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Abstract: The bidirectional reflectance distribution function (BRDF) and the bidirectional
scattering - surface reflectance distribution function (BSSRDF), which relate radiance at the
surface to irradiance and radiant flux, respectively, are regarded as the most fundamental scattering
quantities used to determine the reflectance of objects. However, for materials where the optical
radiation is transmitted under the surface, this radiance depends not only on irradiance and
radiant flux, but also on the size of the irradiated area of the surface. This article provides insight
into such dependence under the special condition in which the radiance is evaluated within the
irradiated area and, consequently, is produced by both the insurface reflection and the subsurface
scattering, in contrast to the situation in which the radiance is evaluated at non-irradiated areas
and only subsurface scattering contributes. By explicitly considering both contributions, two
other scattering quantities are defined: one that accounts exclusively for the insurface reflection
and the other that accounts for subsurface scattering. In this regard, these quantities might be
considered more fundamental than the BRDF and the BSSRDF, although they are coincident
with these two functions apart from the above-mentioned special condition and for materials with
negligible subsurface scattering. In this work, the relevance of the proposed scattering quantities
is supported by experimental data, practical considerations are given for measuring them, and
their relation to the bidirectional transmittance distribution function (BTDF) is discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

According to the CIE International Lighting Vocabulary (ILV) [1], reflectance is defined as “the
ratio of the reflected radiant flux or luminous flux to the incident flux in the given conditions”,
while transmittance is defined as “the ratio of the transmitted radiant flux or luminous flux to
the incident flux in the given conditions”. Both quantities describe the interaction of the radiant
flux (Φi) with the objects, but for given conditions. These conditions include the irradiated
area of the surface (Ai), the collection area of the surface for which the optical radiation is
evaluated (Ar), the irradiation and collection solid angles (ωi and ωr) (Fig. 1, Table 1), and other
conditions not addressed in this work such as polarization. Therefore, when reporting the value
of reflectance or transmittance, these conditions must be specified explicitly. Quantities such as
diffuse reflectance, specular (regular [1]) reflectance, diffuse transmittance, regular transmittance
or others [2] are defined to implicitly include well-established geometrical conditions. Many other
quantities might be defined, that would provide very different results, making the measurement
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Fig. 1. Variables used in the definition of the scattering quantities. Quantities and symbols
are given in detail in Table 1 for a better understanding of the equations.

of reflectance and transmittance in given conditions far from being a general characterization of
the interaction of the radiant flux with objects.

In order to obtain a more general description, quantities must be defined that will allow the
reflectance and the transmittance to be derived for any condition. Nicodemus et al. [3–5] defined
the Bidirectional Reflectance Distribution Function (BRDF) with the purpose of describing such
a fundamental quantity for reflectance. This function describes the bidirectional reflectance
for infinitesimal solid angles and for any irradiation (ri) and collection (rr) directions (Fig. 1,
Table 1). The BRDF should allow reflectance to be calculated for any condition via integration,
as thoroughly described in Ref. [5], where it is defined as:

fr(ri; rr) =
dLr(ri; rr)

dE(ri)

|︁|︁|︁|︁|︁
Ai large enough

(1)

where E is the irradiance (= dΦi/dAi), which must be uniform on the sample, and Lr is the
emerging radiance resulting from irradiation. The condition of being irradiated with a large
enough area Ai will be commented on later; at this point, it is convenient to define the quantity:

f ∗r (ri; xr, rr; Ai) =
dLr(ri; xr, rr; Ai)

dE(ri)
, (2)

where the only difference from Eq. (1) is that no condition is imposed on the size of the irradiated
area. In this case, the dependence on the collection position on the surface xr is explicitly
specified, where both f ∗r and Lr depend on the position with respect to the center of the irradiated
area in objects allowing transmission of optical radiation under the surface, in contrast with fr,
where the “large enough area” condition is applied precisely to avoid this dependence.

Differentials are used to indicate that the irradiation is incident from a differential element
of solid angle ωi in direction of ri, with dE(ri) = Li(ri) cos θidωi, where Li and θi are the
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Table 1. List of quantities and symbols.

Symbol Quantity SI units

a Distance from xi to xr. m

Ai Irradiated area at the surface. Involved in the definition of the BRDF. m2

Ar Collection area at the surface for which the reflected radiant flux is evaluated. m2

dAi Differential of irradiated area. Involved in the definition of the BSSRDF. m2

∆Ai Increment of irradiated area. Used instead of dAi when referring to measurement. m2

dAr Differential of collection area. m2

∆Ar Increment of collection area. Used instead of dAr when referring to measurement. m2

dLr Differential of radiance at xr produced by the irradiation on Ai. W · m−2 · sr−1

Involved in the definition of the BRDF.

dLssr Differential of radiance at xr produced by the irradiation on dAi at xi. W · m−2 · sr−1

Involved in the definition of the BSSRDF.

E Irradiance on the surface. W · m−2

fr Bidirectional Reflectance Distribution Function (BRDF). sr−1

f ∗r Derivative of Lr with respect to E. sr−1

fssr Bidirectional Scattering - Surface Reflectance Distribution Function (BSSRDF). m−2 · sr−1

fss Bidirectional Bipositional Subsurface Scattering function (BBSS). m−2 · sr−1

f̂ss Measurement of fss. m−2 · sr−1

fis Bidirectional Insurface Scattering function (BIS). sr−1

f̂is Measurement of fis. m−2 · sr−1

ft Bidirectional Transmittance Distribution Function (BTDF). sr−1

Li Radiance of the incident optical radiation. W · m−2 · sr−1

Lr Radiance of the reflected optical radiation. W · m−2 · sr−1

Lis Radiance from insurface reflection. W · m−2 · sr−1

Lss Radiance from subsurface scattering. W · m−2 · sr−1

Lssr Radiance from subsurface scattering and insurface reflection. W · m−2 · sr−1

Lt Radiance of the transmitted optical radiation. W · m−2 · sr−1

ωi Irradiation solid angle. sr

ωr Collection solid angle. sr

Φi Incident radiant flux on the surface. W

ri Incidence direction. (rad, rad)

rr Collection direction. (rad, rad)

θi Incidence angle. rad

xi Incidence position on the object. (m, m, m)

xr Collection position on the object. (m, m, m)

incident radiance and the incidence angle, respectively. In this and in the following equations,
Leibniz notation is used, for which quotients of differentials can be interpreted as derivatives
(non-standard analysis). To our knowledge, this interpretation does not incur any contradictions
in analogous expressions with radiometric quantities.

Nicodemus et al. [5] related the BRDF to a more fundamental distribution function, the
Bidirectional Scattering - Surface Reflectance Distribution Function (BSSRDF, for which the
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symbol fssr is used in this article; the subscript “ssr” stands for “Scattering - Surface Reflectance”):

fssr(xi, ri; xr, rr) =
dLssr(xi, ri; xr, rr)

dΦi(xi, ri)
, (3)

where Lssr is the emerging radiance produced by the incident radiant flux Φi. Although both
dLr and dLssr are radiances at a specific position xr, the notation used in Eq. (3) differs from
that used in Eqs. (1) and (2) because dLr and dLssr refer to differentials of different orders. For
dLssr, both radiance and BSSRDF depend explicitly on the positions of the irradiation (xi) and
the collection (xr), and not only on the directions. This is relevant for addressing the spatial
dimension of the scattering, as will be done in this article. It must be noted that the BSSRDF is
a particular example of the even more general scattering function called S in Ref. [6], which
also includes spectral and polarization variables. Note that, while the BSSRDF given in Ref. [5]
refers to flat surfaces, which is the most feasible approach for metrologists, in this article, it is
considered in a more generalized way for any kind of surface, such as in computer graphics [7],
where the BSSRDF is interpreted in a way similar to the scattering function [6,8].

The reason why a scattering quantity that depends on xi and xr must be defined is the existence
of subsurface scattering. The scattering caused by an object is often due to two optical phenomena:
reflection at the air-matter interface (here referred to as insurface reflection), and scattering within
the bulk (referred to as subsurface scattering). These two phenomena generate different lateral
light propagation distances, which can be defined as the distance between the position where the
incident radiant flux irradiates the object and the furthest position where a proportion of it may
exit. Insurface reflection produces a very short lateral propagation due to inter-reflections within
the concavities in the micro-rough structure of the surface, and approaches zero for flat surfaces.
However, subsurface scattering can produce considerable lateral propagation, and the irradiation
at xi gives rise to non-negligible radiance at non-irradiated positions xr. Very low scattering
and absorption coefficients yield a transparent aspect, whereas, at the other extreme, very high
scattering coefficients or absorption coefficients provide an opaque aspect. Translucent objects
are those with appropriate intermediate scattering and absorption coefficients and thicknesses for
permitting light to pass through but not allowing the objects on the opposite side to be clearly
visible.

According to Nicodemus et al. [5] [Eqs. (5)–(9) therein], the BRDF at a position xr can be
calculated by integrating the BSSRDF via the following reasoning.

Let dLr(ri; xr, rr; Ai) be an element of radiance at position xr for given irradiation and collection
directions (ri, rr), produced by irradiation of an area Ai. The area Ai can be considered a collection
of differential elements of area dAi, each with an element of incident radiant flux, dΦi(xi, ri) (see
Fig. 1, Table 1). According to the definition in Eq. (3), dΦi(xi, ri) contributes to dLr(ri; xr, rr; Ai)
with a proportion given by:

dLssr(xi, ri; xr, rr) = fssr(xi, ri; xr, rr) dΦi(xi, ri) = fssr(xi, ri; xr, rr) dE(xi, ri) dAi. (4)

Thus, dLr(ri; xr, rr; Ai) is expressed as the integral of these elementary radiances, i.e.:

dLr(ri; xr, rr; Ai) =

∫
Ai

dLssr(xi, ri; xr, rr) = dE(ri)

∫
Ai

fssr(xi, ri; xr, rr)dAi, (5)

where a uniform irradiation has been assumed; in this way, the irradiance dE becomes independent
of the point of incidence. By rearranging terms, Eq. (5) can be written as:

f ∗r (ri; xr, rr; Ai) =
dLr(ri; xr, rr; Ai)

dE(ri)
=

∫
Ai

fssr(xi, ri; xr, rr)dAi. (6)

According to Nicodemus et al. [5], this equation allows the relation between the BRDF and
the BSSRDF to be established under the condition with a (as stated by the authors) “uniform
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irradiance over a large enough area (Ai) of a uniform and isotropic surface”. A “large enough
area” Ai is required to make the BRDF invariant around xr. Because of the dependence of the
BSSRDF on xi and xr, this condition is required even in the absence of local variations of the
scattering properties of the surface, or under the assumption that any spatial inhomogeneity of
the reflectance is spatially averaged by the detector. Therefore, due to this “large enough area”
condition, the BRDF definition excludes situations faced with smaller irradiation areas; this
leaves the following question unanswered: How can the radiance generated at an object’s surface
be described when the irradiated area is not “large enough”?

The radiance of the surface is produced under two different conditions. On the one hand,
the radiance at xr = xi is caused by both insurface reflection and subsurface scattering, while
on the other hand, the radiance at xr ≠ xi is caused only by subsurface scattering. Therefore,
a discontinuity in the BSSRDF is expected at xr = xi. This is a very special and important
condition that needs to be closely examined.

This article gives insight into the condition in which the radiance is evaluated within the
irradiated area and, consequently, is produced by both the insurface reflection and the subsurface
scattering. By explicitly considering both contributions, two other scattering quantities are
defined: one accounting exclusively for the insurface reflection and the other only for the
subsurface scattering. In this regard, these quantities might be considered more fundamental than
the BRDF and the BSSRDF, although they are coincident with these two functions apart from
the above-mentioned special condition and for materials with negligible subsurface scattering.

2. Discontinuity and dependence on the irradiated area

As introduced above, the radiant flux dΦi(xi, ri) that irradiates each elementary area dAi
contributes to dLr(ri; xr, rr; Ai) with a proportion given by Eq. (4). In the following derivation,
the discontinuity of dLssr(xi, ri; xr, rr) at xi = xr is explicitly taken into account.

The radiance dLssr is expressed as the sum of the radiance produced by the insurface reflection
(dLis) and the radiance produced by the subsurface scattering (dLss):

dLssr(xi, ri; xr, rr) = dLss(xi, ri; xr, rr) + dLis(ri; rr), (7)

where there is no spatial dependence on xr or on xi for dLis because it describes the radiance that
is exclusively due to the scattering at the air-matter interface and is therefore non-zero only for
xr = xi.

Since dLis is zero when xr ≠ xi, Eq. (4) can be written as:

dLssr(xi, ri; xr, rr) =

⎧⎪⎪⎨⎪⎪⎩
fss(xi, ri; xr, rr)dΦi + dLis(ri; rr), for xr = xi

fss(xi, ri; xr, rr)dΦi, otherwise
(8)

where the definition of the function fss is similar to that of the BSSRDF but excludes dLis:

fss(xi, ri; xr, rr) =
dLss(xi, ri; xr, rr)

dΦi(xi, ri)
. (9)

The BSSRDF can be obtained directly from Eq. (8) as:

fssr(xi, ri; xr, rr) =
dLssr(xi, ri; xr, rr)

dΦi(xi, ri)
=

⎧⎪⎪⎨⎪⎪⎩
fss(xi, ri; xr, rr) +

fis(ri;rr)
dAi

, for xr = xi

fss(xi, ri; xr, rr), otherwise
(10)

where fis is defined by:

fis(ri; rr) =
dLis(ri; rr)

dE(ri)
, (11)

which is similar to f ∗r but excludes dLss.
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The differential dAi at the denominator in the second term of Eq. (10) describes the fact that
the variation of the radiance with respect to the radiant flux increases for smaller irradiation
areas, and that this variation is not completely defined unless the second term of the equation is
negligible with respect to the first.

On the other hand, f ∗r is obtained from Eq. (8) via integration over Ai to obtain dLr(ri; xr, rr; Ai).
In analogy with Eq. (5),

dLr(ri; xr, rr; Ai) =

∫
Ai

dLssr(xi, ri; xr, rr)

=

⎧⎪⎪⎨⎪⎪⎩
dE(ri)

∫
Ai

fss(xi, ri; xr, rr)dAi + dLis(ri; rr), for xr ∈ Ai

dE(ri)
∫
Ai

fss(xi, ri; xr, rr)dAi, otherwise

(12)

where a uniform irradiation has again been assumed. The integration over Ai involves the
condition xr = xi changing to xr ∈ Ai. Note also that

∫
Ai

dLis(ri; rr) = dLis(ri; rr) because the Lis
contribution is zero except for the elementary area at xr = xi.

Finally, f ∗r can be expressed as:

f ∗r (ri; xr, rr; Ai) =
dLr(ri; xr, rr; Ai)

dE(ri)
=

⎧⎪⎪⎨⎪⎪⎩
∫
Ai

fss(xi, ri; xr, rr)dAi + fis(ri; rr), for xr ∈ Ai∫
Ai

fss(xi, ri; xr, rr)dAi, otherwise.
(13)

Whereas the first condition of the equation is related to the BRDF, the interpretation of the
second one (xr ∉ Ai) is not obvious. At the back of a planar sample with parallel interfaces,
the second condition is related to the scattering quantity usually referred to as the Bidirectional
Transmittance Distribution Function (BTDF) [9–11]. In such a case, it can be expressed as:

f ∗t (ri; xr, rr; Ai) =
dLt(ri; xr, rr; Ai)

dE(ri)
=

∫
Ai

fss(xi, ri; xr, rr)dAi (14)

where the subscript “r” for “reflectance” in f ∗r and Lr was replaced with “t” for “transmittance”.
As in the case of f ∗r , this quantity is invariant with respect to an area Ai beyond a certain limit
area. In this limit area, there is a significant possibility that entering photons will exit through the
collection area. Very favorable situations are present when the thickness of the object is much
smaller than

√
Ai, or when it is almost transparent, provided that no significant light guiding takes

place within the sample via successive total internal reflections. By analogy with the BRDF,
this quantity should be called BTDF (ft) only if this “large enough area” condition is fulfilled.
When the radiance Lt must be characterized for any size of the irradiated area, fss (or fssr, which
is equivalent in these conditions) is the appropriate quantity.

3. Fundamental scattering quantities for reflectance and transmittance

The analysis in the previous section demonstrates the convenience of defining new fundamental
quantities to explicitly emphasize the spatial distribution dependence of the irradiation and to
completely determine the reflectance and the transmittance of objects without the restriction
imposed by such dependence.

The function fis(ri; rr), which is referred to here as the Bidirectional Insurface Scattering
function (BIS), is defined, in analogy to f ∗r , by Eq. (11) and has units sr−1. In this equation, as
commented on above, Lis refers to the radiance produced exclusively by insurface reflection. In
contrast with the function f ∗r defined in Eq. (2), this function is independent of the irradiated area
Ai because the radiance involved excludes by definition any radiance produced by subsurface
scattering, which is proportional to the total radiant flux on the surface (E × Ai).
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The function fss(xi, ri; xr, rr), which is referred to here as the Bidirectional Bipositional
Subsurface Scattering function (BBSS), is defined, in analogy with the BSSRDF, by Eq. (9)
and has units m−2 · sr−1. In this equation, Lss refers to the radiance produced exclusively by the
subsurface scattering. Unlike the BSSRDF, it excludes by definition any radiance produced by
the insurface reflection.

The explicit dependence of the scattering quantities f ∗r , fssr and f ∗t on the irradiation area and
on these proposed fundamental scattering quantities is given in Eq. (13), Eq. (10) and Eq. (14),
respectively, where the “large enough area” condition is not applied.

Note that, for objects for which the optical radiation transmitted at the air-matter interface is
negligible with respect to the reflected optical radiation, the following is obtained:

f ∗r (ri; rr; Ai) = fr(ri; rr) = fis(ri; rr), (15)

regardless of the size of the irradiation area, and that for any object, the following identity can be
used except for xr = xi:

fssr(xi, ri; xr, rr) = fss(xi, ri; xr, rr). (16)

4. Relations between the proposed fundamental scattering quantities and f ∗r
The radiance produced by insurface reflection (Lis) and the radiance produced by subsurface
scattering (Lss) are not directly evaluable by measurement when xr ∈ Ai; as a consequence,
neither fis nor fss is directly measurable except in the case described by Eq. (15). However, they
can be related to f ∗r as explained in the following.

Over a range of |xi − xr | length values much smaller than the absorption mean free path, the
optical radiation flux crossing the air-matter interface at position xi and then undergoing multiple
scattering within the bulk can go back across the air-matter interface at any position within this
range with a very similar probability. Therefore, assuming

√
Ai to be much smaller than the

absorption mean free path, fss can be regarded as independent of the spatial dimensions xi and xr
[fss(ri; rr) = fss(xi, ri; xr, rr)]; for xr ∈ Ai, Eq. (13) can be written as:

f ∗r (ri; rr; Ai) = fss(ri; rr)Ai + fis(ri; rr). (17)

By taking the derivative with respect to Ai, the following is obtained:

fss(ri; rr) =
df ∗r (ri; rr; Ai)

dAi
. (18)

The dependence of fis on f ∗r can be expressed from Eqs. (17) and (18) by:

fis(rr; rr) = f ∗r (ri; rr; Ai) − Ai
df ∗r (ri; rr; Ai)

dAi
(19)

for an Ai small enough to make fss independent of spatial variables.
Equations (18) and (19) relate fss and fis, respectively, to f ∗r . Equation (18) expresses the fact

that the function fss is the derivative of f ∗r under the specific condition xr = xi. Since, at this
condition, the radiance Lss is not always directly measurable because both the insurface reflection
and the subsurface scattering contribute to the reflected radiant flux, it can be more practical to
define fss as:

fss(xi, ri; xr, rr) =

⎧⎪⎪⎨⎪⎪⎩
df ∗r (ri;rr;Ai)

dAi
, for xr = xi

dLssr(xi,ri;xr,rr)
dΦi(xi,ri)

, otherwise.
(20)

For measurements, Eq. (18) and Eq. (19) can be approximated as:

f̂ss =
f ∗r (Ai,2) − f ∗r (Ai,1)

Ai,2 − Ai,1
, (21)
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and
f̂is = f ∗r (Ai,1) − Ai,1 f̂ss = f ∗r (Ai,2) − Ai,2 f̂ss, (22)

where f̂ss and f̂is are the measurements of fss and fis, respectively, and Ai,1 and Ai,2 are irradiated
areas of different sizes, small enough to make Eq. (17) valid.

According to Eq. (10), fssr (usually obtained as Lr/Φi) equals fss when it is much larger than
fis/dAi, that is, when the condition dAi ≫ fis/fss is fulfilled. This condition, which involves an
infinitesimal element, may be confusing, but makes sense in a BSSRDF measurement, where ∆Ai
instead of dAi would denote the finite-size irradiated area. The condition implies that Lss ≫ Lis
and that most of the total radiance is produced by the subsurface scattering term. On the other
hand, according to Eq. (17), f ∗r (usually obtained as Lr/E) equals fis for small enough values of
Ai, i.e., when Ai ≪ fis/fss (Lis ≫ Lss).

From these considerations, a very simple formula can be given for the measurement of fis and
fss at the condition xr ∈ Ai:

f̂is =
Lr
E

, if Ai ≪ fis/fss (23)

f̂ss =
Lr
Φi

, if ∆Ai ≫ fis/fss. (24)

Here, the increment ∆Ai is used instead of the infinitesimal dAi because finite intervals are
involved in the measurements.

Notice that Eqs. (23) and (24) require at least rough previous knowledge of the order of
magnitude of the values of fis and fss to select the adequate irradiated area. Otherwise, an iterative
procedure can be used.

One may question why a value of ∆Ai that is larger than Ai needs to be used for measuring fss,
since dAi is included in Ai (Fig. 1, Table 1). However, it should be noted that fis is not related to fss,
and that both measurements described in Eqs. (23) and (24) are independent. The difference in
the nomenclature of both irradiated areas simply allows these equations to be related to Eqs. (10)
and (17).

5. Illustration by means of a measurement

Experimental results are shown in Fig. 2 to illustrate the conclusions from this article. The
measurements were carried out by means of the goniospectrophotometer described in [12,13],
with a camera for spatial resolution in the detection path. The radiance of the reflected optical
radiation, the size of the irradiated area and the irradiance on the sample were measured, allowing
both f ∗r and fssr to be obtained from the same measuring procedure. The irradiated area was
uniform and always much larger than the collection area, which is given by the field-of-view area
of the pixels of the camera (∆Ar = 2 × 10−3 mm2). The data presented in Fig. 2(a) consist of
BSSRDF measurements of a translucent sample made of a polycarbonate with organic scattering
particles. The data was obtained at a fixed polar angle of incidence of 15o, a fixed polar angle
of collection of 10o, fixed azimuth angles of incidence and collection of 0o with respect to the
incidence plane, and a fixed wavelength of 600 nm. The figure represents the BSSRDF as a
function of a, which is the distance from the center of the irradiation spot (xi) to the collection
position (xr) (Fig. 1, Table 1). Two sets of measurements are shown for two different irradiated
areas (∆Ai,1 and ∆Ai,2), which are circular areas of 2.1 mm2 and 8.4 mm2, respectively. Note that
the a-axis is on a logarithmic scale to better show the results at the irradiated area. The vertical
lines in the plot show the positions of the edges of the irradiation spots. It must be noted that,
although the very small collection area allows better insight into the spatial distribution, only
one integrated fssr value should be reported within the irradiation spot, which corresponds to the
elementary irradiated area ∆Ai for assessing the BSSRDF. This fssr value at xr = xi can be given
as the ratio between the average radiance within the irradiated area and the total radiant flux.
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Fig. 2. fssr (BSSRDF) and f ∗r measurements supporting the conclusions of this article.
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The data presented in Fig. 2(b) consists of the BSSDRF data in Fig. 2(a) multiplied by the size
of the irradiated area. Therefore, the importance of this additional figure lies in its absolute value.
The data represents measurements of f ∗r and can only be interpreted as BRDF (fr) measurements
for “large enough” irradiated areas, and at irradiated positions (xr ∈ Ai), on the left of the vertical
lines, but not when xr ∉ Ai. Note that, to better relate the experimental results to the previous
theoretical analysis, the irradiated areas are denoted as ∆Ai for BSSRDF measurements and as Ai
for f ∗r measurements, although they represent the same area.

Several observations support the proposed formalism:

1. In Fig. 2(a), fssr is independent of ∆Ai outside the irradiation spot (right side of the vertical
line) but not within the irradiation spot (left side), where the smaller spot produces a much
higher result.

2. In Fig. 2(b), the f ∗r measurements show a clear dependence on Ai. The larger the irradiated
area is, the larger the f ∗r value is, which corresponds to Eq. (13).

3. The two figures show that neither f ∗r nor fssr are completely independent of the irradiated
areas.

4. The variation of fssr from condition xr = xi to condition xr ≠ xi (within and outside the
irradiated area) is larger for the smaller irradiated area [Fig. 2(a)]. That would mean
that this abrupt variation tends to disappear for larger areas, as predicted by Eq. (10)
(fis/∆Ai → 0 for very large values of ∆Ai).

5. By using the data shown in Fig. 2(b), an estimated value at xr = xi of fss ≈ 413 m−2 · sr−1

was calculated in accordance with the approximation in Eq. (21). This value is coherent
with the fssr value at the edge of the larger irradiation spot (336 m−2 · sr−1), as shown in
Fig. 2(a). This is expected because, as predicted by Eq. (10), fss approaches fssr for large
irradiated areas.

6. By again using the data shown in Fig. 2(b), two estimated values of fis were calculated
from Eq. (22), one for each irradiated area. For this calculation, the f ∗r values at the center
of the spot were used. Very similar values were obtained regardless of whether the large
or the small irradiated area (0.0011 sr−1 and 0.0012 sr−1, respectively) was used for the
calculation. These values are in agreement with the difference between the f ∗r values for
small irradiated areas at the center of the spot (0.0021 sr−1) and outside and close to the
edge (0.0009 sr−1) as shown in Fig. 2(b). Equation (13) predicts that fis approaches f ∗r
for small irradiated areas; therefore, it is expected that, for smaller irradiated areas, the
value of f ∗r at the center of the spots would approach fis (around 0.001 sr−1, as calculated
above) and that its value outside the spots would approach zero. These trends can even be
observed in the two curves for different areas shown in Fig. 2(b).

7. The previous estimations provide that fis/fss ≈ 2.5 mm2; according to Eqs. (23) and (24),
this means that the larger area ∆Ai,2 is more convenient for measuring fss (8.4 mm2 is more
than three times larger than 2.5 mm2) than the smaller area Ai,1 is for measuring fis (2.1
mm2, which is similar to 2.5 mm2).

6. Discussion

The BRDF is well accepted as a fundamental scattering quantity for the determination of
reflectance. However, for objects allowing the optical radiation to be transmitted under the
surface, the BRDF needs to be defined with “large enough” irradiated areas because it is invariant
for larger irradiated areas only at this condition. Consequently, the BRDF does not completely
describe the reflectance of these objects for any irradiation condition. For the “large enough”
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condition, the radiance caused by the subsurface scattering prevails over the radiance from
insurface reflection. For the “small enough” condition, the insurface reflection would prevail
over the subsurface scattering contribution. For arbitrary intermediate sizes, both contributions
are important.

The BSSRDF can be regarded exclusively as a fundamental scattering quantity with the
exception of the condition xr = xi. For this condition, the radiance is produced both by the
insurface reflection (proportional to the irradiance) and by the subsurface scattering (proportional
to the radiant flux).

Given these considerations, insurface and subsurface scattering quantities need to be given
separately, as they are quantities that are more fundamental for reflectance than the BRDF and
the BSSRDF.

For transmittance, the condition xr = xi is always excluded. However, the BTDF, as well as
the BRDF, needs to be defined with a large enough irradiation area to be invariant for larger
irradiation areas and makes the Bidirectional Bipositional Subsurface Scattering function [BBSS,
Eq. (9)] a more fundamental quantity for transmittance.

The proposed fundamental scattering quantities can be related to the radiance at the surface of
an object in a more practical way as:

dLssr(xi, ri; xr, rr)

dΦi(xi, ri)
= fss(xi, ri; xr, rr) + fis(ri, rr)δ(xi − xr) (25)

where the Dirac delta function δ(xi − xr) replaces the discontinuous function in Eq. (10). The
Dirac delta function is adequate for integration over Ai, resulting in the value of the integrated
function fis(ri; rr) as long as xr belongs to Ai, and zero otherwise. Note that δ(xi − xr) has the
inverse dimension of its argument by definition. In this case, it has the dimension of inverse
squared length because fis is relative to a surface and xi and xr are regarded as two-dimensional
variables. Equation (25) describes the variation of the radiance of an object with the incident
radiant flux using the two fundamental scattering quantities defined in this article.

In this work, we conclude that the BRDF and the BSSRDF, as defined in Eqs. (1) and (3), can
be regarded as fundamental scattering quantities under most of the conditions, but the following
points must be considered:

1. The “large enough area” condition in the definition of the BRDF favors the inclusion of
the subsurface scattering contribution, whereas a “small enough area” condition would
make the insurface reflection contribution prevail. Under this latter condition, f ∗r coincides
with the Bidirectional Insurface Scattering function, BIS.

2. The BSSRDF coincides with the Bidirectional Bipositional Subsurface Scattering function,
BBSS, under the condition xr ≠ xi, which includes only the subsurface scattering; however,
when xr = xi, the insurface reflection is also included, meaning that the BSSRDF is no
longer a fundamental scattering quantity. In such a case, Eqs. (9) and (18) are more
adequate definitions for the subsurface scattering quantity.

To obtain representative measurements of samples, the size of the evaluated area must be
selected such that the result is spatially invariant. In this article, it is assumed that the diameters
of both irradiated and collection areas contain many times the wavelength of the optical radiation
and the correlation length of any internal structure. This is fulfilled for the shown experimental
results, where the material does not have a surface structure and the surface roughness is very
small (the amplitude parameter Ra is around 5 nm).

In addition, uniform irradiation has been assumed, meaning that radiance and irradiance are
well specified. In some practical cases, uniform irradiation on the scale required for irradiance
and radiance measurements is not possible, and these quantities must be determined as the
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average values of radiant fluxes. In such cases, the measurement equation for the BRDF and the
BTDF is obtained from Eq. (2) as:

fs =
dLs
dE
=

Φs
ωsAs cos θs

/︂Φi
Ai
=

1
ωs cos θs

(︂Φs
Φi

)︂ (︂Ai
As

)︂
, (26)

where the subscript “r” (or “t”) is replaced by the more general “s” for “scattering” and θs is
the scattering angle with respect to the surface normal. Ai is the irradiated area and As is the
area including the full scattered radiant flux. When the object is non-translucent and there is no
lateral scattering, both areas are coincident and Eq. (26) is usually simplified as [9–11]:

fs =
1

ωs cos θs

(︂Φs
Φi

)︂
. (27)

However, when the object is translucent, this simplification could be wrong, under conditions
in which a significant part of the scattered radiant flux emerges from an area larger than Ai. In
these cases, such a measurement approach is not recommended; here the measurement of the
BBSS is a better option, since it does not require a uniform irradiation but a known value of the
radiant flux.

7. Conclusions

In this work, relating radiance to irradiation conditions at the surface of objects has been studied
theoretically. The Bidirectional Reflectance Distribution Function (BRDF) is only invariant for
“large enough” irradiated areas, and cannot be used to predict radiance for smaller irradiated
areas. The Bidirectional Scattering - Surface Reflectance Distribution Function (BSSRDF) can
include both subsurface and insurface scattering contributions when the radiance is evaluated at
an irradiated position, which makes it dependent on the irradiation area. Therefore, the BRDF and
the BSSRDF cannot be regarded as fundamental scattering quantities for determining reflectance
and transmittance under every irradiation condition. We have proposed the definition of two
different scattering quantities, one which exclusively describes insurface reflection and the other
which exclusively describes subsurface scattering; these quantities are completely independent of
the irradiation conditions and can therefore be regarded as more fundamental than the BRDF and
the BSSRDF. Therefore, the proposed quantities should allow the reflectance and transmittance
of an object to be calculated under any given irradiation condition. The conclusions drawn
from the formalism presented have been supported by measurements. In addition, relating these
quantities to the Bidirectional Transmittance Distribution Function (BTDF) has been examined
and some practical measurement issues discussed. New procedures to provide traceability to
measurements of BIS and BBSS need to be developed, and that will be part of future work.
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