric environment (left panel), where all atoms are at mechanical equilibrium, even in the affine position (here for an infinitesimal strain), due to cancellation of nearest-neighbor forces that are mirror-images of each other The Journal of Physical Chemistry Letters As already mentioned above, an atomistic expression for G ∞ ≡ 219 C αβκχ Born is provided by the well-known Zwanzig-Mountain 220 formula, 20 in terms of the pair potential V(r) and the radial 221 distribution function g(r). The sum over n in eq 2 runs over all 222 3N degrees of freedom (given by the atomic or molecular 223 building blocks with central-force interactions). Also, we 224 recognize the typical form of a Green's function, with an 225 imaginary part given by damping and poles ω p,n that correspond 226 to the eigenfrequencies of the excitations.
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At this point we use a key assumption of plane waves; i.e., we 228 assume that, at low values of wavenumber k (i.e., for long 229 wavelengths λ), liquids can support shear elastic waves. 230 Propagation of longitudinal acoustic waves in liquids is, of 231 course, a well-known fact to everyone who does snorkeling or 232 swims under the water level, with firmly established 233 experimental and theoretical evidence of longitudinal acoustic 234 dispersion relations. [32][33][34] For transverse or shear acoustic waves 235 in liquids, instead, there is no propagation below a characteristic 236 wavenumber. Indeed, there is an onset value of k, that we shall 237 denote k g , above which these modes can propagate in liquids, 238 known as the k-gap, 2 again a result due originally to Frenkel, 1 239 and recently demonstrated by Trachenko and co-workers. 35,36 240 Following the analytical steps presented in ref 37, we arrive at 241 the following expression for the complex shear modulus: In the experiments where the size effect of confinement is seen, [START_REF] Jackson | Molecular Weight Dependence of Relaxation Time Spectra for the Entanglement and Flow Behavior of Monodisperse Linear Flexible Polymers[END_REF] and

∫ ∫ ω ω ω ω ω ν ω ω ω ω ν * = - - + - - + ∞ G G B k k i k k B k k i k k ( ) ( ) ( ) d ( ) ( ) d
k g ≪ L 1 ,
k min = L 1 , thus leading to ∫ α α β ′ = - = - + ∞ ∞ - G G k k G k L d 3 3 L k 1/ 2 D 3 3 D (4)
For the lower limit of the non-affine integral, we used an "infrared" cutoff, 

D π ≡ | | = + + k L L L k 2 (1/ ) (1/ ) (1/ ) x y min min 2 2 2
(5) by assuming that the liquid is confined along the z direction, such that L ≡ L z ≪ L x , L y ; the lower limit in the non-affine integral over k-space thus reduces to 1/L, as displayed in eq 4. A rigorous estimate of the k-integral in eq 4, including exact prefactors, can be found in ref 39.

In eq 4, the only term which depends on the system size is the last term, while α and β are numerical prefactors. In liquids that are in thermodynamic equilibrium and for quasistatic deformations 3 ) cancel each other out exactly, such that G′(ω→0) = 0 for L→∞ (bulk liquids). Therefore, for liquids under sub-millimeter confinement, only the third term in the above equation survives, and we finally obtain

β ′ ≈ ′ - G L 3 (6) 
where β′ = β/3 is a numerical prefactor. This law was derived for the first time in ref 37. It is worth noticing that G ∞ is independent of L. This fact can be seen, e.g., through the Zwanzig-Mountain formula, where the main contribution to G ∞ is given as an integral that contains dV(r)/dr as a multiplying factor in the integrand, with dV(r)/dr = 0 after a few molecular diameters. This, in turn, implies that no dependencies on length scales much larger than the nearest-neighbor cage can be present in G ∞ .

The above theory clarifies that the liquid confinement between two plates is able to "remove" certain low-frequency normal-mode collective oscillations of molecules, associated with the non-affine motions (i.e., negative contributions to the elasticity), which are responsible for the fluid response of liquids under standard macroscopic ("unconfined") conditions. These motions are responsible for reducing the shear modulus basically to zero in macroscopic bulk liquids. Under confinement, instead, the shear modulus is non-zero because these collective oscillations modes are suppressed, and the theory of Zaccone and Trachenko 37 provides the universal law by which the shear modulus grows upon reducing the confinement (gap) size. In particular, the static shear modulus grows with the inverse cubic power of the gap size.

In ref 37, the law G′ ∼ L -3 was found to provide a perfect description of experimental data measured in an isotropic liquid crystal system (PAOCH 3 ) upon varying the confinement length using a conventional rheometer. Here, we show that this law appears to be truly universal, and we present theoretical fittings f3 of several, very different systems in Figure 3. In all these systems, i.e., polymer melts of relatively low molecular weight, isotropic liquid crystals, ionic liquids, and even nano-confined water, the law eq 6 appears robust, as shown in Figure 3. In the case of nano-confined water, 15 one would expect a crossover from ∼L -3 into an L -1 regime once a 2D monolayer is reached. This is expected because the k-space integral in eq 4 contains a metric factor k in 2D, instead of k 2 for 3D (in fact, k d-1 for generic d-dimensional space). This crossover is not seen in the data of Figure 3d, which calls for further investigations, both experimentally and theoretically. wetting boundary conditions between the liquid and the solid 366 surface, the liquid molecules would not be well-anchored to the 367 solid surface, so the null boundary condition for the acoustic 368 waves would not apply, and the very existence of elastic plane 369 waves would then be called into question. Certainly, the above 370 theoretical framework would not be applicable in that case, as it 371 relies on the ability of the liquid to support plane waves. We can 372 speculate that, when molecules are not anchored to the solid 373 surface, the effective "removal" of softening non-affine motions 374 during the displacement and due to confinement is less effective; 375 hence, the rigidifying effect of "cutting" non-affine motions off 376 due to confinement during the deformation,would not be active. The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Perspective polymer melts typically exhibit low surface tension). Since the interfacial (air/liquid) energy scales as the inverse of the surface, significant contributions to G′ would be possible if the sample area changes drastically during the oscillatory shear. Bad filling, bad wetting, and large-amplitude oscillator strain (LAOS) conditions could produce a weak "false" torque by breaking the rotational symmetry in the plane. [START_REF] Johnston | Precision rheometry: Surface tension effects on low-torque measurements in rotational rheometers[END_REF] In contrast, the genuine lowfrequency shear elasticity intrinsic to the confined liquid state is accessible under conditions where the above artifacts are carefully avoided, and by ensuring a good wetting and low strainthat is, as close as possible to the equilibrium conditions. G′ then vanishes by increasing the shear strain (at low gap) to make room for the conventional viscous or viscoplastic flow behavior, which could be understood as the non-linear evolution of the finite low-frequency shear elasticity, [3][4][5][6][7] similar to what happens in amorphous solids upon crossing the yielding/ plasticity transition. 27,28 A number of outstanding questions remain open for future investigations. For example, it could be interesting to explore what kind of connection exists between the above scenario of solid-like elasticity of confined liquids and the glass transition under confinement. The latter is an intensively studied problem, especially in the context of thin polymer films. [START_REF] Napolitano | Glass transition of polymers in bulk, confined geometries, and near interfaces[END_REF][START_REF] Napolitano | The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale[END_REF] Another important issue is the progress that can be made with numerical simulations. In molecular dynamics (MD), the shear modulus of a confined liquid can be measured, but the noise is currently too large (since the size of MD-simulated systems is small) to make predictions for most realistic situations. [START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF] Another issue is represented by the small time step used, especially in atomistic simulations (on the order of femtoseconds), which prevents accessing the low-frequency shear modulus. Quasi-static deformation methods implemented atomistically could be a step forward, but they have not demonstrated quantitative predictive power thus far, in comparison with experiments. Also, the power-law nature of the relation G′ ∼ L -3 implies the absence of characteristic length scales (as is typical for powerlaws), which suggests that the same mechanisms apply at different length scales; i.e., the same laws apply with L being on the sub-millimeter, micrometer, or nanometer scale. Similarities between trends observed for sub-millimeter 10 and nanoconfined fluids, 15,16 in terms of both solid-like mechanical properties and role of wetting, [START_REF] Bonn | Wetting and spreading[END_REF] suggest that this may indeed be the case, but further research is required to more firmly establish a complete multi-scale framework.

The potential applications of solid-like elasticity of confined liquids, and its tunability via the control and modulation of the interfacial energy and gap size L, are manifold, encompassing fields as diverse as mechanical stress-assisted manipulation of soft and biological matter in microfluidics, [START_REF] Graziano | The microstructure of Carbopol in water under static and flow conditions and its effect on the yield stress[END_REF][START_REF] Conchuír | Mechanism of flow-induced biomolecular and colloidal aggregate breakup[END_REF][START_REF] Matthews | Oncogenic Signaling Alters Cell Shape and Mechanics to Facilitate Cell Division under Confinement[END_REF] protective equipment, 50 biomedical flow applications, 51 oil recovery, [START_REF] Lv | Measurement of viscosity of liquid in micro-crevice[END_REF] heat transfer in liquids, [START_REF] Cheng | Computing the Heat Conductivity of Fluids from Density Fluctuations[END_REF] and phase transitions under confinement. [START_REF] Jung | Confinement-induced demixing and crystallization[END_REF] Recently, it has been demonstrated that the thermal response of confined liquids is very similar to that of solids, 55 which opens up new opportunities for exploiting thermoelasticity of confined fluids, e.g., for energy conversion.

Finally, another potential exciting application of this effect is in the emerging fields of mechanochemistry [START_REF] Do | Mechanochemistry: A Force of Synthesis[END_REF][START_REF] Howard | Mechanochemistry as an emerging tool for molecular synthesis: what can it offer?[END_REF][START_REF] Van Galen | Chemical Design Model for Emergent Synthetic Catch Bonds[END_REF][START_REF] Klein | Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry[END_REF] and mechanobiology: 60 a (confined) liquid with a finite lowfrequency shear modulus G′ is able to support mechanical stress-transmission much more efficiently and with much lower dissipative losses compared to standard viscous liquids. This fact may open up new avenues for mechanically induced enhancement of chemical reaction kinetics, by combining the force-446 transmission efficiency typical of elastic solids with all the 447 favorable solvation and solubility properties of liquids. 61-64 448 ■ AUTHOR INFORMATION 
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 1 Figure 1. Dynamic viscoelastic response of liquids. Panel (a) shows a schematic depiction of time-dependent shear stress σ and shear strain γ for solidlike (left) and liquid-like (right) systems and the corresponding frequency-dependent viscoelastic curves. The lower set of figures shows the experimentally measured G′ and G″ as a function of oscillation frequency ω for glycerol in good (cleaned/thermally regenerated ceramic), panel (b), and poor (non-cleaned ceramic), panel (c), surface-wetting conditions. The measurements are carried out at low gap thickness (e = 0.04 mm) and at room temperature. Panel (b), obtained using a surface state perfectly free of impurities, displays higher viscoelastic moduli and leads to G′ > G″, indicating a solid-like response. In panel (c), where the thermal regeneration of the surfaces has not been applied (hence causing a lower energy of adhesion, thus poor wetting and possibly de-wetting), G″ scales exactly linear with ω, in line with expectations for purely viscous liquids. Reproduced with permission from ref 19. Copyright 2010 Elsevier.

  193 across the central particle, with the situation in a disordered 194 system (liquid or amorphous solid, right panel). In the latter 195 case, the nearest-neighbor forces do not cancel, thus leading to a 196 net force acting on the central atom. 197 As a consequence, in order to keep mechanical equilibrium on 198 all atoms throughout the deformation, an additional non-aff ine 199 displacement is required in order to relax the force f i acting in the 200 affine position. This displacement brings each atom i to a new 201 (non-affine) position. A schematic depiction of a non-affine 202 displacement is shown in Figure 2a. 203 The equation of motion eq 1 can also be derived from first-204 principles, from a model particle-bath Hamiltonian as shown in 205 previous work. 24 Using standard manipulations (Born is the Born or affine part of the elastic constant, i.e., 212 what survives in the high-frequency limit. Here, ω represents the 213 oscillation frequency of the external strain field, whereas ω p 214 denotes the internal eigenfrequency of the liquid (which results, 215 e.g., from diagonalization of the Hessian matrix 24 ). We use the 216 notation ω p to differentiate the eigenfrequency from the external 217 oscillation frequency ω.

Figure 2 .

 2 Figure2. Schematic illustration of non-affine displacements in amorphous media.Panel (a) shows the rearrangements or displacements of atoms upon application of an external shear strain. If the deformation were affine, atoms which sit exactly on the dashed lines in the un-deformed frame (left) would still sit exactly on dashed lines also in the deformed frame (right). However, in a disordered environment this does not happen, and in the deformed frame the atoms that were sitting on the dashed lines in the un-deformed frame are no longer sitting on the dashed lines, but are displaced from them. The distance from the actual positions of the atoms to the dashed line corresponds to the non-affine displacements. Panel (b) provides a visual explanation of the origin of non-affine displacements in disordered environments. The left figure shows a perfect lattice where, upon applying a small deformation, the nearest-neighbor forces from surrounding atoms cancel each other out in the affine positions, so there is no need for nonaffine displacements to arise. In the right figure, instead, the tagged atom i is not a center of inversion symmetry, which implies that nearestneighbor forces from surrounding atoms do not balance in the affine position, and hence a net force arises which triggers the non-affine displacement in order to maintain mechanical equilibrium.

  first integral represents the non-affine (negative or 244 softening) contribution due to longitudinal (L) acoustic modes, 245 while the second integral represents the non-affine (also 246 softening) contribution due to the transverse (T) acoustic modes. The upper integration limit in the k integrals is set, as usual, by the Debye wavenumber k D . In the above expression, "infrared" cutoff for the transverse modes, with k g the onset wavenumber for transverse phonons in liquids (the k-gap) and L the confinement length along the z direction. In the above treatment, dealing with plane waves in spherical integrals of eq 3, with the metric factor k 2 .For the longitudinal modes, one can resort to the Hubbard-Beeby theory of collective longitudinal modes in liquids, 32 which has been shown to provide a good description of experimental data, and thus use eq 43 from ref 32 for ω p,L (k) inside the integral above. As shown in ref 37, the final result for the lowfrequency G′ does not depend on the form of the ω p,L (k) dispersion relation. However, for the mathematical completeness of the theory, it is important to specify which analytical forms for the dispersion relations can be used.Anyway, upon taking the real part of G*, which gives the storage modulus G′, and focusing on low external oscillation frequencies ω ≪ ω p used experimentally, in both integrals the numerator and denominator cancel out, leaving the same expression in both integrals. Therefore, as anticipated above, the final low-frequency result does not depend on the actual form of ω p,L (k), nor of ω p,T (k), although the latter, due to the k-gap, plays an important role (see the expression for k min above) in controlling the "infrared" cutoff of the transverse integral.

Figure 3 .

 3 Figure 3. Experimental data of low-frequency shear modulus G′ versus confinement length L for different systems, where circles represent experimental data while the solid line is the law G′ ∼ L -3 derived in ref 37. Panel (a) shows the comparison for PAOCH 3 , an isotropic liquid crystal system from ref 10; (b) shows the same comparison for ionic liquids, from ref 8; (c) shows experimental data for short-chain (non-entangled) polystyrene melts from ref 13; and (d) shows experimental data for nanoconfined water from ref 15.

  , a different version of the non-affine response formalism called the stress-fluctuation formalism can be used. It has been rigorously demonstrated that the two versions of the formalism are equivalent in ref 40. Using the stress-fluctuation non-affine formalism in combination with standard equilibrium statistical mechanics, it has been shown in ref 41 that the affine or high-frequency (Born) term G ∞ and the negative non-affine term (here, -α k 3 D
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  Experimental data have also been reported for OTP, an organic 339 liquid (data not shown here).7 Those data also show the ∼L -3 340 behavior, but the data at the shortest confinement length, ∼0.01 341 mm, suggest the possible existence of a plateau upon going 342 toward lower L, while the experimental accuracy is lowered as 343 the confinement increases. The paucity of experimental data 344 does not allow for drawing a definitive conclusion on this effect 345 (i.e., the possible existence of a plateau in G′ at low L in certain 346 systems), which should also be the object of further 347 investigation, both experimentally and in theory.
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  As mentioned earlier, a crucial role is played by the surface 349 anchoring. The solid-like response of confined liquids is indeed 350 observed mainly for atomically smooth surfaces (crystal planes) 351 or for conditions of good wetting between liquid and solid 352 surfaces (high energy surfaces). Instead, a standard, purely 353 viscous response is reported for non-wetting or poorly wetting 354 f4 surfaces; see Figure 4 for a schematic illustration of two different 355 surface wetting conditions. The same observation has been 356 made in the case of nanoconfined water, with a substantially 357 higher viscosity measured in the case of good wetting in ref 16. 358 From the theoretical point of view, this fact can be explained 359 by referring to the non-affine lattice dynamic framework 360 summarized above. In particular, wettability connects with the 361 assumption of plane waves and with the implicit null boundary 362 conditions for the displacement field of plane waves. This leads 363 straightforward to the term ∼L -3 in eq 4 above, which is the term 364 responsible for the solid-like elastic response. Without the full 365

  377A more precise explanation may require a different theoretical 378 approach, possibly working in eigenfrequency domain rather 379 than in k-space, and is an interesting problem for future research. 380 Finally, it is important to point out that the non-zero low-381 frequency shear elasticity has been measured in various liquids 382 irrespective of their surface tension (alkanes, ionic liquids, and

Figure 4 .

 4 Figure4. Schematic illustration of different levels of surface interaction between liquid molecules and solid substrate. A not-so-strong attractive interaction leads to partial wetting (left panel), whereas a strong attractive interaction with the solid surface leads to total wetting filling in the rough edges (right panel).
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