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Fuzzy Kinematic Reliability of a Cartesian Parallel Manipulator with
Clearances*

Fabian A. Lara-Molina1 and Didier Dumur2

Abstract— This paper presents a novel method to assess
the kinematic reliability of parallel manipulators based on
the fuzzy theory. For this purpose, the error propagation
method permits to compute the position error in the end-
effector, taking into account the clearances, and the kinematic
constraints of the parallel manipulator. The failure possibility
conveys an assessment of the insight kinematic performance
that can not be obtained by the conventional methods used
in the literature. Numerical results are compared with the
well known probabilistic approach based on the Monte Carlo
Simulation (MCS).

I. INTRODUCTION

Parallel mechanisms are unavoidably affected by uncer-
tainties produced by manufacturing and assembly error of
the links, backlash positioning error of the actuators, and
joints clearances. The calibration of the mechanism reduces
the effect of manufacturing and assembly errors of the links
significantly. However, the errors produced by joint clear-
ances can not be correctly compensated by the calibration
methods [1]. Moreover, joint clearances are necessary for
the relative motion between the links; therefore, they are the
most important source of error that affects the accuracy and
repeatability of the mechanisms [2]. For this reason, it is
necessary to develop computational methods to analyze the
effects of joint clearances in the pose error of mechanisms.

The joint clearances in passive joints of parallel mecha-
nisms produce unconstrained end-effector motions when the
active joints are blocked [3]. The clearances in the axisym-
metrical joints were previously modeled by [4]. Moreover,
the uncertainty effect of joint clearance has widely been
studied by using probabilistic approaches [5]–[8].

Several approaches have been developed to assess the
influence of joint clearances on the kinematic accuracy of
mechanisms. The pose error of the links has been determined
by using a kinematic method [9]. Moreover, the kinematic ac-
curacy of parallel manipulators with joint clearances has been
analyzed. The error analysis problem of parallel manipulators
has been studied based on a standard convex optimization
[4].

The kinematic reliability has also been studied to evaluate
the effect of the clearances on the kinematic accuracy.
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Approaches based on probabilistic theory have analyzed the
sensitivity and reliability [10], the reliability in the entire
trajectory based on the maximum entropy principle [5],
and the time-dependent reliability [7]. As an alternative,
non-probabilistic methods have recently proposed, such as
convex models [11] and interval approaches [12]. The afore-
mentioned approaches compute indices that measure the
probability that the positioning error surpasses an admissible
limit; nevertheless, these indices do not deliver a direct
relationship with the magnitude of the error. Therefore,
the present contribution proposes an alternative reliability
index based on the fuzzy theory that permits to evaluate
the possibility of error; the definition of this possibility of
error is directly linked with the maximum positioning error
produced by clearances, i.e. it expresses the possibility that
error exceeds a determined admissible limit. This reliability
index could be used as a performance criterion considered in
the optimal design of robotic manipulators [13]. Moreover,
the fuzzy theory has already been successfully applied to
control of robotic manipulators [14]–[16].

This contribution presents a novel method to assess the
kinematic reliability of a cartesian parallel manipulator based
on the fuzzy theory. First, the clearance model with un-
certain parameters is presented based on the axisymmetric
joint model. Then, the error propagation method deter-
mines the pose error of the end-effector produced by the
joint clearances considering the kinematic constraints of the
Cartesian Parallel Manipulator (CPM). Finally, the kinematic
reliability that expresses the possibility that error exceds a
determined limit is computed. The proposed approach to
evaluate the fuzzy kinematic reliability consists of three
stages: i) the joint clearance model with fuzzy uncertainties;
ii) the method to propagate the fuzzy error of the joints to
compute the positioning error on the end-effector; iii) the
fuzzy kinematic reliability evaluation based on the proposed
possibility of failure.

II. JOINT CLEARANCE MODEL

Clearances introduce additional and uncontrollable de-
grees of freedom within the joints according to the axisym-
metric joint clearance model that considers the joint axis
along the z-axis (see Fig. 1). These additional degrees of
freedom can be either rotational and translational; conse-
quently, the pose error at the local frame of the joint can
be modeled using the error screw δei,j , thus:

δei,j =
[
δri,j δti,j

]T
(1)



where i is the index of the kinematic chain, and j is the
index of the joint in the respective ith kinematic chain,
δri,j =

[
δri,j,x δri,j,y δri,j,z

]T
is the orientation error,

and δti,j =
[
δti,j,x δti,j,y δti,j,z

]T
is the translational

error produced by the clearances with respect to the local
frame Fi,j (see Fig. 1).

(a)

(b)

Fig. 1. Joint Clearance Model: (a) xy plane, (b)xy plane

The translational clearance along the axis joint z, and the
rotational clearance with respect to the axis z are defined as
∆bi,j,z and ∆βi,j,xy , respectively. Moreover, the translational
clearance in the xy plane and the rotational clearance related
to the z axis are defined as ∆bi,j,xy and ∆βi,j,z . Therefore,
the elements of the error screw δei,j of Eq. (1) are defined
by:

δri,j,x = ∆βi,j,xy cos(γi)

δri,j,y = ∆βi,j,xy sin(γi)

δri,j,z = ∆βi,j,z


δti,jx = ∆bi,j,xy cos(γi)

δti,jy = ∆bi,j,xy sin(γi)

δti,jz = ∆bi,j,z

with 0 ≤ γi ≤ 2π. Following this definition, the error pose
should meet the following constraints: δr2i,j,x + δr2i,j,y ≤
∆β2

i,j,xy and δt2i,j,x + δt2i,j,y ≤ ∆b2i,j,xy . The uncertainties
are introduced in the following five parameters that defines
the clearances of the joints: ∆βi,j,z , ∆βi,j,xy , γi, ∆bi,j,xy
and ∆bi,j,z .

III. ERROR PROPAGATION METHOD

A. Serial kinematic Chain

Initially, the Denavit-Hartenberg method is used to obtain
the pose of the end-effector considering no clearances. Thus,
the homogeneous transformation matrix, Si,j , is defined as:

Si,j =

[
Ri,j ti,j
01×3 1

]
(2)

with i = 1, . . . ,m and j = 1, . . . , ni,f , respectively; m
is the number of kinematic chains (for a single kinematic
chain m = 1), and ni,f is the total number of frames. Si,j
represents the transformation matrix from the frame Fi,j to
the frame Fi,j+1, Ri,j is the (3x3) rotation matrix and ti,j
translation (3x1) vector. The pose of the end-effector related
to the i− th kinematic chain, Pi, is defined as:

Pi =

nj,f∏
j=1

Si,j (3)

However, the pose of the end-effector considering the joint
clearances, P′i, will not be equal to the pose Pi presented in
Eq. (3). The adjoint map transformation matrix of Si,j maps
the error screw onto the end effector at a specific pose as
presented in Eq. (4).

adj(Si,j) =

[
Ri,j 03×3

Ti,jRi,j Ri,j

]
(4)

where Ti,j is the screw matrix of the vector ti,j ; ti,j and
Ri,j can be extracted from the transformation matrix of
Eq. (2). Moreover, The adjoint of the inverse transformation
matrix, adj(Si,j)−1, permits to express screws at the frame
Fi,j+1 from Fi,j .

The error screw, δei,j , in the local frame Fi,j , can be
expressed in the end-effector frame, Fi,ni,f

, by multiplying
all the inverse of the inverse adjoint transformation matrices
from ni,f to j + 1, thus:

(∏j+1
k=ni,f

adj(Si,k)−1
)
δei,j .

The following expression quantifies the pose error of the
end-effector considering all the joint clearances:

δpi|Fi,P =

ni∑
j=1

j+1∏
k=ni,f

adj(Si,k)−1δei,j (5)

with ni being the number of joints, and ni,f the number of
frames; note that ni,f ≥ ni. δPi |Fi,P is the pose error in the
frame attached to the end-effector Fi,P .

The pose error in the end-effector should be expressed in
the reference frame attached to the fixed base Fi,1. Thus,

δpi|Fi,1 =

ni,f∏
j=1

(Ni,j) δpi|Fi,P (6)

where Ni,j =

[
Ri,j 03×3
03×3 Ri,j

]
. Therefore, an expression for

δpi|Fi,1 is obtained by substituting Eq. (5) into Eq. (6).

δpi|Fi,1 =

ni∑
j=1

ni,f∏
l=1

(Ni,l)

j+1∏
k=ni,f

adj(Si,k)−1δei,j (7)

The expression of Eq. (7) can be written in the following
compact form:

δp = Miδei (8)

where Mi =
[
Mi,1 . . .Mi,ni

]
, δei =

[
δeTi,1 . . . δe

T
i,ni

]
, and

Mi,j =
ni,f∏
l=1

(Ni,l)
j+1∏

k=ni,f

(
adj(Si,k)−1

)



B. Parallel Mechanism

Parallel manipulators are composed of several and identi-
cal kinematic chains that connect a fixed basis to a movable
platform. Differently of serial manipulators, the parallel ma-
nipulators are subject to kinematic constraints introduced by
their closed-loop kinematic configurations. These kinematic
constraints must be considered to propagate the errors of
the joint clearance onto the end-effector. Moreover, the pose
obtained from any kinematic chain should be equal to each
other, therefore P1 = P2 · · · = Pm.

For the model of the joint clearances, the external load
that acts on the end-effector produces the errors in the joint
clearance of the kinematic chains. The errors of the joints
are correlated due to the kinematic constraints of the parallel
mechanism, as shown in Fig. 2.

Fig. 2. Model of a parallel mechanism subjected to clearances.

The following assumptions are considered:
1) The errors of all the joint clearances of each kine-

matic chain defined by δei are correlated. This cor-
relation depends on the orientation of the kinematic
chains, Ri, concerning the fixed frame. Thus, δei =

Qi

[
δeTi,1 . . . δe

T
i,ni

]
with Qi,j =

[
Ri 03×3
03×3 Ri

]
.

2) The passive joints are free. Therefore no clearance
around the axial axis is considered for the passive
joints, thus ∆βi,j,z = 0.

3) The errors of the prismatic or revolute active joints
are entirely independent. They are defined by ∆q =[
∆q1 . . .∆qm

]T
.

The errors of the joint clearances are propagated for every
single kinematic chain by using the expression of Eq. (7),
and the error produced by the active joints is also considered
by using the Jacobian matrix J.

δpi = WJδ∆q + Miδei (9)

where W transforms the end-effector error to an error screw.
The definition of this matrix will depend on the kinematics
of the parallel mechanism. The minor error along each
Cartesian coordinate of the errors of every kinematic chain
δpi is considered in order to respect the kinematic constraints
of the parallel mechanism (P1 = P2 · · · = Pm). Thus, the

total error in the end effector of the parallel mechanism δp
is defined by the following expression.

δp = min
(
δp1 δp2 . . . δpm

)
(10)

IV. KINEMATIC RELIABILITY METHOD

This method aims at computing a reliability index to
assess the kinematic accuracy of a mechanism subject to
an uncertain error produced by the joint clearances. The
proposed approach is based on the fuzzy uncertainty theory.
The position error is evaluated by using Eq. (10) considering
the translational error such as presented in Eq. (1). Thus,
e =

√
δp24 + δp25 + δp26. The uncertain parameters of the

clearances are defined as fuzzy variables; thus: ∆β̃i,j,xy , γ̃i,
∆b̃i,j,xy , and ∆b̃i,j,z . Therefore, the position error will also
be a fuzzy uncertain variable.

The uncertain fuzzy error ẽ is defined by using the α-level
representation:

ẽ = {(e, µ(e))|e ∈ R>0} where 0 ≤ µ(e) ≤ 1 (11)

Moreover, the fuzzy error ẽ can be represented by con-
tinuous intervals so-called α-levels, thus eαk

= {e ∈
R>0, µ(e) ≥ αk}. Alternatively, eαk

can be defined as an
interval weighted by the membership function µ(e), thus:

eαk
= (0, eαkr) (12)

where eαkr = max(e ∈ R>0, µ(e) ≥ αk). The evaluation of
eαkr demands the solution of an optimization problem to de-
termine the upper limit of the uncertain error corresponding
to the αk value of the µ(e) membership function.

The reliability of a system is evaluated based on the limit
state function g = r − s, where r is the resistance limit,
and s is the system output [5]. The failure is produced
when the system output exceeds the resistance limits, i.e.
g < 0. Regarding the kinematic reliability with uncertain
fuzzy errors, the limit state function is defined as the g̃ fuzzy
function, thus g̃ = emax − ẽ where emax is the maximum
admissible position error. Fig. 3(a) illustrates the fuzzy limit
state function.

The fuzzy kinematic reliability aims at determining the
possibility of failure by examining the fuzzy limit state
function. Figure 3(b) shows that a failure is produced when
ẽ > emax i.e., g̃ > 0. For this condition, the possibility of
failure is given by αf .

The membership function of g̃ is approximated as a linear
function in order to estimate the failure possibility consid-
ering the maximum position error eα0 only. The following
expression computes the linear estimation of the failure
possibility:

αf =
e0
emax

(13)

with e0 = emax−eα0 . The uncertain fuzzy error ẽ for αk = 0
is obtained by solving the following maximization:

eα0
= max

λ
e(λ) (14)

with λ =[∆β1,xy γ1 ∆b1,xy ∆ bi,z . . .∆βni,xy γni ∆bni,xy ∆bni,z

∆q1 . . .∆qm]



(a)

(b)

Fig. 3. Fuzzy limit state function: (a) ẽ and emax and (b) evaluation of
ẽ.

It is worth to mention that the optimization problem of
Eq. (14) will be solved by using the Differential Evolution
algorithm (DE) [17].

Fig. 4. Flowchart of the fuzzy kinematic approach.

The flowchart of Fig. 4 illustrates the proposed approach
to compute the fuzzy kinematic reliability. This approach
has three main stages: i) the clearances of the joints with
fuzzy uncertainties are computed; ii) the positioning error at
the end-effector is computed based on the error propagation
method; iii) the fuzzy kinematic reliability is assessed based
on the possibility of error definition that requires the solution
of the optimization problem of Eq. (14) by using DE.

V. KINEMATIC RELIABILITY OF THE CPM

The Cartesian Parallel Manipulator (CPM) has three sym-
metric kinematic chains that joint the moving platform P to
the fixed frame (see Fig. 5). The three active prismatic joints
(q = [q1q2q3]T ) act along the X , Y , and Z axes. The moving
platform has three translational degrees of freedom defined
by (x, y, z). Every kinematic chain is located at the frame
Oj , and it has three passive rotational joints defined by θj,i,
for i = 1, 2, 3, and j = 1, 2, 3. The link’s lengths of every
kinematic chain are defined by l1, l2, and the geometry of the
moving platform is defined by lp. The active joints specify
the Cartesian position of the moving platform directly, thus
q1 = x, q2 = y, and q3 = z. Therefore, the Jacobian matrix
is a 3x3 identity matrix, J = I3x3.

Fig. 5. Cartesian Parallel Manipulator (CPM).

The D-H parameters of the j − th kinematic chain from
the frame Oj to P are presented as follows, frame i: αj,i−1,
aj,i−1, dj,i, θj,i. Thus, frame 1: 0, 0, 0, θj,1; frame 2: 0, l1,
0, θj,2; frame 3: 0, l2, 0, θj,3; frame P : 0, lp, 0, 0.

For this numerical application the geometric parameters of
the manipulator and the clearances were defined as follows.
The link’s length was defined specifically as l1 = 0.077m,
l2 = 0.077m and lp = 0.022m. A fuzzy triangular position
error was considered for every active joint ∆q̃j =< 0, 0, 1×
10−4 >m. The uncertain parameters of the passive rotational
joints clearances were as ∆β̃i,j,xy =< 0, 0, 0.002 >o,
γ̃i =< 0, 180, 360 >o, ∆b̃i,j,xy =< 0, 0, 1 × 10−4 >m and
∆b̃i,j,z =< 0, 0, 1 × 10−4 >m. Moreover, the maximum
admissible error is defined as emax = 2.5 × 10−4m. The
orientation of the kinematic chains Qi is defined by the
orientation matrices: R1 = I3x3, R2 = R(90o, X) and
R3 = R(90o, Y ). According to Eq. (9), the position error is
evaluated with W = [0 I3x3]T .

The optimization problem of the Eq. (14) was solved
by using the Differential Evolution (DE) algorithm; the
parameters selected to run the DE algorithm were: population
size is 5 per uncertain variable, 100 generations, crossover
probability rate is 0.8, perturbation rate is 0.8 and the
DE/rand/1/bin strategy for the mutation mechanism.



A. Single Serial Chain

Initially, the kinematic reliability of a single kinematic
chain is analyzed separately from the Cartesian parallel ma-
nipulator; specifically, the first kinematic chain is considered
in this analysis. The kinematic reliability is evaluated over
the zx plane for y = 0 by using the proposed fuzzy approach
(see Fig. 6(a)) and the MC method (see Fig. 6(b)).
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Fig. 6. Kinematic reliability of a single kinematic chain: (a) possibility of
failure, (b) probability of failure.

It can be observed that the estimated kinematic reliability
has a similar behavior by using the MC method and the fuzzy
approach (see Fig. 6), i.e. the failure probability and failure
possibility increase and decrease in the same regions of the
workspace. Nevertheless, the failure possibility is related to
a measure that indicates the amplitude of the positioning
error, i.e., the possibility of failure quantifies the ratio of the
positioning error and the maximum admissible error emax.

B. Parallel Mechanism

The position error of P , δp(θ), at the end-effector position[
0.069 0.089 0.089

]
m. Figure 7(a) presents the fuzzy

limit state function g̃. The failure possibility αf estimated
with the linear approximation of Eq. (13) is 0.4185 and
evaluated g̃ is 0.358 (see Fig. 7(a)); the percentage difference
between these results is about 14.4%; therefore, the linear
approximation of αf is valid. The obtained αf means 41.8%
of the possibility that position error exceeds the maximum
limit.

Moreover, the kinematic reliability was also evaluated
using the Monte Carlo simulation as presented in Fig. 7(b).
Thus, the failure probability, pf = nf/ns where nf is the
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Fig. 7. Position error of P : (a) g̃, and (b) reliability analysis using MCS.

number of samples exceeding emax, and ns is the total
number of samples; thus, pf = 0.045.

The kinematic reliability was estimated over a plane of the
workspace as shown in Fig.8 in which z = 0. The possibility
of failure αf is presented in Fig. 8(a). αf increases for
the regions of workspace in which the kinematic chains are
extended, i.e., the extension of kinematic chain increases
position error and αf . Moreover, one can observe that the
possibility of failure has similar behavior with the probability
of failure estimated with the MCS (see Fig. 8(b)), i.e., the
possibility and probability of failure increase and decrease
in the same regions of the workspace.

VI. CONCLUSIONS

The proposed fuzzy reliability method permitted to com-
pute the kinematic failure possibility of a cartesian parallel
manipulator as an alternative to the probabilistic approaches
widely used in the literature. Moreover, the proposed ap-
proach allows quantifying a kinematic reliability index that
takes into account the kinematic constraints and the effect
of clearances on the kinematic chains. Classical kinematic
criteria based on the condition number of the Jacobian
matrix will not reveal the insight behavior of the CMP in
terms of the kinematic accuracy assessed by fuzzy kinematic
reliability. Future work will encompass the optimal design
of the mechanism based on the proposed fuzzy kinematic
reliability method.
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