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to challenge, with an application on feed intake 
in lambs
Carolina Andrea Garcia‑Baccino1,2* , Christel Marie‑Etancelin1 , Flavie Tortereau1 , Didier Marcon3, 
Jean‑Louis Weisbecker1 and Andrés Legarra1 

Abstract 

Background: Resilient animals can remain productive under different environmental conditions. Rearing in increas‑
ingly heterogeneous environmental conditions increases the need of selecting resilient animals. Detection of environ‑
mental challenges that affect an entire population can provide a unique opportunity to select animals that are more 
resilient to these events. The objective of this study was two‑fold: (1) to present a simple and practical data‑driven 
approach to estimate the probability that, at a given date, an unrecorded environmental challenge occurred; and (2) 
to evaluate the genetic determinism of resilience to such events.

Methods: Our method consists of inferring the existence of highly variable days (indicator of environmental chal‑
lenges) via mixture models applied to frequently recorded phenotypic measures and then using the inferred prob‑
abilities of the occurrence of an environmental challenge in a reaction norm model to evaluate the genetic determin‑
ism of resilience to these events. These probabilities are estimated for each day (or other time frame). We illustrate the 
method by using an ovine dataset with daily feed intake (DFI) records.

Results: Using the proposed method, we estimated the probability of the occurrence of an unrecorded environmen‑
tal challenge, which proved to be informative and useful for inclusion as a covariate in a reaction norm animal model. 
We estimated the breeding values for sensitivity of the genetic potential for DFI of animals to environmental chal‑
lenges. The level and slope of the reaction norm were negatively correlated (− 0.46 ± 0.21).

Conclusions: Our method is promising and appears to be viable to identify unrecorded events of environmental 
challenges, which is useful when selecting resilient animals and only productive data are available. It can be general‑
ized to a wide variety of phenotypic records from different species and used with large datasets. The negative correla‑
tion between level and slope indicates that a hypothetical selection for increased DFI may not be optimal depending 
on the presence or absence of stress. We observed a reranking of individuals along the environmental gradient and 

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  bcagarci@agro.uba.ar
1 GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet‑Tolosan, 
France
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1465-5708
http://orcid.org/0000-0001-8950-0420
http://orcid.org/0000-0003-1444-4481
http://orcid.org/0000-0001-8893-7620
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-020-00595-x&domain=pdf


Page 2 of 14Garcia‑Baccino et al. Genet Sel Evol            (2021) 53:4 

Background
Resilience is the capacity of an animal to be minimally 
affected by disturbances or to rapidly return to its state 
prior exposure to a disturbance or environmental chal-
lenge [1, 2]. This concept is sometimes confused with 
robustness but resilience and robustness are different. 
Robustness, in the context of intensive livestock pro-
duction, refers to the combination of a high production 
potential with high resilience to external stressors, which 
allows for unproblematic expression of that production 
potential in a wide variety of environmental conditions. 
Thus, robustness is very similar to general resilience to a 
variety of stressors, which focus in particular on high-
performance genotypes [3, 4]. Further differences between 
these two concepts are described in [1]. Robustness is a 
difficult phenotype to properly characterize because it is 
a complex trait that is composed of multiple components, 
including dynamic elements such as the rates of response 
to, and recovery from, environmental perturbations [5]. 
Furthermore, an animal’s response can vary in totally dif-
ferent environments. Traditionally, the focus of livestock 
breeding goals has been on traits that are directly related 
to production performance. Actually, the increasingly 
wide variety of environmental conditions in which live-
stock is required to perform is rapidly moving attention to 
robustness traits [6]. Rearing in increasingly heterogene-
ous environmental conditions increases the need of select-
ing resilient animals. In these conditions, animals can be 
exposed to different types of challenges or disturbances 
such as nutritional availability, thermal stress, disease pres-
sure, etc. [5]. Under real productive rearing conditions, 
challenge events are often unrecorded and from unknown 
source, and in the past, the amount of frequently recorded 
data was not sufficient to quantify resilience, given that it 
involves dynamic processes that are difficult to follow with 
few records, as discussed by Friggens et al. [5].

Repeated measurements over time have a high poten-
tial for the quantification of an animal’s ability to cope 
with environmental challenges [5]. Today, highly fre-
quently recorded data are becoming increasingly avail-
able due to high-frequency recording systems such as 
automated monitoring technology or robot milking. 
The availability of a large volume of data enables to fol-
low the whole process during which occurs the response 
of an animal to and the recovery from perturbations [5], 
but it also sets a challenge that involves dealing with 
a large amount of records. In general, the information 

recorded is related to productive performance (e.g. 
weights, milk production, feed intake, etc.) and, in some 
cases, also to climatic factors. However, little informa-
tion (if any) is available for variables that can help iden-
tifying other environmental challenges such as problems 
related to health (e.g. pathogen load), nutritional condi-
tions, the constraints imposed by the farming system, 
management, etc. However, the effect of environmental 
challenges on animal performance can be observed indi-
rectly, through changes in variability patterns of repeated 
records of performance over time as shown by Nguyen-
Ba et  al. [7] for voluntary feed intake in pigs. In small 
ruminants, Colditz and Hine [1] and Friggens et  al. [8] 
reported significant variation between animals in their 
response profiles to thermal and nutritional challenges, 
respectively. They observed that increased variation was 
related to the occurrence of an environmental challenge.

Several approaches have been proposed to identify var-
iation in high-frequency datasets that may be related to 
the occurrence of environmental challenges. For exam-
ple, Codrea et  al. [9] presented a smoothing approach 
to detect deviations of production traits related to dis-
turbances in the time-series of milk production. Berghof 
et al. [10] proposed resilience indicators based on stand-
ardized body weight deviations in layer chicken. Nguyen-
Ba et al. [7] proposed a procedure to detect the impact of 
perturbations in growing pigs and quantify the response 
in feed intake in terms of resistance and resilience. Their 
method involved the estimation of a target trajectory 
of cumulative feed intake and, then the detection of the 
deviations from this target curve. In all these studies, 
challenges were artificially introduced and consequently, 
known and recorded. Poppe et  al. [11] proposed three 
indicators based on fluctuation patterns in milk yield 
related to unknown disturbances. For these three indica-
tors, it is necessary to estimate a lactation curve for each 
animal as a first step. All these studies show that there is 
increased variability related to environmental challenges 
but there is no standard and widely applicable method 
to detect perturbations in rearing conditions in which 
only records of the traits of interest are available with 
very little (if any) information related to environmental 
conditions.

The objective of this study was two-fold: (1) to present 
a simple and practical data-driven approach to estimate 
the probability that, at a given date, an unrecorded envi-
ronmental challenge occurred, using a mixture model 

low genetic correlations between extreme environmental conditions. These results confirm the existence of a G × E 
interaction and show that the best animals in one environmental condition are not the best in another one.
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of phenotypic variances, and (2) to evaluate the genetic 
determinism of resilience to these events, using these 
probabilities as covariates in a reaction norm model. In 
this study, we analyzed an ovine dataset but it is impor-
tant to note that the methods applied here are very gen-
eral and can be used for other species and traits.

Methods
We present a method that consists first, in inferring the 
existence of highly variable days (where high variation 
among individuals in phenotype is a putative indicator 
of environmental challenge) via mixture models applied 
to frequently recorded phenotypic measures, and sec-
ond, in using the inferred probabilities of the occurrence 
of an environmental challenge in a reaction norm model 
to evaluate the genetic determinism of resilience to these 
events. We illustrate the method by using an ovine data-
set with daily feed intake (DFI) records.

Finite mixture models and estimation of the probability 
of the occurrence of an unrecorded environmental 
challenge for each day
As we indicated previously, a simple indicator of an envi-
ronmental challenge is an increased phenotypic varia-
tion due to more extreme individual responses to stress. 
According to McLachlan and Peel [12], in practice, there 
are cases where the population is a mixture of n distinct 
groups that are known a priori to exist in some physical 
sense. Finite mixture models can be applied when there 
is group-structure in the data [13]. For instance, a source 
of heterogeneity can be age, sex, a disease (presence or 
absence), etc. [12]. Based on the same logic, we hypoth-
esized that environmental challenges produce different 
reactions in different animals, leading to larger pheno-
typic variance as shown in previous studies (e.g. [1, 7, 8]). 
In fact, Scheffer et  al. [14] refer to phenotypic variance 
as a “dynamic indicator of resilience”, since it can be use-
ful to dynamically monitor changes in a system. Thus, 
we expect a dataset to contain a (at least) two-compo-
nent normal mixture model: one for “normal” days, and 
another for “stressful” days with this high variability 
being related to the occurrence of an environmental chal-
lenge. However, the number of components is unclear 
and should be inferred from the data.

Following Chen et  al. [15], the trait values related to 
the presence or absence of a disturbance are distributed 
as N (µ1, σ

2
1
) and N (µ2, σ

2
2
) , respectively, and thus the 

quantitative trait under study in the population has a 
two-component normal mixture distribution:

where αi are the mixing proportions (non-negative 
and summing to 1) and N (µi, σ

2
i ) are the component 

densities.
There are different approaches to estimate mixture 

distributions. The most commonly used approach fits 
mixture models by maximum likelihood estimation 
via the expectation–maximization (EM) algorithm of 
Dempster el al. [12, 16], which allows to estimate the 
distribution component parameters, mixing propor-
tions and posterior component membership probabili-
ties. These are probabilities that a given day belongs to 
the first or second component of the mixture. These 
probabilities can be used for two purposes, either for 
clustering (“normal” or “stressful” days) or directly as 
an environmental descriptor continuous variable to 
characterize the environmental gradient. A problem in 
clustering is the choice of an arbitrary cut-off, with loss 
of information, in particular, if the two components of 
the mixture overlap. The mixture model needs data, so 
it is expected to be accurate with frequently recorded 
data (e.g. daily) but not with sporadically recorded data 
(e.g. monthly). Preliminary tests with monthly milk 
recordings in dairy sheep did not show the existence 
of more than one component in the mixture (results 
not shown), and we attribute this to the lack of more 
frequent measures. Moreover, the method requires 
homogeneity of animals within groups, to avoid vari-
ability originating from differences in age, for example, 
i.e. in that case, lambs and adults should be analyzed 
separately.

Thus, our method is as follows:

1. Fit a mixture model to data. On output, there may be 
two (or more) components. The component related 
to larger variance values is associated to stress or 
challenge.

2. Include the probability of belonging to the “stressful” 
component as a covariate in a reaction norm animal 
model.

This approach is simple and practical because it enables 
analysis of all the phenotypic data together from all indi-
viduals, and estimation of the probability that, at a given 
date, an unrecorded environmental challenge occurred 
based on the variability observed for each day. There is 
no need for an initial step to estimate, first, an observed 
or a target curve (e.g. a growth or milk yield curve), with 
all the parameters that this implies, and, second, the 
deviations from the curve as indicators of environmental 

Var
(

y
)

=

2
∑

i=1

αiN (µi, σ
2
i ),
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challenges. Thus, instead of measuring deviations within 
individuals across time, we measure deviations across 
individuals within time. Moreover, this approach is suf-
ficiently general to be applied to various types of datasets 
coming from different species and with records for dif-
ferent kinds of traits, as it only focuses on daily (or other 
time frame) variability.

Animals and phenotypes
The present study was carried out in agreement with the 
French National Regulations for humane care and use of 
animals for research purposes (Décret 2013/118). Ani-
mals were bred at the experimental INRAE Farm (La 
Sapinière, Osmoy, France) which has the experimental 
approval C18‐174‐01.

Data are fully described in [17, 18], and here, we only 
summarize the main aspects. Data for the analysis were 
from 951 Romane male lambs that are evaluated as 
part of the national Romane breeding scheme. Over an 
8-year period (from 2009 to 2016), each year, a cohort of 
119 lambs on average (ranging from 92 to 149 depend-
ing on the year) was continuously phenotyped during 
eight weeks for feeding behavior. They were housed in 
the same experimental barn during the 8-week period. 
Although animals were reared indoors, environmental 
variables such as temperature or humidity were neither 
recorded nor regulated, and rearing conditions were sim-
ilar across years. Each year, after weaning, all the lambs 
of approximately the same age (on average 70  days old, 
ranging from 60 to 90 days) were grouped in five to eight 
pens with a mean of 20 animals per pen (ranging from 
13 to 27). Each pen was equipped with an automatic con-
centrate feeder (ACF). A 14-day period of adaptation 
to the new environment was necessary, followed by an 
8-week period during which the animals were tested in 
winter (from December to February).

Lambs were fed low-energy concentrated pellets 
ad libitum. Each year, feed intake was recorded continu-
ously during the 8-week period in winter. For each record 
(hereafter called “a visit”), the animal was identified by 
the ACF and the quantity of concentrate consumed and 
the duration of the visit were recorded. More details 
regarding the low-energy concentrated diet and how the 
ACF operates are in [17, 18].

In total, 775,580 visit records were available for all eight 
periods, with an average of 14.56 visits per day per ani-
mal. All visit records within each day for each animal 
were summed up to obtain the daily feed intake (DFI), 
resulting in 51,832 DFI records available for all the ani-
mals during the eight years. As the data were recorded 
in growing animals, DFI (and its variance due to a scale 
effect) tends to increase as the animal gets larger over 

time. In order to take this into account, we used the 
(natural logarithm of ) daily coefficient of variation (CV) 
instead of the daily variance to assess variability. This 
represents a total of 438 days across the eight years, i.e. 
55 days per year on average. For the genetic analysis, the 
pedigree consisted of 5114 animals, i.e. the 951 tested 
lambs and their ancestors.

Fitting a finite mixture model and estimation 
of the probabilities of the occurrence of an unrecorded 
environmental challenge in a Romane lamb population
We used the normalmixEM function in the R library 
mixtools [19] to implement the Gaussian mixture model 
to the data consisting of 438 values of log(CV) registered 
for each day during the eight years. The mixture fitting 
procedure involves the expectation–maximization (EM) 
algorithm [12]. The mean and variance of both compo-
nents were initially unconstrained. Although we had 
some a priori information to fit a mixture of two com-
ponents, we used a parametric bootstrap to confirm the 
number of components. This procedure tests sequentially 
the null hypothesis of a k-component mixture Gaussian 
distribution [12, 19]. In this way, we were able to confirm 
that a mixture of two normal components was appropri-
ate to model the data.

In addition, for each day (within each year), we com-
puted the posterior probabilities of pertaining to the 
first or the second component of the mixture distribu-
tion. Days with a high probability of pertaining to the 
first component were “low CV days”, and those with a 
high probability of pertaining to the second component 
“high CV days”. Days with a high probability of having a 
high CV showed increased variability, which is probably 
related to the occurrence of an environmental challenge. 
The probabilities of pertaining to the second component 
were taken as a reference and used in the genetic analysis 
described below. In summary, these probabilities quan-
tify the possibility that, at a given date, an unrecorded 
environmental challenge occurred.

These probabilities can be used directly (as a continu-
ous variable) in a genetic model to describe the envi-
ronment without the need to assign each of the days to 
a discrete (categorical) variable. These probabilities per-
mit the description of the environment through a gradi-
ent going from a non-challenging ( p = 0) to a challenging 
environment ( p = 1), and the intensity of the challenge 
can be quantified through the probability value. Moreo-
ver, each individual has one DFI record per day and there 
is one probability p per day, and these probabilities vary 
between days. For these two reasons, it is convenient to 
use a reaction norm model that includes these probabili-
ties as an environmental descriptor as presented below.
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De Jong [20] defined the reaction norm as the total 
pattern of expression of a character along a continuous 
gradient given by an environmental descriptor. In their 
paper, Calus and Veerkamp [21] discuss that environ-
mental descriptors should (i) reflect management and 
environment, (ii) be obtained from available data, and 
(iii) be continuous rather than categorical. The estimated 
probabilities that, at a given date, an unrecorded environ-
mental challenge occurred, meet these conditions.

Genetic analysis
Phenotypes (DFI) were analyzed using a linear reaction 
norm animal model (RNAM) including the estimated 
probabilities that, at a given date, an unrecorded envi-
ronmental challenge occurred, to evaluate the genetic 
determinism of resilience to unrecorded environmen-
tal challenges. Here, an approximately linear response 
(i.e. there is no intermediate optimum or change point) 
was assumed. However, the probabilities can be used in 
more complex regressions (e.g. quadratic or piece-wise) if 
required. The model was:

 where yijk is the observation of DFI (in kg) in yearACF 
i , on day j for animal k . Preliminary analyses were per-
formed by Marie-Etancelin et  al. [18] and Tortereau 
et  al. [17] to determine the fixed effects that should be 
taken into account in the genetic analyses. Only two 
fixed effects were significant: year (eight levels) and ACF 
device (up to seven levels per year). These were com-
bined into one term ( yearACFi , i = 1 to 44) in the model. 
The second term corresponds to a regression on day j 
to take the effect of growing over the test period on DFI 
into account; a0,k is the breeding value (BV) for level (or 
intercept) of DFI and corresponds to the classical BV 
for the performance potential of animal k (it is environ-
ment-independent); a1,k is the BV for slope (environmen-
tal sensitivity) of DFI for animal k , pj is the probability 
that on day j an unrecorded environmental challenge 
occurred; pe0,k is the permanent environmental effect of 
animal k (intercept), pe1,k is the permanent environmen-
tal effect of animal k for pj (slope); and eijk is the residual. 
A slope of a1,k = 0 means that the animal is not sensitive 
to stress and a a1,k higher or lower than 0 means that the 
animal takes more or less food in stressful environments, 
respectively.

The a0 and a1 are assumed to follow a bivariate distri-

bution with Var
(

a0
a1

)

=

(

σ 2
a0 σa0,a1

σa0,a1 σ 2
a1

)

 , and pe0 and 

yijk = yearACFi + b1dayj + a0,k + a1,k ∗ pj + pe0,k + pe1,k ∗ pj + eijk ,

pe1 are assumed to follow a bivariate distribution with 

Var

(

pe0
pe1

)

=

(

σ 2
pe0 σpe0,pe1

σpe0,pe1 σ 2
pe1

)

 . Residual variances 

were assumed to be homogeneous. A RNAM with heter-
ogeneous residual variance was fitted to assess the sensi-
tivity of the results to how the residual variance is 
modelled. In this case, one residual variance was set for 
normal days and one for highly variable days. Nine values 
of p , ranging from 0.10 to 0.90 were set as cutting points 
to differentiate between normal days and highly variable 
days (see Additional file 1: Table S1).

For comparison, another animal model (AM) was fitted 
without the reaction norm terms, i.e. without a1,k ∗ pj and 
pe1,k ∗ pj.

Estimation of variance components and comparison 
of models
(Co)variance components were estimated using Gibbs 
sampling and REML with the GIBBSF90 and AIREMLF90 
software (available at http://nce.ads.uga.edu/wiki/), respec-
tively [22]. For Gibbs sampling, 200,000 iterations were 
run, with a burn-in of 10,000 initial iterations and a sam-

ple interval of 10. Posterior means and posterior standard 
deviations (SD) were calculated. For REML, the asymp-
totic standard error for the genetic correlation was com-
puted following Houle and Meyer [23], as implemented in 
AIREMLF90. For this purpose, first we ran EM-REML for 
all the initial iterations and then switched to AI in the final 
iteration because the EM-REML algorithm is much more 
stable than the AI algorithm and is very robust to poor ini-
tial estimates and can thus provide a good starting point for 
the AI algorithm [24].

A likelihood ratio test was performed from the REML 
results to assess goodness-of-fit and to compare the 
RNAM and traditional AM. χ2 values were calculated as 
χ2

= −2logLAM + 2logLRNAM , with the first and second 
terms being the AM and the RNAM likelihood, respec-
tively. P-values of the Chi-squared tests were obtained 
from a mixture of Chi-squared distributions with two and 
four degrees of freedom [25, 26].

For a given level of the covariate p , the total genetic vari-
ance is equal to σ 2

a0 + 2pσa0,a1 + p2σ 2
a1 , similarly for the 

variance due to the permanent environment, and from here 
it is possible to obtain values of heritability that change 
across conditions (i.e. from p = 0to1).

The genetic correlation between breeding value in a non-
challenging environment ( p = 0 ) and breeding value at 

http://nce.ads.uga.edu/wiki/
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a given probability of the occurrence of an environmental 
challenge ( p ) was calculated as:

Cor(a0, ap) =
Cov(a0, ap)

√

Var(a0)Var(ap)
=

σ 2
a0 + σa0,a1 ∗ p

√

σ 2
a0

(

σ 2
a0 + p2σ 2

a1 + 2pσa0,a1
)

.

Results
Fitting a finite mixture model and estimation 

of the probabilities of the occurrence of an unrecorded 
environmental challenge in a Romane lamb population
The histogram in Fig. 1 shows, on the right side, a sub-
group of days that appear to have values of the natural 
logarithm of the CV of DFI that are higher than most 
the records on the left (higher than − 1.4). This was an 
initial hint that there could be two different groups of 
days regarding the variability of the DFI records. This 
was confirmed through parametric bootstrap [19]. 
Figure 1 also shows the density of the two-component 
normal mixture fitted on the log(CV) of DFI. The two 
components fitted are heteroscedastic and have differ-
ent means. The first component (red in Fig.  1) has a 
mean of − 1.60 and a SD 0.13, and the second compo-
nent (green in Fig. 1), a mean of − 1.42 and a SD 0.27.

The EM algorithm for mixture models allows to esti-
mate the probability that each day belongs to the sec-
ond component of the mixture (the probability of being 
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Fig. 1 Plot of the log‑transformed coefficient of variation (CV) of 
daily feed intake (DFI) data of the fitted two‑component (red and 
green) normal mixture model

0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.9

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Day

P
(h

ig
h 

C
V

)

   YEAR 1
0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.9

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Day

P
(h

ig
h 

C
V

)

   YEAR 2
0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.9

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Day

P
(h

ig
h 

C
V

)

   YEAR 3

0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.9

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Day

P
(h

ig
h 

C
V

)

   YEAR 4
0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.9

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Day

P
(h

ig
h 

C
V

)

   YEAR 5
0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.9

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Day

P
(h

ig
h 

C
V

)

   YEAR 6

0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.9

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Day

P
(h

ig
h 

C
V

)

   YEAR 7
0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.9

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Day

P
(h

ig
h 

C
V

)

   YEAR 8

Fig. 2 Probabilities of showing a high coefficient of variation (CV) related to the occurrence of an environmental challenge for each day. These 
values correspond to the probability of pertaining to the second component of the mixture of the two Gaussian distributions
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a “high CV day”). These probabilities are shown in 
Fig. 2. The mean of these probabilities was 0.09, which 
indicates that for most of the days the probability of the 
occurrence of an environmental challenge was low. In 
Fig.  2, some years (2, 3, and 7) had days with a prob-
ability of the occurrence of an environmental challenge 
higher than 0.90. Furthermore, only 3.88% of the days 
across different years were found to have probabilities 
of being a challenge day higher than 0.5. Most days 
showed a probability lower than 0.25.

We carried out a posterior analysis that was focused on 
the days with a high estimated probability p of the occur-
rence of an environmental challenge. Our aim was to 
check if these days corresponded to known disturbances 
on the experimental farm. We confirmed that some of 
the days with a high value of p (high probability of being 
stressful) were associated to changes in management, 
weighing of the animals, mulching, or fixing (repairing) 
some of the ACF. However, for some other days with a 
high p , there was no explanation, and we assume that 
these corresponded to days with unrecorded environ-
mental challenges.

Genetic analysis
Table 1 shows the estimates of the variance components 
for DFI using the RNAM and AM models. They were 
not sensitive to how the residual variance was modelled. 
Additional file  1: Table  S1 contains the estimates in the 
case of two residual variance components depending 
on p and shows that the results are very similar to the 
single residual variance case that we describe here. The 
genetic correlation between the level and the slope of 

the reaction norm was − 0.46 ± 0.21, which shows that 
level is antagonistic to environmental sensitivity. A hypo-
thetical selection for increased DFI under no stressful 
conditions (which is generally the case) would result in 
animals with decreased DFI in stressful conditions. On 
the contrary, a hypothetical selection for decreased DFI 
would result in animals with increased DFI in stressful 
conditions.

Goodness-of-fit of the models was assessed by per-
forming a likelihood ratio test (Table  2). Model RNAM 
fitted the data much better than AM. This shows that the 
log(CV) is a valid indicator for the genetic analysis and 
may be of value to select for resilience.

Figure  3 shows the heritability estimates for DFI for 
different probabilities of the occurrence of an environ-
mental challenge. The interquartile range of its sampling 
distribution is shown in Additional file 2: Figure S1) and 
the standard error (SE) of the curve is roughly 0.04 along 
its trajectory. The values ranged from 0.08 (for p = 0.30) 
to 0.14 (for p = 1). Heritability for DFI decreased from 
p = 0 to 0.30, and then increased for higher values of p . 
This behavior was comparable to that reported by Rav-
agnolo and Misztal [27] and Kolmodin et al. [28] in dairy 
cattle. In both studies, the genetic parameters changed 
across different environments. Marie-Etancelin et  al. 
[18] reported a higher heritability for average DFI for the 
same ovine population analyzed in this study. Heritability 
of DFI is lower than that of average DFI because the latter 
contains less noise, as it is averaged over time.

Figure  4 shows the estimates of level ( a0 ), environ-
mental sensitivity ( a1 ) and total additive ( a0 + p× a1 ) 
variances for DFI for increasing probabilities of the 
occurrence of an environmental challenge (going from 
non-challenging environmental conditions to more chal-
lenging ones). The interquartile ranges of their sampling 
distributions are shown in Additional file 3: Figures S2–4. 
The SE for level variance, environmental sensitivity vari-
ance and total additive variance are lower than 0.006 
along the trajectories. Under non-challenging envi-
ronmental conditions ( p = 0), the additive variance for 
environmental sensitivity is 0 and starts to increase for 
higher values of p (more challenging environmental con-
ditions), reaching its maximum value (0.04 kg2) when p 
= 1. As there is a negative covariance between level and 
slope, the total additive variance first decreases slightly as 

Table 1 Parameter estimates obtained using the  animal 
model (AM) and the reaction norm animal model (RNAM)

σ 2
a0 = additive genetic variance for level, σ 2

a1 = additive genetic variance for 
slope, σa0,a1 = additive genetic covariance between level and slope, σ 2

pe0 = 
permanent environmental variance for level, σ 2

pe1 = permanent environmental 
variance for slope, σpe0,pe1 = permanent environmental covariance between 
level and slope, σ 2

e = residual variance

Parameter Model

AM RNAM

σ 2
a0

0.014 0.016

σ 2
a1

– 0.038

σa0,a1 – − 0.011

σ 2
pe0

0.028 0.034

σ 2
pe1

– 0.104

σpe0,pe1 – − 0.031

σ 2
e

0.123 0.120

Genetic correlation – − 0.460 ± 0.210

Table 2 Goodness of fit, likelihood ratio test of models AM 
and RNAM

−2 log likelihood Likelihood ratio test

AM RNAM χ
2 p-value

41219.52 40685.54 533.98 1.50*10–114
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p increases and then, for higher values of p , it starts to 
increase.

Figure  5 shows the genetic correlation between EBV 
in a non-challenging environment ( p = 0) and breeding 
value at a given probability of the occurrence of an envi-
ronmental challenge ( p ). For low values of p from 0 to 
0.15, i.e. non-challenging environmental conditions, the 
correlation is close to 1 (from 0.97 to 1). For values of p 
higher than 0.15, the correlation starts to decrease and 
reaches its minimum value (0.21) for p = 1. Low genetic 
correlations between challenging and non-challenging 
environments indicate reranking of individuals in differ-
ent environmental conditions. It also implies that selec-
tion under completely non-challenging conditions is 
ineffective for the expression of the trait in completely 
challenging conditions.

Figure  6 shows the change in EBV between non-
challenging ( p = 0) and challenging environmental 
conditions ( p = 1) expressed in terms of genetic stand-
ard deviation. Three groups of animals were identified 
according to the pattern of change. The majority of the 
individuals (over 95%) were within the second group (in 
blue in Fig. 6). Figure 6b–d show that each group had a 
different pattern of response to increasing challenging 

environmental conditions. In the first group (red), the 
EBV for DFI decreased as p increased, whereas the oppo-
site occurred in the third group (green). Within each 
of these two groups, there were also significant differ-
ences in environmental sensibility (slope). Animals with 
the steepest slopes were more sensitive to environmen-
tal challenges, consequently less resilient. The second 
group (blue) includes animals that show an intermediate 
response in terms of the change in EBV according to the 
value of p . In this group, we can find animals with a posi-
tive or negative slope (or even close to zero) but changes 
in terms of EBV are within − 1 and + 1 genetic standard 
deviation. In other words, we can say that the second 
group is composed of animals that were less environmen-
tally sensitive (with a less steep slope compared to the 
other groups). However, due to the genetic correlation 
between the level and the slope, hypothetical selection 
for increased DFI would shift the distribution to the left, 
whereas hypothetical selection for decreased DFI would 
shift the distribution to the right.

Figure 6 also shows that there is a reordering of geno-
type ranks and variation in EBV of the animals along 
the environmental gradient (given by the probability 
of the occurrence of an environmental challenge). This, 

(p ≈ 0)
Non – challenging 

environmental condi�ons 

(p ≈ 1)
Challenging environmental 

condi�ons
Fig. 3 Heritability estimates of daily feed intake (DFI) for different probabilities of the occurrence of an environmental challenge. p is the 
environmental descriptor with p = 0 indicating non‑challenging environmental conditions and  p = 1 indicating highly challenging conditions
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combined to the results in Fig. 5 with low genetic corre-
lations between extreme environmental conditions, illus-
trates the existence of G × E interaction [29].

Discussion
Finite mixture models and estimation of the probability 
of the occurrence of an unrecorded environmental 
challenge on each day
Previous studies, which were based on artificially intro-
duced disturbances (e.g. [1, 7, 8]), showed that there is 
increased variability in  the presence of environmental 
challenges. In this study, we presented a simple and prac-
tical approach to estimate the probability that, at a given 
date, an unrecorded environmental challenge occurred. 
This is a data-driven approach, since the estimations 
are based only on phenotypic data with no need of extra 
information as for example climatic information. Com-
pared to other methods, our approach does not need 
an initial step to estimate an observed or a target curve 
(with all the parameters that this implies), and the devia-
tions from the curve to detect the occurrence of environ-
mental challenges. Furthermore, our approach can be 

applied to various types of datasets from different spe-
cies and with records on different kinds of traits because 
it focuses only on daily (or other time frame) variability, 
without the need to assume any kind of curve or function 
for the trait or traits analyzed. Consequently, the method 
is widely applicable. However, the method requires fre-
quently recorded (daily or similar) data and homogeneity 
of animals within groups – for instance, lambs and adults 
should be analyzed separately. Daily recording is not fre-
quent but there are more and more automatic measuring 
devices such as milking robots that provide records that 
can be used. As described by Friggens et al. [5], technol-
ogy for the measurement of milk yield and body weight at 
each milking is commercially available and used routinely 
in some milking systems. Systems that automatically 
weigh animals, either directly or using image analysis of 
body shape, have been developed. Imaging technology 
has recently been commercialized for measuring body 
condition [30]. There are also a number of monitoring 
technologies for measuring animal behavior (accelerome-
ters, position tracking, video), and an increasing number 
of sensors for measuring biomarkers of different aspects 

(p ≈ 0)
Non – challenging 

environmental condi�ons 

(p ≈ 1)
Challenging environmental 

condi�ons
Fig. 4 Level ( a0 ), environmental sensitivity ( a1 ) and total additive ( a0 + a1 ) variances for daily feed intake (DFI) for different probabilities of the 
occurrence of an environmental challenge. p is the environmental descriptor with  p = 0 indicating non‑challenging environmental conditions 
and  p = 1 indicating highly challenging conditions
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of health status in milk, in exhaled breath, and in  situ 
with under-skin sensors or boluses in the rumen [5]. 
Today, dealing with large amounts of records produced 
by all these monitoring technologies is a challenge. For 
very large datasets (e.g. as in dairy cattle national evalua-
tions), genetic connections (i.e. through sires) may reveal 
classes of variances as in our study.

In this paper, we illustrate the analysis of data and the 
modeling procedure proposed by using a dataset with 
DFI records from Romane lambs across eight years. 
Our results indicate that this approach is promising and 
appears to be viable to identify unrecorded environ-
mental challenge events, which is useful when selecting 
resilient animals and only productive data are available. 
Although our illustration uses an ovine dataset with 
DFI records, the proposed approach can be applied to a 
wide variety of phenotypic records from different spe-
cies and, given its simplicity, is useful when dealing with 
large quantities of data coming, for example, from high 
frequency recording systems such as automated monitor-
ing technology. To our knowledge, there are no similar 
approaches proposed in the literature.

Genetic analysis
Detection of environmental challenges that affect the 
entire population (or contemporary group) can pro-
vide a unique opportunity to select resilient animals 
(or less environmentally sensible) to such events since 
comparable individuals are exposed to the same envi-
ronmental conditions. In this study, we evaluated the 
genetic determinism of resilience to these events using 
the probabilities of the occurrence of an environmen-
tal challenge as an environmental descriptor in a reac-
tion norm animal model. We were able to estimate 
breeding values for level and environmental sensitiv-
ity of DFI for each animal and our results indicate that 
there is genetic variation in environmental sensitivity. 
This kind of analysis enables the identification of ani-
mals that combine both, high production potential with 
resilience to environmental challenges. Even if the envi-
ronmental challenges are unknown and correspond to 
infrequent combinations of infrequent factors, the ani-
mals resilient to this kind of stress should be resilient 
to different stressors (heat, changes in management, 
pathogen load, etc.) which is desirable. In a way, we can 

(p ≈ 0)
Non – challenging 

environmental condi�ons 

(p ≈ 1)
Challenging environmental 

condi�ons
Fig. 5 Genetic correlation between breeding values in a non‑challenging environment ( p = 0) and breeding value at a given probability of the 
occurrence of an environmental challenge ( p)
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think of these stresses as an “infinitesimal”–sum of dif-
ferent small factors.

Animal breeding practices have become part of the 
debate since it is now recognized that animals selected 
for high production efficiency are more at risk for behav-
ioral, physiological and immunological problems and are 
generally less resilient [31–33]. Consequently, it is impor-
tant to include resilience or robustness within the breed-
ing goals, but resilience is not (yet) included in breeding 
goals of livestock [2].

As discussed by Knap [6], one feasible way of breeding 
for improved animal robustness (or resilience) is to esti-
mate breeding values for the environmental sensitivity of 
the genetic potential for performance through the use of 
reaction norm analysis. Simms [34] proposed to use the 
slope of the reaction norm as a resilience (to which they 
refer as tolerance) indicator, which was later used in sev-
eral studies (e.g. [2, 35]). Berghof et al. [2] claim that the 
slope of the reaction norm indicates resilience towards 
macro-environmental disturbances (i.e. stressors that 

affect the whole population, e.g. temperature). It is within 
this context that we propose a method to identify envi-
ronmental challenges and to estimate their probability of 
occurrence and introduce an alternative environmental 
descriptor that takes unobserved macro-environmental 
disturbances to which animals could have been exposed 
into account.

In this study, we obtained a negative genetic corre-
lation between level of DFI and sensitivity to inferred 
environmental challenge, which indicates that a hypo-
thetical selection for increased DFI in non-stressed envi-
ronments would result in animals that are suboptimal for 
DFI in stressed environments. In the opposite scenario, 
a hypothetical selection for decreased DFI would result 
in animals with increased DFI in stressful conditions. 
In both cases, slopes will become steeper (negative or 
positive, respectively), showing an increase in environ-
mental sensitivity. Negative correlations between level 
and slope result from resource allocation patterns as 
described by Beilharz et  al. [36]. Resource-demanding 

Fig. 6 a Change in EBV between a non‑challenging environmental condition ( p = 0) and an extremely challenging condition ( p = 1) expressed 
in terms of genetic standard deviation. Three groups were identified according to the pattern of reaction to environmental challenging conditions 
and are indicated with different colors on the histogram (red: animals with EBV that decrease for higher values of p ; blue: animals with EBV that tend 
to remain approximately constant for higher values of p , within − 1 and + 1 genetic standard deviations; green: animals with EBV that increase for 
higher values of p ). Twenty animals were randomly sampled from each group, and panels (b–d) show the reaction norms for daily feed intake (DFI) 
for each of the three groups
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physiological processes show trade-offs that result from 
limits in resource availability. In this way, animals that 
are genetically driven to produce at high levels will prob-
ably reallocate resources away from processes related to 
resilience. A reordering of individual ranks was observed 
along the environmental gradient as well as a low genetic 
correlation between extreme environmental conditions. 
Animals that were good (top of the rank) at p = 0 (no 
challenge) tended to be poor (bottom of the rank) at p = 
1 (challenge). These observations confirmed the existence 
of a G × E interaction and indicate that the best genotype 
in one environmental condition is not the best in another 
one [37]. Knowledge of the existence of G × E interaction 
is important in terms of selection decisions.

Friggens et al. [5] proposed a categorization of animals 
into generalist and specialist individuals based on the 
slope of the individual random regression. On the one 
hand, generalist individuals are animals with a slope rela-
tively close to zero, with a constant performance across 
different environmental conditions. On the other hand, 
specialist individuals are animals with steep slopes (both 
positive or negative), which show a significantly bet-
ter performance in extreme environmental conditions 
(either challenging or non-challenging). However, it is 
difficult to directly select for generalist animals as this 
is an intermediate optimum. A possibility would be to 
select based, not on the reaction norm model (which may 
indicate the possible existence of resource allocation con-
flicts), but on the genetic basis of variation itself [38].

Previous studies have addressed the issue of resilience 
with different approaches. For example, some studies 
analyze the genetic potential of the variance of deviations 
as an indicator for resilience in dairy milk yield and DFI 
in pigs [11, 39, 40]. Berghof et  al. [10] proposed skew-
ness and autocorrelation of body weight deviations in 
layer chickens. Here, we propose an alternative approach 
and implemented it on an ovine population. As far as we 
know, such research on small ruminants is rare mostly 
because of the lack of high frequency records, which is 
a key element to work on resilience. However, resilience 
in small ruminants is important as they are commonly 
exposed to heterogeneous and changing conditions with 
little control of environmental factors compared to other 
livestock species, in which production systems are more 
controlled such as for monogastrics. Given these condi-
tions, it is necessary to select animals that can maintain 
their production performance (or modifying it as little as 
possible) under this heterogeneous environment. This is 
the reason why resilience to changing environmental fac-
tors is of interest when selecting individuals. However, it 
is also necessary to account for the fact that this is a com-
plex trait composed of multiple components, including 

dynamic elements such as the rates of response to, and 
recovery from environmental perturbation, which can 
lead to different responses in different environments.

Conclusions
Today, very frequently recorded data are becom-
ing increasingly available, due to the availability of 
high-frequency recording systems such as automated 
monitoring technologies. The method that we pro-
pose consists, first, in inferring the existence of highly 
variable days via mixture models applied to frequent 
phenotypic records and second, in using the inferred 
probabilities of a mixture in a norm reaction model. 
The approach is simple and practical and can be widely 
used for different species and traits. It enables the 
estimation of the probability of the occurrence of an 
environmental challenge for each day, and this vari-
able proved to be informative and useful to be included 
in genetic analyses as an environmental descriptor to 
select resilient animals. We estimated breeding values 
for environmental sensitivity of the genetic potential 
for DFI through the use of reaction norm analysis. 
The level and slope were negatively correlated, which 
indicates that a hypothetical selection for increased 
DFI may not be optimal depending on the presence or 
absence of stress. A reordering of individual ranks was 
observed along the environmental gradient as well as 
low genetic correlations between extreme environmen-
tal conditions. These results confirmed the existence 
of G × E interaction and indicate that the best geno-
type in one environmental condition is not the best in 
another one.
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with  p = 0 indicating non‑challenging environmental conditions 
and  p = 1 indicating highly challenging conditions. The interquartile 
range is shown in grey in all cases.
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