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Abstract 

 

The discharge rate performance of NMC532-based electrodes designed for EV application were 

measured between 0 and 40°C and were compared to the predictions of the electrolyte limited 

penetration depth model [Gallagher et al., J. Electrochem. Soc. 163, A138 (2016)], also called 

diffusion limited current density model [Heubner et al., J. Power Sources 419, 119 (2019)]. To 

support this analysis, we took into account the actual microstructure of the electrodes, 

previously characterized by FIB/SEM tomography, and their measured and/or simulated 

transport properties. We show that the performance of NMC532 electrodes, even with a low 

carbon content below the percolation threshold, are not limited by electrons transport through 

the electrode due to the high intrinsic conductivity of this active material. At 40°C, the swelling 



of the PVdF by the electrolyte solvents penalizes performance, especially as the binder content 

is high. Above all, the current density at which a brutal decrease in capacity occurs is well 

predicted by the model, although by reducing the porosity to its percolated micrometer sized 

fraction. This is in good agreement with the numerical simulations of the ionic transport 

properties. 

 

Introduction 

 

Electric vehicles (EVs) are slowly being introduced to the market today to replace internal 

combustion engines with the aim of reducing global greenhouse gas emissions. The main 

component holding back the spread of electric vehicles is their energy source [1,2]. Batteries 

are one of the most widely regarded sources of power and current research is primarily focused 

on Li-ion technology due to its proven track record in powering a majority of devices today. 

The energy density and the power density of the batteries are two key points. Energy dictates 

vehicle mileage/range while power dictates both charge times and torque. At the electrode scale, 

energy density can be improved by increasing the amount of active material present in the 

electrode. This can be achieved by increasing the density and thickness of the electrodes, but 

the downside is that the power density can be degraded [3,4]. 

In the case of electrodes designed for EVs, which are quite thick and dense, it is well established 

that the power performance is limited by the transport of the electrolyte salt in the porosity of 

the electrode [5,6]. At a high charge or discharge rate, the depletion of the salt concentration in 

the electrode where the lithium insertion reaction takes place stops this reaction. The electrolyte 

salt transport depends on the bulk (intrinsic) transport properties of the electrolyte, which varies 

with temperature, and also on the amount of porosity in the electrode, on the geometric 

tortuosity of the pore volume, on the interactions between the species of the electrolyte and the 



constituents of the electrode, and finally the thickness of the electrode. Apart from the properties 

of the electrolyte, all the other parameters depend on the formulation of the electrode, that is to 

say the choice of its constituents, and on the manufacturing process of the electrode. 

Achieving the optimum electrode design can be done both experimentally and by modeling. 

The second approach uses numerical simulation and seeks to take into account all the 

phenomena and properties [7]. It has the great advantage of being able to study a multiplicity 

of electrode designs, because it has now become possible to create virtual electrodes of realistic 

microstructure [8] and even integrating the influence of the elaboration process [9]. The first 

approach is more tedious, time consuming, and risky. However, there are simple analytical 

models that are based on the understanding of the most significant physical or chemical 

phenomena which govern the properties or performances. These models make it possible to 

rationalize the results of the measurements, and to pose a rapid diagnosis on the electrode 

formulation and manufacture quality [10-14]. Such models are much appreciated tools by 

experimentalists and engineers for optimizing electrode design and understanding what can 

limit their electrochemical performance. Needless to remind, another advantage of the 

experimental approach is to feed simulations with references to be compared to. 

In this work, we studied the power performance at different temperatures (from 0 to 40°C) of 

EV-designed LiNi0.5Mn0.3Co0.2O2 (NMC532) based electrodes differing in their densities and 

carbon black/binder additives contents. Their discharge rate performance were confronted to a 

recently proposed analytical model, named limited penetration depth model (PDM) or 

diffusion-limited current density model  [13,14]. This one predicts the limiting current for 

which the phenomenon of salt depletion in the electrolyte occurs, taking into account the 

transport properties of the electrolyte and the parameters of the electrode. However, this model 

neglects all other limitations including those associated with electronic transport in the 

electrode. Furthermore, in the previous works the classical Bruggeman correlation was used to 



calculate the tortuosity of the porosity. Here, the microstructure and the transport properties of 

the electrodes were carefully characterized and analyzed using FIB/SEM characterizations and 

numerical simulations, details of which are given elsewhere [15,16], to assess as rigorously as 

possible the reliability of the PDM and its ability to take into account the real microstructure of 

the electrode and its transport properties.  

The paper is organized as follows. First of all, we expose the analytical model. Then the 

microstructure and the transport properties of the electrodes are discussed, before studying the 

electrochemical performance, first qualitatively, then quantitatively using the PDM. Our results 

show the great interest of this model. However, the relevance of its predictions depends on the 

understanding that one has of the microstructure of the electrodes and its influence on its 

transport properties. More precisely, it is here underlined the preponderant role of the network 

of micrometric pores on the power performance. From the perspective of the model, it is like 

the electrode porosity is restricted to its network of micrometric pores at high current.  

 

Penetration depth model (PDM) or diffusion limited current density model 

 

The concept of limited penetration depth accounts for the formation of a lithium salt 

concentration gradient across the cell to balance the migration of the anions that are not involved 

in the electrochemical reaction [17,18]. For example, during the cell discharge, the 

concentration is higher at the negative side and lower at the positive side. Enhancing the current 

density decreases the penetration depth. The magnitude of the concentration gradient may 

increase up to a point where the concentration of the lithium salt in the area of the positive 

electrode close to the current collector is decreased to zero. Once this happens, the positive 

active material in this region can no longer participate to the electrochemical reaction as there 

are no lithium ions in the electrolyte to insert. This define a maximum current density I* (or 



discharging rate C*) for utilizing the whole positive electrode. At higher current densities (or 

discharging rate) the electrode area where the electrolyte concentration is dropped to zero is 

wider (closer to the separator), thus preventing a larger fraction of the active material 

participation. At current densities lower than I* (or at discharging rate lower than C*) a limiting 

current is never reached as the penetration depth is larger than the designed electrode thickness. 

The occurrence of this diffusion-limited current density or critical C-rate is well observed 

experimentally [11,12,19-21]. 

Building on pioneer works by Newman and co-workers [17,18], Johns et al. [10] and then 

Gallagher et al. [13] derived a simple analytical equation for the penetration depth for 

electrolyte transport in the electrode, Ld: 

 

𝐿𝐿𝑑𝑑 = 𝜖𝜖
𝑇𝑇
𝐷𝐷0𝐶𝐶0𝐹𝐹

(1−𝑡𝑡+)𝐼𝐼
                    (1) 

 

where ε is the porosity of the electrode, T is the tortuosity factor of the pore matrix, D0 is the 

diffusion coefficient of the lithium salt species in the electrolyte, t+ is the transference number 

of Li+, I is the applied current density and F the Faraday constant. A similar equation was 

derived by Heubner et al. [14], but rather to express the limiting current I* as 

 

𝐼𝐼∗ = 2 𝜖𝜖
𝑇𝑇
𝐷𝐷0𝐶𝐶0𝐹𝐹
𝐿𝐿

                    (1’) 

 

In equation (1’), the term in parentheses in equation (1) is replaced by a numerical term equal 

to 1/2. However, as the lithium transport number is close to 0.5 for the electrolyte considered 

here, both equations are very close. The tortuosity factor accounts for all aspects that are 



hindering the diffusive transport in the electrolyte when it is confined within the electrode 

porosity [22]. It is defined by 

 

𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜅𝜅0
𝜖𝜖
𝑇𝑇
  and  𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷0

𝜖𝜖
𝑇𝑇
   (2) 

 

with κeff and Deff the effective ionic conductivity and diffusivity, κ0 and D0 the bulk electrolyte 

conductivity and diffusivity. One contribution to the tortuosity factor is geometric tortuosity of 

the pores τ. For a porous medium with Lpore as the effective actual path length through pores 

from one point to another one, and Lstraight as the straight (Euclidian) distance, the definition of 

the geometrical tortuosity is 

 

𝜏𝜏 = 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐿𝐿𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑠𝑠

      (3) 

 

If only the geometric tortuosity influences the transport of the ions, the tortuosity factor can be 

written [23,24] 

 

𝑇𝑇 = 𝜏𝜏2      (4) 

 

Noteworthy, this equation was mathematically derived for a bundle of sinuous but parallel pores 

[23]. If neither the solid state diffusion in the active material nor the electronic conductivity of 

the electrode are limiting, it is possible from equation (1) to express the accessible capacity, QI, 

at an applied current density higher than I*, through the ratio between the penetration depth for 

electrolyte transport in the electrode, Ld, and the designed electrode thickness L: 

 



𝑄𝑄𝐼𝐼
𝑄𝑄0

= 𝐿𝐿𝑑𝑑
𝐿𝐿

                   (5) 

Which gives with Eq. (1) 

𝑄𝑄𝐼𝐼 = 𝑄𝑄0
𝜖𝜖
𝑇𝑇𝐿𝐿

𝐷𝐷0𝐶𝐶0𝐹𝐹
(1−𝑡𝑡+)𝐼𝐼

                  (6) 

 

with Q0 the nominal specific capacity of the electrode. Previous works of Gallagher et al. [13] 

and Heubner et al. [14] showed this approach allows to correctly predict the rate capability of 

NMC622/graphite and NMC622/lithium cells at room temperature. The classical Bruggeman 

approximation was used to express the tortuosity as T = ε0.5. However, the predictions given by 

the Bruggeman correlation are not always consistent with experimental results [25-29]. Here, 

the influence of the real electrode microstructure was carefully considered by using the results 

of FIB/SEM characterizations and numerical simulations done on the same electrodes to feed 

equation (6) [15,16]. Moreover, the influence of the temperature was also studied by 

considering measurements done at 0, 22 and 40°C. 

  



 

Table 1. Electrode specifications: weight and volume fractions of the AM, CB and PVdF, NMC loading, surface 

capacity, density, thickness, porosity. 

Sample 

Name 

NMC 

wt% 

(v%) 

PVdF 

wt% 

(v%) 

CB 

wt% 

(v%) 

NMC 

Loading 

(mg/cm2) 

Surface 

capacity 

(mAh/cm²) 

Density 

(g/cm3) 

Thickness 

(µm) 
Porosity 

NA3 
96 

(64.8) 

1.8 

(3.0) 

2.2 

(3.6) 
14.9 2.5 3.2 48.5 28 

NA2 
96 

(64.8) 

1.8 

(3.0) 

2.2 

(3.6) 
24.4 4.1 3.2 79.4 28 

NA8 
96 

(68.9) 

1.8 

(3.2) 

2.2 

(3.8) 
24.7 4.1 3.4 75.7 23.5 

NA7 
96 

(70.9) 

1.8 

(3.3) 

2.2 

(3.9) 
25.0 4.2 3.5 74.4 21.2 

NA3b 
94.2 

(69.6) 

2.6 

(5.6) 

3.2 

(5.7) 
14.6 2.45 3.5 44.3 19.1 

NA2b 
94.2 

(63.6) 

2.6 

(5.1) 

3.2 

(5.2) 
25.3 4.25 3.2 83.9 26 

NA7b 
94.2 

(69.6) 

2.6 

(5.6) 

3.2 

(5.7) 
25.35 4.26 3.5 76.9 19.1 

NA4b 
94.2 

(69.6) 

2.6 

(5.6) 

3.2 

(5.7) 
40.7 6.84 3.5 123.4 19.1 

 

 



 

Figure 1. Typical FIB/SEM images of NA3 electrode cross-section at various magnifications: (a) x 2 500, b) x 

3 000, (c) x 7 500, (d) x 10 000. 

 

 

Electrodes compositions and microstructures 

 

NMC532 based electrodes were made on an industrial pilot-scale manufacturing line. Their 

specifications are given in Table I. They differ by their CB and PVdF contents (respectively 

2.2 and 1.8% by weight for the NAx series, and 3.2 and 2.6% by weight for the NAxb one), 

NMC loading (around 15, 25 and 40 mg/cm²), density and porosities (NA3, NA2, and NA2b 

have lower densities (higher porosities) than NA7, NA3b, NA4b, NA7b; NA8 has slightly lower 

density than the last four electrodes). Typical cross-section FIB/SEM images of one of the 

electrodes are shown in Figure 1. The microstructures of NA3, NA2, NA7, NA2b, and NA7b 



were also characterized at their different scales by different techniques (X-Ray (XR) 

tomography, and FIB/SEM nanotomography) [15]. Some quantitative morphological 

parameters determined by image analysis on the FIB/SEM volumes are reported in Table 2 and 

discussed hereafter. 

Before all, one must note that the compositions in the FIB/SEM volumes deviates more or less 

from the electrode ones. Two points shall be underlined. For all FIB/SEM volumes, the 

CB/PVdF volume fraction is 20 to 50% lower than in the entire electrode, which is due to the 

existence of few ultra-large CB/PVdF agglomerates randomly dispersed, as shown in Figure 

1a. Care was taken to acquire the FIB/SEM volumes far from these heterogeneities. Moreover, 

for NA2 and NA2b the volume fraction in NMC is higher while the porosity is lower in the 

FIB/SEM volume than in the entire electrode. An opposite trend is shown by NA3. For NA7, 

local and mean NMC volume fractions are close, so the lack in CB/PVdF is locally compensated 

by a higher porosity at the local scale. For NA7b the local NMC volume fraction and porosity 

are higher than in the entire electrode, which is the consequence of the large CB/PVdF 

depletion. Such deviations between the compositions at a small scale and the overall 

compositions is common and due to statistical variations and representativeness issues [30,31]. 

Figure 1. It can be concluded that the FIB/SEM volumes which have been analysed are not 

large enough for the values of the morphological parameters calculated from them to be directly 

transposed to the corresponding whole electrodes. But, they give trends that are representative 

of the morphological characteristics of the electrodes studied here in relationships with their 

specifications as we will see later. More details can be found in [15,16].  

As it can be seen in Figure 1, the NMC, which appears as a light grey phase, consists of large 

polycrystalline aggregates (or clusters of grains), some of them being hollow and/or fractured. 

The grain size within the NMC clusters has a mean diameter of 0.26µm (d10-d90 interval equal 

to 0.15 to 1.0µm). The NMC cluster mean diameter in the pristine powder is 5µm (d10-d90 



interval equal to 3.2 to 14.5µm). In the electrodes, about half of the NMC clusters are fractured 

due to the calendering step. The denser the electrode the more fractured the clusters are (~55+/-

2% for NA7 and NA7b vs. 45+/-2% for NA2 and NA3 for example). The CB is intimately 

mixed with the PVdF binder. This mixture is the darker grey phase in Figure 1. It occupies a 

fraction of the volume left vacant by the NMC clusters and grains packing. It comes in the shape 

of more or less percolated aggregates from a few tenth of nanometers to around a micron thick. 

The percolation state of the CB/PVdF mixture was evaluated through its intraconnectivity in 

the FIB/SEM volumes. This morphological parameter is defined as the volume of the biggest 

connected subvolume over the volume of the whole phase. Intraconnectivity values are thus 

indicators of how well a phase is connected. The values close to 100% for NA2b and NA7b 

indicates that the CB/PVdF mixture is well percolated in the NAxb electrodes. Contrarily, the 

lower values for NA3, NA2, and NA7 indicates that in the NAx electrodes the CB/PVdF 

mixture is not percolated. The last phase is the porosity, which displays a wide range of size. 

We separated the micrometric porosity, made of pores larger than 60 nm in size typically 

consisting of cavities within the packing of NMC clusters, from the nanometric porosity, made 

of pores smaller than 60 nm, typically consisting of nanopores within the PVdF/CB mixture 

and of the cracked grain boundaries within fragmented NMC clusters. The micrometric porosity 

represents the major part of the porosity and is always percolated (intraconnectivity above 

90%). The participation of the percolated micrometric porosity to the total porosity decreases 

from 95% for NA3 to 72% for NA7b, i.e. when the density and the CB/PVdF content increases. 

Moreover, the distribution of the geometrical tortuosity values was determined. Most 

representative values range between 1.05 and 1.15 for the micrometric porosity and between 

1.4 and 2.0 for the nanometric porosity [15]. All in all, this suggests that for long range and fast 

diffusion of electrolyte species at high discharge rate the effective electrode porosity may 

reduce to only the low tortuosity percolated micrometric porosity. Finally, interconnectivity 



values between NMC and the other phases is important for the charge transfer reaction. Firstly, 

the fraction of the NMC surface covered by the PVdF/CB mixture varies between 9 and 16% 

and is rather independent of the PVdF/CB content. The fraction of the NMC surface exposed 

to the micrometric porosity, which is where the electrolyte species (and in particular Li+ ions) 

will be the more available to insertion or deinsertion, varies from 77% to 36%. It naturally has 

its lower values for the more calendered (more fragmented) and richer in CB/PVdF electrodes 

(NA7 and NA7b). It was also shown previously that, for NMC333-based electrodes, an 

interconnectivity critical value between the NMC phase and the CB/PVdF mixture exists, below 

which the electrochemical performance is limited by an insufficient supply of electrons to the 

active material. This critical value was determined to be between 3 and 8% [21]. For the 

electrodes studied here, this interconnectivity is always above 9%, which means their 

electrochemical performance should not be limited by this aspect. 

  



Table 2. quantitative morphological parameters determined by image analysis on the FIB/SEM volumes [15] and 

effective electrical properties calculated by numerical simulations on the FIB/SEM volumes [16]. 

FIB/SEM volume NA3 NA2 NA7 NA2b NA7b 

Volume 

fraction 

(%) 

NMC 61+/-1 70+/-0.4 68.8+/-0.3 68.4+/-0.2 72.4+/-0.1 

CB+PVdF 4.1+/-0.6 4.6+/-0.2 4.6+/-0.3 8+/-0.4 7.6+/-0.3 

Porosity 35+/-0.6 24.9+/-0.3 26.5+/-0.7 23.7+/-0.5 20.1+/-0.4 

Percolated microporosity 32.8 22.3 20.5 18.8 14.2 

Density 3.0 3.4 3.4 3.4 3.6 

CB+PVdF mixture intraconnectivity 30.7 71.4 62.7 97.3 95.1 

NMC inter-

connectivity (% of 

surface area) with 

CB+PVdF 9 16 9 12 12 

Microporosity 77 56 42 50 36 

Geometric 

tortuosity τ 

Microporosity 1.10 +/- 0.05 

Nanoporosity 1.70 +/- 0.30 

Effective electronic conductivity (S.m-1) 0.0028 0.043 0.171 1.01 1.10 

Effective ionic conductivity (S.m-1) 0.110 0.061 0.076 0.056 0.032 

Tortuosity factor (equation 2) 3.4 3.1 4.0 4.1 6.2 

 

 

Effective electronic and ionic conductivities 

 

Effective electronic and ionic conductivities were calculated by numerical simulations done on 

the FIB/SEM volumes using Fast Fourier Transform (FFT) method [16]. Such simulations are 

directly computed on the grid represented by the voxels in the FIB/SEM volumes. Previous 

work showed a good agreement between the experimentally measured effective electronic 

conductivity values and calculated ones with this FFT method for electrodes based on 

NMC333/LiFePO4 blends [32]. For the electrodes studied here a good agreement was also 

found between experimental values and simulated ones [16]. The effective electronic 



conductivities of NAx electrodes is one or two order of magnitude lower than NAxb ones, 

which confirms the better percolation of the CB/PVdF mixture in the latter, due to its higher 

content. 

The simulated effective ionic conductivity decreases regularly with the decrease of the porosity 

in the FIB/SEM volumes. No comparison with experimental measurement is available, but the 

corresponding tortuosity factors (determined with Eq. 2) are in good agreement with previous 

measurements on LiFePO4, LiCoO2 and NMC333-based electrodes [26,28]. In addition, the 

analysis of the spatial distribution and the intensity distribution of the ionic current densities 

revealed the predominant role of the percolated micrometric porosity (See Figure 7e in Ref 16). 

Together with the analysis of the geometrical tortuosity distribution here above, these 

simulations underline that ionic transport is dominated by low tortuosity micrometric channels 

through the electrode, which was also well evidenced experimentally for LiCoO2- and LiFePO4-

based electrodes [33-35]. 

 

 

Electrochemical measurements 

 

Experimental. – Samples of 7 mm diameter were punched out from the positive electrode 

laminates. They were dried in a 90°C vacuum oven for 16 h before assembly. Coin cells were 

assembled in half-cell configuration in an argon atmosphere controlled glove box. The metallic 

parts of the coin cells were cleaned in acetone in an ultrasonic bath for 2 h and dried at 90°C 

under vacuum before being introduced in the glove box. Lithium disc (Sigma Aldrich, 0.75mm 

thickness) of 12 mm diameter was used as the reference and negative electrode, Whatman™ 

GF/D glass fiber was used as separator (dried at 120°C under vacuum before being introduced 

in the glove box) and LP30 (LiPF6 1 molar in 1:1 v:v ethylene carbonate : dimethylcarbonate, 



from Solvionic) was used as electrolyte. Coin cells were sealed using a MSK 160D Crimper 

and were rested overnight before testing. Cell cycling was performed in temperature-controlled 

condition (at 0, 22, and 40°C inside a Binder MK56 temperature chamber), monitored by a 

VMP™ system (Biologic) in a CCCV (constant current constant voltage) mode. Charge – 

discharge tests were carried out between 2.1 – 4.3V versus Li+/Li, beginning by 3 slow charge–

discharge cycles at 0.68mA/cm² (C/6 rate) as formation cycles and followed by successive 

discharges from 0.34 to 68mA/cm² (C/12.5 to 16.6C rate), separated by charge done in all cases 

at 0.68mA/cm² (C/6 rate) and ending by a floating at 4.3V. Below, specific capacities are given 

per gram of active material. Three coin cells at least were assembled for each electrode and 

temperature condition. Measurements were also done at 10 and 30°C (not shown here for the 

sake of clarity) and these extra measurements, although not as complete as those shown in the 

paper, were in line with the observed trends. 

 

Qualitative interpretation of the electrochemical performance. – The influences of the C-rate, 

electrode parameters such as additives content, porosity, mass loading, and the temperature, are 

illustrated in Figure2a-c with discharge capacity vs. areal current density plots for selected 

electrodes. Voltage vs. capacity plots are shown in the Supporting Information for NA2 and 

NA2b (Figure S1) and for NA7 and NA7b (Figure S2). 



 

Figure 2. Specific discharge capacity vs. areal current density for the NA2, NA2b, NA7 and NA7b cells at (a) 0, 

(b) 22, and (c) 40°C. (d) Specific discharge capacity delivered at 1.66C for the different cells at the three 

temperatures. 

 

As generally observed, the discharge capacity decreases with increasing the current density. 

The decrease is moderate up to a critical current (I*) for which there is a sudden drop in 

capacity. I* marks the transition between two different limitation regimes. For currents lower 

than I*, the discharge capacity decrease is mostly due to the cell polarization that grows with 

increasing current [21,36-38]. The resulting shift in potential leads to a shorter discharge. For 

currents larger than I*, the discharge capacity is limited by the lithium salt diffusion kinetics 

within the electrolyte in the electrode porosity [10-14,19-21,39] as for the reasons given in the 

PDM section. This is well illustrated on the voltage vs. capacity plots in Figure S1 and S2. The 

comparison of the C/12 and C/1.7 curves clearly show that the lower capacity at C/1.7 is the 

result of a brutal voltage drop ending the discharge before its completion. As also generally 



observed, a decrease in temperature tends to a decrease in capacity and I* occurs for a weaker 

current. This is mostly because the electrolyte salt diffusivity is slower at lower temperature, 

which impedes the replenishment of salt species in the electrode pores. Moreover, the electronic 

transport within the electrode is also likely decreased at lower temperature, which may also 

contribute to the decrease in capacity.  

The power performance of the different electrodes can be more easily compared in Figure 2d 

where the capacity discharged at 6.8mA/cm² (1.7C rate) is reported at the three temperatures. 

It can be observed that the NAx electrodes (NA2, NA8 and NA7), in which the CB/PVdF 

mixture is not percolated, show roughly equal (at 0°C) or higher (at 22 and 40°C) practical 

capacities than NAxb ones (NA2b and NA7b) in which the CB/PVdF phase is well percolated. 

This trend is opposite to previous experimental works on others active materials such as LiCoO2 

[40,41], Li1.1V3O8 [42], LiMn2O4 [43], LiFePO4 [44], LiNi0.8Co0.15Al0.05O2 [45], or reviews 

[46]. These studies indicate that the percolation of the electron-conducting network, here the 

CB/PVdF mixture, is a must to achieve both high nominal capacity and good power 

performance. The present result thus indicates that the intrinsic electronic conductivity of the 

NMC532 is sufficiently high that it is not necessary to create an extrinsic percolating electronic 

conductive network around this active material. The amount of CB/PVdF contained in the 

electrodes of the NAxb series is then excessive and probably penalizes the diffusion of the 

electrolyte species through the electrode by increasing the tortuosity of the porosity [25,47-49]. 

Dense electrodes generally have better electronic wiring but poorer ionic wiring of the active 

mass. Generally, an optimal porosity exists for which the best compromise is realized between 

the electronic and the ionic wirings [11,50-52]. Here, decreased capacities are seen at 0 and 

22°C when the porosity is decreased from 28% for NA2 to 21% for NA7, and from 26% for 

NA2b to 19.1% for NA7b. This result confirms that the main limitations of the rate performance 

is the lithium salt depletion phenomenon at currents higher than I*. At 40°C, the difference in 



capacity between NA2 and NA7 is minimized, likely due to improved electrolyte diffusivity at 

higher temperature. An unexpected result is observable for the NAxb series electrodes. Indeed, 

the performances at 40°C appear barely equal (case of NA7b), or even lower (case of NA2b) 

than those at 20°C. Noteworthy, Figure S1 and S2 show that the polarization (the iR drop), 

which manifests by a potential difference of the initial operating voltage at high current (or C-

rate) versus the operating voltage at low current (or low C-rate), is nearly independent of the 

electrode CB/PVdF content. The unexpected poor performance at high temperature could be 

due to the more significant absorption of the electrolyte solvent by the PVdF binder at higher 

temperature in the CB/PVdF rich electrodes [53-57], accentuating the diffusion limitations, as 

further discussed below. 

The nominal capacities, hereafter named Q0, that were obtained at the lowest measured current, 

0.34mA/cm² (C/12.5) are plotted in Figure 3. At low current, the capacity is generally much 

less dependent of the electrode parameters such as thickness and porosity, and of the electrode 

formulation, than at higher current. Except for the cases where the electrode has fairly 

inhomogeneous distribution of its components [58], and/or is loosely and insufficiently 

calendered [11], and/or has not well-balanced formulation (excess of binder or lack of 

conductive additive) [59], the nominal capacity mostly reflects the intrinsic kinetic limitations 

of the active material. Here, Q0 values globally tend to increase at increasing temperature, 

meaning it is easier for the reaction to proceed in the bulk of the active material hence 

maximizing higher utilization. According to Kasnatscheew et al. [60], the kinetic hindrance to 

the lithiation process at high lithiation state likely explains that higher Q0 values are obtained 

at higher temperature due to improved active material intrinsic kinetics. On the whole, NAxb 

electrodes have higher nominal capacities at lower temperatures than NAx ones, and in the 

latter series NA2 has higher Q0 than NA8 and NA7. At higher temperature, however, the 

hierarchy between NAxb and NAx is reversed. The higher Q0 at low temperature for NAxb than 



for NAx may reflect the better electronic wiring in the former electrodes due to the better 

percolation of the CB/PVdF mixture. This way, the higher Q0 for NA2 than for the more 

calendered NA8 and NA7 might indicate a detrimental influence of the fragmentation of the 

NMC clusters into primary grains on the electronic wiring of the active mass. The inversion of 

the hierarchy at high temperature between NAxb and NAx electrodes suggests a detrimental 

influence of an excess in CB/PVdF mixture on the accessibility of the active material for these 

temperatures. This could be attributable to the swelling of the PVdF consecutive to an 

electrolyte solvent absorption [53-57], leading to a closure of certain pores. 

 

 

Figure 3. Average nominal discharge capacities (taken at 0.34mA/cm², C/12.5 rate), Q0, at the different 

temperature for NA2, NA8, NA7, NA2b and NA7b. 

 

Quantitative analysis of the electrochemical performance with the penetration depth model 

– Three approaches were performed in the fitting of experimental results with equation (6): 

adjusting D0, adjusting T, or adjusting ε. D0 was first used as the fitting parameter and is 

hereafter written D0,fit. This corresponds to case 1 in Table 3, which reports the values 

considered for the different parameters in equation (6) for performing the fits.  

  

NA2 NA8 NA7 NA2b NA7b



 

Table 3. Definition, unit and value of the PDM equation. 

Parameter Definition Unit Value 

D0 

Diffusion coefficient 

of the lithium salt 

species in the 

electrolyte 

cm²/s 

Case 1: variable, used as fitting parameter. 

Cases 2 and 3: equal to Li self-diffusion coefficient measured 

by PGF SE NMR (Figure S1) 

C0 
Bulk concentration of 

Li in the electrolyte 
mol/cm3 0.001 

t+ 
Lithium transference 

number 
- Determined by PGF SE NMR (Table S1) 

ε Porosity 
volume 

fraction 

Case 1 and 2: equal to electrode total porosity 

Case 3: variable, used as fitting parameter. 

T Tortuosity factor - 

Case 1: values taken from Usseglio-Viretta et al. [28] 

Case 2: variable, used as fitting parameter. 

Case 3: equal to geometrical tortuosity factor of the 

micrometric porosity 

L Electrode Thickness cm See Table 1 

F Faraday’s Constant A·s/mol 96500 

I Current Density A/cm2 0.344 10-3 to 69 10-3 

Q0 Nominal Capacity mAh/g Determined at the lowest rate for each electrode (Figure 2) 

 

For this first case, we considered the total porosity of the electrodes and a tortuosity factor from 

a well-established literature [28]. We used the lower bound of the modified Bruggeman-type 

function established by Usseglio-Viretta et al. for a NMC532–based electrode (See Figure 4 in 

reference Erreur ! Signet non défini.) 

 

𝑇𝑇 = 1.3𝜖𝜖−0.59      (7) 



 

This trend was determined through numerical simulation by solving the Laplace steady-state 

diffusion equation within the pore network of the 3D electrode geometries reconstructed from 

X-ray computed tomography data for the NMC phase and mathematically generated 

carbon/binder domains in the empty spaces of the NMC phase [28]. The trend of equation (7) 

corresponds to a film-like morphology where the carbon/binder phase is preferentially layered 

at the NMC cluster surface. Another trend giving higher tortuosity values was found for a 

finger-like morphology where the carbon/binder domains are more protruding into the porosity. 

Noteworthy, these trends were obtained for electrodes with porosities in the 33 – 52 % range 

[28]. 

The matching between the experimental and calculated capacities with the PDM equation are 

shown for NA7 as examples at the different temperatures in Figure 4a. The fit of the 

experimental curves with equation (6) was carried out only for the currents equal or higher to 

I* since by definition this model only considers the limitation of capacity induced by the 

diffusion of lithium salt. As we can see, the model pretty well predicts the drop in capacity at 

I*. A modest deviation between the model and the experimental curve is observed for the 

highest currents which can result from additional limitations brought by the strong polarization 

of the cell. The effective diffusion coefficients, D0,fit, extracted from this fitting procedure are 

gathered for all electrodes as a function of the temperature in Figure 4b and compared to the 

Li self-diffusion coefficient in the bulk electrolyte D0, which were measured by PFG-SE NMR 

(Supporting Information). The order of magnitude as well as the temperature dependence of the 

effective diffusion coefficients are close to that of the diffusion coefficient determined by NMR 

on the bulk electrolyte (i.e. not confined in the porosity of the electrode), except for singular 

cases (vide infra). These observations are encouraging because they support the validity of the 

approach intended here since all the parameters used in the PDM equation are justified from 



the point of view of the properties of the electrolyte (C0, D0 and t+) and the microstructure of 

the electrode (L, T and ε). This confirms that the sudden drop in discharge capacity with the 

increase of the current beyond the I* is due to the diffusional limitations in the electrode. 

Strikingly, the effective diffusion coefficients D0,fit are higher than D0. This may indicate that 

the tortuosity factor values considered to perform the modeling are too high for the electrodes 

studied here. This difference between D0,fit and D0 could be due to the decrease in the viscosity 

of the electrolyte following the decrease in the concentration of lithium salt in the electrolyte 

with the establishment of the concentration gradient in the porosity of the electrode at high 

currents. In this hypothesis, the difference between D0,fit and D0, which is approximately by a 

factor 2, would correspond to a reduction in the salt concentration by a factor of approximately 

10 [61,62], which is difficult to conceptualize. Furthermore, the difference between D0,fit and 

D0 appears to depend on the formulation of the electrode or its porosity, which invites to study 

the question differently. Before that, we can notice that the effective diffusion coefficients tend 

to increase less rapidly than the bulk diffusion coefficient with increasing temperature between 

22 and 40°C (case of NA7 and NA8), or even tend towards a plateau value (case of NA2 and 

NA7b), or even decrease (case of NA2b). We attribute it to the swelling of the PVdF by the 

electrolyte solvent (vide infra). 

 

 

 



 

Figure 4. (a) Specific discharge capacities as a function of the areal current density for NA7 and the corresponding 

PDM fits (dotted line) at different temperatures: 0°C, 22°C and 40°C. (b) Determined values for Deff from equation 

(6) with tortuosity values determined with equation (7) according to Usseglio-Vireta et al. [28] and electrode total 

porosity.  

 

In a second step, we then sought to determine an effective tortuosity factor for each electrode, 

which was therefore the variable parameter in equation (6), taking as the diffusion coefficient 

that of the bulk electrolyte and considering the electrode total porosity (Case 2 in Table 3). The 

matching between the experimental and calculated capacities with the PDM equation are shown 

for NA7b as examples at the different temperatures in Figure 5a. The effective tortuosity 

factors, Tfit, extracted from this fitting procedure are gathered for all electrodes as a function of 

the temperature in Figure 5b. The horizontal lines correspond to the micrometric and 

nanometric porosity geometrical tortuosity factors, which were calculated with equation (4) and 

the geometrical tortuosity values determined on the FIB/SEM electrode volumes (mean values 

in Table 2). Micrometric pores are formed by the large cavities (more than 60nm) in the 

stacking of NMC clusters and nanometric pores (less than 60nm) are confined within the 

CB/PVdF mixture and at the grain boundary cracks of fragmented NMC clusters.  

The majority of the results lie in between these two realistic bounds, indicating that the Tfit 

representative of the electrodes studied here may correspond to average values of both 



micrometric and nanometric porosity. At 0 and 22°C, Tfit values are, however, more typical of 

the micrometric porosity. Tfit also appear to increase at increasing temperature, especially for 

NAxb electrodes that contain more CB/PVdF. This trend could be due to some swelling of the 

CB/PVdF mixture by the electrolyte. Indeed, Saunier et al. [53] found that dense PVdF films 

could absorb increasing liquid electrolyte amounts with increasing temperature. For example, 

at 40°C, the swelling ratio of PVdF by DMC/EC is ~125%. However, only a small amount of 

salt permeates through the polymer and the salt concentration in the electrolyte trapped in the 

gel is much lower than the salt concentration in the bulk electrolyte, 0.2 vs. 1.0 M respectively. 

In the case of porous electrodes with PVdF binder, this differential trapping of electrolyte 

species in the PVdF may be at the origin of a decrease of the ionic diffusivity, due to the increase 

of the salt concentration in the electrolyte within the porous phase, a modification of the salt 

dissociation, and of the increase of the swollen CB/PVdF phase volume. The latter phenomenon 

may lead to the more drastic effect if some pores are clogged by the swollen CB/PVdF phase 

in which diffusion is ultra-slow. For example, Kataoka et al. [54] found that the conduction 

mechanism of a PVdF porous membrane infiltrated by a liquid electrolyte is essentially 

dominated not by the solution-rich region, which are trapped in the cavities of the membrane, 

but by the polymer-rich region of the swollen polymer, which are forming the walls of the 

cavities. 

  

 



  

Figure 5. (a) Specific discharge capacities as a function of the areal current density for NA7b and the 

corresponding PDM fits (dotted lines) at different temperatures: 0°C, 22°C and 40°C. (b) Determined values for 

Tfit from equation 6 with electrolyte bulk diffusion coefficient and electrode total porosity. The horizontal dotted 

lines correspond to the mean geometrical tortuosity factors of the nanometric and micrometric porosity.  

 

All these observations led us the third approach to perform the fit (Case 3 in Table 3). We 

sought to determine an effective porosity for each electrode, which was therefore the variable 

parameter in equation (6), taking as the diffusion coefficient that of the Li+ in the bulk 

electrolyte (Figure S1) and considering as the tortuosity factor that of micrometric porosity 

(taken equal to 1.2 for all samples). In this third approach, we are making the hypothesis that 

the homogenization of the concentration of the electrolyte species in the electrode is made 

possible mainly via the channels formed by the micrometric pores at high rate (high current 

density). These are large and of low tortuosity, which allows a greater number of species to 

diffuse more rapidly, than in the smaller and more tortuous channels formed by confined 

nanometric pores. This hypothesis is supported by the fact that the values of Tfit are quite 

representative of the micrometric porosity in Figure 5b. The critical influence of the percolated 

micrometric porosity on ionic conductivity of CB/PVdF/alumina porous composite materials 

was also experimentally evidenced previously [63]. The result of the fit will be a value of 

effective porosity. The matching between the experimental and calculated capacities with the 

PDM equation are shown for NA2 as examples at the different temperatures in Figure 6a. The 



effective porosity, εfit, extracted from this fitting procedure are gathered for all electrodes as a 

function of the temperature in Figure 6b-e. The horizontal lines correspond to the total porosity 

and to the percolated micrometric porosity extrapolated from the FIB/SEM volumes. Precisely, 

the values reported are not those calculated on the FIBSEM volumes, because the compositions 

of the latter are not representative of those of the corresponding electrodes as underlined in 

section Electrodes Compositions and Microstructures. However, a very clear relationship has 

been established between the total porosity of the FIB/SEM volumes and the percolated 

micrometric porosity inside these FIB/SEM volumes (for this see Figure 4 in reference [15] and 

Figure 7g in reference [16]), which is given by equation (8), and which was used to estimate 

the micrometric porosity percolated, εmicro, in the electrodes from their total porosity. 

 

𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1.25𝜖𝜖 − 10.3  (19 < ε  < 28%)   (8) 

 

All εfit values are lower than the total porosity (Figure 6b-e), suggesting that the entire porosity 

of the electrode may not participate effectively in the homogenization of the salt concentration.  

   

  



 

  

Figure 6. (a) Specific discharge capacities as a function of the areal current density for NA2 and the corresponding 

PDM fits (dotted lines) at different temperatures: 0°C, 22°C and 40°C. (b-f) Determined values for εfit from 

equation (6) with electrolyte bulk diffusion coefficient and tortuosity factor equal to 1.2 for NA2 (b), NA8 (c), 

NA7 (d), NA2b (e), and NA7b (f).   

 



The εfit values are closer to the percolated micrometric porosity, in particular for NA8 and NA7 

electrodes, for which a fairly good match is observed at all temperatures except at 40°C. For 

the other electrodes, εfit is equal or close to the percolated micrometric porosity at low 

temperature, then drops, and all the more severely as the electrodes contain CB/PVdF, which 

can be attributed as we have seen previously to the swelling of CB/PVdF mixture by the solvent 

of the electrolyte [53,54], which would result in a closure of certain pores. For NA7b and NA2b 

the phenomenon would be so critical that the effective percolated micrometric porosity would 

be decreased at a very low volume fraction at 40°C, of the order of 6-7% of the volume of the 

electrode. This certainly does not mean that the micrometric porosity decreases that much with 

temperature, but rather illustrates how effective or useful porosity decreases with temperature. 

The swelling of the CB/PVdF domains may create zones of congestions that would harm the 

proper functioning of the micrometric porosity network with respect to the diffusion of the 

electrolyte species, for example by breaking its percolation. This gives the picture that these are 

“defect points” that might be the cause of premature brutal capacity drop with the increase of 

the current beyond a critical current. Observation of the cross-section of the electrodes shows 

that there is an alternation of non-fractured and fractured NMC cluster (Figure 1a and c). There 

is therefore in the porous network an alternation of micrometric porosity type zone and more 

confined porosity type zone. The latter are bottlenecks between distinct microporous regions, 

which may only block the massive and rapid diffusion of electrolyte species. 

 

Finally, Figure 7 shows the influence of the active mass loading with the three electrodes 

NA3b, NA7b and NA4b that all have same composition and porosity but different active mass 

loadings, respectively 15, 25 and 40 mg.cm-2. The cells performance at 22°C are plotted as areal 

capacities to better illustrate the differences in active mass loadings. The fitting was performed 

as in the third approach above. One can see that equation (6) again well captures the capacity 



decrease at and above I*. Moreover, NA3b, NA7b and NA4b tend to have the same εfit, 

respectively 12, 11 and 10%. As they have same composition and density, their microporosity 

is expected to be similar, about 13.6% according to equation (8). This trend of slightly 

decreasing εfit values with increased thickness (active mass loading) is somehow expected. 

Indeed, the increased thickness could increase the probability of the “defect points” 

aforementioned above. 

 

  

Figure 7. Areal discharge capacities as a function of the areal current density for NA3b, NA7b and NA4b and 

the corresponding PDM fits (dotted lines) at temperature 22°C.   

 

Discussion and conclusion 

We have confirmed here that the limited penetration depth model, also called the diffusion 

limited current density model, of Gallagher et al. [13] and Heubner et al. [14] is very useful tool 

for assessing the power performance of porous composite electrodes and for predicting the 

sudden drop in the accessible capacity when the current reaches the critical value, I*, for which 

the diffusional limits of the electrolyte occur. The reliability of this tool lies in the choice of its 

parameters, and in particular of the tortuosity factor and the effective porosity of the electrode. 

We sought to confront these with a fine analysis of the microstructure of the electrodes by 

FIB/SEM nanotomography [15] and their transport properties using numerical simulations [16]. 



As there are pores of clearly distinct sizes and tortuosity, it is not easy to discern a priori the 

values of these two parameters which are representative of the electrodes. The results obtained 

in this work quite clearly suggest the preponderant role of the (percolated) network of 

micrometric pores (considered here having a size greater than 60nm) on the homogenization of 

the salt concentration in the porosity of the electrode. Indeed, the experimental data are fairly 

well fitted, at 0 and 22°C, by restricting the effective porosity to the percolated micrometric 

porosity and by taking as the value of the tortuosity coefficient a value representative of the 

geometric tortuosity coefficient of this micrometric porosity (Figure 6).  

This does not hold, however, beyond the temperature of 40°C for which the transport properties 

of the electrolyte salt in the porosity of the electrode appear to be degraded. What we attribute 

to the swelling of PVdF by the electrolyte’s solvent, a phenomenon shown elsewhere [53-57], 

and which is expected to be particularly detrimental for electrodes containing a high amount of 

PVdF. This swelling, which can physically lead to a blockage of certain pores by the formation 

of gelled zones of high viscosities, would result in an increase in the tortuosity factor of the 

electrode and/or a decrease of percolated micrometric porosity. As can be seen in Figure 2, the 

power performance does not really drop at 40°C, but it increases less than expected because the 

microstructure of the electrode is less efficient from the point of view of its ionic transport 

properties. The swelling of the PVdF binder at 40°C and above may be reduced by favoring its 

crystallinity, which could be achieved by playing on the electrode fabrication conditions 

(solvent and drying rate) [64] and/or the PVdF grade [56]. Selecting another binder system less 

swollen by the liquid electrolyte, such as the sodium salt of carboxymethyl cellulose (CMC) or 

poly(acrylic acid) (PAA) [57], might be an attractive option. However, a recent study showed 

that at low temperature a CMC-based graphite negative electrode exhibited lower cycle 

performance than a PVdF-based one [65].  

We have considered that here the diffusivity of the salt in the electrolyte infiltrated into the 



porosity of the electrode is not different from that in the bulk electrolyte. Our hypothesis appears 

reasonable with regard to the electrolyte in the micrometric porosity where the role of 

interactions at the solid/liquid interfaces is minimized [49]. 

We used global parameters like effective tortuosity and effective porosity to characterize the 

electrodes. It should be noted however that the electrodes are heterogeneous materials, and that 

it would be possible to consider different zones within the electrode characterized by different 

values for these effective parameters [30]. The performance of the entire electrode is certainly 

influenced by this heterogeneous character. 

In the process of adjusting the experimental results with the PDM, we have chosen to vary only 

one parameter at a time to develop a scientific approach. None of the three approaches presented 

is, however, perfectly satisfactory. Reality, if it is identifiable, must be found at a midpoint. 

However, we did not identify a criterion allowing to play simultaneously on the three variables 

of the model and to converge towards a justified solution. 

Finally, it can be noted that the power performance of the electrodes studied here does not seem 

to be limited by electronic transport. The absence of percolation of the CB/PVdF is not 

detrimental to their good electrochemical operation, which is certainly attributable to the high 

intrinsic conductivity of NMC532 compared to NMC333 [66]. We can even recommend 

reducing the amount of CB/PVdF below the minimum levels used here in the NAx series 

electrodes (2.2/1.8wt%) because it has been observed that a fraction of CB/PVdF (between 20 

and 50%) is unnecessary because it is disseminated in the form of large and massive 

agglomerates. 

In perspective, it would be very interesting to compare this work with the results of spatially 

resolved electrochemical modeling, that is to say capable, in addition to predicting the discharge 

curves, of describing the current distribution in the electrode at different temperatures. It is 

known that the lower the temperature, the slower the charge transfer reaction (interface kinetics) 



and, therefore, the current distribution is forced to be more uniform across the electrode. At 

higher temperatures, the interface being much faster, the current distribution behaves more like 

a rolling wave in the depth of the electrode. It would then be very interesting to study by 

electrochemical modeling the influence of the formation of bottlenecks by the swollen PVdF at 

high temperature. 

It should be noted that it is generally accepted that the calculation of the tortuosity factor from 

the geometric tortuosity leads to greatly underestimating the diffusional limitations within the 

electrode porosity. Moreover, equation (4) was established mathematically by Epstein for a 

bundle of sinuous but parallel pores [23], which is very different from the microstructure of 

electrodes constructed from more or less spherical particles. A possible significance of our 

results is that at high current, the effective microstructure of the electrode is reduced to its 

micrometric pores most parallel to the main direction of the current (perpendicular to the 

electrode) and that the lateral connections between these main pores participate little in the 

homogenization of the salt concentration gradient of the electrolyte. 
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