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Abstract

Microfluidic and nanofluidic technologies have asserted themselves as new paradigms

which have radically boomed activities dedicated to the chemical, bio-analysis and

biomedical sectors. In spite of intense technological development, the fundamental

physico-chemical properties of liquids confined on sub-millimeter scales have remained

poorly understood. One of the most striking effects is the large elasticity (and viscos-

ity) of confined liquids, which grows upon further decreasing the confinement length,

L. Liquids under sub-millimeter confinement display a low-frequency shear modulus in

the order of 1− 103 Pa, contrary to our everyday experience of liquids as bodies with

a zero low-frequency shear modulus. While early experimental evidence of this effect

(starting with Boris Derjaguin’s work) was met with skepticism due to its counter-

intuitive character and abandoned, further experimental results and most recently a
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new atomistic theoretical framework have confirmed that liquids indeed possess a finite

low-frequency shear modulus G′ and that this scales with the inverse cubic power of

confinement length L. After a brief historical overview and an introduction to the

theoretical description of this effect, we show that this law is universal by analyzing

experimental data on a wide range of materials (water, glycerol, ionic liquids, non-

entangled polymer liquids, isotropic liquids crystals). Open questions and potential

applications in mechanochemistry, energy and other fields are highlighted in conclu-

sion.

Introduction

Our daily life experience and education tell us that when a liquid, e.g. liquid water, is

subjected to an infinitesimal shear stress, it flows. In physics, the absence of noticeable

mechanical resistance can be expressed by saying that the shear elastic modulus G of liquids

is identically zero, where the shear modulus represents the proportionality coefficient between

the applied shear stress (σ) and the resulting deformation of a solid body (γ), i.e. Hooke’s

law σ = Gγ. Here a first important distinction comes into play, as the above statement is

true for nearly static measurements; i.e. at low-frequency, or low-deformation rate, where the

shear modulus is zero, but at high frequency or high rate of deformation the shear modulus of

liquids is large (as one would experience by diving into a swimming pool from a considerable

height, a possibly painful experience if one is not an experienced diver!). This observation

reflects the fact that liquids at high frequency of external drive behave like amorphous solids

(e.g. glasses), because the atoms or molecules are made to oscillate at such high speed by

the external field that they cannot escape the liquid cage made by their nearest neighbours.

This goes along with the ability of liquids to sustain transverse acoustic waves at sufficiently

high momenta or high frequencies, as predicted in early work by Yakov Frenkel in the 1940s.1

Besides this basic notion which defines the essential property of a liquid, our understand-

ing of the physics of liquids is incomplete.2 This is due to the fact that atoms and molecules
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in a liquid are in a state of disorder and random motions, which is very different from that of

atoms or molecules sitting on a regular lattice in crystalline solids. Therefore, it is difficult

to find a mathematical description of the atomic or the molecular dynamics in a liquid, from

which quantitative explanations of the macroscopic properties of liquids could be deduced.

As a consequence of this state of affairs, it has been impossible so far to rationalize the

mechanics of liquids on microscopic scales. Already in 1989-1990, using the newly developed

piezo-quartz resonance device, it has been experimentally observed, that a liquid film con-

fined at several microns scale exhibits an unexpected shear elasticity at low frequency/rate of

deformation, a behaviour much more akin to solids than to liquids.3,4 In spite of the fact that

these experiments were led by Boris Derjaguin, one of the most prominent Russian physico-

chemists of the 20th century, the observation was met with skepticism and abandoned by the

scientific community because of the preconceived notion that liquids must have a zero shear

modulus. From the early 2000s, many other experiments conducted by different teams, how-

ever, resulted in the same observation extending the identification of the “Derjaguin” shear

elasticity up to the millimeter scale,5 using different experimental techniques and different

liquids (from liquid water to liquid crystals to ionic liquids and polymers).6–12 A theoretical

explanation for these phenomena, however, has remained elusive (despite the keen interest

by Nobel laureate Pierre-Gilles de Gennes, a former colleague of one of us, right before his

untimely death in 2007).

In Figure 1 the typical viscoelastic response of a sub-millimeter confined liquid is shown,

in terms of the storage shear modulus G′(ω) and the dissipative loss modulus G′′(ω), which

represent, respectively, the real and imaginary part of the complex shear modulus G∗ =

G′(ω)+iG′′(ω). Here , ω is the frequency of the externally applied mechanical oscillation field

(oscillatory strain), γ = γ0 sin(ωt), which triggers, under conditions of the linear response,

a stress response σ = σ0 sin(ωt + δ), where δ is a phase which is δ = 0 for perfectly elastic

response (Hooke’s law) and δ = π/2 for perfectly fluid response. The situation is summarized

in Fig. 1(a). Experimentally, the solid-like response displaysG′ > G′′, and a flat plateau ofG′
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at low frequency. The hallmark of liquid-like viscous response, instead, is that G′ � G′′ = ηω

(where η is the shear viscosity), at low-frequency. While bulk liquids have δ = π/2 (perfectly

viscous response) for low frequencies of oscillation (typically in the range 0.001-10Hz), liquids

in confined geometry and/or strongly in interaction with the substrate (wetting conditions)

may display δ values much smaller than π/2, which indicates a solid-like viscoelastic response.

This goes along with a substantial low-frequency plateau value of storage modulus, G′ >

G′′. An experimental example which illustrates the solid-like response of confined liquids

is provided in Fig. 1(c)-(d), showing the mechanical response of a small molecule liquid,

glycerol, at low frequency and room temperature. Among other simple liquids, very similar

mechanical response at low frequency has been measured for water,6 for ortho-terphenyl

(OTP)7 and for ionic liquids.8 Similar solid-like properties have also been observed with

higher-molecular weight liquids, such as linear alkanes,9 isotropic liquids crystals,10 side-

chain liquid crystals,11,12 entangled7 and non-entangled polymers.10,13 The same phenomena

have also been observed at the nanoscale in nano-confined liquids.14–16

It is important to note the role of boundary conditions, i.e. of the surface treatment.

For certain solid surfaces in direct contact with the liquid, the liquid molecules are firmly

anchored to the solid surface. This is typically associated with high wettability or wetting of

the surface, and implies strong attractive interaction between the liquid molecules and the

surface. These conditions are complex involving the surface energy of the solid in addition to

cleaned, atomically smooth conditions. If that is not the case, e.g. for non-wetting surfaces,

the liquid molecules in direct contact with the surface are instead more free in their relative

motion with respect to the solid surface. This makes a big difference for the conditions

to access the viscoelastic response. It turns out that, in the case of wetting surfaces, the

mechanical response of the confined liquid is solid-like, whereas for non-wetting surfaces, the

standard purely viscous response is observed. This phenomenon can be mechanistically ex-

plained in terms of plane-wave null boundary conditions for the wetting surfaces (or absence

thereof, for non-wetting surfaces) in the following theoretical analysis.
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(a)

(b) (c)

Figure 1: Dynamic viscoelastic response of liquids. Panel (a) shows schematic depiction of
time dependent shear stress σ and shear strain γ for solid-like (left) and liquid-like (right)
systems and the corresponding frequency dependent viscoelastic curves. The lower set of
figures shows the experimentally measured G′ and G′′ as a function of oscillation frequency
ω for glycerol in good (cleaned/thermally regenerated ceramic), panel (b), and poor (non-
cleaned ceramic) surface-wetting conditions, panel (c). Panel (b) obtained using a surface
state perfectly free of impurities, displays higher viscoelastic moduli and leads to G′ > G′′

indicating a solid-like response. In panel (c), where the thermal regeneration of the surfaces
has not been applied (hence causing a lower energy of adhesion, thus poor wetting and
possibly de-wetting) the G′′ scales exactly linear with ω, in line with expectations for purely
viscous liquids. Reproduced with permission of Elsevier from Ref.17

.
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These experimental findings have recently been rationalized from the point of view of

theory. Theories of liquids have normally focused on the high-frequency shear modulus for

which atomistic or molecular-level expressions are available, such as the Mountain-Zwanzig

formula,18 precisely because the low-frequency mechanical of bulk liquids is not supposed to

exist. In the allied field of amorphous solids, such as glasses, instead, the mechanical response

has been studied across the entire frequency range, since amorphous solids obviously exhibit

a finite zero-frequency shear modulus. In particular, lattice dynamics can be extended to

deal with disordered systems where the positions of atoms/molecules are completely random,

to arrive at theoretical expressions for the elastic constants and for the viscoleastic moduli.19

The resulting theoretical framework is sometimes referred to as nonaffine lattice dynamics or

NALD.20,21 The theory has proved effective in quantitatively describing elastic, viscoelastic

and plastic response of systems as diverse as jammed random packings and random net-

works,19 glassy polymers,22–24 metallic glass,25 and colloidal glasses.26 Furthermore, NALD

intrinsically takes into account long-range correlation phenomena27,28 that are present also

in liquids and give rise to acoustic wave propagation.

The usual starting point is the equation of motion of a microscopic building block, i.e.

an atom or a molecule for atomic liquids or molecular liquids, respectively. In the case of

polymers, the building block could be identified with a monomer of the polymer chain.22

Following previous literature,19,20 we introduce the Hessian matrix of the system H
ij

=

−∂2U/∂q̊
i
∂q̊

j
and the affine force field Ξi,κχ = ∂f

i
/∂ηκχ, where ηκχ is the strain tensor. For

example, for simple shear deformation the xy entry of tensor ηκχ is given by a scalar γ, which

coincides with the angle of deformation.

Furthermore, q̊i is the coordinate of atom i in the initial undeformed frame (denoted

with the ring notation), while f
i

= ∂U/∂q
i

denotes the force acting on atom i in the affine

position, i.e. in the initial frame acted upon by the macroscopic deformation (see Fig. 2(a)

for a visual representation of affine positions in a deformed frame), hence the name “affine”

force-field. Greek indices refer to Cartesian components of the macroscopic deformation (e.g.
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κχ = xy for shear). For a liquid, the Hessian H
ij

is normally evaluated in a reference state

obtained from averaging over MD configurations to include instantaneous normal modes or

INMs (purely imaginary vibrational frequencies).22 For more details about INMs see Ref.29

i

i

(a)

(b)

Figure 2: Schematic illustration of nonaffine displacements in amorphous media. Panel (a)
shows the rearrangements or displacements of atoms upon application of an external shear
strain. If the deformation were affine, atoms which sit exactly on the dashed lines in the
underformed frame (left) would still sit exactly on dashed lines also in the deformed frame
(right). However, in a disordered environment this does not happen, and in the deformed
frame the atoms that were sitting on the dashed lines in the undeformed frame are no
longer sitting on the dashed lines, but are displaced from them. The distance from the
actual positions of the atoms to the dashed line corresponds to the nonaffine displacements.
Panel (b) provides a visual explanation of the origin of nonaffine displacements in disordered
environments. Left figure shows a perfect lattice where upon applying a small deformation
the nearest-neighbour forces from surrounding atoms cancel each other out in the affine
positions, so there is no need for nonaffine displacements to arise. In the right figure, instead,
the tagged atom i is not a center of inversion symmetry, which implies that nearest-neighbour
forces from surrounding atoms do not balance in the affine position, hence a net force arises
which triggers the nonaffine displacement in order to maintain mechanical equilibrium.

As shown in previous works, the equation of motion of atom i in a disordered medium

subjected to an external strain, in mass-rescaled coordinates, can be written:20,22

d2xi
dt2

+ ν
dxi
dt
dt+H

ij
xj = Ξi,κχηκχ (1)

where η is the Green-Saint Venant strain tensor and ν is a microscopic friction coefficient
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which arises from long-range dynamical coupling between atoms mediated by anharmonicity

of the pair potential. The term on the r.h.s. physically represents the effect of the disordered

(non-centrosymmetric) environment leading to nonaffine motions: a net force acts on atom

i in the affine position (i.e. the position prescribed by the external strain tensor ηκχ). The

situation is schematically depicted in Fig. 2(b), which contrasts a centrosymmetric environ-

ment (left panel), where all atoms are at mechanical equilibrium even in the affine position

(here for an infinitesimal strain) due to cancellation of nearest-neighbour forces that are

mirror-image of each other across the central particle, with the situation in a disordered sys-

tem (liquid or amorphous solid) in the right panel. In the latter case, the nearest-neighbour

forces do not cancel thus leading to a net force acting on the central atom.

As a consequence, in order to keep mechanical equilibrium on all atoms throughout the

deformation, an additional nonaffine displacement is required in order to relax the force fi

acting in the affine position. This displacement brings each atom i to a new (nonaffine)

position. A schematic depiction of a nonaffine displacement is shown in Fig.2(a).

The equation of motion Eq. 1 can also be derived from first principles, from a model

particle-bath Hamiltonian as shown in previous work.22 Using standard manipulations (Fourier

transformation and eigenmode decomposition from time to eigenfrequency20), and applying

the definition of mechanical stress, we obtain the following expression for the viscoelastic

(complex) elastic constants:20,22

Cαβκχ(ω) = CBorn
αβκχ −

1

V

∑
n

Ξ̂n,αβΞ̂n,κχ

ω2
p,n − ω2 + iων

(2)

where CBorn
αβκχ is the Born or affine part of the elastic constant, i.e. what survives in the

high-frequency limit. Here, ω represents the oscillation frequency of the external strain

field, whereas ωp denotes the internal eigenfrequency of the liquid (which results, e.g., from

diagonalization of the Hessian matrix22). We use the notation ωp to differentiate the eigen-

frequency from the external oscillation frequency ω.
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As already mentioned above, an atomistic expression for G∞ ≡ CBorn
xyxy is provided by

the well known Zwanzig-Mountain (ZM) formula,18 in terms of the pair potential V (r) and

the radial distribution function g(r). The sum over n in Eq.(2) runs over all 3N degrees of

freedom (given by the atomic or molecular building blocks with central-force interactions).

Also, we recognize the typical form of a Green’s function, with an imaginary part given by

damping and poles ωp,n that correspond to the eigenfrequencies of the excitations.

At this point we use a key assumption of plane waves, i.e. we assume that at low values

of wavevector k (i.e. for long wavelengths λ), liquids can support shear elastic waves. Prop-

agation of longitudinal acoustic waves in liquids is of course a well known fact to everyone

who does snorkeling or swims under the water level, with firmly established both experimen-

tal and theoretical evidence of longitudinal acoustic dispersion relations.30–32 For transverse

or shear acoustic waves in liquids, instead, there is no propagation below a characteristic

wavenumber. Indeed, there is an onset value of k, that we shall denote kg, above which

these modes can propagate in liquids, known as the k-gap,2 again a result due originally to

Frenkel,1 and recently demonstrated by Trachenko and co-workers.33,34

Following the analytical steps presented in Ref.,35 we arrive at the following expression

for the frequency-dependent storage modulus G′,

G∗(ω) =G∞ −B
∫ kD

1
L

ω2
p,L(k)

ω2
p,L(k)− ω2 + iων

k2dk (3)

−B
∫ kD

kmin

ω2
p,T (k)

ω2
p,T (k)− ω2 + iων

k2dk,

where the first integral represents the nonaffine (negative or softening) contribution due to

longitudinal (L) acoustic modes, while the second integral represents the nonaffine (also

softening) contribution due to the transverse (T) acoustic modes. In the above expres-

sion, kmin = max
(
kg,

1
L

)
is an “infrared” cutoff for the transverse modes, with kg the

onset wavenumber for transverse phonons in liquids (the k-gap), and L the confinement

length. In the above treatment, the assumption of plane waves in 3D implies the condition
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√
k2x + k2y + k2z = k = 2π/λ, which leads to the spherical integrals of Eq. 3, with the metric

factor k2.

For the longitudinal modes, one can resort to the Hubbard-Beeby theory of collective

longitudinal modes in liquids,30 which has been shown to provide a good description of

experimental data, and thus use Eq. (43) from Ref.30 for ωp,L(k) inside the integral above.

As shown in Ref.,35 the final result for the low-frequency G′ does not depend on the form of

the ωp,L(k) dispersion relation. However, for the mathematical completeness of the theory

it is important to specify which analytical forms for the dispersion relations can be used.

Anyway, upon taking the real part of G∗, which gives the storage modulus G′, and fo-

cusing on low external oscillation frequencies ω � ωp used experimentally, in both integrals

numerator and denominator cancel out, leaving the same expression in both integrals. There-

fore, as anticipated above, the final low-frequency result does not depend on the actual form

of ωp,L(k), nor of ωp,T (k), although the latter, due to the k-gap, plays an important role (see

the expression for kmin above) in controlling the “infrared” cutoff of the transverse integral.

In the experiments where the size effect of confinement is seen, kg � 1
L

,36 and kmin = 1
L

,

thus leading to

G′ = G∞ − α
∫ kD

1/L

k2dk = G∞ −
α

3
k3D +

β

3
L−3. (4)

For the lower limit of the nonaffine integral we used an infrared cutoff

kmin ≡ |kmin| = 2π
√

(1/Lx)2 + (1/Ly)2 + (1/L)2. (5)

Upon assuming that the liquid is confined in the z direction, such that L ≡ Lz � Lx, Ly, the

lower limit in the nonaffine integral over k-space thus reduces to 1/L, as displayed in Eq. 4.

In Eq. 4, the only term which depends on the system size is the last term, while α, β are

numerical prefactors. In liquids that are in thermodynamic equilibrium, a different version of

the nonaffine response formalism called stress-fluctuation formalism can be used (the two ver-

sions have been shown to be equivalent in Ref.37) in combination with standard equilibrium
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statistical mechanics. It has been shown in Ref.38 that the affine or high-frequency (Born)

term G∞ and the negative nonaffine term (here, −α
3
k3D) cancel each other out exactly, such

that G′(ω → 0) = 0 for L → ∞ (bulk liquids). Therefore, for liquids under sub-millimeter

confinement, only the third term in the above equation survives, and we finally obtain

G′ ≈ β′L−3 (6)

where β′ = β/3 is a numerical prefactor. This law has been derived for the first time in

Ref.35 It is worth noticing that G∞ is independent of L. This fact can be seen, e.g. through

the Zwanzig-Mountain formula where the main contribution to G∞ is given as an integral

that contains dV (r)/dr as a multiplying factor in the integrand, with dV (r)/dr = 0 after

few molecular diameters. This, in turn, implies that no dependencies on length-scales much

larger than the nearest-neighbour cage can be present in G∞.

The above theory clarifies that the liquid confinement between two plates is able to “re-

move” certain low-frequency normal mode collective oscillations of molecules, associated with

the nonaffine motions (i.e. negative contributions to the elasticity), which are responsible for

the fluid response of liquids under standard macroscopic (“unconfined”) conditions. These

motions are responsible for reducing the shear modulus basically to zero in macroscopic liq-

uids. Under confinement, instead, the shear modulus is non-zero because these collective

oscillations modes are suppressed, and the theory of Zaccone and Trachenko35 provides the

universal law by which the shear modulus grows upon reducing the confinement (gap) size.

In particular, the static shear modulus grows with the inverse cubic power of the gap size.

In Ref.,35 the law G′ ∼ L−3 was found to provide a perfect description of experimental

data measured in an isotropic liquid crystal system (PAOCH3) upon varying the confinement

length using a conventional rheometer. Here, we show that this law is truly universal and

we present theoretical fittings of several, very different, systems in Fig. 3.

In all these systems, i.e. short chain polymers, isotropic liquid crystals, ionic liquids
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(a)

(c)

(b)

(d)

Data of Mendil et al. EPJE 2006 Data of Mendil-Jakani et al. JPCL 2013

Data of Collin & Martinoty Physica A 2003

Data of Li & Riedo PRL 2008

Figure 3: Experimental data of low-frequency shear modulus G′ versus confinement length
L for different systems, where circles represent experimental data while the solid line is the
law G′ ∼ L−3 derived in Ref.35 (a) shows the comparison for PAOCH3, an isotropic liquid
crystal system from Ref.;10 (b) shows the same comparison for ionic liquids, from Ref.;8 (c)
shows experimental data for short-chain (non-entangled) polystyrene melts from Ref.;13 (d)
shows experimental data for nanoconfined water from Ref.14

12



and even nano-confined water, the law Eq. 6 appears robust, as shown in Fig. 3. In

the case of nano-confined water14 one would expect a crossover from ∼ L−3 into a L−1

regime once that a 2D monolayer is reached. This is expected because the k-space integral

in Eq. 4 contains a metric factor k in 2D, instead of k2 for 3D (in fact, kd−1 for generic

d-dimensional space). This crossover is not seen in the data of Fig. 3(d), which calls

for further investigations, both experimentally and theoretically. Experimental data have

also been reported for ortho-terphenyl (OTP), an organic liquid (data not shown here).

Those data also show the ∼ L−3 behaviour, but the data at shortest confinement length,

∼ 0.01mm, suggest the possible existence of a plateau upon going towards lower L, while the

experimental accuracy lowers as the confinement increases. The paucity of experimental data

does not allow for drawing a definitive conclusion on this effect (i.e. the possible existence

of a plateau in G′ at low L in certain systems), which should also be the object of further

investigation, both experimentally and in theory.

As mentioned earlier, a crucial role is played by the surface anchoring. The solid-like

response of confined liquids is indeed observed mainly for atomically smooth surfaces (crystal

planes) or for conditions of good wetting between liquid and solid surface (high energy

surfaces). Instead, a standard purely viscous response is reported for non-wetting or poorly

wetting surfaces; see Fig. 4 for a schematic illustration of two different surface wetting

conditions. The same observation has been made in the case of nano-confined water, with a

substantially higher viscosity measured in the case of good wetting in Ref.15

From the theoretical point of view, this fact can be explained by referring to the nonaffine

lattice dynamic framework summarized above. In particular, wettability connects with the

assumption of plane waves and with the implicit null boundary conditions for the displace-

ment field of plane waves. This leads straightforward to the term ∼ L−3 in Eq. 4 above,

which is the term responsible for the solid-like elastic response. Without the full wetting

boundary conditions between the liquid and the solid surface, the liquid molecules would not

be well-anchored to the solid surface, so the null boundary condition for the acoustic waves
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Figure 4: Schematic illustration of different levels of surface interaction between liquid
molecules and solid substrate. A not so strong attractive interaction leads to partial wet-
ting (left panel), whereas a strong attractive interaction with the solid surface leads to total
wetting filling in the rough edges (right panel).

would not apply, and the very existence of elastic plane waves would then be called into

question. Certainly, the above theoretical framework would not be applicable in that case

as it relies on the ability of the liquid to support plane waves. We can speculate that when

molecules are not anchored to the solid surface, the effective “removal” of softening nonaffine

motions due to confinement is less effective, hence the rigidifying effect of “cutting” nonaffine

motions off due to confinement would not be active. A more precise explanation may require

a different theoretical approach, possibly working in eigenfrequency domain rather than in

k-space, and is an interesting problem for future research.

A number of outstanding questions remain open for future investigations. For example,

it could be interesting to explore what kind of connection exists between the above scenario

of solid-like elasticity of confined liquids and the glass transition under confinement. The

latter is an intensively studied problem, especially in the context of thin polymer films.39,40

Another important issue, is the progress that can be done with numerical simulations. In

molecular dynamics (MD), the shear modulus of a confined liquid can be measured but the

noise is currently too large (since the size MD simulated systems is small) to make predictions

for most realistic situations.41 Another issue is represented by the small time-step used espe-
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cially in atomistic simulations (on the order of femtoseconds), which prevents accessing the

low-frequency shear modulus. Quasi-static deformation methods implemented atomistically

could be a step forward but they have not demonstrated quantitative predictive power thus

far, in comparison with experiments. Also, the power-law nature of the relation G′ ∼ L−3

implies the absence of characteristic length-scales (typical of power-laws), which suggests

that the same mechanisms apply at different length-scales, i.e. the same laws apply with L

being in the sub-millimeter, micron or nano-scale. Similarities between trends observed for

sub-millimeter10 and nano-confined fluids,14,15 both in terms of solid-like mechanical prop-

erties and role of wetting,42 suggest that this may indeed be the case, but further research

is required to more firmly establish a complete multi-scale framework.

The potential applications of solid-like elasticity of confined liquids, and its tuneabil-

ity via the control and modulation of the interfacial energy and gap size L, are manifold,

encompassing fields as diverse as mechanical stress-assisted manipulation of soft and biolog-

ical matter in microfluidics,43? protective equipment,44 biomedical flow applications,45 oil

recovery,46 and heat transfer in microengineering applications. Recently, it has been demon-

strated that the thermal response of confined liquids is very similar to that of solids,47 which

opens up new opportunities for exploiting thermoelasticity of confined fluids, e.g. for energy

conversion.

Finally, another potential exciting application of this effect is in the emerging field of

mechanochemistry48–51 and mechanobiology:52 a (confined) liquid with a finite low-frequency

shear modulus G′ is able to support mechanical stress-transmission much more efficiently and

with much lower dissipative losses compared to standard viscous liquids. This fact may open

up new avenues for mechanically-induced enhancement of chemical reaction kinetics, by

combining the force-transmission efficiency typical of elastic solids with all the favourable

solvation and solubility properties of liquids.53–56
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(38) Wittmer, J. P.; Xu, H.; Polińska, P.; Weysser, F.; Baschnagel, J. Shear modulus of

simulated glass-forming model systems: Effects of boundary condition, temperature,

and sampling time. Journal of Chemical Physics 2013, 138, 12A533.

(39) Napolitano, S.; Glynos, E.; Tito, N. B. Glass transition of polymers in bulk, confined

geometries, and near interfaces. Reports on Progress in Physics 2017, 80, 036602.
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