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Abstract

Electrified vehicles users may expect their vehicle to have a steady autonomy range and available power throughout

the lifetime of their cars. The health assessment of Lithium-ion batteries (LIBs), in that regard, represents a critical

point for performance evaluation and lifetime prediction. Reliable state-of-health (SoH) assessment is essential to

ensure cautious and suitable use of LIBs. To that end, several embedded solutions are proposed in the literature. In

this paper, two new aging indicators are developed to enrich the existing diagnosis-based (DB-SoH) solutions. These

indicators are based on collected data during charging (CDB-SoH) and driving (DDB-SoH) events overtime. The data

are comprised of variables such as distance, speed, temperature, charging power, and more. Both solutions produce

reliable state-of-health S oH assessment with significantly good accuracy. Additionally, a data-driven battery aging

prediction using the random forest (RF) algorithm is introduced with respect to actual users’ behavior and ambient

conditions. The proposed solution produced an S oH estimation accuracy of 1.27%. Finally, a method for aging

factors ranking is proposed. The obtained ranking is consistent with known aging root causes in the literature and can

be used to mitigate fast LIB aging for electrified vehicle applications.

Keywords: Li-ion battery ; SoH estimation ; Aging factors ranking ; Machine Learning; Random Forest.

1. Introduction

General opinion and authorities show increasing concerns over environmental issues. Several policies are con-

ducted worldwide to overcome CO2 emission issues. Accordingly, automotive vehicle manufacturers have to propose

more environmentally friendly vehicles [1, 2]. In 2019 the global electric car stock reached 5 million vehicles. Elec-

trified vehicles (EV, PHEV, and HEV) are promising technologies to reduce global transportation CO2 emission.

EVs are powered by batteries pack made of numerous electrochemical cells. The control of such a complex system

is mandatory and is achieved by the battery management system (BMS) to safely and fully exploit these batteries.
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Among a variety of energy storage solutions, Lithium-ion batteries (LIBs) are broadly accepted as promising candi-

dates for many different applications, mainly due to their high energy, power densities and their longer lifespan[3].

Nevertheless, lately, deep researches are animated on battery technologies to enhance their global cell electrochemical

performances compared to today NMC lithium-ion like recent studies on solid-state battery [4, 5, 6].

To make electrified cars more appealing, potential customers need to be comforted in terms of security and benefit

such as autonomy and rechargeability. Efficient and cautious use of Li-ion batteries typically requires the monitoring

of numerous variables like the state of charge (SoC), the state of health (SoH), the acceptable/available power when

charging/discharging, the charge capacity and the internal resistance [7, 8, 9]. Unfortunately, these variables are not

directly measurable. The BMS has to estimate each of them, thanks to measured data such as current, voltages,

temperatures, and state observers [10]. Besides, these parameters change over time and charge-discharge cycles.

These changes have to be taken into account to ensure a maximal level of performance throughout the life of the battery

[11]. The lifetime of the battery is maximized by facilitating an ideal operating condition [12, 13]. The autonomy of

EVs represents a key element to make CO2 emission mitigation in the transportation sector effective. Unfortunately,

LIBs remain complex systems, and the processes of their aging are even more complicated [13]. Several efforts are

made in the literature to understand and access Li-ion batteries aging processes. Extensive reviews of the major aging

mechanisms are thoroughly conducted in [14, 9, 15, 13]. LIBs aging takes place in the anode, cathode, and electrolyte.

It is widely believed that the major aging phenomena happen at the anode, such as solid electrolyte interface (SEI)

formation and growth, lithium plating, loss of lithium, loss of active material, impedance rise, etc. SEI formation

is said to be the most relevant phenomenon and is broadly studied, especially in the case of carbon type negative

electrodes made [16, 17, 13]. In [18], Safari proposed a SEI model based on electrochemical equations operating a

LCO type of LIB. He confirmed that huge SoC variations and high currents increase SEI growth. Prada used this

approach in [19] on an LFP type of LIB to identify a capacity loss law. Difficulties arise, however, when an attempt is

made to implement this method. In fact, several parameters are to be identified involving sometimes destructive tests

for the battery. In addition, the uncertainty from parameter identification makes this model hard to operate.

There are two major aging categories: cycling and calendar aging. The latter consists of all aging processes

that lead to degradation when the battery is at rest. This type of aging has been thoroughly studied in the literature

[20, 21, 22]. It is asserted to be increased at high SoC, and temperature values. However, it is claimed that its

predominant cause is the storage at high SoCs. High SoCs and temperatures induce parasitic side reactions and

electrolyte reduction, namely at the anode. The calendar aging is not to be neglected, knowing the EVS spend most

of their lifetime (up to 90%) in parking areas [23]. Cycling aging, on another note, is composed of all aging processes

that lead to degradation when the battery goes through during charging or discharging [24, 25]. Most manufacturers

provide the number of cycles of charge/discharge as the lifespan of their batteries. Lithium plating is a significant

aging phenomenon during battery cycling. It can even cause short-circuits, leading to the sudden death of the battery.

Lithium platting occurs at high cycling rates. Efforts are produced in the literature to propose health-conscious fast-

charging solutions for LIBs [26]. In fact, fast charging implies a high charging current rate. Deep discharge and
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overcharging are the next leading cause of aging during battery cycling. Consequently, all these phenomena lead

to two substantial macroscopic consequences: capacity loss and power fade. Both outcomes are not desirable, as

consumers may expect their vehicle to have a steady autonomy (charge capacity) and power (maximum available)

throughout the lifetime of their cars. Several approaches exist to access LIBs aging, such as ampere-hour counting

(AhC), remaining useful life (RUL) estimation, differential voltage analysis (DVA) or incremental capacity analysis

(ICA), electrochemical impedance spectroscopy (EIS) analysis. These classical approaches are briefly presented in

the subsequent section.

Latterly, numerous machine learning techniques have been devised for battery SoH estimation, such as artificial

neural network (ANN) [27, 28, 29, 30], support vector machine (SVM) [31, 32], regressive vector machine (RVM)

[33, 34], particle filter (PF) [35, 36], Random Forests (RF) and Gaussian process regression (GPR) [37, 9]. Utilizing

extracted features from the terminal voltage response of the Li-ion battery under current pulse tests, a novel method

is proposed in [31] together with an SVM model to estimate the SoH of an LFP type LIB. The author achieved an

SoH prediction error of less than 1%. However, only one cell was considered, and the findings are clearly not appli-

cable to actual EVs.In [33], an RVM model is utilized to predict the remaining capacity of a set of five LIBs. The

solution is based on health features extraction and optimization. The solution is based on health features extraction

and optimization. Fourteen health features were extracted from charge current, voltage, and temperature profiles to

ensure accurate remaining capacity prediction. The findings would have been more interesting if the author had in-

cluded actual EV data or considered a broader set of LIBs. In [38], a random forest regression for online capacity

estimation of lithium-ion batteries was presented. The author developed an RF model to approximate the relation-

ship between characteristic features extracted from the charging voltage-capacity curve and the capacity of an NMC

battery. Adopting the resulting model, he reliably predicted the capacity with a mean-square error of 1.3%. The

characteristic features were derived from incremental capacity (IC) curves. The distinguishing features were derived

from incremental capacity (IC) curves. As an online solution, this approach does not process a large amount of data

due to the limited computational capability of the present BMSs. Also, this approach is separately implemented for

each user. Therefore, the diverse experiences of EVs users are not exploited. Two chief drawbacks are present in the

existing data-driven health prognosis solutions. (1) Most studies use IC curves or an alternative voltage response to

current pulse stimuli to extract relevant features. This brings additional computation burden to the BMS and therefore

renders these solutions less attractive. (2) Proposed solutions are often designed and tested using very few batteries

or even cells. On top of that, actual usage conditions are not considered. In the best-case scenarios, only worldwide

light vehicles test cycles (WLTC) are considered instead of actual EV operations.

The present paper aims to propose a complete framework for a high fidelity aging assessment for LIBs in EV

application. Because of the limited computational capability of BMSs, an off-line data-driven SoH prediction solution

is highly desired. Data from several EVs driving, charging, and parking missions are collected over the years at

the pack level. The stored data correspond to variables such as instantaneous power, discharged/charged energy,

temperature, estimated SoC by the BMS, etc. We seek a method capable of accurately predicting the health of LIBs,
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directly based on real-life EVs usage data collected over many years. Three primary goals are pursued in this paper,

as displayed in Fig. 1:

• Design and test aging indicators using recorded data

• Establish a machine learning approach to predict LIBs aging with respect to user’s behaviors

• Achieve aging factors ranking.

Calendar ageing

Cycling ageing
( Charging + Driving )

Users’
behaviours

ˆSoH

♦ Ageing factors
ranking

Off-Board
Importances

SoH [%]

100

80
Time [days]

Factors

♦ SoH estimation

( Parking )

Data
mining

♦ Ageing
indicators

SoHe, SoHc, SoHr

and/or prediction

Training
Random Forests, SVM

Database

Figure 1: Illustrated steps of the presented study.

This study is accomplished thanks to several collected and stored EVs data in an ”off-board database”. The intended

purpose of this database is to feed tasks such as invoicing, warranty, after-sales, and engineering. The essential

characteristics of the collected data are:

• More than 180000 vehicles logged from several countries across Europe and Asia.

• Heterogeneous mix of numerical data such as S oC, temperatures and pack mileage with categorical data such

as battery purchase mode (lease, fully paid), Pack Status (new, second life, end of life), and delivery country

code.

• No time series. The data is stored event-wise (charging event, driving event, parking event).

• Significant missing data rate.

The outline of this paper is organized as follows. The following section briefly describes existing Li-ion aging

estimation solutions. Section 3 displays two new health indicators based on stored data during charging and driving

events overtime. A data-driven battery aging prediction using the random forest (RF) algorithm is proposed together

with users’ behavior and ambient conditions in Section 4. The RF regression is a popular supervised machine learning
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algorithm utilized in various fields. RF has the ability to approximate nonlinear relationships accurately, produce a

robust performance against outliers, and well handle heterogeneous and missing data. On top of that, an approach for

aging factors ranking is proposed in Section 5. Ultimately, conclusions are drawn in Section 6.

2. Health estimation approaches for LIBs

Three global approaches could be used in order to evaluate the battery degradation and estimate its state of health.

The first one is the durability model :calibrated using an expensive experimental design plan, this semi-empirical

approach uses the history of the battery usage in calendar and cycling to integrate SOC, temperature, and profile

impact on battery aging.

The second is the diagnosis-based approach called here DB-SOH, which is based on the evolution with the aging

of the time-domain screenshot of some selected battery variables. This latter approach advantage is the adaptability

to the users driving and charging habits. However, it could require rich data recording and filtering. That is why,

according to the application context, this method could be adapted to match real-time implementation or off-board

analysis.

The third one is the black box based perdition approach that uses a tremendous amount of battery history data

to approximate its future behavior. Actually, because of the implementation constraints, such a method is not used

in real-time BMS applications. However, it is very promoting for off-board analysis, especially with new big-data

capabilities and tool developments.

In terms of performance, as stated in the introduction, there are two categories of aging degradation: calendar

aging and cycling aging. Energy loss and power fading throughout the lifetime of LIBs are the most relevant issues in

the point of view of EV users. Energy loss is correlated to capacity loss, whereas power fading is correlated to internal

impedance rising in the LIB. In this section, classical approaches used to assess the health of LIBs are introduced.

In most, if not all, BMSs LIBs aging indicator assessment is done using ampere-hour counting. Through the

charging or discharging methods, knowing the initial and the final state of charge (S oCi and S oC f ) at the initial (ti)

and final time (t f ), one can compute the relative capacity as the state of health of the battery (S oHc):

Qn =

∫ t f

ti
I(t) dt

S oC(t f ) − S oC(ti)
(1a)

S oHc = 100 ×
Qn

QBOL
(1b)

where Qn is the current nominal capacity, QBOL is the nominal capacity at the beginning of life (BOL), and I is the

current [15]. The precision of this method relies on the quality of the current sensor due to the cumulative error

brought by current integration. To reach satisfactory accuracy, the SoC variation |S oCi − S oC f | must be adequately

estimated or obtained using the measured open circuit voltage (OCV) of the battery in a relaxed state together with

the S oC-OCV . For LIBs the S oC-OCV curve is provided by the battery manufacturers. For EV applications, the end

of life (EOL) is reached when the relative capacity loss is up to 20%.
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A similar approach is utilized to assess the energy loss of LIBs. This approach measures the relative charged or

discharged energy of the battery as (S oHe):

∆E =

∫ t f

ti
I(t) × Vt dt (2a)

S oHe = 100 ×
∆E

∆EBOL
(2b)

where Vt is the terminal voltage of the battery, ∆E is the current energy variation, and ∆EBOL the energy variation at

the beginning of the life of the battery [39]. Quite often, this approach is implemented using charged energy to ensure

that energy variations are measured in the same conditions. The precision yield by this method highly depends on the

accuracy of current and voltage sensors measurements.

Further capacity loss assessment can be conducted using differential voltage analysis (DVA) or incremental current

analysis (ICA). These solutions are achieved during charging events using Eq.3:

dQ/dV = ∆Q/∆V (3a)

dV/dQ = ∆V/∆Q (3b)

where ∆V is a voltage variation, and ∆Q is a capacity variation. The DVA is obtained using Eq.3 every time the

voltage variation reaches 5 mV , while the battery is being charged with a low current. In [40], it is claimed the DVA

curves provide a better understanding of aging. In fact, one can distinguish anode degradation, cathode degradation,

and changes in electrode balancing. Different peak values on the DVA or ICA curves can be utilized to assess the

state of health of LIBs. Nevertheless, these solutions are barely used in BMSs [41, 42]. ICA and DVA are limited to

low current rates, sensitive to measurement noise, influenced by the operating temperature. They are not suitable for

chemistry with vast voltage plateaus such as lithium iron phosphate battery (LFP) cells [43].

Like mentioned earlier, LIBs power loss is highly related to internal impedance growth. The commonly associated

aging indicator is given as :

S oHr = 100 ×
DCR

DCRBOL
(4)

where DCR is the direct current resistance value of the battery [44]. When it comes to EV applications, the end of life

(EOL) is reached when the relative impedance rise is up to 200%. Knowing that the terminal voltage of a lithium-ion

cell has an upper bound value, the impedance growth directly hinders the ability to drain high power when the internal

impedance growth is large. Alternatively, the internal impedance growth can be accessed using electrochemical

impedance spectroscopy data [27, 22, 17]. However, this method of analysis is limited to experimentation in labs due

to the heavy pieces of equipment it requires. Therefore EIS based solutions are not suitable for EV applications.

3. Diagnosis Based SOH (DB-SOH) indicators

In this section, data collected during driving and charging events are used to design and test two new aging

indicators for LIBs. Ideally, aging performances are measured using well-calibrated protocols and steady ambient
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conditions. However, in the case of EV applications, users’ behavior, driving, and charging conditions are broadly

diverse. For car manufacturers, periodical EV recall for health assessment under a well-designed protocol is too costly

and unsuitable. The core idea in this section is to make a statistical use of the stored data by proposing satisfying aging

indicators similar to a calibrated protocol.

3.1. Driving Diagnosis Based SOH (DDB-SOH)

The classical capacity based aging monitoring was introduced in section using Eq. 1b. Considering that definition,

the following hypothesis are made :

H1: For identical driving profiles and conditions, the state of charge variation ∆S oC depends on S oHc only as for :

∆S oC =
1

Qn

∫ t f

ti
I(t) dt (5a)

S oHc, dr ' 100 ×
∆S oCBOL

∆S oC
(5b)

H2: Identical driving profiles and conditions are identified using covered distance d [km], average speed v̄ [km.h−1]

and temperature Tempdc [o C].

H3: Accurate state of charge variation ∆S oC is measured using S oC − OCV curve after a 2 hours minimum rest

time at both beginning and ending of driving events. Fig. 2.3 displays this idea.

Fig. 2.1 displays driving data example for a typical EV user extracted from our database. The figure shows a) the cov-

ered distance for different driving events, b) the resulting SoC variations, and c) recorded battery pack temperatures.

One can easily notice that this typical user covers quite often 40 km. The cyclic temperature values matching seasonal

temperatures are also noticeable. Numerous reasons may cause a steady shift of the covered distance values in some

cases. Most importantly, these shifts have been observed in the database. Therefore, the following equation is used

instead of Eq. 5b:

S oHc, dr ' 100 ×
∆S oCBOL

∆S oC
×

d
dBOL

(6)

where d is the covered distance, dBOL is the nominal covered distance at the beginning of life (BOL). Both cases (1st

with shift, and 2nd without shift) are illustrated in Fig. 2.2.

The measured values of state of charge displayed in Fig. 3.1 a) and Fig. 3.2 a) are filtered using robust weighted

local regression algorithm : ”rlowess” available in Matlab®. LOWESS is a non-parametric regression model intro-

duced in [45]. It combines linear and nonlinear regression by performing separate linear regressions at any given date

t in a pre-defined span l ∈ [0 1]. Only the data points in l, i.e. the l × N nearest neighbors of t are used for the local

weighted linear regression. The regression weights wi are calculated for each data point in the span using the ”tricube”

function in Eq. 7:

wi =

(
1 −

∣∣∣∣∣ t − ti
dmax

∣∣∣∣∣3)3

(7)
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(2.1) Driving data example for typical EV user extracted from our

database.

2∆d

dnom

1st Case

Time

2∆d

dnom, A
dnom, B

2nd Case

Subject to

TBOL − ∆T ≤ Temp ≤ TBOL + ∆T

v̄BOL − ∆v ≤ v̄ ≤ v̄BOL + ∆v

BOL EOL

(SoH = 100%) (SoH = 80%)

SoHC, dr = 100 × ∆SoCBOL

∆SoC

SoHC, dr = 100 × ∆SoCBOL

dBOL
× d

SoCBOL

distances

(2.2) S oHc, dr indicator diagram.

SoCend = f(OCV ' Vt,end)

SoCstart = f(OCV ' Vt,start)

2 hours rest

2 hours rest

(2.3) S oC variation using OCV-S oC curve when a minimum rest time

is observed.

dmax(t, y)

ey

et

(ti, yi)

wi =

(
1−

∣∣∣∣ t−ti
dmax

∣∣∣∣3
)3

ŷ = at+ b

(2.4) Data filtering using robust LOWESS algorithm. Weighted linear

mean squares regression is achieved in the sliding window :

(α, β) =

n∑
i=1

ωi(yi − ti × α + β)2.

Figure 2: SoH estimation using recorded data during charging events.

where t is the date corresponding to the value to be predicted ŷ, ti nearest neighbors of t and dmax the distance between

y and most remote point among the nearest neighbors.Within the pre-defined span, a weighted linear regression is

achieved using Eq. 8a. The smoothed value is then obtained using Eq. 8b.

[a, b] = argmin
n∑

i=1

ωi(yi − ti × α + β)2 (8a)

ŷ = at + b (8b)
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(3.1) 2 EVs in 1st case. S oHc, dr using ∆S oC and driving data.

dnom − 2, 5 ≤ d ≤ dnom + 2, 5 (km), Tnom − 5 ≤ T ≤ Tnom + 5 (0 C) and

vnom − 10 ≤ v̄ ≤ vnom + 10 (kmh−1).

(3.2) 2 EVs in 2nd case. S oHc, dr using ∆S oC and driving data.

dnom − 12, 5 ≤ d ≤ dnom + 12, 5 (km), Tnom − 5 ≤ T ≤ Tnom + 5 (0 C)

and vnom − 10 ≤ v̄ ≤ vnom + 10 (kmh−1).

Figure 3: SoH indicator values obtained using recorded driving data.

Using the proposed solution for both cases (with and without distance shift), S oHc, dr values are obtained for 2

EVs in 1st case and 2 EVs more in 2nd case. The results are displayed in Fig. 3. In Fig. 3.1 a-1) and a-2) are displayed

the measured SoC variations at several charging events, and their filtered values using LOWESS. In Fig. 3.1 b-1)

and b-2) are displayed the resulting S oHc, dr proposed, corresponding to the measurements, in comparison with the

reference energy based aging indicator S oHe, re f . The proposed S oHc, dr is displayed considering a 3σ confidence

interval obtained using a bootstrapping approach together with the LOWESS filtering algorithm. The reference aging

indicator S oHe, re f is available 2 years after the vehicle is put into usage.

3.2. Charge Diagnosis Based SOH (CDB-SOH)

An energy-based S oH estimation is proposed in [39]. The author therein displayed the linear relationship between

the capacity loss and the relative charged energy during constant current - constant voltage (CC-CV) charge for 3

different chemistries of LIBs. The available energy in a battery pack is matched to its capacity. The energy fading

can, therefore, become an indicator of aging. An alternative yet efficient approach of battery pack S oH estimation

based on exchanged energy is proposed in this paper. The charged energy during a constant power - constant voltage

(CP-CV) charging event starting at time ti and ending at time t f is given in Eq. 9a. Knowing the initial and final state

of charges (S oCi and S oC f ), one can compute the S oHe using Eq. 9b. Thus the following hypothesis is made:
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H4: For identical charging powers Pch in similar temperature conditions Tempch, the health indicator S oHe is

approximated using Eq. 9b.

∆Ech =

∫ t f

ti
I(t) × Vt(t) dt (9a)

S oHe '
∆Ech

∆S oC
×

∆S oCBOL

∆Ech,BOL
(9b)

where ∆Ech,BOL is the charged energy at the beginning of the life (BOL) of the battery, associated with the state of

charge variation ∆S oCBOL. Optimally S oC variation values must be close to 100 %. This solution was tested using an

EV battery of capacity Qn = 128 Ah, comprised of 192 cells in configuration 2P96S . The battery pack was introduced

in a climatic chamber and well thermalized. The measured temperature is around +/−2 oC of the target one. Several

check-ups (CUs) were conducted after many cycling numbers. Eventually, 21 CUs were done corresponding to 1482

cycles in total. During each CU, the battery pack state of charge, capacity, and charged energy are assessed. Using

Eq. 9b and 1b one can compute S oHe and S oHc. On Fig. 4.1 are displayed the values of computed S oHe and S oHc.

The mean absolute difference defined as |S oHe − S oHc| is 0.42 %. This minor discrepancy confirms the relevancy of

the proposed method.

A test was conducted using data collected from EVs usage for approximately seven years to validate the proposed

solution. For these vehicles, during every charge event, instantaneous power measurement data are stored over the

years in a database. The sampling time during a charging event is Ts = 30 mins. The available charging powers for

the tested vehicles are 43, 22, 11, 7, and 3 kW, as illustrated in Fig. 4.2. The data can be exploited to approximate the

corresponding charged energy values. Using Eq. 10 as illustrated in Fig. 4.2, the results of the S oHe approximation

for 2 EVs are displayed in Fig. 4.3. The studied vehicles are effectively purchased and in use.

∆Ech '

N−1∑
i=1

Pi+1 + Pi

2
× ∆ti (10)

In Fig. 4.3 a-1), and b-1) are displayed the measured charged energy at several charging events, and their filtered

values. In Fig. 4.3 a-2) , and b-2) are displayed the estimated S oHe, ch proposed corresponding to the measurements,

in comparison with the reference energy based aging indicator S oHe, re f . The reference aging indicator S oHe,re f is

available 2 years after the vehicle is put into usage. The measured values of charged energies displayed in Fig. 4.3

a-1) and b-1) are filtered using the previously presented LOWESS method.

The usage temperature range of the tested EVs is −15oC to 45oC, therefore causing significant local variations.

A global trend can nevertheless be identified and exploited. In fact, Eq. 9b can only be utilized when the data are

recorded in similar conditions: temperature or charging power. Given, for example, that ambient temperature evolves

periodically over time, the data displayed in Fig. 4.3 a-1) and b-1) are sparse. The proposed S oHe, ch values are

tightly close to the reference S oHe, re f ones. This suggests that even with approximated values of charged energy, one

can derive a satisfactory battery health indicator. The proposed approach can be utilized to support the on-line aging

estimation based on capacity fading (S oHc).
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(4.1) Ageing indicator comparison. Absolute mean difference

|S oHc − S oHe |= 0.42%.

Time

Subject to
TBOL −∆T ≤ Temp ≤ TBOL + ∆T

Pch, nom −∆P ≤ Pch ≤ Pch, nom + ∆P

BOL EOL

(SoH = 100%) (SoH = 80%)

Pch

43 kW

22 kW

11 kW

7 kW

3 kW

∆EBOL

Pch [W ]

Time [min]

P1 P2 Pi−1 Pi

∆ti−1∆t1

PN
PN−1

∆tN−1

SoHe, ch = 100× ∆E

∆EBOL
× ∆SoCBOL

∆SoC

∆Ech '
N−1∑
i=1

Pi+1 + Pi

2
×∆ti

Pch, nom

(4.2) Charged energy approximation using instantaneous power

measurements: Te = 30 mins.

(4.3) Charged energy approximation and S oHe, ch values for 2

randomly selected EVs.

(4.4) Proposed health indicators comparison : S oHc, dr Vs S oHe, ch for

4 randomly selected EVs.

Figure 4: SoH estimation using recorded data during charging events.
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3.3. S oH indicators discussion

Two aging indicators were presented using driving data S oHc, dr and charging data S oHe, ch. Both of these ap-

proaches should produce similar results, as observed in Fig. 4.1 using test bench data of a Qn = 128 Ah battery pack.

These indicators were computed for 4 randomly selected EVs and displayed in Fig. 4.4. As expected, both solutions

produce similar results and are tightly close to the reference S oHe, re f values. There is still room for improvement.

The presented solution using driving data can be enhanced using more accurate driving average speed values v̄ or even

taking into account maximal current and voltage values during driving events to ensure hypothesis H2. The accuracy

of the proposed S oHe, ch method can be improved by a more accurate approximation of the charged energy ∆Ech. This

can be achieved by reducing the sampling time during a charging event to Ts = 10 mins.

4. Machine learning based health prediction

In section 3 two SoH indicators were presented. Both approaches produce satisfying results. Unfortunately,

repeated driving or charging conditions are needed to implement said solutions successfully. Those conditions are not

always satisfied with all the EVs in the considered ”off-board database” at all times. The main goal in this section is

to provide a desirable off-line machine-learning approach to predict SoH values based on environmental conditions

and user’s behaviors. To that extent, the extracted features from the considered ”off-board database” are presented.

Additionally, an RF approach for SoH prediction is presented. The obtained results are finally compared to a more

classical SVR approach.

4.1. Data description and feature extraction

We stated earlier in the introduction that data are stored in the considered ”off-board database” event-wise. There

are, therefore, no time-series data. Let the proposed S oHe, ch using charging data as the output of the model to be

designed. Each value of the said indicator will be associated with environmental conditions and users’ behavior. As

illustrated in Fig. 5.1, at time tx, user’s behavior and environmental conditions are extracted using all the driving,

charging and parking data prior to date tx. The extracted features are then combined with the S oHe, ch value at date

tx as (X, y) where y = S oHe, ch is the output and X ∈ Rp is the corresponding input vector of size p, where p is the

number of extracted features. In doing so for all the available dates and EVs in the database a learning data-table is

obtained : Z = {(X1, y1), . . . , (Xn, yn)}were n is the number of rows. The extracted features are described in Appendix

A. Features extracted during charging events have the prefix ”ch ” or ”charge ”. Similarly, during driving, the prefix

”dr ” is utilized, whereas ”pk ” is used for parking events. Significant variables such as mileage, daily covered

distance histogram, cumulative discharged energy are considered. The SoC and temperature are taken into account

via a ”driving matrix” and a ”driving matrix”. The cumulative discharged energy (in kWh) is stored in the ”driving

matrix” with respect to predefined ranges of SoC and temperature values. Likewise, the total time (in days) spent

on parking lots is stored in the ”parking matrix” with respect to predefined ranges of SoC and temperature values.
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These two matrices are illustrated in Fig. 5.2 and are present in Table A.2. The total number of charging events is also

considered as well as the charging power, temperature, and the SoC variation. The data preparation from ˆS oH build

to data splitting and RF illustration is displayed in Fig. 5.

4.2. Random Forests regression

Decision trees, also called Classification and Regression Tree (CART), are statistical model firstly introduced in

[46]. The random forest regression model is an extension of the CART technique and can offer better prediction

performance. The training stage of RF is to construct multiple de-correlated decision trees. Each tree in RF is grown

with a randomized subset of predictors and hence the name ‘random’ forest. Each decision tree consists of decision

nodes and leaf nodes. The decision nodes evaluate each fed-in sample by a test function and pass it to different

branches based on the features of the sample. Considering our previously obtained datasetZ = {(X1, y1), . . . , (Xn, yn)}

were n is the number of rows. The random forest algorithm steps as illustrated on Fig. 5.3 are :

• Sample, with replacement of B setsZi
n, i = 1, . . . , B (each set has n rows as the original setZ).

• For each set i train a regression tree (CART) that produces the result ŷi = Gi(X,Zi
n).

• Compute the final output by combining all regression trees as: G(X) =
1
B

B∑
i=1

Gi(X,Zi
n).

Random forests algorithm fits well our situations as the main advantages are :

• Good results when using large dataset.

• Easily implemented, and very few parameters are needed.

• The produced RF model can be quickly ran for new inputs.

• Missing and heterogeneous data are well handled.

Only two parameters are needed to run RF regression: the number of trees and the number of random features for each

split in the forest to build. The main drawbacks of RF algorithms are long tanning process and ill-handled outliers.

Fortunately, our study is proposed as an off-line SoH prediction solution. Therefore, a slow training process is not a

deal-breaker.

4.3. Results

A classical 75% training and 25% testing split is implemented using the learning data-table, as illustrated in Fig.

6.1. The split is done with respect to users, as shown in Fig. 6.2. This means that the users in the training dataset

are not present in the validation dataset. This matches properly our initial goal of predicting the SoH of EVs that

are not eligible for our proposed health indicators conditions in Section 3. The experience was conducted using

the ”scikit-learn” machine learning library available in PythonTM programming language. 186 EVs were randomly
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selected, producing a learning data-table of more than 150000 rows and 82 columns. The columns represent the

selected features as described in Table A.2 of Appendix A. The selected EVs are aged from 4 to 7 years. As a matter

of comparison, a support vector regression (SVR) algorithm [47] is also utilized for the S oHe prediction using the

learning data-table. The SVR algorithm is easily implemented using the same ”scikit-learn” machine learning library

available in PythonTM programming language.

The RF results are displayed in Fig. 6.3. In Fig. 6.3 a) the predicted ˆS oHe values (in green) during the training

step are superimposed to the reference S oHe values (in black). In Fig. 6.3 b) the predicted ˆS oHe values (in red)

during the validation step are superimposed to the reference S oHe values (in black). Fig. 6.3 c) represents the testing

error values, whereas d) represents the testing error histogram. Note that in Fig. 6.3 a) and b), each curve represents

a different user’s data and are concatenated together. The prediction errors displayed in Table 1 where MAE is the

”mean absolute error”, and Max is the ”maximum absolute error”. One can notice that both SVR and RF algorithms

produce similar health prediction accuracy. It is worth noting nevertheless, that better accuracy is achieved using the

RF algorithm. A 1.27% SoH prediction accuracy using users’ behavior and environmental conditions is satisfactory.

Knowing that this solution is proposed as an off-line SoH prediction method, the accuracy will improve over time

with more available data and broader environmental conditions.

SoH errors [%] SVR RF

MAE 1, 69 1, 27

Max 8, 80 6, 53

Table 1: S oHe prediction errors. MAE is the ”mean absolute error”, and Max is the ”maximum absolute error”

A simplified CART tree example is displayed in Fig. 7 for the convenience of the reader. In this figure, ”value” is

the ˆS oHe value associated to the corresponding node. For example, the root node is associated with an S oHe value

of 93.7%. in Fig. 7 ”mse” stands for the mean square root error corresponding to a given ˆS oHe value. The root mean

square root error is computed as : E
[(

ˆS oHe − S oHe

)2
]
. The RF algorithm goal is to minimize that error at leaves

level. The displayed example is a simplistic one where the data split depth is 4. Machine learning using decision trees

(DT) is more understandable by humans than other classical approaches such ass SVR, neural network or even deep

learning solutions. Three paths are displayed : ”path A”, ”path B” and ”path C” leading to corresponding S oHe

values : 99%, 87.8% and 86.8%.

• ”Path A” leads to the highest SoH value and corresponds to youngest EVs with small mileage and very little to

no parking at high SoC and temperature.

• ”Path B” and ”Path C” in the other hand are related to extreme environmental conditions and produce the low-

est SoH values. ”Path C” being the worst with oldest EVs, stored at very high SoC (pk soc 90 100 temp 15 30)

and very low SoC (pk soc 10 30 temp 0 15), driven at high SoC and temperature (dr soc 70 90 temp 30 45).
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In regard to this observation, the presented DT in Fig. 7 fits very well the classical LIBs aging root causes described in

[13]. Knowing nevertheless that more than 400 trees were used to test the RF approach. Besides, the data split depth

considered is 1000. Therefore, going through each tree is not a suitable method to find the most relevant aging factors.

In the following section, aging factor importance will be discussed, and a factor raking method will be proposed.

5. Aging factor importance study

5.1. Variable importance

There are three approaches for feature importance computation in the literature: the default mean decrease in

impurity importance, permutation feature importance, and drop column feature importance.

The mean decrease in impurity importance of a feature is computed by measuring how useful the element is at

reducing variance when creating decision trees within RFs. Built-in feature importance is provided by the library

”scikit-learn”. However, this approach is biased, as it has the tendency to inflate the importance of continuous features

or high-cardinality categorical variables [48]. This approach is often discarded for the drop column or permutation

feature importance. Permutation importance is a reasonably efficient and very reliable technique. It measures of

variable significance by observing the ”model accuracy decrease” (MDA) when randomly shuffling each predictor

variable [49]. First, a baseline model is obtained through training. Then for any given feature, the values of the

corresponding column are shuffled. The performance deterioration is measured and set as the relative importance

of the shuffled feature. Permutation importance does not require the retraining of the underlying model in order to

measure the effect of shuffling variables on overall model accuracy. The method is, therefore, inexpensive. The risk is

a potential bias towards correlated predictive variables. Drop column feature importance is the most reliable method.

It consists of getting a baseline performance score through the first training. Afterward, a column is entirely dropped

then the model is retrained. The relative performance is then measured to obtain the actual feature importance.

Unfortunately, this method is time-consuming as it requires the training of the model for each dropped column.

5.2. Results and discussion

In the scope of our study, a PythonTM library name ELI5 was utilized. ELI5 provides a way to compute feature

importances for black-box estimators by measuring how the MDA when a feature is not available. Using the RF

model previously obtained in Section 4.2, a permutation feature importance is computed using ELI5. The 20 most

important features are displayed in Fig. 8.1. These features are color-coded. Features related to charging events

are in blue, whereas those related to driving events are in red, and the one related to parking events are in green.

Fig. 8.1 clearly shows that the most relevant features are the battery age (”days”), the parking SoC and temperature

(pk soc 70 90 temp 15 30, pk soc 90 100 temp 15 30), the global mileage (dr gbl Dist) and the global discharged

energy (dr gbl EGY). This observation matches the previous analysis in Section 4.3 using the simplified CART tree

in Fig. 7. One can also notice that variables related to parking events (in color green) are globally more important.

15



This clearly confirms that calendar aging is dominant as most EVs spend up to 90% of their lifetime on parking

lots. Unfortunately, parking conditions are highly correlated with seasonal temperatures. It is, therefore, difficult to

mitigate LIBs fast aging phenomena regarding the battery temperature. Luckily very high and low SoC storage values

can be avoided through charge planning and SoC limitation methods. Charging events can be smartly scheduled to

avoid parking batteries at critical SoC values. Eco-charging can be achieved by stop charging events at a defined SoC

and temperature threshold.

The presented LIBs aging factor ranking performs well and fits well the available literature. However, users’

behaviors are less identified within the 20 most relevant features shown in Fig. 8.1. To that extent the S oHe sensibility

to the battery age (days) and discharged energy (dr gbl EGY) are utilized. In Fig. 8.2 are displayed for 4 randomly

selected EVs, a) the S oHe values with respect to age, b) the S oHe values with respect to the discharged energy,

and their respective sensibilities (derivatives). Globally different EVs users experience the same climate. Thus the

calendar aging of their batteries is similar. However, users may express various behaviors. The core idea in using the

S oHe sensibility (derivative) as the output of the RF model will enable the ranking of the most relevant aging factors

that are induced by users’ behavior. In doing so, the ranking in Fig. 8 is achieved. This time around, the 20 most

important feature ranking is dominated by user induced features. These features are directly related to cycling aging.

Observing the most important factors, one can argue that :

• Driving the EVs at high SoC values (dr soc 90 100 temp 15 30, dr soc 90 100 temp 15 30 ie S oC ∈ [90%, 100%])

is the most aging accelerating factor

• Secondly, the average driving speed has a significant impact on LIBs aging. In Fig. 8 the factor dr speed 50 90

corresponding to average driving speed v̄ ∈ [50, 90]Km.h−1 is the second-ranked factor. Note that in the context

of our study, high values of average driving speed is indicative of high discharge current rate. It is also reported

in [13, 16, 50] that high cycling rates cause the loss of active material in LIBs and eventually lead to capacity

fade.

• High charging rates are represented in the resulting ranking as ch power P22. Like presented in Section 3.2,

the available charging powers are 3, 7, 11, 22, and 43 kW. The selected EVs in our study are often charged at 3

and 7kW. Very few users often charge their car using power higher than 22 kW. However, this feature is ranked

as the third most influencing factor nonetheless. It is well known that fast charging has a negative effect on the

durability of LIBs. That knowledge is reinforced in this paper.

Overall, these pieces of evidence support the existing knowledge of the root causes of the aging of LIBs. Numerous

factors contribute to the decline of the health of LIBs. Interestingly, this study brings a simple and efficient way of

ranking the aging factors. It is also possible to rank these factors in terms of calendar aging. Using the SoH sensibility

to age, the cycling aging factors can also be ranked.
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6. Conclusion

The presented study is dedicated to the health assessment and management of LIBs. A significant dataset has

been recorded during real-life EVs usage over close to 7 years of intensive use. This dataset served for the several

proposed approaches validation. A full LIBs aging assessment is completed in three parts, including new diagnosis

based state-of-health (DB-SOH) estimators, data-driven aging prediction, and relevant aging factors ranking.

The two new health indicators were designed using recorded driving and charging data of real-life EVs, and

demonstrate an accurate aging assessment compared to the existing reference. These methods are up-and-coming

because they are based on real-life EVs data collected over many years.

Furthermore, a data-driving aging predictor was developed using the collected data and the Random Forest ma-

chine learning solution. The proposed estimator displayed an S oH accuracy of 1.27%. We argue that using decision

trees is helpful for aging mechanism investigation and is easily interpreted, unlike the existing methods such as neural

networks or deep learning approaches. The RF algorithm is used as it produces excellent results when using extensive

data, easily implemented, and handles properly heterogeneous and missing data.

Finally, using permutation-based variable importance computation, an approach for aging factors ranking is pre-

sented and found to be in total agreement with the classical aging root causes in the literature. What’s more, cycling

aging factor ranking is achieved based on the extracted user’s behaviors and SoH sensibility to age. The proposed

factors ranking approach provides an innovative way to explore battery aging comprehension and estimation.

More exciting results can be achieved in the future by storing and taking into account many more features. For

example, more information on discharge current rate can be highlighted by recording the maximal EVs acceleration

during driving events.

There are many conceivable applications to the presented study, such as warranty adaption regarding users’ be-

havior, scheduled charging to avoid parking batteries at critical SoC values, eco-charging by stop charging events at a

defined SoC and temperature thresholds. In late 2019, several works started connecting EVs batteries with the cloud

to propose data-based services later in order to improve batteries’ performance and extend their lifespan substantially.

The presented study in this paper will be of great use in that context.

Nomenclature

Abbreviations

BMS Battery management system

BOL Begining of life

EIS Electrochemical impedance spectroscopy
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EOL End of life

EV Electric vehicle

HEV Hybrid electric vehicle

LFP Lithium iron phosphate

NMC Nickel manganese colbat

OCV Open circuit voltage

PHEV Plug-in hybrid electric vehicle

SoC State of charge

SoH State of health

Math Symbols

v̄ Average speed of an EV km.h−1

∆Ech,BOL Charged energy at the begining of life Wh

∆Ech Charged energy Wh

d Covered distance by an EV km

Pch Charging power W

Qn Nominal charge capacity Ah

Qn,BOL Nominal charge capacity at begining of life Ah

S oCBOL State of charge at the begining of life %

S oHc,dr Capacity based SoH indicator using driving data %

S oHc Capacity based SoH indicator %

S oHe,ch Eergy based SoH indicator using charging data %

S oHe Energy based SoH indicator %

S oHr Current of the battery A

S oHr Impedance based SoH indicator %

Vt Terminal voltage of the battery V
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Events Description Features

Driving

Total mileage since the first use dr gbl Dist

Total discharged energy since the first use dr gbl EGY

Histogram of the daily covered distances dr dist 0 25, dr dist 25 50, dr dist 50 75, dr dist 75 100, dr dist 100 300

Histogram of average driving speed per

driving event
dr speed 0 30, dr speed 30 50, dr speed 50 90, dr speed 90 130, dr speed 130 200

Histogram of initial SoC per driving event dr soc start 0 20,dr soc start 20 40,dr soc start 40 60,dr soc start 60 80,dr soc start 80 100,

driving matrix corresponding to the

discharged energy with respect to

temperature {< 0o, 0o − 15o, 15o − 30o,

30o − 45o, > 45o} and SoC {0% − 10%,

10% − 30%, 30% − 70%, 70% − 90%,

90% − 100%}

dr soc 0 10 temp 0, dr soc 10 30 temp 0, dr soc 30 70 temp 0, dr soc 70 90 temp 0, dr soc 90 100 temp 0,

dr soc 0 10 temp 0 15, dr soc 10 30 temp 0 15, dr soc 30 70 temp 0 15, dr soc 70 90 temp 0 15,

dr soc 90 100 temp 0 15, dr soc 0 10 temp 15 30, dr soc 10 30 temp 15 30, dr soc 30 70 temp 15 30,

dr soc 70 90 temp 15 30, dr soc 90 100 temp 15 30, dr soc 0 10 temp 30 45, dr soc 10 30 temp 30 45,

dr soc 30 70 temp 30 45, dr soc 70 90 temp 30 45, dr soc 90 100 temp 30 45, dr soc 0 10 temp 45,

dr soc 10 30 temp 45, dr soc 30 70 temp 45, dr soc 70 90 temp 45, dr soc 90 100 temp 45

Charging

Total number of charging events since the

first use
nbch

Charging power ch power P3, ch power P7, ch power P11, ch power P22, ch power P43

State of charge variation charge d soc 0 20, charge d soc 20 40, charge d soc 40 60, charge d soc 60 80, charge d soc 80 100

charging temperature charge temp m15,charge temp m15 0,charge temp 0 15,charge temp 15 30,charge temp 30 45,

Parking

parking matrix corresponding to the time

spent on parking lots split with respect to

temperature {< 0o, 0o − 15o, 15o − 30o,

30o − 45o, > 45o} and SoC {0% − 10%,

10% − 30%, 30% − 70%, 70% − 90%,

90% − 100%}

pk soc 0 10 temp 0, pk soc 10 30 temp 0, pk soc 30 70 temp 0, pk soc 70 90 temp 0,

pk soc 90 100 temp 0, pk soc 0 10 temp 0 15, pk soc 10 30 temp 0 15, pk soc 30 70 temp 0 15,

pk soc 70 90 temp 0 15, pk soc 90 100 temp 0 15, pk soc 0 10 temp 15 30, pk soc 10 30 temp 15 30,

pk soc 30 70 temp 15 30, pk soc 70 90 temp 15 30, pk soc 90 100 temp 15 30, pk soc 0 10 temp 30 45,

pk soc 10 30 temp 30 45, pk soc 30 70 temp 30 45, pk soc 70 90 temp 30 45, pk soc 90 100 temp 30 45,

pk soc 0 10 temp 45, pk soc 10 30 temp 45, pk soc 30 70 temp 45, pk soc 70 90 temp 45,

pk soc 90 100 temp 45

Total number of days since the first use days

Table A.2: Selected features description for the data-driven SoH prediction.

Appendix A. Extracted features description

In this annexe the selected features description for the data-driven SoH prediction are presented in Table A.2.
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Z = {(X1, y1), . . . , (Xn, yn)}
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Figure 5: Data preparation and Random Forest illustration .
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Figure 6: Data preparation and Random Forest results.
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Figure 7: Simplified tree example using RF algorithm. The considered data split depth is 4.
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Figure 8: Illustration and understanding of variables importance.26
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