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Simple Summary: Fibroblasts are critical regulators of several physiological processes linked to
extracellular matrix regulation. Under certain conditions, fibroblasts can also transform into more
aggressive phenotypes and contribute to disease pathophysiology. In this review, we highlight
metabolic reprogramming as a critical event toward the transition of fibroblasts from quiescent
to activated and aggressive cells, in rheumatoid arthritis and cancer. We draw obvious parallels
and discuss how systems biology approaches and computational modeling could be employed to
highlight targets of metabolic reprogramming and support the discovery of new lines of therapy.

Abstract: Fibroblasts, the most abundant cells in the connective tissue, are key modulators of the
extracellular matrix (ECM) composition. These spindle-shaped cells are capable of synthesizing
various extracellular matrix proteins and collagen. They also provide the structural framework
(stroma) for tissues and play a pivotal role in the wound healing process. While they are main-
tainers of the ECM turnover and regulate several physiological processes, they can also undergo
transformations responding to certain stimuli and display aggressive phenotypes that contribute
to disease pathophysiology. In this review, we focus on the metabolic pathways of glucose and
highlight metabolic reprogramming as a critical event that contributes to the transition of fibroblasts
from quiescent to activated and aggressive cells. We also cover the emerging evidence that allows us
to draw parallels between fibroblasts in autoimmune disorders and more specifically in rheumatoid
arthritis and cancer. We link the metabolic changes of fibroblasts to the toxic environment created by
the disease condition and discuss how targeting of metabolic reprogramming could be employed
in the treatment of such diseases. Lastly, we discuss Systems Biology approaches, and more specifi-
cally, computational modeling, as a means to elucidate pathogenetic mechanisms and accelerate the
identification of novel therapeutic targets.

Keywords: fibroblasts; rheumatoid arthritis; cancer; metabolic reprogramming; glycolytic switch;
systems biology; computational modeling

1. Introduction

Fibroblasts were initially described during the 19th century by Virchow [1] and Du-
val [2] as the most common cell type from connective tissue. They also exhibit a round, large
pale and flat nucleus with prominent nucleoli, indicating a very active RNA metabolism [3].
Fibroblasts are known to be essential for a significant number of physiological functions.
They produce extracellular matrix (ECM) proteins (e.g., collagen, glycosaminoglycans,
fibronectin, laminins, and proteoglycans) and produce the structural framework—stroma—
for tissues [4]. They induce epithelial differentiation, regulate inflammation [5], and play
a critical role in wound healing by migrating to the damaged tissue [6]. Fibroblasts are
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widely known to display remarkable phenotypic plasticity with the ability to adapt quickly
and efficiently to their environment when activated by appropriate stimuli. For instance, it
has been acknowledged that fibroblasts can play a significant role in disease pathogene-
sis by presenting complex phenotypes and functions according to the biological context.
Indeed, some fibroblasts (e.g., gingival [7], dermal [8], lung [9], cardiac [10] and synovial
fibroblasts [11]) can express innate immune receptors to sense pathogens and present
antigens, contributing to the immune response [12].

A certain type of fibroblasts, secreting myofibroblasts, play a central role in fibrosis.
Fibrosis is the common endpoint of many chronic inflammatory diseases and includes the
excessive deposit of fibrous connective tissue and ECM molecules such as collagen and
fibronectin, in and around damaged tissue [13]. Besides inflammatory diseases, fibrosis is
a pathological trait of chronic autoimmune diseases, such as Rheumatoid Arthritis (RA),
Crohn’s disease, myelofibrosis and systemic lupus erythematosus to name a few, and can
also affect tumor invasion and metastasis in cancer conditions [14].

Nevertheless, relatively few studies have considered regulating fibroblasts’ functions,
either in inflammatory or autoimmune diseases, by developing new therapeutic targets.
More efforts are needed to understand the critical role of fibroblasts in disease pathogenesis,
focusing on the shared characteristics that seemingly drive disease onset and progression
in a variety of pathological conditions [15].

2. The Role of Fibroblasts in Rheumatoid Arthritis

In the joint synovium, fibroblasts represent the primary stromal cells. They ensure the
structural integrity of synovial sub-lining and lining by forming a layer thick as one or two
cells, interspersed with tissue-resident macrophages [16]. Fibroblasts guarantee nutrient
supply and secrete hyaluronic acid and lubricin (two essential constituents of synovial
fluid) responsible for lubricating the joints [17,18]. They are also responsible for producing
the nonrigid ECM of the synovial fluid, rich in type 1 and type 2 collagen, helping wound
healing and damaged tissue reparation [12]. Many studies in RA focus on fibroblasts, as
these cells play a significant role in disease pathogenesis.

RA is an autoimmune disease with a prevalence of approximately 0.5% to 1% in the
population. The onset of the disease is characterized by the pannus formation, consisting
of the hyperplastic synovium due to the lay down of synovial macrophages and fibroblasts
(RASFs). The pannus is highly invasive and has destructive effects on the adjacent cartilage
tissue and bone [4,19–21]. Synovial fibroblasts in RA exhibit different characteristics from
healthy fibroblasts in terms of morphology and gene expression. The stressful environment
created in the inflamed joint in combination with nutrient competition leads fibroblasts to
adopt a more aggressive phenotype to ensure survival (Figure 1).

At this point, RASFs have reduced contact inhibition, express altered levels of adhe-
sion molecules, cytokines, chemokines and matrix-degrading enzymes, causing cartilage
damage and mediating the interaction with neighboring inflammatory and endothelial
cells, affecting the bone via regulation of monocyte to osteoclast differentiation [22]. RASFs
support the development of the hyperplastic RA synovium as tertiary lymphoid organs
(TLOs) by interacting with immune cells like T cells and B cells, producing several media-
tors and organizing ectopic (tertiary) lymphoid-like structures (ELSs) [23]. They are also
resistant to apoptosis and have an increased ability to migrate and invade periarticular
tissues, including bone and cartilage, contributing to their destruction [11,21]. RASFs can
also be considered to be primary drivers of inflammation, angiogenesis and cell growth [21].
They disturb the homeostatic balance between leukocyte recruitment, proliferation, emi-
gration and death, leading to a persistent leukocyte infiltration [22]. In this way, RASFs are
no longer considered to be passive bystanders, but as active players in RA pathogenesis
and sustained chronicity, and RASF-directed therapies could become a complementary
approach to currently used immune-focused therapies.
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Figure 1. Roles of rheumatoid arthritis synovial fibroblasts and cancer-associated fibroblasts in in
rheumatoid arthritis and cancer pathogenesis and progression.

2.1. Origin of Rheumatoid Arthritis Synovial Fibroblasts

The origin of RASFs remains elusive. In earlier studies, researchers found that CD34(+)
cells in RA patients are regulated by TNF∝ and can differentiate into fibroblast-like cells,
suggesting that bone marrow CD34+ could be the origin of RASFs [24]. Presently, however,
it has been suggested that RASFs descent from mesenchymal stem cells and possess some
typical fibroblast markers, such as ICAM1 integrins, the surface marker Thy-1 (CD90),
and type IV and V collagens. In recent studies, researchers used lineage-tracing of Gdf5+
mesenchymal stromal/stem cells in the synovial tissue and their findings supported this
hypothesis regarding the ontogeny of the RASFs [25]. Regarding markers that can be found
in fibroblasts, vimentin and α-smooth muscle actin seem to be more generic while UDP-
glucose 6-dehydrogenase, vascular cell adhesion molecule-1, and cadherin-11 (CDH11) are
found to be fibroblast specific [26,27].

2.2. Population Heterogeneity in Rheumatoid Arthritis Synovial Fibroblasts

Recent studies benefiting from the advancements in single-cell RNA sequencing
(scRNA-Seq) technologies and bioinformatics methodologies, have documented the pres-
ence of distinct subsets of fibroblasts’ subpopulations in arthritis which are responsible for
mediating distinct pathological traits such as inflammation and tissue damage.
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Mizoguchi et al. [28], studied the functional and transcriptional differences between
fibroblast subsets in human synovial tissues from RA and osteoarthritis (OA) patients using
bulk and single-cell transcriptomics. They succeeded in identifying seven fibroblast subsets
with distinct surface protein phenotypes. These seven subpopulations were subsequently
collapsed into three subsets by integrating transcriptomic data. The findings of this study
showed that a distinct fibroblast subset expressing podoplanin, THY1 membrane glyco-
protein and cadherin-11, but lacking CD34, is three times more elevated in RA patients in
comparison to OA patients. This subset that is anatomically located in the perivascular
zone of the synovium, can secrete proinflammatory cytokines, has a high proliferation
rate, and present an in vitro invasive phenotype. Croft et al. [29], used mouse models
of persistent arthritis to study the deletion of the fibroblast activation protein-α (FAPα)
in fibroblasts and showed that such a deletion suppressed both inflammation and bone
erosions. The use of single-cell transcriptional analysis allowed the identification of two
distinct fibroblast subsets: the FAPα+THY1+ subpopulation that is located in the synovial
sub-lining and plays the role of the immune effector, and the FAPα+THY1− subpopulation
positioned in the lining layer of the synovium which exhibits destructive properties. When
transferred into the joint, the first subpopulation, would boost inflammation, whereas
the second regulated predominantly bone and cartilage damage. Recently, in the meta-
analysis study of Zerrouk et al. [30], researchers estimated the different transcriptional
factor activities between RA and OA fibroblasts using gene expression data and network
inference. In this study, the transcriptional factor profiles of the seven subpopulations of
the Mizoguchi study [28] were calculated and compared to the corresponding OA subpop-
ulations highlighting differences between RA and OA, but also among the subsets if the
same pathological condition.

2.3. Epigenetic Modifications in Rheumatoid Arthritis Synovial Fibroblasts

RASFs epigenetic profile can help to understand RA pathogenesis better and to identify
new therapeutic targets [31]. Karouzakis et al. [32] showed that RASFs have a hypomethy-
lated genome, with several hypomethylated genes playing a role in their main character-
istics, such as extracellular matrix interactions, adhesion and cell migration. In a more
recent study results showed that the expression of DNA (cytosine-5)-methyltransferase 1
(DNMT1) is lower in RASFs as compared with OA FLSs while the components of polyamine
metabolism were higher [31]. While histone methylation mechanisms are not well under-
stood, histone acetylation is better characterized in RASFs. HDAC3 (histone deacetylase
3) is a potential key player for inflammation inhibition in RA disease. It has been shown
that HDAC3 suppresses inflammation in RASFs as much as pan-HDAC inhibition, and
there seems to be a significant difference in histone acetylation in RASFs as compared to
OA fibroblast-like synoviocytes [31].

3. The Role of Fibroblasts in Cancer

The tumor microenvironment (TME), known also as the tumor stroma, comprises
the ECM, blood vessels, endothelial and stromal cells (e.g., fibroblasts), and also immune
cells [33,34]. The importance of TME in cancer onset and progression has been highlighted
for years. Cancer is the result of genetic and epigenetic alterations in clonal cells. The
regulation of these altered clonal cells regarding survival, growth and metastasis is under
the control of the interactions between cancer and TME cells [35]. Studies in different
cancer types such as lung, prostate, breast and colon have indicated Cancer-Associated
Fibroblasts (CAFs) as active players in disease initiation and also as important contributors
to tumor growth, survival and invasion [36] (Figure 1).

Several studies using in vitro experimentation have provided evidence on the role of
CAFs in cancer progression. Studies using mouse models suggest that CAFs are capable of
promoting cell proliferation, angiogenesis, tissue invasion and metastasis. More specifi-
cally, the tumors that are formed after transplantation of cancer cells and CAFs are more
malignant than the tumors formed when transplantation involved cancer cells alone or
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cancer cells with healthy fibroblasts [37,38]. Lastly, co-implantation of CAFs along with
pro-malignant prostate cancer cells resulted in the malignant transition and proliferation of
the prostate cells [39]

The hypotheses proposed to explain the transition of the healthy fibroblasts to CAFs
involve autocrine and paracrine mechanisms for the secretion of cytokines, chemokines,
and growth factors by the stromal cells. These mediators will in turn regulate gene
expression through specific signaling cascades and will contribute to the expression of a
metastatic cancer type with elevated growth rates and invasiveness [36,40–45].

3.1. Origin of Cancer-Associated Fibroblasts

The precise origin of CAFs is a debated subject. Several potential sources have been
proposed throughout the years such as healthy fibroblasts, epithelial or endothelial cells,
Mesenchymal Stem Cells (MSCs), as well as Smooth Muscle Cells (SMCs) [46]. Indeed, the
obvious hypothesis lies in an alteration of local precursors (i.e., healthy fibroblasts) follow-
ing too much exposure to cancer cells, transforming them into CAFs [46,47]. Nevertheless,
the TME being composed of both epithelial and endothelial cells, they are also consid-
ered to be a potential source of CAFs. Epithelial cells are known to show plasticity and
epithelial-to-mesenchymal (EMT) transition is suspected to be at the origin of CAFs [48].
In addition, Zeisberg et al. [49] support the hypothesis that endothelial cells, treated specif-
ically, can demonstrate CAF morphology and phenotype. Several reports also support
the assumption that MSCs, apart from aggravating tumors proliferation, invasion and
metastasis [50], are a potential origin for CAFs: Quante’s use of murine models revealed
that at least 20% of CAFs derived from MSCs [51], whereas Direkze et al. approximated
this proportion to 25% [52]. Finally, Wikstrom et al. [53] believe that differentiated SMCs
can be at the origin of CAFs in prostate tumors.

3.2. Population Heterogeneity in Cancer-Associated Fibroblasts

Understanding the heterogeneity of the cells belonging to the TME is essential for elu-
cidating complex mechanisms and designing novel strategies for precision medicine. CAFs
present a heterogeneous population and a detailed study and classification of the roles,
functions, traits of the CAFs subsets is critical for designing CAF-targeted therapies [54].
ScRNA-Seq technologies could help shed light onto the population heterogeneity of cancer
and cancer-associated cells for a wide range of cancer types.

To date, many studies focusing on the heterogeneity of CAFs in various cancer types
have been published. We will focus on breast cancer CAF heterogeneity studies to provide
an example, but the reader can find more information on other cancer types in dedicated
reviews [54].

Bartoschek et al. [55], using scRNA-Seq data of 768 mesenchymal cells transcriptomes
from a breast cancer mouse model, defined three distinct CAF subpopulations that could
be attributed to distinct anatomical positions. Moreover, gene profiles of CAF subtypes
were shown to correlate with characteristic functional programs, suggesting that biomarker
signatures of each subpopulation could be achievable. Sebastian et al. [56], studied the
molecular and phenotypic heterogeneity of CAFs in triple-negative breast cancer (TNBC)
using a syngeneic mouse model, BALB/c-derived 4T1 mammary tumors. Using scRNA-Seq
they were able to identify six CAF subpopulations in 4T1 tumors, with three subpopulations
also present in CAFs from pancreatic cancer. Their study also showed that some of the cells
identified were present in normal breast/pancreas tissue, revealing phenotypes that are not
TME-induced. In a complementary study on breast cancer by Kieffer et al. [57], researchers
identified 8 CAF-S1 clusters by analyzing more than 19,000 single CAF-S1 fibroblasts
from breast cancer. Using flow cytometry and in-silico analyses their study highlights a
positive feedback loop between specific CAF-S1 clusters and Tregs and uncovers their role
in immunotherapy resistance.
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3.3. Epigenetic Alterations of Cancer-Associated Fibroblasts

CAFs do not acquire somatic mutations, therefore other mechanisms, such as epige-
netic regulation are being investigated in several types of cancer as potentially responsible
for their phenotypic transformation, development, and acquisition of tumor supportive fea-
tures. Such epigenetic regulations involve post-transcriptional control by miRNAs acting as
oncogene and/or tumor suppressor through various target genes [58] in breast cancer [59]
and bladder cancer [60], DNA methylation to activate and overexpress oncogenes [58] in
prostate cancer [61] as well as colorectal cancer [62], and finally chromatin and histone
modification to inhibit or down-regulate tumor suppressor genes [63] in prostate cancer
for example [64].

4. Metabolic Reprogramming as an Alternative Survival Pathway in Rheumatoid
Arthritis Synovial Fibroblasts and Cancer-Associated Fibroblasts

Proliferating and aggressive fibroblasts not only seem to be one of the key features
in several inflammatory conditions, including RA [3,11,17,18,22,65] but also in cancer [22,
35,66–68]. It appears that fibroblasts modify their phenotypic profile not only to adapt
to the new environment and survive but also that this adaptation leads to progressive
amplification of the disastrous characteristics of the associated diseases as these cells
transform from passive responders to key disease effectors.

Alterations in the levels of expression and function of the tumor suppressor PTEN
(phosphatase and tensin homologue deleted from chromosome 10) have been found in
RASFs. PTEN is functionally involved in cell cycle arrest and apoptosis—and mutations in
PTEN are found in a wide range of human cancers [3]. Moreover, the tumor suppressor p53
and its downstream molecule p21 have also been investigated in RASFs. The expression of
p21 is known to be induced by the tumor suppressor gene p53. Their expression increased
in cells that were invading the articular cartilage. Mutations of p53 are common and found
in various human cancers [3].

Obvious parallels can be drawn between RASFs and CAFs [22]: they both are apoptosis-
resistant, show a high proliferation rate, secrete matrix metallopeptidases (MMPs), cy-
tokines and chemokines, respond to stimuli such as Il6, TNF, TGF-β, are exposed to
hypoxia and elevated ROS levels, and–a critical property–express an increased glucose
metabolism. Indeed, both RASFs and CAFs are prone to metabolic reprogramming leading
to a glycolytic switch. This feature could prove to be critical in identifying the molecular
links between metabolic reprogramming and fibroblasts activation, opening new lines of
research and the potential development of new treatments [69,70].

In normal cells, the most common way to generate energy is through oxidative
phosphorylation (OXPHOS) in which ATP molecules are produced by the transfer of
electrons from NADH or FADH2 to O2 by a series of electron carriers [69]. In contrast, in
order to keep up with their high proliferation rate, their continuous growth and their high
energy request, some cells can switch their metabolism. The main pathways involved in
this adaptation seem to be aerobic glycolysis, glutaminolysis, mitochondrial biogenesis
and activities such as the production of reactive oxygen species and Ca2+ retention. These
pathways provide cells not only with the necessary energy but also with crucial materials
to support large-scale biosynthesis, rapid proliferation, survival and invasion [71].

The complex mechanisms behind the metabolism reprogramming observed in highly
proliferating cells, and their relevance to disease is the topic of several recent studies [69].
Elucidating why proliferating cells with access to oxygen would deprive themselves of
the majority of the ATP that can be produced from glucose metabolism via the OXPHOS
pathway in the mitochondria by converting pyruvate into lactate rather than acetyl-CoA
has been challenging. These studies showed that the use of glycolysis rather than OX-
PHOS allows faster production of ATP. Besides, this shift also provides several metabolic
intermediates to other signaling pathways: ribose-5-phosphate and glycine for nucleotide
biosynthesis and citrate for lipid synthesis. In other words, proliferating cells using glycol-
ysis do not convert all the glucose into pyruvate; they use a fraction of it in the tricarboxylic
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acid (TCA) cycle, thus providing precursors for pathways in need for TCA cycle intermedi-
ates to produce fatty acids and amino acids [69,71].

4.1. Metabolic Reprogramming of Fibroblasts in the Rheumatic Joint

RASF activation and joint damage in RA have been associated with metabolic al-
terations regarding all major groups such as carbohydrates, proteins, lipids and nucleic
acids [69,72]. More specifically, glucose metabolism appears significantly enhanced in
rheumatic joints. Glucose is the most important carburant of the cell and gets transported
intracellularly by Glucose Transporter 1 (GLUT1). Glucose is then metabolized via glycoly-
sis to generate pyruvate that can either enter the TCA cycle and OXPHOS to produce ATP,
or it can be converted to lactate by lactate dehydrogenase (LDH) [70]. In RA patients, glu-
cose levels are low while lactate levels are high in the inflamed synovial tissue, suggesting
elevated anaerobic metabolism [73].

Shift from OXPHOS to glycolytic ATP production is a common feature of activated
and reactive cells such as fibroblasts. Microenvironmental factors in RA joints may con-
tribute to this shift: Hypoxia-Inducible Factor-1α (HIF1α), which is a transcription factor
induced in hypoxic environments found in RA joints and lead to enhanced glycolytic
activity in fibroblasts cells. HIF1α regulates some genes involved in glucose metabolism,
GLUT1 and LDH that are up-regulated in RASFs. The activation of glycolysis by HIF1α
contributes to RASFs’ survival, myeloid recruitment, angiogenesis, and migration and inva-
sion. Furthermore, HIF1α effects on glucose metabolism led to an increased expression of
inflammatory mediators that maintain interactions between RASFs and immune cells [74].
Hypoxia and inflammation also lead to the production of pro-inflammatory cytokines,
and MMPs, mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB),
and phosphoinositide-3-kinase (PI3K)/AKT in RASFs. These molecules regulate glucose
metabolism through the up-regulation of GLUT1, the phosphorylation of rate-limiting gly-
colytic enzymes, including 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB)
and Hexokinase 2 (HK2). JAK/STAT signaling pathway, which is known to activate RASFs,
also contributes to glucose uptake and HK2 expression [73].

Besides glucose metabolism, other metabolic pathways are shown to be activated
in RASFs. For example, RASFs exhibit high glutamine metabolism while the enzyme
glutaminase 1 (GLS1) is involved in RASFs proliferation. The proliferation of these cells
is hampered (slowed down) when levels of glutamine are low or when GLS1 is either
silenced or inhibited [75]. Guma et al. [76], studied choline metabolism in RASFs. The
experiments of this study showed that inhibiting the choline kinase (ChoKα) in RASFs
resulted in elevated levels of apoptosis and decreased cell migration. Increased levels of
glycogen mediated by the enzyme Glycogen synthase 1 (GYS1) blocked AMPK activation
in RASFs [77]. A potential implication of tryptophan metabolism has also been suggested
as relevant to RASFs phenotype in studies using murine models [78]. Lipid metabolism is
also implicated in RASFs activation and regulation of pathological traits. RASFs are capable
of producing Leukotriene B (4) LTB (4) after TNF stimulation. LTB4 is a proinflammatory
lipid mediator implicated in synovial inflammation, promoting joint erosion. LTB4 is also
involved in the migratory and invasive activity of RASFs in vitro [79]. Free fatty acids (FFA)
may also directly contribute to articular inflammation and degradation in inflammatory
joint diseases. In RASFs, FFA exert their effects via TLR4 and require extracellular and
intracellular access to the TLR4 receptor complex. Sphingosine-1-phosphate (S1P) and
lysophosphatidic acid, among others, are involved in RASF activation. Alterations in
S1P signaling can lead to synovial fibroblast migration, proliferation, survival and pro-
duction of proinflammatory cytokines/chemokines [80]. Ablation of autotaxin ATX, a
lysophospholipase D that catalyzes the conversion of lysophosphatidylcholine (LPC) to
lysophosphatidic acid (LPA), in RASFs, resulted in disease attenuation in animal models of
arthritis [79].
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4.2. Metabolic Reprogramming of Fibroblasts in Cancer

CAFs are the most abundant stromal cells in the TME. Metabolic reprogramming
of cancer cells and TME cells including CAFs, facilitates the adaptation of these cells
to hypoxic and nutrient-lacking conditions [81]. Cellular crosstalk between cancer cells
and CAFs regulate the metabolic reprogramming that can lead to the activation of CAFs
(switch from a quiescent to a more aggressive phenotype), the enhanced cancer growth
and survival and also to tumor metastasis and evasion of therapy [41].

In particular, CAFs undergo a metabolic switch from OXPHOS to glycolysis [82]. By
doing so, CAFs allegedly fuel biosynthetic pathways of cancer cells and contribute to tumor
development [83]. This dependence on aerobic glycolysis is called the Warburg effect [84].
According to Yu et al. [82], three main hypotheses can account for the preferential use of
the glycolysis pathway by CAFs. The first hypothesis is based on the production rate of
ATP—essential for cancer cells proliferative growth—which is higher through glycolysis
than OXPHOS [85]. The second and third hypotheses are based on the action of glycolytic
intermediates, both necessary for the biosynthetic needs of rapidly proliferating cells, but
also to maintain adequate levels of reduced forms of glutathione enabling resistance to
chemotherapeutic agents [86,87].

This metabolic reprogramming is a complex process: several pathways and mecha-
nisms have been suggested to allow cancer cells and CAFs to sustain the high glycolytic
flux, but further studies are needed to shed light on this topic. The first focus is on HIF1α,
considered to be a master regulator. Indeed, HIF1α is associated with the up-regulation
of several genes directly related to the glycolytic pathway such as glucose transporters
(e.g., GLUT1, GLUT3) and glycolytic enzymes (e.g., HK1, HK2), promoting glycolytic
flux and tumor development [88,89]. In cancer cells, HIF1α is activated and maintained
in many ways. It is widely acknowledged that growth factors are overproduced during
tumorigenesis and activate transcription factors, including HIF1α. Its regulation is ensured
by oncogene (e.g., TGF-β) activation and tumor suppressor (e.g., p53) inactivation in cancer
cells [90]. The rapid tumor growth itself induces hypoxia and ROS accumulation, also main-
taining HIF1α activity. Finally, the absence of miRNAs keeps promoting aerobic glycolysis
by targeting glycolytic enzymes and regulating HIF1α [82,91]. Phosphofructokinase-1
(PFK1) and Phosphofructokinase-2 (PFK2) are also recognized as significant players of
glycolysis. According to Hamanaka et al. [86], the expression of PFK2 is up-regulated in
cancer cells and promotes fructose-2,6-bisphosphate production, which acts as an allosteric
activator of PFK1 to overcome negative allosteric feedback inhibition of PFK1 by high ATP
levels and regulate glycolysis. Finally, the end product of glycolysis-pyruvate–is converted
by LDH in lactate, accompanied by regeneration of NAD+, both essential in maintaining
glycolysis [92].

As in RASFs, lipid metabolism is also shown to play a role in CAFs activation and
pathological characteristics. Fatty acids synthase (FASN), a crucial enzyme in fatty acids
synthesis, was found to be significantly increased in CAFs, whereas CAF migration was
blocked by knockdown of FASN in colorectal cancer [93]. CAFs are also able to transfer a
significant number of proteins and lipids to adjacent cancer cells, thereby contributing to
sustain the high proliferation rate of tumor cells. Pancreatic stellate cells (PSCs) derived
CAFs are shown to secrete abundant lysophosphatidylcholines (LPCs) in the activated
fibroblastic state [93]. Finally, CAFs can produce glutamine, which is shown to increase
autophagy of fibroblasts, a potential energy source for promoting the activity of mitochon-
dria in cancer cells. Glutamate ammonia ligase, the key enzyme in glutamine synthesis, is
up-regulated in CAFs [93].

5. Metabolic Pathways as Therapeutic Targets in Rheumatoid Arthritis Synovial
Fibroblasts and Cancer-Associated Fibroblasts

Metabolic reprogramming and the associated glycolytic switch seem to play central
roles in the regulation of RASFs and CAFs phenotypic changes leading them to acquire
an aggressive phenotype. RASFs differentiation to cells characterized by enhanced prolif-
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eration and resistance to apoptosis contributes to the chronicity of RA and the sustained
inflammation in the joints. CAFs differentiation and their crosstalk with cancer cells
contribute to tumor growth, progression, invasion to adjacent tissues, and resistance to
therapy.

In this context, focusing on the metabolic reprogramming and the glycolytic switch
regulating RASFs and CAFs transformation constitutes a promising field for discovering
therapeutic targets. Indeed, different approaches have been employed, and a handful
of glycolytic enzymes involved in RASFs and CAFs transformation have already been
identified and targeted. They were shown to reduce bone and cartilage damage [73], as
well as tumor growth [94]. Considering that many parallels have been demonstrated
between RASFs and CAFs phenotype and metabolic profiles, it seems plausible that
some therapeutic targets may be comparable. Indeed, literature search regarding the
targeting of metabolic pathways and more specifically, the glycolytic ones in RA and cancer
revealed many similarities in potential therapeutic targets. Several such matching targets
are presented below and summarized in Figure 2 and Table 1.
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Disruption of GLUTs can prevent glucose entry, in both RASFs [109,110] and CAFs [102,
111–113,115,149]. Similarly, disturbance of monocarboxylate transporter (e.g., MCT1 and
MCT4) can reduce RA severity [95,109,117], as well as inhibition of tumor growth and
CAFs recruitment in cancer [66,91,102,118–120,122–128]. The use of HK2 inhibitors such as
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Lonidamine has also shown clinical success in RA [96], and in the cancer field [102,108].
Moreover, a 3-bromopyruvate treatment allowed a considerable reduction of the severity of
RA repercussions in several murine arthritis models [95–100] and metastatic suppression
in cancer [102–106].

Table 1. List of drugs and compounds targeting rheumatoid arthritis synovial fibroblasts and cancer-associated Fibroblasts
Metabolism. Common drugs and compounds are marked with an asterisk.

Metabolic Target Drug or Compound

Rheumatoid Arthritis Synovial Fibroblast Cancer-Associated Fibroblast

HK2
3-Bromopyruvate * [95–100]

2-Deoxyglucose * [95]
Lonidamine * [96] Tofacitinib [101]

3-Bromopyruvate * [102–106]
2-Deoxyglucose * [102,107]

Lonidamine * [102,108]
T-Lipo-3-BP [104]

GLUT WZB117* [109]
Tumor Necrosis Factor-α inhibitor [110]

WZB117 * [111]
Fasentin [112]

Phloretin [102,113–115]

MCT Metformin * [95,109,116]
MCT4-siRNA [117]

Metformin * [91,102,118,119]
Quercetin [120,121]

NAC [121–126]
α-Cyano-4-hydroxycinnamic [119,127,128]

Acetylcysteine combined with Topotecan [66,123]

LDH Tofacitinib [101]

FX11 [102,122,129]
Oxamate [126,130]

Quinoline 3-sulfonamides [131]
Gossypol [132–136]

Galloflavin [137,138]
NHI [139–141]

PGK PGK1-SiRNA [98] Adenovirus-shPGK1 [142]

PK TEPP-46 [109]
Tumor Necrosis Factor-α inhibitor [110]

Shikonin and its analogs [143]
Alkannin [94]

PKM2-siRNA [144]

PFK
3 PO * [110]

PFK15 [145,146]
PFKFB3-SiRNA [146]

3 PO * [147]

GAPDH
Heptelidic Acid [109] 3-Bromopyruvate * [105,106]

Tumor Necrosis Factor-α inhibitor [110]

SDH Saponin [114]
Dimethyl Malonate [148] 3-Bromopyruvate * [105]

Targeting the PFK, which is the enzyme responsible for the conversion of fructose-6-
phosphate to fructose-2,6-bisphosphate, can potentially reduce glucose uptake, GLUT4
translocation, and glycolytic flux which reduces the production of lactate. Indeed, PFK’s
inhibition led to the slowdown of RASFs migration [110,145,146] and showed promising
anticancer effects by suppressing glycolytic flux [147]. Inhibition of phosphoglycerate
pinase (PGK)—a glucose metabolism enzyme–inhibition had a hampering effect on RASFs
proliferation, migration and the production of pro-inflammatory mediators [98]. In cancer
studies, PGK inhibition increased tumor cells ability to overcome therapy resistance [142].

Glyceraldehyde 3-phosphate Dehydrogenase (GAPDH), the enzyme which is respon-
sible for catalyzing the very first step of glycolysis is also being considered in RA to evaluate
potential beneficial effects [109]. According to Ganapathy-kanniappan et al. [106], inhibit-
ing GAPDH affects tumor glycolysis by blocking the most important energy-producing
step.
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Similarly, the inhibition of pyruvate kinase isozyme M2 (PKM2) has been studied in
RA [109,110] for its anti-inflammatory property, as well as in cancer [94,143,144] where it is
involved in the bypass of cancer cells drug resistance.

Finally, studies regarding LDH inhibition showed promotion of inflammation reso-
lution in RA synovial explants [101] and in cancer [102,122,126,129–135,137–141] where it
has been shown to reduce tumor progression and is suspected of reversing glycolysis.

6. Immunometabolism as a Key Factor in Elucidating Signaling and Metabolic
Crosstalks between Cancer-Associated Fibroblasts, Rheumatoid Arthritis Synovial
Fibroblasts, and Immune Cells

Immunometabolism describes the regulation of immune cell responses by metabolic
processes, in health and disease conditions such as infection, cancer, autoimmunity, obesity
and metabolic syndrome. In cases of dysregulation, immune cells can adapt and adopt
specific metabolic programs that drive the disease characteristics and determine the cell
fate [150,151].

Metabolic reprogramming in cancer cells helps leveraging demands for survival and
growth [152]. The switch to glucose consumption, and the hypoxia conditions can also
affect the metabolic processes of cells belonging to the TME [84,153–156]. Moreover, the
metabolic changes in cancer cells and TME cells could have a direct impact on the function
of immune cells due to competition for key nutrients. Accumulating metabolic by-products
can also impair the immune cells and hamper their ability to eradicate cancer cells [153,157–
160]. The impact of metabolic reprogramming on immune cells within the TME is not fully
elucidated and relevant studies have been emerging on this topic [161]. CAFs are part
of the TME, and play a critical role in supporting tumor progression [162]. As described
previously, decreased amounts of isocitrate dehydrogenase (IDH)3α in CAFs can lead to
elevated glycolysis by stabilizing HIF1α [163]. This event enhances the immunosuppressive
characteristics of the TME causing metabolic stress to the infiltrating immune cells. Another
study has shown that CAFs are capable of stimulating the death of tumor-infiltrating T
cells via two death signaling cascades, through the activation of the programmed cell death
ligand (PD-L)2 and the Fas ligand (FasL) [164].

Likewise, in RA, cellular interplay between resident cells in joints and infiltrating
immune cells is fundamental in disease onset and perpetuation. Cells of the innate and
adaptive immunity interact with stromal cells in the acidic, inflamed environment of the
joint. The microenvironment that is created contains secreted factors, such as chemokines,
cytokines, proteolytic enzymes, and also metabolic products. These factors are secreted into
the extracellular matrix and regulate cell–cell communication and behavior of joint-resident
cells. An increasing number of studies focus on the role of metabolites and their ability to
regulate signaling pathways, in an attempt to establish connections between environmental
factors and the pathogenic Behavior of immune cells in RA [165]. A better and more
profound understanding of the interplay between metabolism and the inflammatory and
immune responses will help delineate the mechanisms underlying RA pathogenesis and
hopefully will pave ways to novel therapeutic treatments for the disease [166]. As in cancer
states and the TME, the environment surrounding the joints in RA patients is one with
hypoxic conditions. In RASFs, the amounts of HIF1α are elevated; however, it is not fully
understood whether HIF1α can actively regulate interactions among RASFs and T cells
and B cells. In a recent study by Hu et al., researchers showed that HIF1α is responsible
for the sustained Th1-and Th17-cell expansion in RASF. Moreover, HIF1α could inhibit
regulatory B10 and innate-like B cells [167]. Lastly, an increasing number of studies suggest
that lactate transporters could play a role in the pathogenesis of RA [168]. Recent studies
showed that highly proliferating RASFs overexpress MCT4, creating an acidic environment
in the synovium, a situation directly comparable to cancer. Silencing experiments of MCT4
in a mouse model of collagen-induced arthritis inhibited the proliferation of RASFs and
hampered disease severity [117].
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6.1. High Throughput Technologies for Measurements and Analyses of Metabolic Components

High throughput data such as metabolomics, lipidomics, and proteomics offer a
more holistic, system-level view of the metabolic profile of patients. High throughput
technologies provide the means to measure simultaneously a large number of small-
molecules, metabolites, lipids, and proteins. Several methodologies are available, such as
extracellular flux analysis that measures acids and oxygen consumption levels to describe
glycolysis and respiration in cells.

Fluxomics describe a method that uses stable isotopes and serial time point mass
spectrometry to describe metabolites’ fluxes and dynamics [169]. Mass spectrometry (MS)
is also widely used in metabolomics studies. It can be coupled with chromatography to
have a high efficiency separation and high sensitivity MS or it can be chromatography
free [170]. Steady-state metabolomics use chromatography-mass spectrometry to measure
the steady state level of several metabolites with high sensitivity. With the untargeted
approach, hundreds of metabolites can be assessed while few preselected metabolites
can be measured with high accuracy when using targeted metabolomics. These methods
contribute to our understanding of metabolic regulation of immunity. However, methods
to comprehensively map the metabolic landscape at single-cell resolution remain relatively
scarce [169].

6.2. Metabolomics and Integrative Analysis in RA

Regarding RA, metabolomics can help elucidate the disease pathogenesis that has not
been fully understood until now [171]. Metabolomic profiling has been employed to under-
stand and predict the outcome of therapy in RA, in cases of treatment with rituximab [172],
methotrexate [173], tocilizumab, and their combination [174]. In 2016, Ahn et al. [175],
conducted the first metabolic analysis of RASFs using gas chromatography/time-of-flight-
mass spectrometry (GC/TOF-MS). Their study suggested that alterations in pathways
implicated in sugar metabolism, lipolysis, and amino acid metabolism were related to syn-
ovial hyperplasia and inflammation. More recently, Zhang et al. [176], applied scRNA-Seq,
mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells,
monocytes, and fibroblasts from synovial tissue samples of patients with RA and OA and
succeeded in mapping inflammatory mediators to their source cell populations

6.3. Metabolomics and Integrative Analysis in Cancer

Tumors’ heterogeneity makes the characterization of metabolic flux distributions at
the single-cell level necessary [177]. Metabolomics has also been employed for profiling
metabolic features associated with tumor biology in many different cancer types [178].
Recently, Ortmayr et al. [179], charted a genome-scale map of transcriptional regulators
(TRs)/metabolite associations integrating intracellular metabolic profiles of 54 cancer cell
lines with transcriptomic and proteomic data. The study suggests that TRs could play
a role in metabolic reprogramming in patient-derived tumor samples. Wang et al. [180],
addressed the problem of discrimination of breast cancer subtypes based on their metabolite
information. In their study, the researchers carried out a high-coverage single-cell metabolic
analysis by combining multiple microextraction with MS and were able to identify four
subtypes of breast cancer.

7. Computational Systems Biology Approaches

Delineating the complex interplay of the biological processes that underlie diseases,
as well as the mechanisms of action of potential drugs, is not a trivial task [74]. Systems
Biology, and more specifically, network biology, has proposed the use of networks to repre-
sent cellular processes and interactions between biomolecules, and graphical languages
(notation schemes) have been developed to formalize such representations. The systems
biology graphical notation (SBGN) [181] standard includes three languages, namely activity
flow (AF), entity-relationship (ER) and processd (PD) [182]. Standardized networks are
graphical representations of disease mechanisms that can be constructed either employing
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top-down approaches, such as reverse engineering using machine learning algorithms
and omics data or using a bottom-up approach, starting with text mining and literature
curation.

Computational Systems Biology combines networks and mathematics to produce
dynamical models of the biological systems. With systems modeling, researchers can
perform in-silico simulations testing various experimental settings, such as knock out or
knock in experiments in a short amount of time and generate hypotheses that can then
be tested in vitro. Various formalisms can be used serving different modeling purposes.
Kinetic modelling is usually employed for well characterized systems for which kinetic data
are available for model organisms. Discrete modeling is usually employed for building
qualitative predictive models. Either way, dynamic models can give information and
insights about the emergent behavior of the system of interest, help elucidate pathogenetic
mechanisms and help design better and more efficient experiments [182].

7.1. Graphical Representations of Molecular Pathways in Rheumatoid Arthritis Synovial
Fibroblasts and Cancer-Associated Fibroblasts

In the RA field, a fully annotated, expert validated, state-of-the-art knowledge base in
the form of a molecular map has been published recently, illustrating the molecular and
signaling pathways involved in disease pathogenesis [183,184]. However, this map is not
cell-specific as it includes experiments in different cell types such as mononuclear cells,
synovial fibroblasts, macrophages and chondrocytes. Due to the extensive annotations, it is
possible to opt for fibroblast specific interactions, extract and visualize the corresponding
network (synovial fibroblasts are the most frequent cell type in this RA map, covering a
total of 45% of the cells).

Regarding cancer-related mechanisms, several attempts to create cancer-specific graph-
ical representations have emerged, such as the Cancer Cell Map Initiative [185] or the hu-
man tumor atlas network [186], regrouping several detailed molecular and cellular maps.
Although those maps focus essentially on the TME, fibroblasts are poorly represented. The
Atlas of Cancer Signaling Networks (ACSN) [187] is a web-based resource of biological
maps depicting molecular processes in cancer cells and the TME. It includes a CAFs dedi-
cated map, representing the molecular interactions involved and the role of such cells. It is
separated into different functional modules, including fibroblasts and their activation (e.g.,
“inflammatory signaling pathways”, “interaction with tumor cells”, “markers of fibroblast
activation”).

These molecular maps represent well-curated knowledge with different layers of
disease or cell specificity. They can serve as templates for omic data visualization, and
can also be analyzed as complex graphs, in terms of topology and structure, revealing
interesting properties about the network organization. Moreover, the functional analysis of
graph components and modules can offer insights into the pathways affected in different
experimental datasets. However, these maps are mainly focused on signaling events
and the corresponding metabolic pathways are often absent or underrepresented. To
the best of our knowledge, cell-specific metabolic reconstructions are not available yet,
but efforts to reconstruct a generic human cell metabolic network have been ongoing
with the creation of the ReconMap [188] based on the human metabolic atlas [189]. The
human metabolic atlas resource integrates open source genome-scale metabolic models
(GEMs) of human and yeast and provides detailed biochemical information for reactions,
metabolites, and genes. All model components are also associated with standard identifiers,
for a more straightforward interface with external databases, such as the human protein
atlas. Regarding ReconMap, access through the virtual metabolic human (VMH) database
allows easy navigation and search of information on human and gut microbial metabolism
along with links to hundreds of diseases and nutritional data. However, these metabolic
reconstructions are often too focused on downstream events and completely lack upstream
regulators that would link these networks to signaling cascades and gene regulation.
Creating integrative networks is still a key challenge in the field [190].
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All living systems are, by definition dynamic. Thus, graphical representations of
molecular and cellular networks can provide useful but limited information on the mecha-
nisms underlying disease pathogenesis, progression, severity, or even response to treatment.
In this context, dynamical studies and models can reveal critical information about the
system’s global behavior under various conditions by performing in-silico simulations,
perturbation experiments, hypotheses-testing, and predictions.

7.2. Computational Approaches for Metabolic Modeling and Various Mathematical Models
Available in Rheumatoid Arthritis and Cancer

Metabolic, signaling and regulatory networks of cells are intertwined, complex and
large in scale. The reconstruction and integration of these networks can be used for building
and analyzing computational models for the identification of network states, in disease
progression or in response to treatment. Computational models can provide the means to
study and evaluate the effects of single or combined perturbations on phenotypic outcomes.
There are two categories involving metabolic computational approaches. The first concerns
the estimation of metabolic fluxes based on analysis of experimental measurements and the
second category includes predictive approaches such as pathway-based and optimization-
based methods that use structure and stoichiometry of metabolic networks, and consider
also enzyme kinetics [191].

Among the different methods developed, flux balance analysis-based approaches
(FBA) are by far the most widely employed to analyze the flow of metabolites through
a metabolic network and quantify cellular metabolic states. FBA is a constraint-based
approach, as it uses linear programming and constraints dependent on the stoichiometry
of the metabolic network, thermodynamics, and the measured rates (rm). FBA is an
optimization-based method as the fluxes are computed by optimizing an objective function
when the metabolic network is under steady state [192,193].

Single-cell flux balance analysis (scFBA) is a computational platform used to predict
at the single-cell level metabolic fluxomes and interactions using transcriptomic data
and extracellular fluxes. This method is the most popular for studying metabolism and
integrating omic data [194]. ScFBA approaches have also been applied on data coming
from patient suffering from lung adenocarcinoma and breast cancer to identify metabolic
heterogeneity, not only at the inter-, but also at the intra-tumor level and the metabolic
interactions between cancer populations and then to target the metabolic hallmarks of
cancer for more incisive treatments [177].

Wagner et al. [195], developed COMPASS, a computational algorithm to study the
metabolism in RA using scRNA-Seq profiles and FBA. The algorithm was applied for the
characterization of the metabolic heterogeneity in Th17 cells in a murine model of multiple
sclerosis. The pipeline however is generally applicable to any other cell population based
on its single-cell transcriptome profiles.

Kinetic models using Ordinary Differential Equations (ODEs) and Partial Differential
Equations (PDEs) interactions have been used to address the dynamics of pro-inflammatory
and anti-inflammatory cytokines [196], bone erosion in RA joints [197], spatiotemporal
aspects of different cell types including inflammatory fibroblasts in the degradation of
cartilage in RA joint [198], or the stochastic environmental/genetic effects (exposure to
specific infections or toxins, random mutations in somatic genes involved in cellular growth
and differentiation, DNA repair, or in immune mechanisms) [126]. The Entelos Rheumatoid
Arthritis PhysioLab platform [199], a large-scale mathematical model was also developed
to explain the inflammatory pathway and bone erosion process in RA joints and predict
the therapeutic effect of membrane receptors and intracellular targets.

Similarly, viewing cancer as a dynamic system composed of heterogeneous actors
interacting at different scales is not a new idea [200,201]. Several mathematical models have
been proposed throughout the years to shed light on several physiological features specific
to cancer cells, such as stochastic cell fate responses to several drugs and mitogens [202],
the effects of seeding rate and location in tumor growth [203], metastatic spreading [204],
and interactions of cancer cells with the TME [205,206]. In contrast with RA, the main focus
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of mathematical modeling in the cancer field has revolved around the study of tumor cells’
metabolism. Interactions mediating metabolic changes and phenotypic adaptations [207],
evolution of several metabolites and their inhibition [208], tumor specific alterations [209],
and models of the Warburg effect such as genome-scale computational study of metabolic
targets inhibiting cancer migration [210] or models behind the glycolytic switch [211]. A
very recent study [212] proposes an agent-based dynamic model to investigate the role of
CAFs further; however, it focuses almost exclusively on their crosstalk with cancer cells
and does not consider metabolic reprogramming.

The computational resources regarding RA and cancer discussed in this section are
summarized in Table S1.

7.3. Toward Integrative Multi-Scale Cellular Models

Although various approaches and models have been developed to understand RA
pathogenesis better, most of them lack cell and species specificity or address partial aspects
of the disease pathology. As more evidence is accumulating about the critical role of
fibroblasts in disease pathogenesis and sustained inflammation, and high throughput tech-
nologies advance rapidly, disease and cell-specific integrative human-data-based models
are urgently needed to understand RASFs’ role from a systems perspective. Likewise,
fibroblasts in computational modeling of cancer have been overlooked and modeling
approaches focusing on CAFs’ behavior and the associated metabolic reprogramming are
sorely lacking.

In RA, the recently published RA map [184] can serve as a basis for the building of a
regulatory graph and the associated logical model. Initially, researchers were set to build a
large-scale boolean dynamical model for the study of RA fibroblasts’ activation based on
the RA map and a previously published, more generic model on fibroblasts [213]. However,
more recent developments such as the map-to-model framework published by Aghamiri
et al. [214], using CaSQ, a translation tool from static molecular maps to executable Boolean
models, was also tested successfully on the RA map. Nonetheless, as the map is not
cell-specific, additional work is needed to ensure the desired cell specificity of the model.
This map-to-model conversion could also be applied to the CAFs map from the atlas cancer
signaling networks [187] to provide a first, coarse-grained, large-scale executable model.
Moreover, these models of signaling cascades could be coupled with metabolic pathways
from Recon maps to link metabolic pathways to their upstream regulators. Methodologies
and tools such as FlexFlux which combine Boolean models for signaling or regulatory
networks and FBA for the downstream pathways have been developed [215] to address the
distinct characteristics of both networks. FBA is based on the assumption of steady-state
metabolite concentrations throughout the network. For signaling and regulatory networks,
logical modeling remains the most popular method, as it can handle large-scale networks.

As cells are complex systems with a variety of biological processes intertwined, re-
searchers that wish to construct models of CAFs and RASFs should focus on integrating
multiple layers of information that would allow the connections between extracellular
stimuli, intracellular signaling cascades, transcription factor activity and gene expres-
sion regulation and, last but not least, metabolic pathways. Studying complex biological
processes requires an integrative approach that spans across several layers of biological
information (genomic, epigenomic, metabolomic, proteomic in bulk and single-cell level)
taking advantage of the wealth of multi-omics data being available and accessible [216].
This kind of approach would lead to conceptual developments and discoveries and help
unravel biological mechanisms that regulate health and disease [217]. The advancements
of high throughput techniques and the wealth and availability of multi-omics data can
support multiscale modelling approaches to address complex interactions between differ-
ent organization levels in the systems [216,217]. The whole-cell modeling community is
making a significant effort toward this direction as whole-cell dynamical models of human
cells are a main goal and one of the highest bets in the field of Systems Biology. Whole-cell
models could provide a significant aid to researchers and clinicians to better understand
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cell biology, pathophysiology and response to treatment [218]. The first whole-cell model
was published in 2012 [219] and described the prokaryotic cell of mycoplasma genitalium,
but despite the important challenges to create a human whole-cell model, technological
advancements, dedication and building on experience shows that this type of models will
soon become feasible.

As cells are not isolated in the human body, another important aspect in systems
modeling is the necessity to describe the interplay between several cell types in order
to gain a better insight on the system of interest (i.e., the immune system). As seen
in the section dedicated to immunometabolism, an increasing number of researchers use
advanced high throughput technologies, bulk and single-cell, to study interactions between
metabolic perturbations and immune responses.

Thus, developing not only multi-scale but also multicellular modeling approaches
is essential for capturing interactions between cells of interest and their neighbors, in
health and disease states. There are key challenges in the field, not yet fully addressed that
need to be tackled in order to obtain robust, reproducible, standardized and data-driven
multicellular models. To overcome these challenges and go beyond the current state-of-
the-art, the field of Systems Biology should orient its effort toward a community-driven
ecosystem of interoperable data, software, and computational modeling platforms [220].

8. Perspectives
8.1. Single-Cell Metabolomics, Transcriptomics, Proteomics

The ability to study biological processes at a single-cell level was made possible
only recently. Single-cell transcriptomics, proteomics and metabolomics have started to
offer a unique way of looking into the cellular machinery from many different angles
at the same time, and at a single-cell resolution. As the biotechnologies and analytical
methods supporting them advance, more and more studies on RASFs and CAFS will
start incorporating single-cell analyses offering a more precise description of the cellular
biochemical networks that take effect in these cell types [221,222].

8.2. Integration Methods

Besides the individual advancements regarding different scales, integrative methods
allowing the combinatorial examination of single-cell experimental outputs is more than ur-
gent. Given that transcriptomics focus on the mRNA expression, proteomics on the protein
expression and metabolomics provide information about small chemical compounds, deci-
phering the global structure and coordination of these processes is only possible through
a holistic, integrative approach that will put the bits and pieces together [223]. While
RASFs and CAFs share similarities, the distinctive pathologies shaping their environment
need to be factored in while trying to understand characteristics such as the metabolic
reprogramming or the response and/or resistance to treatment.

8.3. Immunometabolism

RASFs and CAFs are both resident cells, the first in the joint and the latter as part of
the TME. Apart from local interactions, these cells interact and exchange with the cells of
the immune system that infiltrate the joints and the tumor sites. Immunometabolism is a
relatively new field that is advancing fast, focusing on the interplay between immune cells
and their impact on the metabolic processes of the affected cells [224,225]. Development
of new methodologies that would allow us to grasp the crosstalks between resident cells
and immune cells and map them to downstream effects on the metabolic pathways could
open new avenues as to how the immune system can be targeted and modulated to reverse
metabolic reprogramming, and vice versa.

8.4. Hybrid Modeling Approaches

Integrating all layers of information into meaningful computational models is a daunt-
ing task. First, the heterogeneity and noise of omic datasets (both bulk and single-cell) and
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also the increasing size of the data require rigorous methods of bioinformatic analysis and
integration. Second, the different nature of the various biological layers demand methods
that address the unique features and characteristics of such layers [226]. For example,
while the use of kinetic modelling approaches is suitable for relatively small and well
characterized biological mechanisms, this method has limitations when the focus is on
large-scale signaling networks for which most of the kinetic parameters are unknown.
Logic-based models seem to be more suitable for signaling and gene regulatory networks;
however they too have limitations regarding the metabolic part [227]. For large-scale
metabolic networks FBA is the most popular method, but efforts have been, made to couple
it with logic-based approaches [215]. Hybrid, multiscale modeling approaches that factor
in the unique features of the various biological layers and can deal effectively with the
computational demands of the simulations represent an ongoing challenge in the field.

8.5. HP Computing

As highlighted previously, building multiscale and multicellular models has proven
to be arduous and laborious because of the complexity of biological systems [228] and
the computational cost associated with in-silico simulations and system perturbations.
Nevertheless, technological developments in High Performance Computing (HPC) [229]
and initiatives such as the recently launched European HPC/Exascale Centre of Excel-
lence in Personalized Medicine (PerMedCoE) open avenues for cell-level simulations in
HPC/Exascale [230]. To bridge the technological and methodological gaps between organ,
cell and molecular simulations, collective and interdisciplinary efforts are needed to pave
the way for bigger, more complex, and closer to reality models of the biological systems.

9. Conclusions

Detailed computational models of fibroblasts that can span across multiple biological
layers, including metabolic reprogramming, could become valuable tools in understanding
disease pathogenesis in autoimmunity and cancer. Deciphering metabolic reprogramming
could help researchers find new ways of actively reversing pathological states to healthy,
quiescent states, leading to novel pharmaceutical targets and treatments.
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