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Abstract—One of the global trends in the energy sector is the 

inclusion of renewable sources in the grid. This need allows the 

reduction of greenhouse gases produced by the energetic industry, 

particularly with the use of fossil fuels and their effects on global 

warming. Therefore, these implementations need to cover the 

minimum requirements as balanced energy price, power demand, 

and a higher ROI, among others, to be reliable and compete with 

traditional sources. This paper presents a novel approach for 

sizing a hybrid renewable energy system, using data-driven 

decisions to meet the demand of a population in Barranquilla city. 

This method reduces oversizing by optimizing the number of 

components and increases the whole architecture's energy 

efficiency by managing the excess or the lack of energy through 

storage and backup systems. 

Keywords— Data Science, Data Analytics, Levelized Cost of 

Energy, PV-Wind based hybrid system (PWHS), Hybrid Renewable 

Energy System (HRES), Microgrid. 

I. INTRODUCTION 

Nowadays, electricity is a commodity that society became 
dependant on, almost all activities need it, computers, transport, 
and illumination are just some examples of this fact. 
Additionally, the U.S. Energy Information Administration 
(EIA) projects a 48% increase in world energy consumption by 
2040 [1] while fossil fuels are the primary energy source, are 
becoming scarce. Consequently, it is necessary to include more 
renewable and eco-friendly sources in the world energy grid, 
like solar, wind, tidal, or geothermal energies. Taking into 
account the world energy consumption in 2018, measured in 
161.248 PWh, is technically feasible to obtain 3078 times that 
quantity using the full potential of renewable sources, where 
solar covers 2850 times, wind 200 times, biomass 20 times, 
geothermal five times, tidal two times and hydroelectric one 
time [2]. 

One of the main issues of renewable energies is their random 
nature, which causes a variable generation curve and the need 
for a backup system that can be an additional source or a storage 
system. This drawback makes their implementation harder due 
to the need for a power management component to secure the 
whole system's correct operation. Hence, to reduce fossil fuel 
dependency, several experts recommend integrating these 
renewable sources into the local grid for a bulk generation or 
through decentralized systems for customer level [3]–[6], taking 
advantage of their generation potential, their ease of installation, 
and operation processes. 

Once there are two or more energy sources, it becomes 
mandatory to perform an on-site study to identify the selected 
sources' behavior and other studies to help in the sizing process. 
However, the correct design of hybrid architectures is 
complicated due to the Multiple-Criteria Decision-Making 
(MCDM) scenario. There are many approaches to provide the 
"optimal design" criteria, as technical, economic, 
environmental, and social parameters [7], [8]. Additionally, it is 
necessary to work with the non-linear characteristic response in 
the system's components, design constraints, energy 
management techniques, system topology, among other 
characteristics [9]. 

On the other hand, it is essential to use intuitive methods to 
obtain the first approach to calculating the initial capital 
investment [10]. Consequently, it is possible to find three 
different techniques to make a more realistic approach, which 
works as the correct design basis. The first one is "the annual 
monthly average," which consists of obtaining the yearly 
average monthly values of the essential parameters such as 
radiation, wind speed, or energy demand. The second one is "the 
most unfavorable month," which consists of obtaining the same 
values but under the month with the worst behavior like low 
radiation or high energy demand [11]. The third one is called 
"Loss of power supply probability (LPSP)," it consists of 
obtaining the quantity of the components under the reliability of 
the system, which includes the cost and the probability of loss 
of energy [12]. 

Looking for optimal sizing is necessary to consider the 
characteristics of the problem due to existing many 
methodologies, which can be categorized into two main groups, 
classical techniques where are grouped all methods that use a 
mathematical approach to the optimal solution [13]. This group 
includes the graphic construction method, which is the oldest 
and uses the average data of radiation and energy demand, 
leading to over or under-sizing in some cases [14]. The second 
one is the probabilistic methods, which are considered the 
simplest ones; their results may not be the optimal option 
because it cannot represent the system's dynamic performance 
but always deliver a secure option [15]. The analytical methods 
allow the simulation of the resulting configurations' 
performance in software and obtain the best configuration. Still, 
they present an obstacle to estimating the position-related 
equation's coefficient, crucial in these approaches [16]. 

Implementing hybrid architectures allow an optimal sizing 
of each renewable energy system, including the storage, due to 
the number of parameters and topologies that can be tested 



compared with a single source. Nevertheless, none of the current 
approaches deliver the optimal sizing for all involved 
parameters; this result will be linked to the optimization criteria 
[17]. On the other hand, data science is widely used together 
with big data in smart grids to improve customer service [18], 
decision-making, reliability, as well as correcting both grid 
sizing and distribution [19], [20].  

Consequently, a different approach combining some sizing 
methods and employing data-driven techniques can deliver a 
new sizing methodology. Hence, this paper introduces a data-
driven approach to size a PWHS. This proposed methodology is 
exemplified by Barranquilla's case study and tries to provide 
energy for a residential zone. The proposed energy harvesting 
zone corresponds to the city’s outskirts of the city (10.9750º, -
74.8715º). 

II. PROPOSED DATA-DRIVEN PROCESS 

This work proposes applying the data science life cycle to 

the design of a renewable energy system sizing. This work's 

renewable energy system is based on photovoltaic (PV) cells, 

wind turbines, and a storage system, as Fig 1 shows. 

Fig. 1. Selected architecture, based on [21] 

The development of the current work is founded on 

identifying the Data Science life cycle; it can be divided into 

eight steps according to [22], as Fig 2 shows. These eight steps 

can be summarized according to Fig 2 by overlapping the main 

four phases of the Data Analytics project proposed by [23]. 

The four phases of the Data Analytics project shown in Fig. 

2 correspond to this work's methodological stages. Therefore, 

each of them will be defined and involved in sizing the chosen 

renewable energy system, as presented in the following sections. 

A. Preparation 

Following the ideas of [22], [23], the preparation phase leads 
to the problem understanding. It can be achieved through the 
definition of the challenge and the required data to solve it. 

Therefore, it is possible to define a plan based on a hypothesis, 
identifying data sources, data acquisition, and selection. 

Fig. 2. The Data Science life cycle proposed by [22] overlapped with the 

Data Analytics phases proposed by [23] 

In the context of this study, the preparation phase starts with 
understanding the required data for size the required amount of 
PV panels, wind turbines, and batteries. Hence, a deeper 
understanding of each system's mathematical models follows 
the models presented by [21]. It is possible to identify the related 
variables with this project. The global horizontal irradiance 
(GHI) and the wind speed are the climatic variables associated 
with the PV cells and the wind turbines. To size the system 
correctly, it is required to know the population's electric demand. 

First, it is required to find a climatic database that includes 
the GHI and the wind speed to identify the chosen location's 
wind and photovoltaic potential. Databases like the Photovoltaic 
Geographical Information System (PGIS), NASA Surface 
Meteorology and Solar Energy Database, National Solar 
Radiation Data Base (NSRDB), IDEAM Atlas, Global Solar 
Atlas, Global Wind Atlas, and RETScreen were explored. Table 
I presents a summary of the data. 

TABLE I. DATABASE COMPARISON 

Database 
Period 

(Years) 

Sampling 

Frequency 

Mean 

daily GHI 

(W/m2) 

Mean Wind 

Speed - 10 m 

(m/s) 

NSRDB  1998-2017 30 min 5748 4.11 

NASA  1981-2019 Day 5340 3.07 

Atlas 
IDEAM 

2009-2014 Month 6080 3.40 

PGIS 2005-2015 Hour 5810 3.10 

Global 

Solar Atlas 
1999-2015 Annual 5610 - 

Global 
Wind Atlas 

2001-2010 Annual - 4.07 

RETScreen 2001-2010 Annual 5268 4.03 

Following the results of Table I, and taking as a priority a 
higher sampling frequency and the period of the data collection, 
the database that fits the requirements is the NSRD database. 
Also, this database shows good data quality on its inspection.  

In contrast, the electric demand data was not found in any 
public database. Consequently, using a detailed report of the 
electric demand of the interest location [24] and the Monte Carlo 
simulation, it was possible to obtain a synthetic database 



simulating the electrical demand. This database considers a 
residential load of around 4000 homes, following the statistical 
assumptions made by [24]. A representation of the obtained 
Monte Carlo simulation data is presented in Fig 3. 

 
Fig. 3. Hourly Electric Demand obtained by Monte Carlo Simulation 

B. Preprocessing 

According to [22], [23], the preprocessing phase is 
characterized by activities that improve the collected raw data 
with tasks like data cleaning, filtering, correction, 
standardization, and transformation.  

The preprocessing stage for the selected study begins with 
data gathering. Later, it was needed to merge the yearly datasets 
(20 years in total) sampled every 30 minutes provided by the 
NSRDB dataset. This merged dataset showed redundant 
information; as a result, the data were downsampled. The 
resampled dataset has an hourly sampling frequency; it reduced 
the dataset's size from 350400 to 175200. The obtained dataset 
showed a data quality, apparently without outliers or invalid 
data. 

C. Analysis 

According to [22], [23], the Analysis phase is characterized 
by the exploratory analysis of the gathered data. If it is required 
the creation of a model, that should be evaluated according to 
relevant parameters. The Analysis phase applied in the context 
of this study will allow the data understanding. Consequently, it 
will lead us to the size of the renewable energy system. 

First, it is possible to summarize the collected databases 
statistically, allowing the observation and identification of each 
dataset's main features presented in Table II. 

TABLE II. DATA SUMMARY 

Description 
GHI 

(W/m2) 

Wind Speed –  

10 m (m/s) 

Electric Demand 

(kWh) 

Mean 239.52 4.11 6150.67 

Standard deviation 321.43 1.55 1807.52 

Minimum 0.00 0.00 2712.10 

25th percentile 0.00 3.00 4459.42 

50th percentile 0.00 4.20 5386.96 

75th percentile 492.00 5.30 7760.66 

Maximum 1061.00 8.80 9174.62 

Therefore, it is essential to identify the GHI's hourly 
behavior, wind speed, and electric demand. This information 
will help us to identify the hourly requirements of the system 
under study. Fig 4 shows the GHI's hourly behavior, where it is 
possible to observe the peak of irradiance at midday and a total 
absence of it between 18 and 5 h. On the other hand, wind speed 
behavior is presented in Fig 5, where it is possible to observe the 
minimum wind speed around midday. Finally, the hourly 
electric demand was previously shown in Fig 3, where it was 
possible to identify a higher load after 18 h, as it is expected in 
a residential zone. 

 

Fig. 4. Hourly GHI 

Now it is possible to proceed with the sizing process of the 
renewable energy system, taking as reference the identified 
photovoltaic potential, wind potential, and the load 
requirements. 

 
Fig. 5. Hourly Wind speed (10 m) 

The sizing process optimizes the energy price based on the 
Levelized cost of energy (LCOE). This cost function tries to 
maximize the diversity of energy sources. For the given study, 
the LCOEs calculated by [21] are 0.421 US$/kWh in onshore 
wind energy and 0.351 US$/kWh for photovoltaic energy. By 
the solution of this constrained problem is obtained the ideal 
distribution of renewable sources, 45,46% of wind energy (𝑃𝑒) 
and 54.53% of photovoltaic energy (𝑃𝑠), giving a total unitary 
kWh price of 0.383 US$/kWh, being the value that balances the 
percentage costs between photovoltaic and wind sources. 

 In order to size the wind generation system, (1) is applied 
[21] based on the parameters detailed in Table III, where it was 
calculated the 𝐸𝑛𝑒𝑒𝑑 for one year or 8760 h taking into account 
the daily capacity of the wind energy (~148 ± 44 MW). 



𝑃𝑇 =
𝐸𝑛𝑒𝑒𝑑

𝐶𝑝 ∗ 𝜂𝑖𝑛𝑣 ∗ 8760ℎ
∗ 𝑃𝑒 = 6.92 𝑀𝑊 

 

(1) 

TABLE III. CONSTANT VALUES OF WIND POWER SYSTEM 

Symbol Value Meaning 

𝑃𝑒 45,46% 
Required wind energy percentage based on 
total daily demand 

𝐸𝑛𝑒𝑒𝑑 53.874 kW Mean daily required energy (Table II) 

𝐶𝑝 0,45 Performance coefficient of the system 

𝜂𝑖𝑛𝑣 0,9 Inverter Efficiency 

The result of (1) shows that the wind generator needs to 
fulfill a requirement of 6.92 MW. Then, in the wind generator 
selection was possible to find the AGW 110 / 2.1 (tower 110 m 
high and capable of generating 2.1 MW of energy), made by 
WEG [25]. With this wind generator, it is possible to identify a 
need of 3.29 generators, which can be approximated to 3, under-
sizing the system. 

The photovoltaic system's sizing process is similar, but using 
(2)[21] and the data from Table IV. 𝐸75% is used as a data-driven 
safety factor to guarantee the projected amount of energy. 

𝐸𝑛𝑒𝑒𝑑𝑝𝑣 =
𝐸75%

𝜂𝑏𝑎𝑡𝑡 ∗ 𝜂𝑖𝑛𝑣
∗ 𝑃𝑠 = 126.78 𝑀𝑊ℎ (2) 

TABLE IV. CONSTANT VALUES OF SOLAR POWER SYSTEM 

Symbol Value Meaning 

𝐸75% 186.240 kW 
Daily energy consumption of the 75th 

percentile (Table II) 

𝜂𝑏𝑎𝑡𝑡 0,89 Battery Cell Efficiency 

𝜂𝑖𝑛𝑣 0,9 Inverter Efficiency 

𝑃𝑠 54.53% Percentage of required photovoltaic energy 

𝑃𝑀𝑃𝑃 510 Watts Cell peak power per cell 

𝐻𝑃𝑆𝑐𝑟𝑖𝑡 6,5 h Peak times of the solar irradiance (Fig. 4) 

𝑃𝑅 0,9 Overall performance factor 

𝑉𝑙𝑖𝑛𝑒 11200 V Line voltage defined for the system 

𝑉𝑂𝐶 66,31 V Open-circuit voltage 

The photovoltaic cells chosen are the TSH-S510 
monocrystalline cells with 510 Watt-peak, according to [26]. 
With the necessary power for the photovoltaic panel, it is 
possible to identify the number of photovoltaic panels. Hence, 
(3), (4), and (5) are applied. 

𝑁𝑇𝑜𝑡𝑎𝑙 =
𝐸𝑛𝑒𝑒𝑑𝑝𝑣

𝑃𝑀𝑃𝑃 ∗ 𝐻𝑃𝑆𝑐𝑟𝑖𝑡 ∗ 𝑃𝑅
= 42493 𝐶𝑒𝑙𝑙𝑠 (3) 

𝑁𝑠𝑒𝑟𝑖𝑒𝑠 =
𝑉𝑙𝑖𝑛𝑒
𝑉𝑂𝐶

≅ 169 𝑐𝑒𝑙𝑙𝑠 (4) 

𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑁𝑇𝑜𝑡𝑎𝑙
𝑁𝑠𝑒𝑟𝑖𝑒

≅ 251 𝑐𝑒𝑙𝑙𝑠 (5) 

A set of 169 cells in series and 251 in parallel were obtained 
through this procedure, totaling 42419 PV cells. 

Finally, the storage system is calculated under an 
unfavorable condition of high demand and low generation, 
implying an oversizing of the storage system, guarantying its 
performance under normal circumstances. The chosen adverse 
electric generation condition corresponds to a low energy 
generation, represented by the 25th percentile of the hourly wind 
speed (Fig 5) and GHI (Fig 4). On the other hand, the high 

demand condition corresponds to the electric demand's hourly 
75th percentile (Fig 3).  

Hence, it is required to verify the chosen photovoltaic cells' 
performance and wind generators to identify the lack of power 
the storage system needs to cover in the design with the given 
design scenario. For this purpose, it is mandatory to simulate the 
behavior of those systems under the given conditions. 

The simulation process starts with adapting the climatic data 
of input to the project requirements. The GHI can be used as it 
is, but the gathered wind speed needs a modification. The wind 
speed data was collected on 10 m high, and according to the 
specifications of the chosen wind generators, the required wind 
speed corresponds to 110 m high. In the same direction, 
according to the NSRDB dataset, the gathered data corresponds 
to an approximation of the nearest meteorological station, in this 
case, the Ernesto Cortissoz Airport. Therefore, the wind speed 
values should be adjusted according to the terrain rugosity. The 
wind speed data is updated to the new requirements using the 
online rugosity conversion tool based on [27], [28], part of the 
parameters described in Table V, and the equation of height 
variation provided by [27], shown in (6). 

𝑣2 = 𝑣1 ∗
ln (

ℎ2
𝑧0
)

ln (
ℎ1
𝑧0
)
 (6) 

TABLE V. GENERAL VARIABLES OF THE WHOLE ARCHITECTURE 

Symbol Meaning 

𝑣1 Wind speed at the current height 

𝑣2 Wind speed at the desired height 

ℎ1 Reference height 

ℎ2 Desired height 

𝑧0 Location roughness length 

𝑃𝑤 Power obtained in kW 

𝑉110 Wind speed on 110 m 

𝑃𝑓 Photovoltaic system generated power 

With the adjusted wind speed, it is possible to verify the 
wind generator and photovoltaic performances under the given 
conditions. The wind generator output power can be obtained 
from its datasheet [25], and it can approximate in (7) [21] with 
a Pearson correlation coefficient R2 of 0.992. 

𝑃𝑤(𝑉110)

=

{
 

 
0, 𝑉110 ≤ 2

−0.0024 𝑉110
6 − 0.0353 𝑉110

5 + 1.2973 𝑉110
4 − 8.1474 𝑉110

3

+35.637 𝑉110
2 − 46.142 𝑉110 + 3.881

, 2 < 𝑉110 < 12

2100, 𝑉110 ≥ 12

 (7) 

In contrast, obtain the power generated by the photovoltaic 
cells can be more complicated. Still, it is possible to use the 
simulator developed by [21], under the given conditions, its 
behavior was approximated to (8), with a Pearson correlation 
coefficient R2 of 1. 

𝑃𝑓(𝐺𝐻𝐼) = {
0, 𝐺𝐻𝐼 ≤ 0

0,0772 𝐺𝐻𝐼2 + 20247 𝐺𝐻𝐼 +   28194, 𝐺𝐻𝐼 > 0
 (8) 

With the number of the photovoltaic cells and wind 
generators, its simulation models are given by (7) and (8), and 
the dataset that fulfills our needs is possible to identify the lack 
of power for the given study case and calculate the number of 
batteries required for this case study. Fig 6 shows the hourly 



difference between the input and output power under the given 
conditions; the negative values are the lack of energy and the 
positive, the surplus power. 

Adding up the lack of energy in the proposed system, 
according to Fig 6, it is possible to identify a daily lack of power 
of 59.021 MW (𝐸𝑙𝑎𝑐𝑘), what is what our storage system should 
supply. On the other hand, the surplus power corresponds to 
60.051 MW, which will charge the storage system or can be used 
in the local grid for different purposes. 

 
 
 
 
 
 
 
 

Fig. 6. The power difference between generated energy and demand 

The storage system is calculated based on 𝐸𝑙𝑎𝑐𝑘 value, using 
the criteria presented by [21], and the data from Table VI, lead-
acid batteries technology is used, following (9). 

𝐶𝑛𝑒 =

𝐸𝑙𝑎𝑐𝑘 ∗ 𝐹𝑠𝑒𝑐
𝑃𝐷𝑒𝑒𝑝𝑀𝑎𝑥
𝑉𝐵𝑎𝑡𝑡𝐿

≅ 14930 𝐴ℎ (9) 

TABLE VI. CONSTANT VALUES OF BATTERY POWER SYSTEM 

Symbol Value Meaning 

𝐸𝑙𝑎𝑐𝑘 59,021 MWh Identified lack of power 

𝐶𝑛𝑒 - Battery nominal capacity 

𝑃𝐷𝑒𝑒𝑝𝑀𝑎𝑥 0,6 Maximum discharge depth 

𝑉𝐵𝑎𝑡𝑡𝐿 11200 V Line voltage of the storage system 

𝐹𝑠𝑒𝑐 1,7 Arbitrary safety factor 

𝑃𝑛 3000 Ah Hourly supplied Current 

𝑉𝑏𝑎𝑡𝑡 2 V Battery voltage 

∆𝑇𝐵 - 
Difference between ambient and 

current battery temperatures 

𝑆𝑂𝐶 - Battery state of charge 

𝐼𝐵 - Battery current 

Consequently, it is possible to identify the number of 
batteries following (10) and (11).  

𝐵𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝐶𝑛𝑒
𝑃𝑛

≅ 5 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 (10) 

𝐵𝑆𝑒𝑟𝑖𝑒𝑠 =
𝑉𝐵𝑎𝑡𝑡𝐿
𝑉𝑏𝑎𝑡𝑡

= 5600 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 (11) 

Where 𝑃𝑛  and 𝑉𝑏𝑎𝑡𝑡  are inner constants of the selected 
batteries and were taken from [21]. From (10) and (11), it is 
possible to conclude that the needed storage system requires 
28000 lead-acid batteries with 2 V and 3000 Ah, distributed as 
shown above. 

Summarizing, the designed system has 3 wind generators 
with a capacity of 2.1 MW and 110 m high, 42419 
monocrystalline photovoltaic cells with 510 Watts-peak, and 
28000 lead-acid batteries with 2 V and 3000 Ah. 

D. Postprocessing 

The postprocessing stage requires the evaluation of the 
developed models according to the chosen metrics. It is a 

documentation and communication phase, where the system's 
performance is monitored carefully [22], [23]. 

In this case study, the system's evaluation is done with 
simulation, including the models (7), (8), a battery charge/ 
discharge model, and a power distribution system, following Fig 
1. The model of the hourly battery charge is presented in (12), 
and the discharge in (13); both models were obtained from [21]. 

𝑉𝐵 = [2 − 0.16 𝑆𝑂𝐶] +
𝐼

𝐶10
(

6

1 + 𝐼𝐵
0,86 +

0.48

(1 − 𝑆𝑂𝐶)1,2
+ 0.036) ∗ (1 − 0.025∆𝑇𝐵) (12) 

𝑉𝐵 = [2.085 − 0.12(1 − 𝑆𝑂𝐶)] −
𝐼

𝐶10
(

4

1 + 𝐼𝐵
1,3 +

0.27

𝑆𝑂𝐶1,5
+ 0.02)

∗ (1 − 0.007∆𝑇𝐵) 
(13) 

On the other hand, the power distribution system used in this 
stage corresponds to a simple flowchart that distributes the 
energy according to the storage system state of charge (SOC); 
the details of this flowchart are shown by [21]. 

Once the sizing of PWHS is obtained, the next step is to 
implement the whole architecture in a simulation platform, 
which in this case, is performed under the python environment. 
The system was tested under several conditions of our dataset, 
and it was possible to observe the system handles the demand 
sufficiently as expected. The behavior of the system during two 
random days is shown. 

a) The storage's SOC and its different states 

Fig 7 shows the storage's SOC, its different states (charge, 

discharge, and idle), and how the stored energy is managed. It 

also improves energy efficiency by not losing the excess of 

energy and using it as the architecture needs, which in other 

systems is dissipated. 

 
Fig. 7. The storage's SOC, system state, and charged/discharged power 

b) The Power in the System 

Fig 8 shows the power of the different parts of the system, 

and it is possible to identify the local grid's almost null need to 

support the city's demand. Fig 9 shows how the remaining power 

was managed in the storage system or the local grid (or other 

uses). 

III. DISCUSSION  

This work presented a data-driven sizing process for 
renewable energy systems. This proposal was introduced 
through the presentation of a case study in a given location. This 
proposal's methodology followed the most relevant Data 
Science and Data Analytics project life cycle stages, adapted to 
this area. The used process showed successful results based on 
the system's performance. 
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Fig. 8. Power in the system 

Fig. 9. The power difference between the generated energy and the demand 

Some data-driven considerations were taken in this paper, 
like oversizing the system based on the gathered data, its 
statistics, and analysis. With high demand and low energy 
generation, the design scenario allowed us to make a data-driven 
scenario to take the best sizing considerations for the system, 
supported by the system's performance in Fig 7, Fig 8, and Fig 
9. 

The system's performance presented in Fig 7, 8, and 9 
showed promising results and low dependence on external 
power sources. As expected, the system was oversized correctly. 
Consequently, it presented a surplus under average conditions; 
that can be used for other purposes out of residential usage. 

IV. CONCLUSION AND FURTHER DEVELOPMENTS

In conclusion, this work presented a well succeed example 
of a data-driven sizing approach for renewable energy systems, 
showing the feasibility and potential of the data in the context of 
renewable energies. The correct understanding of a specific 
area, like renewable energy systems as fair use and data analysis, 
was the key to facing this challenge. 

This paper showed an application of data-driven processes 
that can be more popular in the short and medium-term due to 
the increasing usage of Big Data and the Internet of Things. 
Those technologies are related to bigger datasets, which will 
bring more opportunities to make more accurate data-driven 
decisions, as this work showed. 

As further developments, this work can be compared with 
other sizing methods to identify the advantages and 
disadvantages of this approach and how a data-driven process 
can enhance other methods. Also, reinforcement learning can 
significantly improve the power distribution system, optimizing 
the overall system's performance. 
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