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A heuristic approach for a scheduling problem in Additive Manufacturing 

under technological constraints 

 

  

 

Abstract 

In the context of the future industry, companies have urged to innovate the manufactured 

products. Today, additive manufacturing makes it possible to respond to the needs of the 

market in terms of customized production. The recent advances in additive manufacturing 

technologies have caused a considerable increase in the number of products manufactured by 

additive processes in industries. In order to satisfy customers' demands and make the 

investment in additive machines profitable, it is necessary to deal with the production 

organization in additive manufacturing. This research focuses on the scheduling and nesting 

problem of production with technological constraints. The objective is to minimize the total 

delay of the parts to be produced and to maximize the use rate of the additive manufacturing 

machines. Two models are proposed for powder-based laser technologies and multi jet fusion 

technology, to estimate the production time in additive manufacturing based on real data. The 

nesting and scheduling problem is modelled by mixed linear programming. A small example 

is used to validate the proposed model using the Cplex solver. Due to the NP-hardness of the 

problem studied, this research develops a heuristic approach to solve large-sized instances. 

Computational experiments conducted on small and medium size instances indicate that the 

proposed heuristic is capable to give better solutions within a reasonable time. To evaluate the 

heuristic performances on large instances, a comparison of the heuristic results is performed 

with the lower bounds obtained by relaxing the model. The numerical results show that the 

solutions found by our heuristic are near to the lower bounds proposed. 

Keywords: Additive manufacturing, production time, scheduling, planning, placement 

1. Introduction 

In recent years, the evolution of information technologies has forced companies to 

change their paradigm of product manufacturing. Indeed, customers are more and more 

exigent in terms of manufacturing costs, product quality and personalized production. In order 

to be competitive and to best meet the different needs, companies must innovate in the 



products which they supply to their consumers. In this context, today's additive manufacturing 

processes make it possible to follow with the current challenges by the technological progress 

made in recent years (Zhang et al., 2014; Özceylan et al., 2018). They offer the possibility to 

manufacture parts, with simple or complex geometries, in small or large series, in time and at 

a reasonable cost (Zhang et al. 2014; Mellor et al., 2014). Due to their characteristics and 

specificities, additive manufacturing processes have become very popular technologies in 

several manufacturing contexts, especially in customized production (Yılmaz, 2020; Zhang et 

al., 2014). They consist on stacking layers one by one in order to produce a part from a 

numerical data model (Li et al., 2017). In contrast with traditional technologies, additive 

manufacturing, known as 3D printing, offers several advantages, such as production 

flexibility and efficient use of resources and building materials (Huang et al., 2012; Mellor et 

al., 2014; Kucukkoc et al., 2016). In fact, additive manufacturing technologies can be used to 

produce parts with extremely complex shapes which sometimes cannot be realized with 

conventional technologies (Zhang et al., 2014). In addition, the manufacturing layer by layer 

does not need tools, which helps to reduce the production costs and times. Initially, in 1980, 

additive manufacturing (3D printing), was limited to rapid prototyping, prototype and model 

making applications (Vayre et al., 2012). Today, with the evolution of materials and 

manufacturing technologies, additive manufacturing is used in direct parts production (Li et 

al., 2017). The importance of additive manufacturing technology has been recognized in 

several application domains (Tofail et al., 2018). In fact, many companies in various sectors 

such as medicine, automotive, aeronautics and aerospace currently use it (Zhang et al., 2014; 

Kucukkoc, 2019).   

Additive manufacturing processes based on materials in powder form, such as 

Selective Laser Sintering (SLS), Fusion Laser Melting (SLM), Direct Metal Laser Sintering 

(DMLS) and Electron Beam Melting (EBM), have received significant attention in research 

and industrial sectors, due to their advantages in high precision metallic parts production (Li 

et al., 2019b). These technologies are based on the principle of melting material in the form of 

powder using an energy source (ASTM: F2792-12a). In fact, the principle of powder bed 

technologies is simple. Firstly, the powder is spread with a roller or a squeegee on the 

building plate. Secondly, an energy source sweeps the powder to be fused in order to create a 

layer. When a layer is built, the tray (also called the bed) descends and another layer of 

powder is distributed on the top and this process is repeated until all layers of the object in 

question are constructed. Finally, post-processing operations may be required in order to 



improve the quality of the part (Chergui et al., 2018). Recently, new technology has been 

developed to be more adaptable to functional prototyping and serial parts manufacturing, 

namely Multi Jet Fusion (MJF) (Morales-Planas et al., 2018). This technology is similar to 

powder sintering technology; it is a powder bed technology that uses an infrared heating 

element instead of a laser. These technologies have become very interesting in many 

industrial applications, and even in the food sector (Özceylan et al., 2018). This study focuses 

on these powder bed additive technologies, specifically the MJF and laser technologies.  

 Over the past few years, additive manufacturing has experienced rapid growth in 

personalized parts manufacturing and it has been predicted that the additive manufacturing 

market will be multiplied nearly six-fold to reach $12 billion by 2025 (Vicari, 2015). As a 

result, this growth will cause several problems for the company's various processes. Indeed, 

most of additive manufacturing technologies still suffer from low production speeds due to its 

nature of the layer-by-layer process. Moreover, the operating costs of powder bed machines 

are generally very high (Li et al., 2017). Consequently, it is necessary to solve some problems 

related to the use of additive machines in order to improve their performance and reduce their 

costs, especially the planning problem in additive manufacturing. In the literature, the 

grouping of several identical or non-identical parts in a single job batch is considered as the 

main strategy to optimize additive machine use rates, manufacturing costs and time (Piili et 

al., 2015).  In the grouping process, the optimization of parts placement considering capacity 

constraints and the various specifications of parts and additive machines represents a major 

problem in production planning, due to their impact on the job production time. In addition, as 

previously mentioned, the job production requires pre-processing and post-processing 

operations. These operations have a considerable impact on the production planning and they 

have to be considered in the production scheduling, especially when the parts have due dates 

and fixed delivery times. The issue that then arises is how to group the parts into jobs and 

order them on the available resources, considering the technological constraints, i.e. the 

processing operations, the deviation and non-overlap between the parts in the build platform, 

while optimizing one or more performance measures.  

Due to the very limited research on production planning and scheduling problems in 

additive manufacturing, the current paper considers the two-dimensional placement and 

scheduling problems under technological constraints. This paper contributes to the literature 

by proposing two models to estimate the job production time for powder-based laser 



technologies and multi jet fusion technology based on real data, and also by developing a 

mathematical model and heuristics to solve the placement and scheduling problem.  

The paper is organized as follows. A literature review and the main contributions are 

presented in the second section. Based on real data collected from a company, two models to 

estimate production time for laser powder technologies and MJF technology are proposed in 

section 3. The problem of parts scheduling and placement in additive manufacturing is 

defined and mathematically modelled in Section 4. A small example is provided in the same 

section. To solve large instances, a heuristic is developed in section 5. Section 6 provides the 

numerical experiments. A conclusion is drawn in section 7 with some perspectives. 

2. Literature review 

The literature in the domain of production’s organization in additive manufacturing is 

recent and emerging, the proof is that the majority of the papers on this subject have been 

published in the last four years. The existing studies on the production planning in additive 

manufacturing are summarized in Table 1. 

In order to increase production and resource utilization rates in additive 

manufacturing, nesting and scheduling approaches are important for efficient production 

management. However, the majority of the literature treats these two problems separately 

(Zhang et al., 2020). For example, Zhang et al. (2017) studied the problem of the placement of 

parts in additive machines. They are interested in the process of optimizing the orientation of 

the construction for multi-part production and proposed a two-step approach as a resolution 

method. The objective of their study is to maximize the rate of use of additive machines. 

Similarly, Canellidis et al. (2016) proposed a Genetic Algorithm (GA) to solve the placement 

problem of parts in the building platforms.  

The problem of scheduling production in additive manufacturing is first introduced 

into the literature by Kucukkoc et al. (2016). They proposed a mathematical model to 

maximize the use of manufacturing surface by respecting the delivery times of the parts. The 

objective of their study is to group parts into work packages and allocate them to resources in 

order to optimize production cost per volume of material. However, the model is not validated 

on data instances to determine its performance. Next, Li et al. (2017) introduced the problem 

of planning additive machines. They developed a mathematical model to determine the 

optimal allocation of several parts on a set of machines with different specifications. The 



proposed model is solved by Mixed Integer Linear Programming (MILP) using Cplex solver 

and two heuristics (best fit and adapted best fit) have been developed to solve large instances. 

Experimental studies have been conducted to validate their work and assess the performance 

of heuristics. Their findings proved that the planning in additive manufacturing could 

significantly reduce costs. Kucukkoc (2019) discussed the scheduling problem in additive 

manufacturing in order to optimize a performance measure related to processing time. He 

proposed models based on MILP to assign parts in job batches and schedule them on one or 

more machines while minimizing the makespan. However, in the above-mentioned studies, 

they did not take into account the due dates in the scheduling problem. In this context, 

Kucukkoc et al. (2018) contributed to this question by proposing a GA (genetic algorithm) for 

production planning based on the output dates and due dates of the parts to be manufactured. 

Ransikarbum et al. (2017) proposed a decision support tool based on multi-objective 

optimization to address the assignment problem of parts to additive machines for Fused 

Deposition Modeling (FDM). They modelled the problem with MILP. The objectives are to 

reduce production costs, balance the load between machines and reduce the total delay and the 

total number of unprinted parts. Fera et al. (2018) studied the problem of production 

scheduling on a single machine. They have developed a genetic algorithm to minimize total 

advance/delay costs and production costs. Nevertheless, the studies reviewed above consider 

only the areas and volumes of the parts in the grouping process. 

Recently, some papers have been focused on how to solve the planning problem in 

additive manufacturing by addressing both scheduling and nesting issues. Oh et al. (2018) 

investigated the batch placement problem based on a 2D nesting method in order to avoid 

surface damage. To do this, the authors proposed a decomposition method using a Binary 

Space Partitioning (BSP) method to cut a part into smaller pieces. Furthermore, they also 

developed a GA for placing and grouping the decomposed pieces into several batches. Wang 

et al. (2019) developed a cloud-based additive manufacturing production planning system that 

takes into account lead time, height and part shape. They proposed a computer vision-based 

approach in order to efficiently nest the irregular parts in the building platform. Chergui et al. 

(2018) addressed the problem of production planning and scheduling of additive machines. 

They proposed an approach that considers the due dates and specifications of the parts. 

Chergui et al. (2018) divided the problem into two sub-problems, grouping the parts and 

scheduling the work packages. Dvorak et al. (2018) investigated the problem of parts planning 

on several additive machines to optimize the number of overdue parts and to meet deadlines 



and nesting constraints (two-dimensional bin packing). Li et al. (2019a, 2019b) introduced the 

problem of dynamic order acceptance and scheduling in on-demand production with powder 

bed fusion systems. Li et al. (2019b) developed an approach that allows manufacturers to take 

simultaneous decisions on the acceptance and scheduling of dynamic incoming orders to 

optimize the average profit-per-unit-time during the whole makespan. Zhang et al. (2020) 

studied the scheduling and the nesting problem for the production planning of multiple parts 

on several additive while minimizing the makespan. They developed an approach that 

combines heuristics and a genetic algorithm in order to consider the decisions of allocation 

and placement of parts simultaneously.  

The literature on planning in additive manufacturing is in its early stages and mainly 

concerns two problems: the assignment of parts to additive machines and the nesting of parts 

in the building platforms. However, as mentioned in the previous section, most of the 

literature considers these two problems separately or simplifies the nesting process by 

grouping parts based on their volume and area (Li et al., 2017; Kucukkoc, 2019). Only some 

very recent contributions have attempted to combine the two problems for efficient 

production planning, see Table 1. Nevertheless, there are some limitations in their studies. In 

fact, most of them consider regular part shapes (Chergui et al., 2018) and a single additive 

manufacturing technology. Moreover, in the estimation of manufacturing times, no study has 

been conducted that integrates and estimates the time of the different pre-treatment and post-

treatment operations. These operations are called in this study as technological constraints, 

since they are necessary and must be taken into account for more precise planning. The main 

research contributions of this work are summarized as follows: 

- Two cycle time estimation models are proposed for powder-based laser technologies 

and multi jet fusion technology based on real data.   

- Mixed Linear Programming (MLP) formulation is proposed for the combined 

scheduling and nesting problem considering additive manufacturing process 

requirements, technological constraints.    

- An exact resolution is performed and a heuristic is developed to solve the planning 

problem in additive manufacturing. 

- The nesting process is based on the projection of parts on the horizontal and vertical 

dimensions, as opposed to Chergui et al. (2018) which consider rectangular shapes. 



Table 1.  Related research papers classification 

Reference Objective Bin 
packing 

Batch 
processing 

Due 
date 

Technological 
constraints 

Manufacturing 
technology 

Solving 
approach 

Zhang et al. (2017) Max. utilization rate √    SLA GA 

Canellidis et al. (2016) Max. utilization rate √    SLA GA 

Kucukkoc et al. (2016) Min. production cost  √ √  SLM Heuristic 

Li et al. (2017) Min. production cost  √   SLM / DMLS Cplex/ Heuristic 

Kucukkoc (2019) Min. makespan  √   SLM Exact 

Kucukkoc et al. (2018) Min. maximum lateness  √ √  SLM GA 

Ransikarbum et al. (2017) Min. lateness and cost  √ √  FDM Cplex 

Fera et al. (2018) Min. adv./late. & cost  √ √  DMLS GA 

Oh et al. (2018) Min. cycle time √ √   SLS/SLM Heuristic 

Wang et al. (2018) Max. utilization rate √ √ √  SLS Computer vision  

Chergui et al. (2018) Min. lateness √ √ √  SLM/SLS/DMLS Heuristic 

Dvorak et al. (2018) Min. makespan √ √ √  SLM Heuristic 

Li et al., (2019a) Max. profit √ √ √  EBM/SLM Heuristic 

Li et al. (2019b) Max. profit √ √ √  EBM/SLM Heuristic 

Zhang et al. (2020) Min. makespan √ √ √  SLA GA 

The current paper Min. lateness √ √ √ √ 
SLM/SLS/DMLS
/MJF 

Cplex /Heuristic 



Mathematical notations and preliminaries 

I Set of parts indexed by i 

K Total number of jobs indexed by k 

M Set of machines indexed by m 

MXm, MYm, MZm Length, width and height of machine m 

Xi, Yi, hi Length, width and height of part i 

di  Due date of part i 

ei  Desired deviation for part i 

��, ��  Volume and area of part i 

Vlm Laser scanning speed of machine m 

Dlm Laser diameter of machine m 

Evm Vector deviation, the distance between two scans of machine m 

Tcm Layering time of machine m 

Ecm Layer thickness of machine m 

���,	 Layers construction time for job k on machine m 

Tsi Sandblasting time of part i 

Rp Project review time  

Tp File preparation by reference  

Tpm Preparation time of machine m 

Thm Heating time of machine m 

Tdm Unpacking time of machine m   

Tt  Sorting time 

Te Packaging, labelling time  

Dtm Time required for temperature descent on machine m   


�,�	  If part i is assigned to job k on machine m 1, otherwise 0 

��,	 If the job k on the machine m is used 1, otherwise 0 

��,

�,	

 If part i is placed before part j in job k on the x – axis 1, otherwise 0 

��,

�,	

 If part i is placed before part j in job k on the y – axis 1, otherwise 0 

��, �� Coordinates of part in the x and y–axis 

��,�,	 Delay of the i−th part assigned to job k on machine m 

��,	 Production time of job k on machine m 

��,	 Completion time of job k on machine m 

M1 A big number 



3. Models to estimate job production time 

In order to ensure on-time production and to plan production in a more accurate and 

predictable way, it is necessary to consider the time of all operations that take place along the 

manufacturing process. Indeed, the estimation of the total job production time is essential for 

production scheduling, especially when decisions on the parts’ grouping are taken during the 

planning process and also during the scheduling phase of all jobs on additive machines 

(Kucukkoc, 2019; Liu et al., 2019). 

3.1. Job production time estimation for the MJF technology 

MJF technology is the last innovation in the field of additive manufacturing on the 

powder bed. Currently, this technology is used to manufacture functional prototypes and parts 

for small and medium production series for various industrial applications. The MJF process 

is characterized by the capacity to produce parts with high precision. In fact, it enables to print 

objects layer by layer with a thickness varying between 0.07 and 0.12 mm, usually with a 

thickness of 80 microns. Moreover, the particularity of this technology is its rapidity 

compared to other processes, due to its construction process by an agent. The MJF process 

scans the surface at each pass at a constant speed, in other words, the number of parts in this 

layer has no influence on the construction time, which allows estimating the layer 

construction time with high precision. However, as mentioned in the introduction section, job 

completion requires other operations than layer construction, such as file and machine 

preparation and post-processing operations. In the following, we describe in detail all the 

operations required along the additive process. 

3.1.1. Preparation of numerical files 

The preparation of the files is made from a CAD file. Several operations can be 

realized during this phase. For example: files import, repertory creation, files’ errors check 

and correction, files conversion into a standard format, files compression, parts placement on 

the virtual platform according to the production scheduling, file standard format slicing, 

transfer of the standard file to the printer, etc. The duration of this operation depends on the 

number of parts in the job and on the time needed to repair the errors in the files. 

3.1.2. Machine preparation 

In the machine preparation phase, two types of operations can be identified: human 

and machine operations. Human operations cover all the activities in which the printer 



participates, for example, machine cleaning, powder loading, machine set-up, positioning the 

production platforms and adjusting the machine. Machine operations are all operations 

executed by the machine itself such as heating and preparation of the first layer. The total 

preparation time of the machine depends essentially on their characteristics and the reactivity 

of the printer. 

3.1.3. Layer construction 

The parts are built layer by layer. The duration of this operation is the sum of the times 

taken to build each layer. As the construction time of a layer is regular, then the construction 

time of all the parts depends only on the maximum height in the considered job. 

Consequently, doubling the height of the room is equivalent to doubling the construction time 

of the layers. 

3.1.4. Post-processing 

At the end of the manufacturing process, the parts must be removed from the platform 

and submitted for some last finishing operations, sorting and packaging. During the 

unpacking operation, cooling, generally natural, must be conducted. According to a printer of 

the MJF technology, the unpacking time takes three times the construction time of the layers, 

for a natural cooling. 

Based on information and measurements collected from a constructor of the MJF 

technology, a summary of the various operations and an average time estimation for each are 

given in Table 2. 

Table 2. Average time estimation of each operation for the MJF technology 

Operation Average estimated time Fixed1 or Variable2 

Project review (Rp) 

File preparation by reference (Tp) 

Machine preparation (Human Op) (Tpm) 

Machine Heating (Thm) 

Layers construction (Tck,m) 

Unpacking (Tdm) 

Sandblasting (Tsi) 

30 min 

1 min/ref 

30 min 

60 min 

9 to 13 s/layer 

3 * Tck,m 

Tsi 

Fixed 

Variable 

Fixed 

Fixed 

Variable 

Fixed 

Variable 

                                                           
1 Time does not depend on the content of the job. 
2 The time varies according to the content of the job and the characteristics of each part. 



Sorting of parts (Tt) 

Packaging, labelling (Te) 

1 min/ref 

1 to 2 min/box 

Variable 

Variable 

For a given job k and machine m, we can then estimate the completion time ��,� using the 

following formula Eq. (1).  

��,� = ��� + ��� + �ℎ�� + ���� + � + �!" #$,��
$∈&

 

+ '#($∈& )ℎ$  #$,�� *
+,�

 �,� + � #$,��
$∈&

�-$ + 3 �,�,�                                                                    �1" 

3.2. Job production time estimation for the laser process 

Based on a simple model for estimating the layer construction time for laser fusion 

processes issued from an engineering techniques notice (Pillot, 2016) and the model proposed 

by (Zhang and Bernard, 2013), we can estimate the layers’ construction time for a given job k 

on machine m by the Eq. (2).  

�,�,� = � 0$  #$,��

12�+,��32� + +0�"$∈&
+  � -$ #$,��

12�+,�$∈&
+ '#($∈& )ℎ$  #$,�� *

+,�
 �,�                           �2" 

In order to estimate the total time needed to execute a job in a precise manner, it is 

necessary to take into consideration the times related to preparation and post-processing 

operations. In Table 3., we present the main common operations of the powder bed 

technologies and we give an estimate of the average duration of each operation. We note that 

the measurements are conducted for the SLS technology. The time required to complete a job 

using the powder bed process can be estimated by the Eq. (3). 

Table 3. The main operations necessary to realize a job with powder bed processes 

Operation Average estimated time Fixed3 or Variable4 

Temperature descent (Dtm) 

Layer construction (Tck,m) 

Unpacking (Tdm) 

120 min 

Tck,m 

3 to 8 hours  

Fixed 

Variable 

Variable 

                                                           
3  Time does not depend on the content of the job. 
4 The time varies according to the content of the job and the characteristics of each part. 



��,� = ��� + ��� + �ℎ� + 3 �� + ���� + � + �5"#$,��
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�-$ + �,�,� + �6�                                                                                 �3" 

Independently from the process used, it is difficult to estimate the blasting time for a 

given part since it depends on several parameters. In the following section, we propose a 

predictive approach to estimating blasting time. 

3.3. Empirical model to predict the blasting time 

3.3.1. Approach and assumption tests 

In this section, we seek to establish an empirical model for predicting blasting time 

and to identify the most significant parameters in the blasting time estimation. The objective 

of this study is to statistically illustrate the relationship between surface (si), volume (vi), 

surface-to- volume ratio (si/vi), complexity (Ci) of the part and blasting time (Tsi). We propose 

to use multiple stepwise regression to analyze the independent variables and study their 

effects on a dependent variable (blast time). In this technique, the proposed model is 

constructed from a set of parameters by removing independent variables from the statistics 

estimated at each step. The result of this procedure includes the values of the coefficient, 

standard error, T-Stat value and P-value of each independent variable. In order to analyze the 

results and to be able to identify the most influential variables, we use a statistical test to make 

a choice between two statistical hypotheses (H0 and H1). The assumptions used are as 

follows: 

H0 (Null assumption): Parameter = 0 

H1 (Alternative assumption): Parameter ≠ 0 

The null assumption will be rejected if the P-value is less than or equal to the 

significant level α, in other words, parameters whose P-value is less than or equal the 

significant level α will be considered as influential variables. At each step, if the P-value is 

higher than the significant level then we accept the null hypothesis and we reject the 

alternative hypothesis. In addition, the variable with the highest P-value will be removed from 

the predictive model. The process stops when all existing variables have a P-value lower than 

α. The model for estimating blasting time with four factors is given by the Eq. (4). 



�-$ = #7 + #80$ + #9-$ + #: ;-$
0$

< + #=>$                                                                              �4" 

With:  

�-$    : Represents the dependent variable (the blasting time) 

0$, -$, >$  : Represent the independent variables 

#7, #8, #9, #:, #= : Unknowns coefficients, to be estimated 

3.3.2. Results analysis  

In order to study and analyze the effects of independent variables on blasting time, we 

established an experimental study to measure blasting time. Table 4. shows the parts selected, 

the values of the different parameters and the blasting time measured for each part. To 

determine the values of the different parameters (volume and surface), we used Netfabb 

software. However, it is difficult to determine the complexity value for each part. Thus, we 

assume that this value is determined by the printer according to the geometry of each part. 

The value assigned to Ci is between 1 and 5: the complexity is 1 if the part is not complex and 

is 5 if the part is very complex. 

As mentioned previously, the first step is to identify the variables that have the most 

impact on the blasting time. Tables 5, 6 and 7 present the regression results obtained by 

Minitab software, based on the values of the independent variables for the 13 selected parts 

and the measured blast time. The significant level α is fixed at 5%, giving a 95% confidence 

level. 

As shown in Table 5., parameter 0$ (volume) has the highest P-value, that is also more 

than significant level (5%). Therefore, the null hypothesis is accepted, that is, the volume has 

no significant impact on the blasting time and should be removed from the table (the volume 

coefficient is null). The second regression must be run with the same data by removing the 

volume 0$. 

Since the variable @AB
CB

D has a P-value > 5%, then the assumption H0 is accepted, that 

is, the coefficient of this variable is zero. We then remove this variable from the data and run 

the regression model again. The results of the model excluding the variable @AB
CB

D are given in 

Table 7. 

All P-values are less than 5%, then reject the null hypothesis and accept the H1 

hypothesis; The regression analysis stops at this step. According to this result, the surface and 



complexity of the part are the most significant parameters for the estimation of the blasting 

time. Therefore, the blasting time can be estimated by the following equation with a 

correlation coefficient of 96%, which allows us to conclude that the established regression 

model given by the Eq. (5) is exhaustive: 

 

�-$ = −0,3069 + 0,0007229 ∗ -$ + 0,87248 ∗ >$                                                                       �5" 

Table 4. Data on the parts and their measured blasting time 

Part  vi (cm3
) si (cm2) si/vi (cm-1) Ci Tsi (min) 

Sphere dia 10 F0.1 0,04908 3,0417 61,9743276 1 0,5 

Sphere dia 10 F0.01 0,05202 3,1313 60,1941561 1 0,5 

Sphere dia 20 F0.01 4,1747 12,5453 3,00507821 1 0,5 

Sphere dia 100 520,1641 313,1281 0,60197945 1 1 

Sphere dia 200 4174,7129 1254,5283 0,30050649 1 1,5 

Sphere dia 150 1759,1925 705,2662 0,40090337 1 1,2 

Cube 10 1 6 6 1 0,5 

Cube 50 125 150 1,2 1 0,8 

Cube 100 1000 600 0,6 1 1 

Cube 50 25 holes 99,6146 301,9812 3,03149538 3 2 

Cube 100 25 holes 796,9292 1207,925 1,51572436 3 3 

Cube lattice 50 25x25 holes 48,2365 303,0979 6,28357986 4 4 

Lattice sphere 24 15x15 holes 2,8365 50,734 17,8861273 5 4 

Table 5. Results of the first regression 

 Coefficient Standard Error T-value P-value 

Constant (
M) -0,3372      0,2204   -1,53   0,170 

vi -0,0000071   0,0001705   -0,04 0,968 

si 0,0006677   0,0004221    1,58   0,158 

si/vi -0,004110    0,005522   -0,74   0,481 

Ci 0,86274     0,07694   11,21   0,000 

Table 6. Results of the second regression 

  Coefficient Standard Error T-value P-value 

Constant (
M) -0,3364      0,2053   -1,64   0,140 

si 0,0006532   0,0002186    2,99   0, 017 

si/vi -0,004049    0,004981   -0,81   0,440 

Ci 0,86444     0,06090   14,20   0,000 



Table 7. Result of the third regression 

  Coefficient Standard Error T-value P-value 

Constant (
M) -0,3069 0,1479 -2,08 0,065 

si 0,0007229 0,0001819 3,97 0,003 

Ci 0,87248 0,05717 15,26 0,000 

 

3.3.3. Empirical model validation of the blasting time model 

To check the error in the Eq. (5), we take five different new parts and we compare the 

times estimated by the regression model with the times measured. Figure 1. shows the 

selected parts, the values of the different parameters, the measured blasting time and the 

estimated time.  

The average percentage error between the measured blasting times and the estimated 

blasting times for the five selected parts is negligible (less than 5%), therefore the blasting 

time estimation model provides satisfactory results. 

 

Figure 1. Measured time VS estimated time 

4.  Problem description and model formulation 

4.1. Problem statement 

As mentioned in section 3, this research focuses on production planning and 

scheduling in additive manufacturing, taking into account delivery times, two-dimensional 
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placement and relative time to different technological constraints. The production with 

powder-bed additive machines is realized on a job by job basis, with the possibility of 

producing several parts in the same job, in order to minimize the manufacturing time and cost 

(Li et al., 2017; Chergui et al., 2018). To start and finish a job, a set of operations are 

necessary, such as machine heating, powder filling, file preparation, sanding and parts 

packaging. Some of these operations are independent of the number of parts in the job, while 

others are dependent on the job content and the shape of the parts, such as, the blasting time 

that depends on several characteristics. The related literature dealing with production planning 

in additive manufacturing assumed that the time for technological operations are fixed. 

However, in cases where the production planning is based on the optimization of a 

performance measure related to production time or manufacturing delay, the consideration of 

these different constraints became a crucial and important in the scheduling of parts on 

additive machines. The problem is how to regroup the parts in the jobs and schedule the jobs 

on the additive machines taking into account the two-dimensional placement and 

technological constraints, while minimizing violation of due dates and maximizing machine 

utilization. Figure 2. presents the overall concept of the planning and scheduling problem 

studied in this paper. 

 

 

 

 

 

 

Figure 2. Production planning and scheduling in additive manufacturing 

In this study, we consider a printer that receives a set of orders/parts I, i = 1, ..., I. Each 

part is characterized by design specifications and a deadline established by their customer. The 

design specifications of the part include geometric dimensioning information, volume vi, 

height hi, area si, vertical dimension Yi  and horizontal dimension Xi. These specifications form 

the basic parameters for the placement problem of the parts in the building platforms.  

As shown in Figure 2., the problem consists of grouping the parts into production 

batches (j = 1, ..., J) and assigning these to the additive machines (m = 1, ..., M), where each 
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machine has specific characteristics, such as width, length of the production area, layer 

thickness and laser scanning speed, etc. In the scheduling process, each job must be 

performed on a single machine and each machine can only execute one job at a time. If two 

jobs are assigned to the same machine, the second planned job can only be started after the 

end of the first job, of course taking into account the time for operations preparation. When 

grouping the parts, we consider the problem of bin- packing in two dimensions to avoid 

overlapping between the parts and to ensure that the parts are well placed inside the 

construction plate, as opposed to the problem of placement per unit area. In addition, to 

prevent damage to the surfaces of the parts grouped together in the production batch, a 

spacing ei must be considered when we combine part i with other parts. Moreover, as 

mentioned previously, the job production time varies depending on the content of the job, the 

characteristics of the parts and the characteristics of the machines. Therefore, the 

determination of the best combination of parts in a job under these constraints becomes a key 

question for the production planning in additive manufacturing.  

The objective of this study is to combine the placement and scheduling problem in 

order to determine the set of jobs J planned at the machines M in such a way that all parts are 

produced, while minimizing the total tardiness time. 

4.2. Model formulation 

4.2.1. Problem Complexity 

With the progress of additive processes, the placement or nesting problem of parts in 

construction platforms has become a very hot topic with a long discussion (Zhang et al., 

2017). This problem is classified in the literature as NP-hard problems (Bansal et al., 2006; 

Christensen et al., 2017; Zhang et al., 2017). In addition, it is well-known that the problem of 

batch scheduling, especially in additive manufacturing, is proven to be NP-hard (Li and 

Zhang, 2018; Kucukkoc, 2019). Hence, the combination of these two problems studied in this 

paper is also strongly NP-difficult. 

4.2.2. Assumptions  

To ease the development of the model, assumptions made for the scheduling and 

placement problem are presented as follows: 

- The geometry of each part is projected on the XY plane in order to determine the 

minimum rectangle limits that will be used to place the part in the building platform,  

- All parts considered have the same manufacturing material, 



- Parts orientations are decided before production planning. In other words, no 

orientation is possible during the allocation and placement of parts. 

 

4.2.3. Mathematical model 

Using the Mathematical notations and based on the available formulations of the two-

dimensional bin-packing problem (Li and Zhang, 2018; Onodera et al., 1991), we model the 

combined scheduling and placement problem in additive manufacturing as follows: 
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The objective function (6) aims to minimize the total lateness of all parts to be 

manufactured. Constraints (7) calculate the tardiness of each part with regard to the due date. 

Constraints (8) ensure that each part must be allocated exactly to one job on a single machine. 

Constraints (9) guarantee that if two parts are placed in the same job, they must necessarily be 

placed one after other (on the x or/and y axis). For example, if parts i and j are placed in the 

same job, then part i (respectively j) can be placed before j (respectively i) on x (respectively 

y) or part i (respectively j) is placed before j (respectively i) in the two axes. Constraints (10) 

and (11) ensure that the dimensions of the building platforms are not exceeded. In other 

words, by taking into account the desired deviation for each one, the coordinates of the parts 

cannot exceed the sizes of the building envelope. Constraints (12) and (13) guarantee that 

parts assigned to the same job do not overlap. Moreover, they make it possible to determine 

the coordinates of each part in the job to which it is assigned, according to the positions of the 

other parts in this job. In other words, if both parts i and j are assigned in the same job and 

part i is placed before j on the x- axis (respectively y- axis), then the coordinates of part j must 

be larger or equal to that of part i plus its length and the maximum desired distance between 

the two parts. Constraints (14) force that b�,� is equal to 1 if there is at least one part in the 

job k on machine m (the job is utilized). The constraints (15) calculate the completion time for 

each job used based on the job production time ��,�. The job production time calculation is 

calculated using the machine specific parameters, the characteristics of used technology and 

the different technological operations. For the MJF technology and the laser-based 

technologies, the job production time estimation is performed using Eq. (1) and Eq. (3), 

respectively. Note that the blasting time in the considered technologies is estimated using Eq. 

(5). Constraints (16) ensure that the completion time of each job is greater than or equal to the 

sum of the completion time of the previous job and the production time. They are used to 

ensure the sequence of jobs. Constraints (17) ensure that the height of each machine must be 

respected in the assignment of parts. Constraints (18) define the nature of each decision 

variable. Note that M1 is a large positive number. 



4.2.4. Model validation: Exact resolution 

To guarantee the validity of the proposed model, a small test problem is generated and 

solved by the exact methods using MLP. The model was coded on IBM Ilog Cplex 

Optimization Studio (V12.9). The code was run on an Intel® Core ™ i5- 4210U CPU @ 1.7 

GHz with 6 GB of RAM. To simplify the scheduling and placement problem and to conduct 

simple tests, we consider in this study a single additive machine of the type SLS. Note that the 

only difference between an MGF machine and an SLM/SLS/DMLS machine is the job 

production time, which means that the scheduling and placement problem with MGF 

technology can be solved by simply configuring the program according to the characteristics 

of the machines. The parts’ dimensions are generated randomly with respect to the machine’s 

build envelope dimensions (250*250*250 mm). The machine parameters and the parts’ 

specifications are shown in Table 8. and Table 9., respectively. 

Table 8. Machine parameters 

Build envelope Layer 
thickness 

Laser 
diameter 

Vector 
deviation 

Scan speed 
Build time 
per layer 

250*250*250 mm 0,3 mm 0,5 mm 0,1 mm 1400 mm/s 12 s/layer 

Table 9. Data related to the parts generated 

Part X (mm) Y (mm) H (mm) S (cm2) V (cm3) d (h) e (mm) C 

P1 18 70 65 70 414 12 4 3 

P2 29 80 20 51 388 14 2 2 

P3 50 80 92 271 663 15 1 2 

P4 18 23 100 467 900 18 1 2 

P5 13 27 51 98 612 14 3 5 

P6 26 81 31 712 874 19 3 1 

P7 55 13 37 247 885 15 3 2 

P8 24 88 16 360 625 13 2 3 

P9 23 30 35 96 250 10 4 5 

P10 25 20 44 72 246 18 2 5 

The optimal solution is obtained by the Cplex solver in 395 seconds with an objective 

value of zero, that is, all parts are planned to be produced before their due date. Table 10. 

presents the optimal allocation of parts to the jobs used. The upper bound of the job number 

used |k|, in other words, it is possible that each part will be executed in a single job, but this is 



not preferable because our goal is to increase the machine use rate by grouping several parts 

in a single job.  

As shown in Table 10, a total of two jobs are used to regroup the 10 parts and produce 

them according to their due dates. For example, job 1 is used to produce parts P1, P2, P3, P5, 

P7, P8 and P9 with a maximum height of 92 mm. The completion time for this job is 

estimated to be 9,8023 hours. Note that the times of the different intermediate operations are 

included in the total time estimation. The parts of this job have been completed according to 

their due dates and their characteristics. As can be seen in Table 10, the parts affected to job 1 

have due dates that exceed the job completion time. 

Table 10. The optimal allocation of parts and the details of the jobs used 

Job (k) Allocated parts  Qax height (mm) 
Job production 

time (h) 
completion time (h) 

1 
P1, P2, P3, P5, 

P7, P8, P9 92 9,8023 9, 8023 

2 P4, P6, P10 100 7,6224 17,425 

Figure 3. shows the placement of the parts in the jobs to which they are assigned. It 

illustrates the allocation of the parts’ bounding boxes projection areas onto the build platform. 

 

Figure 3. Assignment and placement of parts in the jobs used 

Based on the optimal job configuration presented above, the Gantt diagram of the 

optimal solution can be constructed as shown in Figure 4. The numbers in the rectangles 

represent the part numbers assigned to each job, and the length of the bars corresponds to the 

manufacturing time. The parts assigned to each job start and finish their processing at the 



same time, including the post processing operations, that is, we cannot start another job until 

after all the previous job operations have been completed. 

 

Figure 4. Gantt chart for the optimal solution 

 

5. Heuristic method  

Our model aims to solve simultaneously the parts placement in the building platforms 

and the job scheduling on the additive machines, in contrast to the study by Chergui et al. 

(2018) which divides the problem studied into two sub-problems. As mentioned previously, 

this problem is known in the literature as an NP-hard problem. Therefore, because of its 

computational complexity, large scale instances cannot be solved to optimality in a reasonable 

computation time by exact methods (as will be shown in Section 7). So, we develop a new 

heuristic approach to solve the combined placement and scheduling problem in large scales. 

The proposed heuristic is coded on python, and the pseudo-code of the heuristic is given in 

Algorithm 1.   

As described in the previous section, the objective is to respond to requests received 

from distributed customers by due date. Since production resources are limited, therefore, the 

main goal is to efficiently plan production while minimizing the total lateness of parts to be 

manufactured. For this, sorting rules are used before the selection process and assignment of 

parts to available jobs. The algorithm starts by estimating the layer construction time for each 

part. In this step, the specificities of the technology used are considered. For example, for 

laser-based powder bed technologies, the construction time can be estimated based on the 

height, the surface and the volume of part, in contrast to MJF technology where the 

construction time is estimated by considering only the height of each part. Then, sorting rules 

are used to select the parts. In fact, parts are sorted according to the Earliest Due Date rule 

(EDD), according to the shortest construction time when the due dates are equal and 

according to height in the case where the times are equal. Thereafter, we start to select the 

first part according to the sorting rules used and we simulate each time the total delay 



generated on all jobs when we decide to allocate this part in each of these jobs. Next, the 

selected part is assigned to the job which generates a minimum lateness. At this step, the part 

placement in the selected job will be tested by the Algorithm 2. If the selected part is well 

placed in the selected job at the start of this loop, we assign it and update the completion time. 

Otherwise, the second job is chosen which minimizes the lateness generated to affect the 

selected part. These last two steps are repeated until the selected part is placed. The steps of 

this algorithm are repeated until the assignment of all parts in the jobs. 

 

Algorithm 1. Heuristic scheduling algorithm  

Begin  

1 : 

2 : 

3 : 

4 : 

5 : 

6 : 

7 : 

8 : 

9 : 

10 : 

11 : 

12 : 

13 : 

14 : 

15 : 

16 : 

17 : 

18 : 

 

19 : 

20 : 

21 : 

22 : 

23 : 

24 : 

25 : 

26 : 

 

For i =1 to |I| do  

       Estimate construction time  $ for part R 
End for  

Sort the parts in ascending order of their due date 

If   R, [ ∀ ∈ N (6$ = 6X) then 

     Sort the parts in increasing order of their estimated construction time 

      If  R, [ ∀ ∈ N ( $ =  X) then 

           Sort the parts in ascending order of their height 

      End if  

End if  

for R = 1 to |N| do 

         for k = 1 to |P|  do 

                Calculate total delay ��� when we assign part R to work O 

         End for 

         NbTest ← 0 

         Add ← False 

         While (Add = False et nbTest < ') do  

                          IndiceDelayMin ← work index which has the smallest total delay time to 
which part R is assigned 

                          if placement (R in le job indexDelayMin) = True then 

                               Update work completion time 

                         Else  

                                   nbTest ← nbTest + 1 

                                   RTIndexDelayMin ← Infinite  

                         End if  

          End while  

End for  

End 



To realize the placement of the parts in the jobs used, we have defined a function that 

allows to create a table of the remaining areas in each job, sub-areas. In each iteration of 

Algorithm 2, we test if a given part can be assigned to an area or not. If yes, then we assign 

the part and we delete the used area, and we update the initial array of areas, otherwise we 

repeat the loop until the part is assigned or all the areas of the array are checked. The main 

steps to make the placement are presented in Algorithm 2. 

 

 

Algorithm 2. Two-dimensional placement 

Begin  

1 : 

2 : 

3 : 

4 : 

5 : 

6 : 

7 : 

8 : 

9 : 

10 : 

11 : 

12 : 

13 : 

14 : 

15 : 

h = Table of available rectangular areas (contains an area the size of the job at the start) 

Function placement (R): 
               [ ← 0 
                While ([ < size (Z)) do  

                                if R can be placed in Z [[] do  

                                     Place R dans Z[[] 

                                     Delete Z[[]  

                                     Add the two sub-areas created by adding R to Z 

                                     Sort Z in order of minimum length of rectangles   

                                     Return True  

                                else 

                                          [ ← [ + 1 

                               End if  

                End while  

                Return false   

End  

End 

6. Computational results 

This study is a first research introducing the problem of production planning in additive 

manufacturing with technological constraints, so there are no reference instances available in 

the literature to compare the effectiveness of the proposed approach. In this section, we 

evaluate the performance of the heuristic with randomly generated instances. Accordingly, 

two experiments are conducted. In the first experiment, the results of the proposed approach 

are compared with the results obtained by the exact method for small instances to get the 



average gap. In the second experiment, we conduct experiments on large instances and we 

evaluate the quality of the approached solutions using lower bounds obtained by the 

relaxation of the MLP model. For each instance type, we generate 15 test problems, as shown 

in Table 11. The parts and jobs numbers in small instances are generated in the range [5-15], 

while for large instances these numbers are comprised between 20 et 150. The coordinates 

(Xi, Yi) and the height hi for part R ∈ N are randomly generated in a rectangle of size 20×120. 

Since the shapes of parts considered in this study are irregular, the surface and the volume of 

each part are generated in the interval [50,1000]. The due dates and the complexity of the 

parts are generated in the ranges [12-100] and [1-5], respectively. 

 

Table 11. Data structures for computational tests 

Instance size Instance ID   Number of parts Number of jobs  

Small and Medium 

P5J2 5 2 

P5J3 5 3 

P5J5 6 4 

P6J4 6 4 

P7J1 7 1 

P7J2 7 2 

P9J2 9 2 

P9J3 9 3 

P10J2 10 2 

P10J3 10 3 

P12J3 12 3 

P12J5 12 5 

P14J2 14 2 

P17J5 17 5 

P20J4 20 4 

Large  

P25J4 25 4 

P30J4 30 4 

P30J5 30 6 

P35J5 35 5 

P38J5 38 5 

P40J4 40 4 

P43J5 43 5 

P45J4 45 4 



P52J5 52 5 

P50J12 50 12 

P55J10 55 10 

P59J10 59 10 

P60J6 60 6 

P65J12 65 12 

P70J15 70 15 

 

6.1. Comparison of optimal and heuristic solution methods 

In this section, a comparative analysis between the proposed heuristic and the exact method is 

provided by solving, in an optimal and approximate manner, the small and medium sized 

instances. The mathematical model is coded on IBM Cplex Optimization Studio v12.9. The 

proposed heuristic is coded in Python 3.7 and all numerical tests are performed in a PC 

running Windows 7 Home 64-bit with an Intel Core i7-4210U @ 1.7 GHz and 6 GB RAM. 

The maximum computation time for the MLP model is fixed to two hours. 

Table 12 presents the comparison between the results obtained by the two resolution methods. 

More specifically, in The first column indicates the name of the instance is given. The second, 

third and fourth columns report the total lateness, the job number and the computation time 

obtained by the Cplex solver, respectively. The fifth, sixth and seventh columns represent the 

results obtained by the proposed heuristic and the last column shows the solution quality 

deviation of the proposed heuristic with the Cplex solver. 

Table 12. Comparison of optimal and heuristic solution methods 

Instance 

ID 

The MLP model (Cplex) Proposed heuristic *Optimal 
Gap (%) 

Objective 
value (h) 

# of jobs 
used 

CPU 
time (s) 

Objective 
value (h) 

# of jobs 
used 

CPU 
time (s) 

Objective 
value 

P5J2 0.00 1 0,28 0,00 1 0,14 0,00 

P5J3 0.00 1 2,28 0,00 1 0,15 0,00 

P5J5 1.40 1 5,76 1,40 1 0,15 0,00 

P6J4 0,13 1 7,33 0,13 1 0,16 0,00 

P7J1 0,00 1 12,23 0,00 1 0,16 0,00 

P7J2 0,54 2 20,84 0,54 2 0,16 0,00 



P9J2 0,00 2 199,34 0,00 2 0,17 0,00 

P9J3 0,43 3 318,21 0,75 3 0,17 74,41 

P10J2 0,00 2 356,75 0,00 2 0,16 0,00 

P10J3 1,44 2 390,02 1,76 2 0,17 22,22 

P12J3 3,79 2 4123,1 6,56 2 0,17 73,08 

P12J5 1,09 3 4275,4 1,54 3 0,18 41,28 

P14J2 NA NA NA 1,70 2 0,18 NA 

P17J5 NA NA NA 2,43 2 0,18 NA 

P20J4 NA NA NA 1,90 2 0,29 NA 

Average 0,74 2 809,3 1,77 2 0,17 17,58 

*Optimal Gap= 100 × (heuristic solution value - Cplex solution value) / Cplex solution value 

As shown in Table 12., the proposed heuristic allows to find a solution near to the 

optimal solution with an average gap of 17,48%. In fact, in some test problems, the heuristic 

returns the same objective function found by the Cplex solver. For example, in the case of 

scheduling of 10 parts, all parts are optimally planned without lateness within 356,75 seconds, 

while the proposed heuristic returns the same objective function within 0.16 seconds. 

Moreover, the proposed algorithm returns the same number of jobs obtained by the exact 

resolution in the first 12 tests (P5J2- P12J5). In addition, by increasing the size of the 

problem, the execution time of the solver has increased considerably, while the proposed 

heuristic has a constant execution time compared to the Cplex solver, see Figure 5. Indeed, for 

a total of 15 test problems, the Cplex solver was able to provide a solution only for the first 12 

instances. For the instances P14J2, P17J5 and P20J4, the solver cannot find any feasible 

solution within the time limit. Consequently, it is clearly more difficult for Cplex to solve the 

large sized instances due to the NP-difficult nature of the studied problem. 

In the tested problems, it is important to note that deadlines and the number of jobs have a 

significant impact on the objective function. In fact, when the dates of the parts deadlines are 

very short and close, the parts are planned with an important lateness. For example, in the test 

problem P12J3, the parts are planned in an optimal and approximate way with a total lateness 

of 3,79 h and 6,56 h, respectively. On the other hand, when the due dates are very relaxed and 

more remote, the production planning can be scheduled within the desired deadlines, for 

example the test problem P10J2. With respect to the job number, the increase of this number 

can improve the production planning since there may exist better combinations of the parts in 



the different jobs that will minimize the total delay. The impact of the number of jobs in 

production planning are discussed in Section 6.3. 

 
Figure 5. Performance of the heuristic and the MLP for small and medium-sized instances 

6.2. Computational results on randomly generated large-sized instances 

In order to evaluate the performance of the proposed heuristic on large-sized instances, 

we attempted to compare the results obtained by our heuristic and the exact method. . 

however, an out of memory error is occurred due to the complexity of the studied planning 

problem. Therefore, we evaluated the performance of our heuristic approach using lower 

bounds. Here, to find a lower bound, we are inspired to the study made by Ahmadi Javid and 

Azad (2010). Indeed, the lower bound is obtained by relaxing the MLP model presented in 

section 4.2.3, in other words, we relaxed the placement constraints in two dimensions. We 

solved various instances and we calculated the deviation from the lower bound found by the 

relaxed MLP. It is important to note that the lower bound found by the solver is not 

necessarily the maximum value in the considered tests but it remains a lower bound for the 

considered problem. The computational test results for large instances are presented in Table 

13. 

As shown in Table 13., the average difference between the heuristic solution and the 

lower bound is 56,41%. This indicates that the solution found by our heuristic approach is 
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near to the lower bound obtained by the relaxed MLP with a mean error bound of 56,41%. In 

some cases, the lower bounds are found by the proposed heuristic, as shown in the instances 

P43J5 and P60J6 in which the parts have very relaxed due dates and the number of jobs is 

very sufficient to schedule the production. However, in the cases where the number of parts is 

important and the number of jobs is limited, the developed heuristic solves the placement and 

scheduling problem of the parts with an error bound. For example, the heuristic resolution of 

the instance P30J5 provides an approximate solution with a total delay of 7,23h and an error 

bound of 23,38% based on the proposed lower bound. The job configuration of the heuristic 

resolution of the instance P30J5 is shown in Figure 6. Overall, the proposed approach allows 

obtaining better solutions for large instances in an almost instantaneous computation time, as 

opposed to exact methods that require a high memory to find the optimal solutions. 

Consequently, the proposed heuristics are efficient to solve large-scaled problems. 

Table 13. Assessment of the quality of the solution obtained by the heuristic method using a 

lower bound 

Instance ID 

The relaxed MLP Proposed heuristic 

Gap** (%) 
Lower 

bound (h) CPU time (s) 
Objective 
value (h) CPU time (s) 

P25J4 0,21 0,74 0,31 0,18 47,62 

P30J4 5,49 0,16 9,50 0,17 73,04 

P30J5 5,86 0,44 7,23 0,18 23,38 

P35J5 5,61 0,17 8,75 0,18 55,86 

P38J5 1,45 0,14 3,01 0,19 107,59 

P40J4 2,75 0,22 4,29 0,19 56,33 

P43J5 0 0,18 0 0,22 0 

P45J4 1,26 0,34 1,86 0,18 47,62 

P52J5 0 2,12 0 0,26 0 

P50J12 40,02 3,40 48,49 0,32 21,16 

P55J10 7,25 3,53 13,90 0,27 91,72 

P59J10 29,40 3,20 70,18 0,28 138,71 

P60J6 0 3,90 0 0,25 0 

P65J12 139,47 6,80 257,04 0,47 84,29 

P70J15 0,21 0,74 0,31 0,18 47,62 

Average -- -- -- -- 56,41 



**Gap = 100 × (heuristic solution value - lower bound value) / lower bound value 



 

Figure 6. Jobs Configuration for Instance P30J5- Heuristic resolution 
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6.3. The effect of the number of jobs on the total lateness 

By increasing the number of jobs, the total tardiness can be reduced. This is clear in figure 7 

for the instance of 59 parts. As the number of jobs increases, the possibility to obtain better 

combinations of the parts with minimal delay becomes greater. As can be seen in figure 7, the 

parts are planned with a total delay of 572,74 h with 7 jobs, while with the addition of one 

job, the total delay decreases approximately 36%. When the number of jobs exceeds 11, the 

total tardiness of all parts converges to 69,9 h which represents a reduction of 87,79% 

compared to the case with 7 jobs. However, the increase of the number of jobs can reduce the 

machines' utilization rate, because the objective is to minimize the total lateness. This 

observation is consistent with the finding reported by Chergui et al. (2018).  Therefore, it is 

crucial to find a trade-off between production objectives, namely the planning with the 

minimum of tardiness, and the number of jobs to be used in order to increase the utilization 

rate of the building platforms. Here, a good compromise between these two objectives can be 

achieved with 10 jobs. 

 

Figure 7. Total lateness with the increase of the number of jobs (Instance of 59 parts) 
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is to minimize the total tardiness of all parts to be produced while maximizing the rate of use 

of additive machines, thanks to the possibility of making several parts in the same job. In 

order to plan more precisely the production, we have proposed two models for estimating the 

time required to achieve a given job, according to their content, for laser-based powder and 

MJF technologies. Next, we established a predictive approach to estimate the sanding time, 

based on real data. After that, we mathematically modelled the placement and scheduling 

problem in additive manufacturing. We started by solving the problem with the exact method 

using mixed linear programming on the Cplex solver. A numerical example of a small 

instance is used to validate the proposed model. Due to the complexity of the planning 

problem studied, a new heuristic approach based on the rule of the earliest due date and the 

shortest estimated manufacturing time is developed to solve large-scale problems. To evaluate 

the performance of the proposed heuristics, numerical tests were conducted based on the 

thirty different instances which were randomly generated. Firstly, a comparative study of 

exact (Cplex) and heuristic solutions on small and medium-sized instances was performed. 

The results showed that the proposed heuristic is capable to find better solutions with an 

optimality gap of 17,58% within a very reasonable computation time. Secondly, due to the 

NP-hard nature of the problem studied, a comparative study of the heuristic results with 

respect to the lower bounds founded by the relaxed MLP is realized in order to evaluate the 

heuristic performance on large instances. The findings indicated that the solutions founded by 

our heuristic are near to the lower bounds proposed, with an average gap of 56,41%. Finally, 

the impact of the number of jobs on the total lateness is analysed. The results revealed that by 

increasing the number of jobs, the total delay in the planning of all parts is reduced.  

 For future research, it is interesting to develop more effective and elegant heuristic 

methods to solve the model. Furthermore, future studies can focus on the investigation of a 

systematic method to obtain the maximum lower bounds for large-scaled problem instances. 

Another research direction consists to integrate the stacking of the parts in the building 

platforms, in other words, to combine the three-dimensional placement with the scheduling 

problem under technological constraints. In addition, the placement problem with real shapes 

can be considered in future research in order to improve the utilization rate of the additive 

machines. Moreover, in recent years, Machine Learning (ML) methods have seen a 

considerable expansion in prediction problems. These methods could be used to build 

prediction models of job production time.   

 



References  

ASTM F2792-12A, Standard Terminology for Additive Manufacturing Technologies.” 
ASTM International, West Conshohocken, PA, 2012 

Ahmadi Javid, A., Azad, N., 2010. Incorporating location, routing and inventory decisions in 
supply chain network design. Transportation Research Part E: Logistics and 
Transportation Review 46, 582–597. https://doi.org/10.1016/j.tre.2009.06.005 

Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M., 2006. Bin Packing in Multiple 
Dimensions: Inapproximability Results and Approximation Schemes. Mathematics of 
OR 31, 31–49. https://doi.org/10.1287/moor.1050.0168 

Canellidis, V., Giannatsis, J., Dedoussis, V., 2016. Evolutionary Computing and Genetic 
Algorithms: Paradigm Applications in 3D Printing Process Optimization, in: 
Tsihrintzis, G.A., Virvou, M., Jain, L.C. (Eds.), Intelligent Computing Systems: 
Emerging Application Areas, Studies in Computational Intelligence. Springer, Berlin, 
Heidelberg, pp. 271–298. https://doi.org/10.1007/978-3-662-49179-9_13 

Chergui, A., Hadj-Hamou, K., Vignat, F., 2018. Production scheduling and nesting in additive 
manufacturing. Computers & Industrial Engineering 126, 292–301. 
https://doi.org/10.1016/j.cie.2018.09.048 

Christensen, H.I., Khan, A., Pokutta, S., Tetali, P., 2017. Approximation and online 
algorithms for multidimensional bin packing: A survey. Computer Science Review 24, 
63–79. https://doi.org/10.1016/j.cosrev.2016.12.001 

Dvorak, F., Micali, M., Mathieug, M., 2018. Planning and Scheduling in Additive 
Manufacturing. Inteligencia Artificial 21, 40–52. 
https://doi.org/10.4114/intartif.vol21iss62pp40-52 

Fera, M., Fruggiero, F., Lambiase, A., Macchiaroli, R., Todisco, V., 2018. A modified genetic 
algorithm for time and cost optimization of an additive manufacturing single-machine 
scheduling. 10.5267/j.ijiec 423–438. https://doi.org/10.5267/j.ijiec.2018.1.001 

Kucukkoc, I., 2019. MILP models to minimise makespan in additive manufacturing machine 
scheduling problems. Computers & Operations Research 105, 58–67.  

Kucukkoc, I., 2019. MILP models to minimise makespan in additive manufacturing machine 
scheduling problems. Computers & Operations Research 105, 58–67. 
https://doi.org/10.1016/j.cor.2019.01.006 

Li, Q., Kucukkoc, I., Zhang, D.Z., 2017. Production planning in additive manufacturing and 
3D printing. Computers & Operations Research 83, 157–172. 
https://doi.org/10.1016/j.cor.2017.01.013 

Li, Q., Zhang, D., Kucukkoc, I., 2019a. Order acceptance and scheduling in direct digital 
manufacturing with additive manufacturing. IFAC-PapersOnLine, 9th IFAC 
Conference on Manufacturing Modelling, Management and Control MIM 2019 52, 
1016–1021. https://doi.org/10.1016/j.ifacol.2019.11.328 



Li, Q., Zhang, D., Wang, S., Kucukkoc, I., 2019b. A dynamic order acceptance and 
scheduling approach for additive manufacturing on-demand production. Int J Adv 
Manuf Technol 105, 3711–3729. https://doi.org/10.1007/s00170-019-03796-x 

Li, X., Zhang, K., 2018. Single batch processing machine scheduling with two-dimensional 
bin packing constraints. International Journal of Production Economics 196, 113–121. 
https://doi.org/10.1016/j.ijpe.2017.11.015 

Mellor, S., Hao, L., Zhang, D., 2014. Additive manufacturing: A framework for 
implementation. International Journal of Production Economics, The Economics of 
Industrial Production 149, 194–201. https://doi.org/10.1016/j.ijpe.2013.07.008 

Morales-Planas, S., Minguella-Canela, J., Lluma-Fuentes, J., Travieso-Rodriguez, J.A., 
García-Granada, A.-A., 2018. Multi Jet Fusion PA12 Manufacturing Parameters for 
Watertightness, Strength and Tolerances. Materials 11, 1472. 
https://doi.org/10.3390/ma11081472 

Oh, Y., Zhou, C., Behdad, S., 2018. Production Planning for Mass Customization in Additive 
Manufacturing: Build Orientation Determination, 2D Packing and Scheduling. 
Presented at the ASME 2018 International Design Engineering Technical Conferences 
and Computers and Information in Engineering Conference, American Society of 
Mechanical Engineers Digital Collection. https://doi.org/10.1115/DETC2018-85639 

Onodera, H., Yo Taniguchi, Tamaru, K., 1991. Branch-and-bound placement for building 
block layout, in: 28th ACM/IEEE Design Automation Conference. Presented at the 
28th ACM/IEEE Design Automation Conference, pp. 433–439. 
https://doi.org/10.1145/127601.127708 

Özceylan, E., Çetinkaya, C., Demirel, N., Sabırlıoğlu, O., 2018. Impacts of Additive 
Manufacturing on Supply Chain Flow: A Simulation Approach in Healthcare Industry. 
Logistics 2, 1. https://doi.org/10.3390/logistics2010001 

Piili, H., Happonen, A., Väistö, T., Venkataramanan, V., Partanen, J., Salminen, A., 2015. 
Cost Estimation of Laser Additive Manufacturing of Stainless Steel. Physics Procedia, 
15th Nordic Laser Materials Processing Conference, Nolamp 15 78, 388–396. 
https://doi.org/10.1016/j.phpro.2015.11.053 

Pillot, S., 2016. Fusion laser sélective de lit de poudres métalliques [WWW Document]. Ref : 
TIP153WEB - “Travail des matériaux - Assemblage.” URL https://www.techniques-
ingenieur.fr/base-documentaire/mecanique-th7/procedes-de-fabrication-additive-
42633210/fusion-laser-selective-de-lit-de-poudres-metalliques-bm7900/ (accessed 
10.23.20). 

Ransikarbum, K., Ha, S., Ma, J., Kim, N., 2017. Multi-objective optimization analysis for 
part-to-Printer assignment in a network of 3D fused deposition modeling. Journal of 
Manufacturing Systems 43, 35–46. https://doi.org/10.1016/j.jmsy.2017.02.012 

Tofail, S.A.M., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., Charitidis, 
C., 2018. Additive manufacturing: scientific and technological challenges, market 
uptake and opportunities. Materials Today 21, 22–37. 
https://doi.org/10.1016/j.mattod.2017.07.001 



Vayre B., Vignat F., Villeneuve F. 2012. Metallic additive manufacturing : state-of-the-art 
review and prospects. Mechanics & Industry, 13(02):89–96, 2012. 

Vicari, A., 2015. Advanced applications of 3D printing: From prototypes and parts. Additive 
Manufacturing for Defence and Aerospace Summit, London, 
https://additivemanufacturing. iqpc. co. uk/downloads/advanced-applications-of-3d-
printing-fromprototypes-and-parts. 

Wang, Y., Zheng, P., Xu, X., Yang, H., Zou, J., 2019. Production planning for cloud-based 
additive manufacturing—A computer vision-based approach. Robotics and Computer-
Integrated Manufacturing 58, 145–157. https://doi.org/10.1016/j.rcim.2019.03.003 

Yılmaz, Ö.F., 2020. Examining additive manufacturing in supply chain context through an 
optimization model. Computers & Industrial Engineering 142, 106335. 
https://doi.org/10.1016/j.cie.2020.106335 

Zhang, J., Yao, X., Li, Y., 2020. Improved evolutionary algorithm for parallel batch 
processing machine scheduling in additive manufacturing. International Journal of 
Production Research 58, 2263–2282. https://doi.org/10.1080/00207543.2019.1617447 

Zhang, Y., Bernard, A., 2013. Generic build time estimation model for parts produced by 
SLS, in: High Value Manufacturing: Advanced Research in Virtual and Rapid 
Prototyping. Proceedings of the 6th International Conference on Advanced Research 
in Virtual and Rapid Prototyping. pp. 43–48. 

Zhang, Y., Bernard, A., Gupta, R.K., Harik, R., 2014. Evaluating the Design for Additive 
Manufacturing: A Process Planning Perspective. Procedia CIRP, 24th CIRP Design 
Conference 21, 144–150. https://doi.org/10.1016/j.procir.2014.03.179 

Zhang, Y., Bernard, A., Harik, R., Karunakaran, K.P., 2017. Build orientation optimization 
for multi-part production in additive manufacturing. J Intell Manuf 28, 1393–1407. 
https://doi.org/10.1007/s10845-015-1057-1 

 




