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The kinetics and dynamics of the collisional electronic quenching of O(1D) atoms by Kr

has been investigated in a joint experimental and theoretical study. The kinetics of quench-

ing was measured over the temperature range 50 – 296 K using the Laval nozzle method.

O(1D) atoms were prepared by 266 nm photolysis of ozone, and the decay of the O(1D)

concentration was monitored through vacuum ultraviolet fluorescence at 115.215 nm, from

which the rate constant was determined. To interpret the experiments, a quantum close-

coupling treatment of the quenching transition from the 1D state to the 3P j fine-structure

levels in collisions with Kr, and also Ar and Xe, was carried out. The relevant potential en-

ergy curves and spin-orbit coupling matrix elements were obtained in electronic structure

calculations. We find reasonable agreement between computed temperature-dependent

O(1D)–Rg (Rg = Ar, Kr, Xe) quenching rate constants and the present measurements for

Kr and earlier measurements. In particular, the temperature dependence is well described.
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I. INTRODUCTION

The collisional de-activation of electronically excited O(1D) atoms is an important process in

the chemistry of the earth’s atmosphere. The ultraviolet photolysis of ozone in the stratosphere

and troposphere leads to the production of oxygen atoms in this excited state, as well as in the

ground 3P state. The relatively low steady-state concentration of O(1D) atoms in the atmosphere

is controlled by the rate of photolytic production and loss by collisional electronic quenching.

While not as relevant for atmospheric chemistry as de-activation by and chemical reaction with

molecular collision partners, the quenching of O(1D) by rare gas (Rg) atoms is a relatively simple

collisional process and has attracted much interest:

O(1D) + Rg→ O(3P j) + Rg (1)

In Eq. (1), the subscript j denotes that the quenched O(3P) atoms can be formed in the fine-

structure levels with angular momenta j = 2, 1, and 0.

The rate constant for the electronic quenching of O(1D) by the light rare gases is known to be

small.1 There have been a number of measurements of the O(1D) quenching rate constant by the

heavier rare gases Ar (Refs. 2–5), Kr (Refs. 2–4), and Xe (Refs. 2 and 3) for temperatures ranging

from ∼ 400 K down to 50 K. Garofalo et al.6 investigated the dynamics of the quenching of O(1D)

by Xe atoms in a molecular beam experiment through measurement of the differential cross section

of the quenched O(3P) atoms. They found marked large-scale oscillations in the angle-resolved

scattering of the O(3P) and Xe products. To interpret these intriguing observations, Dagdigian,

Kłos, and Alexander7 carried out time-independent quantum close-coupling calculations describ-

ing this quenching process, employing computed potential energy curves and spin-orbit coupling

matrix elements. Comparison of the experimental and theoretical results showed that the oscil-

lations are caused by Stueckelberg interferences, in which the quantum phases of the multiple

quenching pathways interfere constructively and destructively.

Similarly, there have been measurements of the electronic quenching of the isovalent S(1D)

atom by Ar atoms8 and other species.9,10 In the recent work by Lara et al.,8 the rate constant for

quenching of S(1D) by Ar was measured as a function of temperature from 298 down to 5.8 K. This

rate constant was compared with a theoretical rate constant computed through quantum scattering

calculations using calculated S(1D,3 P) potential energy curves and spin-orbit matrix elements.

Previous measurements of the rate constant for electronic quenching of O(1D) by Kr have been

reported down to a temperature of 113 K.2 In the present study, we report measurement of this
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rate constant from 50 to 296 K. As a compliment to our measurement and previous determinations

of the rate constants for the quenching of O(1D) by the heavy rare gases, we have also com-

puted integral cross sections and rate constants for quenching by Ar, Kr, and Xe. We employed

the previously computed7 O(1D,3 P) potential energy curves and spin-orbit matrix elements and

have carried out here similar calculations for O(1D,3 P)–Kr and O(1D,3 P)–Ar. We find that the

energy-dependent cross sections for all three collision pairs show many sharp peaks, that are most

prominent for Kr and Ar as the collision partner. We show that these peaks are resonances that are

quasi-bound by the centrifugal barrier at the highest partial wave that contributes to the quenching

cross section.

This paper is organized in the following manner. Section II presents the experimental method

and results on the measurement of the O(1D) quenching rate constant by Kr. Sections III A and

III B describe the ab initio calculation of the O(1D,3 P)–Kr, Ar potential energy curves and spin-

orbit matrix elements and the details about the scattering calculations, respectively. Section III C 1

presents and interprets the computed cross sections for electronic quenching of O(1D) by Kr and

Ar. The computed O(3P) fine-structure relative populations formed in the quenching by Kr are

compared with a measurement by Matsumi et al.11 in Sec. III C 2. Section III C 3 presents com-

puted temperature-dependent rate constant for the quenching of O(1D) by Ar, Kr, and Xe and

compares these with the experimental measurement. A discussion follows in Sec. IV.

II. EXPERIMENT

A. Methods

The experimental part of this work was performed using a supersonic flow (Laval nozzle) reac-

tor operating in continuous mode. A detailed description of the apparatus can be found in earlier

work.12,13 Three different axisymmetric nozzles were employed during this investigation, allowing

generation of flows at three different fixed low temperatures (50 K, 75 K, and 127 K), each with a

uniform density profile and a constant velocity. Although we have a range of Laval nozzles avail-

able with Ar, N2 and N2/SF6 mixtures as the carrier gases, only Ar based nozzles could be used in

this study due to the efficient non-reactive quenching of O(1D) by N2 below room temperature.5,14

The supersonic flow characteristics of these nozzles are presented in Table 1 of Grondin et al.5

and were obtained in separate calibration experiments. In these experiments, the Mach number
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(the ratio of the flow velocity to the speed of sound for the specific carrier gas at the local tem-

perature) was determined from standard isentropic flow equations relating the stagnation pressure

(reservoir pressure) and the impact pressure obtained with a Pitot tube inserted into the supersonic

flow. Measurements were also performed at room temperature by operating without a nozzle and

by throttling the pumps to reduce the flow velocity, thereby eliminating temperature and pressure

gradients within the reactor.

Electronically excited state O(1D) atoms [in addition to coproducts O2(a1∆g)] were created

directly in the supersonic flow by the 10 Hz pulsed laser photolysis of ozone (O3) at 266 nm with

energies around 25 mJ, in a 6 mm diam beam. This process is known to occur with a quantum yield

of approximately 0.9 (Ref. 15) at this wavelength, with O(3P) and O2(X3Σ−g ) as minor photolysis

products. Ozone was generated by the ultraviolet (UV) irradiation by a high-pressure mercury

lamp of pure O2 flowed continuously into a quartz cell upstream of the reactor. The cell itself was

maintained at high pressure (700 Torr), thereby promoting O3 formation through the O(3P) + O2

+ M recombination reaction. The effluent of the cell (essentially O2 with a small percentage of

O3) was then mixed with the carrier gas Ar and the co-reagent gas Kr and carried into the Laval

nozzle reservoir.

O(1D) atoms were probed directly in this work by pulsed vacuum ultraviolet laser induced

fluorescence (VUV LIF) through the 3s 1D – 2p 1D transition at 115.215 nm. The procedure

to generate tuneable VUV light, as well as to detect resonant VUV emission, are described in

previous work.5,16,17

The O(1D) VUV LIF signal was followed as a function of delay time between photolysis and

probe lasers, with a boxcar integration system coupled to a PC used for signal acquisition and

processing. Both lasers and the acquisition electronics were synchronized using a digital delay

generator. A total of 30 laser shots were recorded at each time interval, with a least 70 time

intervals used to establish the O(1D) decay profiles. In addition, at least 15 negative time points

(that is with the probe laser firing prior to the photolysis laser) were recorded for each decay profile

to set the baseline level. The gases O2 (99.999%), Ar (99.999%), Kr (99.999%) and Xe (99.998%)

were all used with no further purification during the present experiments. The co-reagent Kr

concentrations were determined from the product of its flow ratio (FKr / Ftot) and the supersonic

flow density. Calibrated mass flow controllers were used to drive the gas flows, with calibration

factors determined by a pressure rise at constant volume method for the specific gas used.
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FIG. 1. O(1D) VUV LIF signal as a function of delay time recorded at 127 K. (red solid circles) without

added Kr ([Ar] = 1.26×1017 cm−3); (blue solid squares) with [Kr] = 1.48×1016 cm−3. The solid red and

blue lines represent the best fit derived by fitting a single exponential decay function to the experimental

data points. Pseudo-first-order rates were extracted from the time constant of the fit.

B. Results

The concentration of Kr used in the experiments was always much greater than the O(1D)

concentration ([O2]max = 7.0×1013 cm−3 with [Kr]min = 1.3×1015 cm−3) so that the pseudo-first-

order approximation was valid at all temperatures. Under these conditions the O(1D) VUV LIF

signal decreased exponentially as a function of time according to the formula It = I0 exp(−k′t),

where It and I0 are the time dependent and initial O(1D) VUV LIF signals, respectively, and t is the

time. The quantity k′ is the pseudo-first-order loss rate for O(1D) atoms and contains contributions

from several different processes:

O(1D) + Kr→ O(3P) + Kr (2)

O(1D) + Ar→ O(3P) + Ar (3)

O(1D) + O2 → O(3P) + O2 (4)

O(1D) + O3 → products (5)

O(1D)→ diffusion (6)

such that k′ = kO(1D)−Kr[Kr] + kO(1D)−Ar[Ar] + kO(1D)−O2
[O2] + kO(1D)−O3

[O3] + kdiff. Some typical

O(1D) decay curves recorded at 127 K in the presence and absence of Kr are shown in Fig. 2.
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FIG. 2. Measured pseudo-first-order rate constants as a function of excess Kr concentration. Red open

circles: data recorded at 296 K; blue solid squares: data recorded at 50 K. The solid red and blue lines rep-

resent weighted fits to the respective data sets (see text for details), yielding the second-order rate constant

from the slope.

The O(1D) signal decays rapidly even in the absence of Kr [k′ = (7.58 ± 0.19)× 104 s−1 for the

red data points shown in Fig. 1] due to the efficient relaxation of O(1D) atoms by the carrier gas

Ar with a roughly temperature independent rate constant kO(1D)−Ar = 6.0 × 10−13 cm3 s−1 (Refs. 2

and 5). In this particular example, [Ar] = 1.26×1017 cm−3 [see Table 1 of Grondin et al. (Ref. 5)],

so that kO(1D)+Ar[Ar] = 7.56 × 104 s−1. The contributions of processes (4) – (6) are clearly quite

negligible with respect to processes (2) and (3) in this example and in all other decays, as already

argued by Grondin et al.5 When Kr is added to the system ([Kr] = 1.48×1016 cm−3 for the blue data

points in Fig. 1), O(1D) atoms decay much more rapidly, with a pseudo first-order rate constant

k′ = (1.78 ± 0.8) × 105 s−1.

Pseudo-first-order rate constants were determined over a wide range of different Kr concentra-

tions at each temperature. A plot of the pseudo-first-order rate constants against the corresponding

Kr concentrations yielded the second-order rate constant from a weighted linear least-squares fit

to the data. The second order plots obtained at 50 K and at 296 K are shown in Fig. 2.

In these experiments, the fits were weighted by the uncertainty derived by exponential fits to

first-order decay profiles such as those shown in Fig. 1. The large y-axis intercepts of these second-

order plots represent O(1D) loss essentially through reaction (3), as described above. In addition,

since large Kr flows were required in some of these experiments due to the relatively slow O(1D)

quenching rate, it was necessary to reduce the Ar flow rate to maintain a constant reservoir pressure
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(a prerequisite for experiments of this type for the Laval nozzle calibrations to be considered valid).

Consequently, as [Ar] decreased slightly with increasing [Kr], a small correction was applied to the

O(1D) first-order decay rates to compensate for the reduced relaxation by Ar. This correction was

given by the following formula: ([Ar]0 – [Ar]Kr) kO(1D)−Ar, where [Ar]0 is the nominal Ar density

for the specific nozzle, [Ar]Kr is the Ar density with added Kr, and kO(1D)−Ar is the measured second-

order rate constant for O(1D) removal by Ar.2,5 Adding this correction to the measured pseudo-

first-order rate constants resulted in an increase of less than 10% to the second-order rate constants.

The corrected second-order rate constants obtained for the O(1D) + Kr reaction are presented in

Table I, with other relevant information, and are displayed as a function of temperature in Fig. 3

along with earlier results.

TABLE I. Measured second-order rate constants for the O(1D) + Kr quenching reaction.

T / K Na [Kr] / 1015 cm−3 kO(1D)−Kr / 10−12 cm3 s−1

296 42 0–26.6 7.8±0.8c

127±2b 40 0–13.5 7.3±0.8

75±2 36 0–12.2 6.1±0.7

50±2 39 0–16.6 6.8±0.7

a Number of individual measurements.

b Uncertainties in the calculated temperatures represent the statistical (1σ) errors obtained from Pitot

tube measurements of the impact pressure as a function of distance from the Laval nozzle.

c Uncertainties on the measured rate constants represent the combined statistical (1σ) and estimated

systematic (10%) errors.

III. THEORY

A. Electronic structure calculations

In order to perform quenching scattering calculations, we need information on the potential

energy curves (PEC’s) and spin-orbit matrix elements for the interaction of closed-shell 1S rare

gas atoms with the oxygen atom in its ground 3P and first excited 1D electronic states. We employ

similar computational methodology to that described in earlier work on O(1D,3 P)–Xe quench-
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FIG. 3. Rate constants for the O(1D) + Kr quenching reaction as a function of temperature. Experimental

results: red filled circles: this work; blue squares, Davidson et al. (Ref. 2); green triangle, Shi and Barker

(Ref. 3); cyan diamonds, Blitz et al. (Ref. 4). Computed value: black line, this work.

ing by Dagdigian et al.7 Similarly to O–Xe, the O–Kr and O–Ar interactions with O(1D) and

O(3P) atoms will give rise to three and two unique non-relativistic PEC’s, respectively. The non-

relativistic O(3P)–Rg interaction is described by three (two unique) adiabatic curves, one of 3Σ−

symmetry and the second (doubly degenerate) of 3Π symmetry. The O(1D)–Rg non-relativistic

interaction is described by five PEC’s (three unique) belonging to 1Σ+, 1Π (doubly degenerate) and

1∆ (doubly degenerate) representations. We use the MOLPRO suite of programs18 to obtain all of

these PEC’s from first principles calculations.

As in our work on O–Xe quenching,7 we perform two sets of ab initio calculations of the O–Kr

and O–Ar PEC’s. The first set is based on the multi-reference configuration interaction with single

and double excitations19,20 method with a correction for quadruple excitations21 (MRCISD+Q).

The MRCISD+Q calculations also provide necessary spin-orbit coupling terms between all the

electronic states considered in the O–Rg systems. The second set employs the spin unrestricted

coupled-cluster method with single, double and non-iterative triple excitations [UCCSD(T)]. The

UCCSD(T) method describes well all the potential energy curves except the one for the 1Π state.7

For that state we will use the PEC obtained from the set of MRCISD+Q calculations.

We perform all-electron ab initio calculations. In these, we have to account for the scalar

relativistic effects that can be important for the Kr atom. For this reason we employ the aug-
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mented correlation-consistent polarized quadruple and quintuple zeta atomic basis sets designed

for Douglas-Kroll relativistic calculations [aug-cc-pvqz-DK in the MRCISD and aug-cc-pv5z-DK

in the UCCSD(T) calculations].

The MRCISD calculations were started from the state-averaged multiconfiguration self consis-

tent field calculations (MCSCF). The active space employed in the MCSCF calculations included

15 core orbitals, 5 closed (doubly occupied), but correlated, orbitals, and three active p orbitals of

the oxygen atom. The states of Σ, Π and ∆ symmetry were obtained by applying the projection

operator methodology implemented in the MOLPRO program, ensuring that the wavefunctions

are eigenvectors of the L2 operator.

To determine the UCCSD(T) interaction energies that describe the PEC’s, we use the super-

molecular method in which we correct for the basis set superposition error by applying the coun-

terpoise procedure of Boys and Bernardi22 (all total energies calculated in the dimer basis set).

In the case of the MRCI calculations, the lack of size-consistency of the method is remedied by

subtracting the interaction energy at a large (R = 30a0) O–Rg separation . The correction for

quadruple excitations in the MRCI calculations accounts, partially, for higher excitations, and

helps to reduce the size-consistency error.

Figure 4 displays the potential energy curves for all the O(3P,1 D)–Kr, Ar states. As in the case

of O–Xe,7 we see that the 1Σ+ state is the most strongly bound singlet state for both complexes.

For this state, the O 2p orbital aligned along the internuclear axis is vacant. The binding energy

of this state is the smallest for O–Ar, significantly larger for O–Kr, and larger still for O–Xe

[De = 13365.8 cm−1].7 The other electronic states have shallow van der Waals wells. The 1∆ and

3Σ− states are the most repulsive; for these states the O 2p orbital aligned along the internuclear

axis is doubly occupied.

The values of the dissociation energies De and equilibrium internuclear separations Re for the

computed O–Kr and O–Ar triplet and singlet states are listed in Table II. We compare the val-

ues of De and Re the triplet states calculated in this work with empirically determined values of

these parameters derived by Aquilanti et al.23 The latter were obtained in molecular beam exper-

iments employing magnetically state-selected O(3P) atoms. The agreement of the computed and

experimental values is quite good.

There have been a number of previous calculations on the triplet states of O–Kr and O–Ar.24–30

The most recent of these calculations on O–Kr, which used the RCCSD(T) method with a variety

of basis sets obtained the values Re = 7.417a0 and De = 58.3 cm−1 for the 3Σ− state and Re =
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TABLE II. Computed dissociation energies [De, in cm−1] and equilibrium internuclear separations [Re, in

a0] for the electronic states of OKr and OAr.

State OKr OAr Empirical OKra Empirical OAra

De Re De Re De Re De Re

O(3P) + Rg

3Σ− 54.3 7.453 46.3 7.201 71.0 ± 7.1 7.65 ± 0.15 58.1 ± 5.8 7.28 ± 0.14

3Π 100.2 6.540 82.7 6.349 105.7 ± 10.6 6.75 ± 0.14 83.9 ± 8.4 6.52 ± 0.13

O(1D) + Rg

1Σ+ 7150.7 3.476 3129.2 3.366 - - - -

1Π 81.7 6.615 61.6 6.524 - - - -

1∆ 54.4 7.342 46.9 7.082 - - - -

a Potentials derived from the scattering experiments of Aquilanti et al. (Ref. 23).
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6.516a0 and De = 100.7 cm−1 for the 3Π state. Our values are in good agreement with these

results.

As noted previously,7 there are nine and five spin projection states for the oxygen 3P and 1D

states, respectively. The matrix elements of the 14 × 14 spin-orbit matrix expressed in a Cartesian

basis were calculated at the MRCISD level using the MOLPRO suite of programs.18,31 There are

two unique matrix elements describing the spin-orbit coupling within the 3P state and five such

matrix elements describing the spin-orbit coupling between the 1D and 3P states. These matrix

elements, which are defined in Ref. 7, for O–Kr and O–Ar are plotted in Fig. 5. We see in Fig. 5

that the matrix elements deviate significantly from their asymptotic values when the internuclear

separation R becomes small. A similar effect was seen for O–Xe; however, the deviation from

the asymptotic values was much larger. We do see in Fig. 5 that the spin-orbit matrix elements

for small R are larger for Kr than for Ar. We certainly expect that the spin-orbit matrix elements

would follow in the order O–Ar < O–Kr < O–Xe, going down the column of the rare gases in the

periodic table.

The quenching of O(1D) by a rare gas can, in principle, be mediated by three different singlet-

triplet crossings, namely between (1) the 1Σ+ and 3Π states, (2) the the 1Σ+ and 3Σ− states, and (3)

the 1Π and 3Σ− states. Based on our previous work on O–Xe,7 we expect that the first crossing,

which lies considerably below the O(1D) + Rg asymptote (denoted with small magenta circles in

Fig. 4) will dominate the quenching by Kr and Ar. The second crossing also lies below the singlet

asymptote and can also contribute to the quenching. In O–Xe, the third crossing lies ∼ 2000 cm−1

above the singlet asymptote and contributes, in this system, to quenching only at high collision

energies.7. By contrast for O–Kr and O–Ar, this crossing lies much higher above the singlet

asymptote, out of the range of the energies considered here (plotted in Fig. 4).

B. Scattering formalism

The formalism for quantum scattering to describe the collision-induced 1D → 3P transition

in the oxygen atom has been presented previously.7,32 We provide a brief description here. The

Hamiltonian for the O–Rg system can be written in atomic units (~ = 1) as

Ĥ(R, q) = −
1

2µR2

d2

dR2
+

l2

2µR2
+ Ĥel(q) + V(R, q) + ĤSO(R, q) (7)
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1Πy〉, and Bxd ≡ 〈
3Πx|LxS x |

1∆〉.

where R is the vector separating the atoms, q represents the electronic coordinates, µ is the col-

lision reduced mass, and l is the orbital angular momentum. The term Ĥel(q) is the energy of the

isolated O(3P,1 D) atom, and V(R, q) is the electrostatic interaction between the atoms; the latter

approaches zero as R becomes larger. The term ĤSO(R, q) describes the spin-orbit interaction in

the O atom; this term is affected by the approach of the rare gas atom.

The electronic part of the scattering wave function at large R is described by the quantum

numbers L, S , and j, namely the electronic, spin, and total angular momentum, respectively, of

the oxygen atom. We express the scattering wave function in the space frame (SF) as

|LS jlJM〉 =
∑

m jml

〈 jm jlml| jlJM〉|LS jm j〉|lml〉 (8)

where J and M are the total angular momentum and its space-fixed projection, respectively, and l
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is the orbital angular momentum.

The matrix elements of V(R, q) and ĤSO(R, q) are computed in the body frame, as described

in Sec. III A. The body-frame (BF) basis functions can be transformed to the SF basis with the

following transformation, which has been described in detail previously:33

|LS jlJM〉 =

(

[l][J]

4π

)1/2

(−1)J
∑

Ω

(−1)Ω



















l j J

0 Ω −Ω



















DJ∗
MΩ(φ, θ, 0)|LS jΩ〉 (9)

Here, [x] = 2x + 1, the D is a rotation matrix element,34, and Ω is the body-frame projection of

J and j. The spin-orbit operator mixes the Ω = ±2 components of the isolated 3P and 1D states;

this mixing must be taken into account in describing the asymptotic atomic states. We compute

the spin-orbit interaction in Eq. (7) as ĤSO(R, q) − ĤSO(R = ∞, q) so that this interaction goes to

zero for large R.

The matrix elements of Vel(R, q) ≡ V(R, q)+ ĤSO(R, q) are diagonal inΩ in the BF basis. Using

Eq. (9), we can express the SF matrix elements of Vel(R, q) in the following way:

〈L′S ′ j′l′JM|Vel(R, q)|LS jlJM〉 = ([l′][l])1/2

×
∑

Ω



















l′ j′ J

0 Ω −Ω





































l j J

0 Ω −Ω



















〈L′S ′ j′Ω|Vel(R, q)|LS jΩ〉 (10)

The BF matrix elements of V(R, q) for the 3P state are given in Ref. 33; these matrix elements for

the 1D state equal

〈LSΩ|V(R, q)|LSΩ〉 = VΛ=Ω(R) (11)

The BF matrix elements of ĤSO(R, q) are given in the Appendix of Ref. 7.

Time-independent quantum scattering calculations for the O–Rg systems were performed with

the HIBRIDON suite of programs.35 Convergence of the cross sections was checked with respect

to the sector width in the radial integration and the number of partial waves. Partial waves up to

J = 280 were included in the calculations. The cross sections were computed on a 1 cm−1 spacing

for total energies less than 2000 cm−1 and a spacing of 2 cm−1 for energies between 2000 and 5000

cm−1.
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C. Calculations

1. Cross Sections

Figure 6 displays the integral cross sections for formation of the individual 3P j fine-structure

levels, as well as the sum of these fine-structure dependent cross sections, as a function of collision

energy for the quenching of O(1D) by Kr and Ar. The cross sections show slow oscillations in

magnitude as a function of the collision energy, as well as superimposed sharp features. This

behavior is similar to what we observed for the energy dependence of the O–Xe quenching cross

sections,7 except that the sharp features are much more prominent for O–Kr and O–Xe. It can be

seen that over the range of collision energies investigated only the 3P j, j = 2 and 0, fine-structure

states are significantly populated in the quenching of O(1D) by Kr and Xe. This is in contrast to the

quenching of O(1D) by Xe,7 for which the 3P1 state is formed with significant yield for collision

energies greater than approximately 2000 cm−1. For this system, quenching to form the 3P1 state

can occur through the crossing of the 1Π and 3Σ− states. As discussed in Sec. III A, this crossing

lies too high to be accessible in O–Kr and O–Ar collisions.

The sharp features in the energy dependent cross sections plotted in Fig. 6 are intriguing. Sim-

ilar sharp features were observed in computed energy dependent cross section for intramultiplet

transitions in collisions of O(3P j) fine-structure levels with rare gases.29 Figure 7 displays a plot,

over a narrower energy range, of the energy dependent cross sections, summed over the O(3P j)

fine-structure levels, for the quenching of O(1D) by Kr. Since the sharp features appear for each

final level, for clarity we plot only the cross section summed over the fine-structure levels. We

see that there are several lines of features, with the widths within a given series increasing as a

function of the collision energy.

To gain insight into the origin of these features, it is convenient to consider the simpler 2-state

model that we employed to understand the origin of oscillations in the differential cross section

for the electronic quenching of O(1D) by Xe.7 As in the case of O(3P)–Xe, the dominant coupling

enabling the quenching is between the 1Σ+ state and the Ω = 0+ component of the 3Π state. We

consider just these two diabatic potential energy curves, along with a Gaussian coupling (in units

of cm−1):

V12(R) = 103 exp [−α(R − Rc)
2] (12)

where Rc = 3.825a0 is the crossing between the two diabatic curves (circled in magenta in the
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FIG. 6. Integral cross sections for the quenching of O(1D) by (a) Kr and (b) Ar to the individual O(3P j)

fine-structure as a function of the collision energy. Also plotted is the cross section summed over the fine-

structure levels.

left-hand panel of Fig. 4), V12(R) at R = Rc was set to the value of the spin-orbit coupling between

the two curves, and the width parameter α was set to 1.0a0.

Figure 8(a) presents a plot of the energy dependent quenching cross section computed within

this 2-state model. The energy dependence of the cross section is remarkably similar to the cross

sections computed with the full set of potentials. Again, we see a number of series of sharp

features. The magnitude of the cross sections is larger than in the full calculations, but the size of

the cross sections in the 2-state model is arbitrary and just depends upon the strength and range of

the assumed coupling.

Figure 8(b) displays an expanded plot over the narrow energy range. The widths of the features
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FIG. 7. Expanded plot of the integral cross section for the quenching of O(1D) by Kr, summed over the

O(3P j) fine-structure levels as a function of the collision energy.

within a given series are seen to increase with increasing energy. It is useful and revealing to

plot the partial cross sections, namely the cross section for each partial wave of total angular

momentum J for energies on and off a given feature. Figure 9 displays partial cross sections for

a collision energy of 1135 cm−1, at a sharp feature, and a slightly lower collision energy of 1110

cm−1. For both collision energies, the partial cross sections drop abruptly to zero at the highest

partial wave. Above this value of the total angular momentum J, the centrifugal barrier becomes

greater than the collision energy, and the crossing region can no longer be accessed. Tunneling is

not important for these systems since the reduced mass is relatively large (µ = 13.42 amu).

We see that for the sharp feature at a collision energy of 1135 cm−1 the partial cross section for

the highest partial wave (J = 106) makes the dominant contribution to the integral cross section

and yields a much higher integral cross section than at the slightly lower collision energy. We

have examined the partial cross sections for collision energies corresponding to many of the sharp

features. In all cases, the partial cross sections for the highest partial wave makes the dominant

contribution to the integral cross section. The largest total angular momenta J, that make the

dominant contribution, are indicated for the peaks in Fig. 8.

We can show that the sharp features are due to resonances by examining the scattering wave

functions. Figure 10 displays the 1∆ component of the scattering wave function for several partial

waves at a collision energy of 1135 cm−1, which is the energy of one of the sharp features in Fig.

8. The bottom panel of Fig. 10 displays the potential energy curves of the 1Σ+ and 3Π states, as
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indicate the total angular momentum J of the dominant, and highest, partial wave contributing to the integral

cross section at that energy.

well as the adiabatic potentials for total angular momentum J = 106, which makes the dominant

contribution to the integral cross section at this energy. The collision energy is indicated in this

panel with a horizontal line. It can be seen that this energy is very slightly smaller than the height

of the centrifugal barrier.

It is interesting to compare the amplitude of the 1∆ component of the scattering wave function

inside and outside the centrifugal barrier. For the highest, and dominant, partial wave (J = 106)

that contributes to the integral cross section, the amplitude is considerably enhanced inside the

barrier. This implies that the collision complex is quasi-bound, and hence there is a greater prob-

ability for quenching to the 3P state. For a lower partial wave, J = 101, the centrifugal barrier

is significantly less than the collision energy, and the amplitude of the 1∆ component is slightly

smaller inside the barrier than outside. The next partial wave, J = 107, after the dominant partial
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and (b) 1110 cm−1.

wave (J = 106), is seen in Fig. 10 to have a very small amplitude inside the barrier. Hence, this

partial wave contributes negligibly to the electronic quenching. As noted previously, the reduced

mass of the OKr collision pair is large enough that tunneling is not significant.

We have examined the scattering wave functions for collision energies corresponding to other

peaks in the integral cross sections. In all cases, the amplitude of the 1∆ component of the scat-

tering wave function at these energies is enhanced relative to its amplitude outside the barrier. We

can conclude that the peaks in the energy dependent quenching cross sections are due to reso-

nances. The lifetimes of the quasi-bound states are proportional to the inverse of the widths of the

peaks; the increasing widths of the resonances within a given series implies that the lifetime of the

quasi-bound complex is correspondingly decreasing. The number of nodes of the the 1∆ compo-

nent inside the barrier is the same (and is equal to 13) for the peaks marked in Fig. 8(b). Hence,

these resonances can be described as representing different rotational levels of a quasi-bound vi-

brational level. We have not carried out an analysis of all the resonances in the energy-dependent
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the 1Σ+ and 3Π states in the 2-state model and adiabatic energies E1 and E2 for total angular momentum

J = 106. Also plotted in the bottom panel is the total energy for a collision energy Ec = 1135 cm−1.

cross section.

It can be inferred from Figs. 6, 7, and 8 that the strength of the resonances, as reflected in

the integral of the individual resonances, varies as a function of the collision energy. This reflects

the tuning of the height of the centrifugal barrier for the last partial wave relative to the collision

energy. These energies must be closely matched in order to have resonance-enhancement of the

quenching cross section.
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2. Comparison with VUV Experiment

Matsumi et al.11 utilized VUV LIF in a cell to determine the O(3P j) fine-structure state distribu-

tion in the quenching of O(1D) in collisions with several atomic and molecular collision partners.

In their experiment, O(1D) atoms were prepared by 193 nm photolysis of N2O, and the state dis-

tributions were determined by extrapolation to zero delay between the photolysis and probe lasers.

For quenching by Kr, they estimated the nascent state branching ratios to be j = 0/ j = 2 =

0.33 ± 0.05 and j = 1/ j = 2 equal 0.45 ± 0.07 at an estimated nascent average collision energy

of 14.7 kcal mol−1, or 5141 cm−1. For this collision energy, we compute the following branching

ratios: 1.126 for j = 0/ j = 2 and 0.073 for j = 1/ j = 2. There is hence significant disagreement

between the experimentally measured and computed state branching ratios. We have no explana-

tion for this disagreement. On the experimental side, perhaps there was more collisional relaxation

of the nascent state distribution than anticipated. Also, the relative detection efficiency for each

of the fine-structure levels must be determined; this was carried by interrogating a thermalized

sample of 3P j levels.

3. Rate Constants

We have employed the collision energy dependent cross sections for quenching of O(1D) to the

sum over all the O(3P j) fine-structure levels to determine the rate constants for O–Rg, where Rg =

Ar, Kr, and Xe. The relationship between the quenching cross sectionsσO(1D)−Rg and rate constants

kO(1D)−Rg is36

kO(1D)−Rg(T ) =

[

8

πµ(kBT )3

]1/2 ∫ ∞

0

EcσO(1D)−Rg(Ec)e
−Ec/kBT dEc (13)

where Ec is the collision energy and kB is the Boltzmann constant. The upper range of integration

was taken to be Ec = 5000 cm−1.

Figure 3 presents a comparison of our computed O(1D)–Kr quenching rate constant with the

experimental measurements of this rate constant, including the present measurements reported in

Sec. II B. Our computed rate constant is significantly lower than the experimental measurements.

However, the calculation does satisfactorily describe the temperature dependence of the experi-

mental data.

We compare in Fig. 11 experimental and our computed rate constants for O(1D) quenching by

Ar and Xe. In contrast to the comparison of experimental and computed O(1D)–Kr quenching
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FIG. 11. Experimentally measured and computed rate constants for the quenching of O(1D) by (a) Ar and

(b) Xe. Experimental values in panel (a): Red squares, Grondin et al. (Ref.5); blue squares, Davidson et

al. (Ref. 2); green triangle, Shi and Barker, upper limit (Ref. 3); cyan diamonds, Blitz et al. (Ref. 4).

Experimental values in panel (b): Blue squares, Davidson et al. (Ref. 2); green triangle, Shi and Barker

(Ref. 3). Computed values: black lines, this work.

rate constants, our computed rate constants for quenching by Ar are somewhat larger than the

experimental values. Our calculations predict that the O(1D)–Ar quenching rate constants should

increase slightly over the 10 – 300 K temperature range, while the experimental measurements

show a slight decrease with increasing temperature. As can be seen in Fig. 11(b), our computed

O(1D)–Xe rate constant is lower than the corresponding experimental determinations. We do see

that theory and experiment both show an approximately constant rate constant as a function of

temperature.
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IV. DISCUSSION

The experimental rate constants obtained in this work for O(1D) electronic quenching by Kr

extend the currently available experimental data for this process down to 50 K. The values are in

excellent agreement with those obtained during the earlier study of Davidson et al.2 in the 113–

296 K range. In their cryogenically cooled experiments, Davidson et al. employed pulse laser

photolysis (PLP) of O3 at 266 nm as the O(1D) source, coupled with detection of the weak spin-

forbidden O(1D)→ O(3P) emission at 630 nm to follow the reaction kinetics. Good agreement is

also obtained with the room temperature rate constant measured by Blitz et al.4 who used PLP of

N2O at 266 nm as the O(1D) source in their experiments and a chemical tracer method (through

OH detection at 310 nm) to follow the progress of the quenching. By contrast, the rates obtained

by Blitz et al. at lower temperature (195 K) are approximately 40% larger than the present values

and those of Davidson et al. The rate constant measured by Shi and Barker3 at room temperature

is lower than the values of all three other experimental studies and is also outside the combined

error bars. These authors used a relative rate method to derive deactivation rate constants for a

range of colliders, producing O(1D) atoms through PLP of O3 at 308 nm.

In terms of the overall temperature dependence of the O(1D)–Kr quenching rate constant, we

observe only small variations of the rate constant over the 50–296 K temperature range; a similar

conclusion to the earlier work of Davidson et al. Indeed, the very slight positive temperature

dependence we measure is well within the error bars of the experiments themselves, so the rate

constants for this process are effectively temperature independent.

We compared the measured and computed rate constants for the quenching of O(1D) by Ar, Kr,

and Xe in Sec. III C 3. We found that quantitative agreement was only modest. The calculations do

reproduce the measured temperature dependences of the rate constants, to within the experimental

errors.

Both experiment and theory display the trend of increasing magnitude of the quenching rate

constants as one goes down the periodic table from Ar, to Kr, and then Xe. Two general trends

were found in the potentials and spin-orbit matrix elements. Firstly, the depth of the well for

the 1Σ+ state, which derives from the O(1D) + Rg asymptotic limit increases significantly as we

go down the periodic table. More importantly, the magnitude of the spin-orbit matrix elements,

in particular the coupling between the 1Σ+ state and the Ω = 0+ component of the 3Π state, at

the crossing radius increases substantially as we go down the periodic table. Similarly, the rate
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constant for quenching of S(1D) by Ar (Ref. 8) is approximately an order of magnitude larger than

the rate constant for O(1D) quenching by Ar. This again reflects the larger size of the spin-orbit

coupling in the heavier S atom.

We do find an interesting structure to the computed quenching cross sections, which is unfor-

tunately currently not amenable to experimental observation. The energy-dependent quenching

cross sections for all three collision pairs, especially O(1D)–Kr and O(1D)–Ar, show many sharp

resonance peaks due to quasi-bound levels trapped by the centrifugal barrier for the highest partial

wave for which quenching occurs. These resonances, which occur for only one partial wave at a

given collision energy, are a consequence of the relatively large reduced mass of these collision

pairs.

V. SUPPLEMENTARY MATERIAL

See the supplementary material for the file PES.tar, which contains tables of the O(1D,3 P)–

Ar, Kr interaction energies and spin-orbit matrix elements of the internuclear separation R.
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