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Multi-Context TCAM-Based Selective Computing:
Design Space Exploration for a Low-Power NN

Ren Arakawa, Naoya Onizawa, Member, IEEE, Jean-Philippe Diguet, Member, IEEE,
and Takahiro Hanyu, Senior Member, IEEE

Abstract—In this paper, we propose a low-power memory-
based computing architecture, called selective computing archi-
tecture (SCA). It consists of multipliers and an LUT (Look-Up
Table)-based component, that is multi-context ternary content-
addressable memory (MC-TCAM). Either of them is selected
by input-data conditions in neural-networks (NNs). Compared
with quantized NNs, a higher accurate multiplication can
be performed with low-power consumption in the proposed
architecture. If input data stored in the MC-TCAM appears,
the corresponding multiplication results for multiple weights
are obtained. The MC-TCAM stores only shorter length of
input data, resulting in achieving a low-power computing.
The performance of the SCA is determined by three physical
parameters concerning the configuration of MC-TCAM. The
power dissipation of the target NN can be minimized by
exploring these parameters in the design space. The hardware
based on the proposed architecture is evaluated using TSMC
65 nm CMOS technology and MTJ model. In the case of
speech command recognition, the power consumption at the
multiplication of the first convolutional layer in a convolutional
NN is reduced by 67 % compared to the solution relying only
on multipliers.

keywords—Neural networks, Memory-based computing,
Look-up table, Ternary content-addressable memory, VLSI

I. INTRODUCTION

EURAL networks (NNs) are machine learning models
Nthat are widely used in image recognition [1], natu-
ral language processing [2], speech command recognition
[3]-[5], healthcare [6], etc. In NNs, the dynamic power
consumption is large because multiplications are performed
many times using input values and weights. For simple
applications such as image recognition using MNIST [7],
the power consumption can be reduced under negligible
accuracy-loss using a quantized neural network (QNN) [8]—
[10].

It is unclear whether QNNs are useful for other NN
applications such as speech command recognition [11].
Another method in reducing power dissipation of NN is
look-up table (LUT)-based computing [12]. In this method,
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the dynamic power consumption can be reduced by replac-
ing floating-point multiplications with LUT-based comput-
ing using ternary content-addressable memories (TCAMs).
A TCAM is one of the associative memories and per-
forms high-speed search operations [13]. In such an LUT-
based computing approach, all the possible input values
and weights are stored in TCAMs, and the corresponding
multiplication results can be read from the random access
memories (RAMs). When there are pairs of the input value
and the weights in the TCAM during the search operation,
the multiplication result is directly obtained from the RAM.
As the data stored in the TCAM increases, the calculation
accuracy increases, and so does the power consumption.
For realizing an energy-efficient LUT-based computing, it
is important to tune up the trade-off between the power
consumption and the computational accuracy in the best
balance.

In this paper, we propose selective computing architec-
ture (SCA) based on multi-context TCAM (MC-TCAM)
[14] to reduce power consumption while maintaining the
computational accuracy. Each bit cell of the MC-TCAM
stores multiple bits per cell using MTJ (magnetic tunnel
junction) elements [15] with sharing a comparison circuit.
Compared with the conventional single-context TCAM [16],
MC-TCAM can increase the number of words to be stored
while maintaining the power consumption of the search
operation. In the SCA, an input value of multiplication
is compared with a threshold value to determine whether
to use either a multiplier or MC-TCAM. When the input
value is below the threshold, the multiplication result is
obtained by LUT-based computing using the MC-TCAM.
Compared with the conventional LUT-based computing, the
value stored in MC-TCAM is small since the input value
range is split. The bit width of MC-TCAM is reduced,
resulting in lower power consumption. In addition, several
parameters of SCA are explored using training data of a NN
to minimize the dynamic power consumption.

As a design example, a SCA-based hardware is designed
using TSMC 65-nm CMOS and an MTJ model [17]. The
target application is a convolutional NN (CNN) model for
speech command recognition [11]. When the proposed SCA



is applied to the first convolutional layer of this CNN model,
the power consumption of the multiplication is reduced by
67% in comparison with a multiplier while maintaining the
computational accuracy.

This paper is an extension of the conference paper [18].
The proposed architecture has two main contributions. First,
TCAM stores only input values, while the conventional
method stores both input values and weights [12]. When the
input value hits, all multiplication results corresponding to
multiple weights are obtained. This approach increases the
number of multiplier uses that can be avoided with MC-
TCAM. Second, MC-TCAM only applies to small input
values, which requires a smaller MC-TCAM and so a
reduced power consumption.

The rest of this paper is as follows. Section II reviews
Quantized NNs. Section III describes the design concept of
the proposed architecture. Section IV reviews MC-TCAM
and provides the power consumption model of MC-TCAM.
Section V describes the operation of the proposed SCA and
the design space exploration. Section VI evaluates perfor-
mance using an application of speech command recognition.
Section VII concludes this paper.

II. RELATED WORK
A. Review of Quantized NN

Wn weight

yNweight

Fig. 1. Multiplication of an input value, 1, and Ny,eign¢-times weights
in a NN.

NNs are used for image recognitions such as MNIST,
CIFAR-10 [19], ImageNet [1]. Fig. 1 shows multiplications
of an input value and multiple weights in a NN. The
power consumption of NNs is large because floating-point
multipliers with high power consumption are frequently
used. In order to solve this problem, there are many studies
on quantized neural networks (QNNs) such as binary neural
networks (BNN) [8], [9] and ternary neural networks (TNN)
[20]. The input values and weights of the neural network
are converted from the floating-point representation to the
fixed-point representation in this method. As a result, the

bit-width of the multiplier is reduced and so the power
consumption. Furthermore, the hardware area is reduced by
quantization [21]. As described above, several applications
such as MNIST recognition can be executed with low power
consumption and a high recognition accuracy using QNNs.

B. Drawbacks of QNN on computation accuracy

The effectiveness of quantized neural networks has been
reported in several applications such as image recognition.
However, it is unclear whether it can be used efficiently
for other applications such as speech command recognition
applications. Fig. 2 shows an overview of a speech command
recognition application [22] and the simulation result of
recognition rate when QNNs are applied to the application.
The data set contains ten speech commands such as “yes”
and “no”, other speeches and background-noise [11]. The
input speech signal is converted to a speech spectrogram,
which is an input to a CNN [22]. The application runs
on MATLAB2019a to check the accuracy depending on
the computing precision. Ideally, speeches other than the
ten speech commands are classified as unknown, while
background-noises are classified as background. The in-
put values and the weights of all convolutional layers
are converted from 32-bit floating-point representation to
fixed-point representation (32, 24, 16 bit-length). Converting
the representation to 32-bit fixed-point hardly modifies the
accuracy, while converting the representation to 24 or 16
bit fixed-point significantly reduces the accuracy. Therefore,
it is difficult to apply the quantization approach to low-
power speech command recognition with a high recognition
accuracy.

III. DESIGN CONCEPT OF PROPOSED ARCHITECTURE
A. Conventional LUT-based computing

For applications such as speech command recognition,
it makes sense to explore other solutions than QNNs to
improve the energy efficiency. Another method to reduce
the multiplication cost of neural networks is LUT-based
computing using content-addressable memory (CAM) [12].
Fig. 3 shows an LUT-based computing architecture. In this
method, the input values and weights of a NN are stored in
the TCAM. The RAM stores the corresponding multiplica-
tion results, which is connected by match line (ML). When
the input value and weights of the multiplication exist in
the TCAM during the search operation, the search result is
‘hit°. When both the input value and the weight hit in the
TCAM, the decoder specifies the RAM address where the
multiplication result is stored. Then the multiplication result
is directly obtained from the specified RAM.

TCAM is one of associative memories that perform fast
and parallel search operations [23], [13]. Fig. 4 shows
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Fig. 2. Speech command recognition using QNN: (a) overview and (b) accuracy.
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Fig. 3. Conventional LUT-based computing using TCAM [12].

a typical TCAM configuration. Each word stores several
TCAM cells, which store ’0’, ’1°, or ’X (wildcard)’. A search
data is compared with the data of all the words in parallel.
Basically, TCAMs have been designed for single-context,
therefore each TCAM cell contains a 1-bit information. The
state of data retrieved from TCAM is defined as context.

In the LUT-based computing architecture, the input value
and weight of a multiplication of a NN are searched from
a TCAM. When the input value and weight hit, the mul-
tiplication result is read from a RAM. This memory-based
computing (MBC) approach is using the lookup process to
reduce the power consumption of NNs.

However, the LUT-based computing using TCAMs has
a trade-off problem between the power consumption and
the calculation accuracy. It is necessary to store a lot of
data in TCAM in order to increase the calculation accuracy,
while the power consumption increases in proportion to the
number of TCAM cells. Thus the designer must do a choice
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Fig. 4. Replacing multiplications by lookup search using a 4 [bit] x 3
[word] TCAM.

between improving the accuracy and reducing the power
consumption. The LUT-based computing approach must be
improved to come up with this trade-off when accuracy is
required.

B. Overview of proposed LUT-based computing architecture

Fig. 5 shows an overview of the proposed hardware archi-
tecture. Multi-context TCAM [14] is used as a TCAM of the
proposed LUT-based computing. MC-TCAM stores multiple
bit data in one TCAM cell and switches the data according to
the context selection signal. Using MC-TCAM, the number
of stored data patterns can be increased while maintaining
the number of TCAM cells, leading to a reduction in power
consumption.

Table I summarizes the comparison among a multiplier, a
conventional LUT-based architecture and a proposed hard-



TABLE I
COMPARISON OF DIFFERENT STYLES OF COMPUTING.

[ [[ Conventional multiplier-based [ Conventional LUT-based [12] |

Proposed architecture-based

Computing Multiplier

TCAM and RAM

MC-TCAM, RAM, and multiplier

Stored data in TCAMs -

Input values and weights

Input values

Number of operations! Nyeight-times multiplications

Nyeight-times searches’

1-time search’ or Nuyeight-times multiplications

"Number of operations for finding the result of multiplication of one input value and Noyeignt weights
2N,vueigh,g—times search operations using conventional single-context TCAM

3]-time search operation using multi-context TCAM (MC-TCAM)
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Fig. 5. Proposed LUT-based computing using MC-TCAM.

ware architecture when the number of weights of a NN
iS Nyeight- A key feature of trained NN for MBC is that
the weights are constant. Therefore, there is no need to
search them from TCAM. In the proposed architecture,
only input values are stored in TCAM. Only input values
are searched from TCAM. Then, when a search result is
hit, all multiplication results corresponding to each weight
are obtained. Compared with the conventional LUT-based
architecture, the proposed architecture searches only input
values in TCAMs, resulting in reducing the number of
TCAM cells.

In the proposed architecture, MC-TCAM only applies to
smaller input values. As a result, the bit-width of MC-TCAM
is smaller and so the power consumption.

IV. MULTI-CONTEXT TCAM
A. Overview

Fig. 6 shows the MC-TCAM cell [14]. Each MC-
TCAM cell contains several context bits and one context
is selected during operation, while the conventional single-
context TCAM cells store one bit. The k-th (1 < k < n)
context of the MC-TCAM cell stores ’0’, ’1’°, or ’wildcard
(X)’ using four resistance: R4 x, Rp k, Rc k., and Rp k.
This shared comparison circuit with MTJ devices improves
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Fig. 6. MC-TCAM cell circuit with n bits: (a) circuit configuration and
(b) function.
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Fig. 7. MTJ device: (a) schematic and (b) symbol.

the area utilization and increases the number of stored data.
In the search operation at the pre-charge phase, pre is low
to pre-charge D and D. At the evaluation phase, search line
(SL and SL) is active according to input data. When the
search result is ‘hit’, ML is high. In the write operation,
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Fig. 8. Example of context-switching behavior in the MC-TCAM.

WE is high and four bit lines (BLs) generate two current
signals.

Fig. 7 shows a two-terminal MTJ device and its symbol
[15]. The MTIJ device consists of three layers; a free layer,
a tunnel barrier, and a fixed layer. The resistance state of the
MT]J element is determined by the spin direction of the free
layer. The spin direction of the free layer can be changed by
passing an current. The free layer is either parallel or anti-
parallel to the fixed layer. Since the magnetic spin direction
is maintained without power supply, the MTJ element can
be used as a non-volatile device. An MTJ model [17] is used
to simulate the proposed architecture. The MTJ model has
a high resistance of 1964 €2 and a low resistance of 763 (2.

Fig. 8 shows the context switching of MC-TCAM. When
the context is switched in (¢ + 1)-th search, switch the selec-
tion signal (S, So, ..., Ss» - St, ..., Sp) that was selected
until the i-th search. When the context is switched, the gates
of the access transistors are charged and discharged, which
increases power consumption compared to the case without
context switching.

B. Modeling of MC-TCAM

The power consumption of the MC-TCAM cell is modeled
in order to perform a design space exploration of the
selective computing architecture (SCA) parameter. Py;¢, the
power consumption of the MC-TCAM cell in each number
of contexts can be expressed as the following equation:

Prie = RosPes_cen + (1 — Res) Pek_cent (D

where Rcg is the probability of the context-switching,
Pes cenr 1s the power consumption of the cell when the
context changes every search, and P _..;; is the power
consumption of the cell without the context switching.
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Fig. 9. MC-TCAM power consumption (=Pps¢c) dependence on number
of contexts.

Fig. 9 shows P.s ceiy and Pey_ce;; when the number of
contexts is changed. A 16-bit x 64-word TCAM is designed
and evaluated at 1.0 GHz using a 65-nm TSMC and an
MT]J model [17] for the simulation. MC-TCAM increases
the power consumption slightly when the number of contexts
is increased. The power gap between Rogs =0 and Rog = 1
is constant regardless of the number of contexts. In Sections
V and VI, a design space exploration of parameters in the
proposed architecture performs using the power consumption
models.

V. SELECTIVE COMPUTING ARCHITECTURE (SCA)
A. Overview

Fig. 10 illustrates the flow chart and the block diagram of
the proposed selective computing architecture (SCA). SCA
consists of a multiplier and MC-TCAM. This architecture
efficiently finds the results of multiplying input values by
Nuyeignt weights as shown in Fig. 1. In SCA, an input value
is divided into WB (wasted bit), CB (context bit) and SB
(search bit). The operation of SCA is as follows.

1) Either the multiplier or the MC-TCAM is selected
by comparing the input value with the threshold, th.
When the input value is below th, steps 2) and 3)
are performed. Otherwise, the multiplier is selected. If
the multiplier is selected, steps 2) and 3) are skipped,
while the multiplier is used Nyeigns times to obtain the
multiplication results.

2) If the input value is smaller than the threshold, the upper
W B(= 32 — log, th) bits of the input value are "0”.
As the upper W B bits are clearly ”0”, they do not
have to be searched in the MC-TCAM. One of the 2¢5
contexts of MC-TCAM is chosen using the C'B bits of
upper digits among the remaining bits.
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3) SB bits of the input value is searched in the MC- Input data stream ~——
TCAM with the selected context. If the search data hits | | | — | | | . | ‘
a row of the MC-TCAM, the multiplication results for
the Ny,cigni-times weights are read from the SRAM at  eg.) (WB, CB) = (19, 4).
once. Otherwise, the result of multiplication is calcu- WB CB SB

lated using the multiplier.
The proposed architecture works with 32-bit fixed-point
precision regardless of the parameters, so the recognition
accuracy of the application is not compromised.

B. Design space exploration of SCA parameters

SCA has three parameters: W B (wasted bit), C'B (context
bit), Nyorq (number of searched MC-TCAM words). A
design space exploration of these parameters is performed
once offline using training data in order to minimize the
power consumption

Psc 4, the power consumption of SCA-based hardware to
calculate the multiplication results of an input value and all
weights, is modeled by the following equation:

PSCA - (1 - RMC)Pmuleeight

2
+ Ryre(PyvceNwordSB + Pravi Nweight)

where Rjsc is the probability that the input value is less
than th and hits MC-TCAM, N,o-¢ 1S number of the
MC-TCAM words. Furthermore, P, Pyro, Pran are the
power consumption of the multiplier, the MC-TCAM, and
the RAM respectively, and N eign: is the number of weights
for an input value in a NN.

Equation (2) uses Pj;¢ preliminary calculated by equa-
tion (1). In a parameter exploration of SCA, WB, CB and
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Fig. 11. Calculating the frequency of input values.

Nyorq are swept in order to minimize Psc4 as shown in
Algorithm 1. Line 2 through 5 of Algorithm 1 sweeps C'B,
W B, Nyorq- Then, other values are determined as follows:
th = 2%2-WB GB = 32 — WB — C'B, number of contexts
= 298 Lines 6 through 13 of Algorithm 1 calculate the
frequency of input values in order to determine the data to
be stored in MC-TCAM. z, an input value, is extracted one
by one from training data stream. Then, x is divided into
upper W B bits, intermediate C'B bits, and lower SB bits
and compared with th. If the input value is less than th
(ie, the upper W B bits of z is ’0’), a context is selected
using C'B,, of x. The frequency that each input value is
entered to each context of MC-TCAM is counted as shown
in Fig. 11. Line 14 of Algorithm 1 stores N,.q high-
frequency input values of each context in MC-TCAM. Line



Algorithm 1 Design space exploration of SCA parameters

iHPUt training data, Pcs_cellu Pck_celh Pmuh Nweightu PRAM
output explored CB,in, W Bpmin, Nw—min
I: PscA—min = 00
2: for CB € N¢p do
for WB € Nywp do
4 SB+32—-CB-WB
5 for Nyorqg < 1:25B do
6: for x € training data do
7
8
9

WB, « z[(32— WB) : 32]
CB, « z[(2+ SB) : (2+ SB + CB)]
SB, « a[1: (1+ SB)]

if W B, == 0 then
11: freq(CBy,, SB,) < freq(CB,,SB;) + 1
12: end if
13: end for
14: MC-TCAM < Nyorg most frequent input at
each contexts
15: Prre < equation (1)
16: Psc 4 < equation (2)
17: if Psca < PscA—min then
18: PscA—min < Psca
19: CBpin <+ CB
20: W Bin < WB
21: Ny—min < Nword
22: end if
23: end for
24:  end for
25: end for

15 calculate Py;¢, the power consumption of MC-TCAM
cell, according to equation (1). Line 16 calculate Psc4 at
each CB, WB, Nyrq using Ry;c and Pyse according to
equation (2). Lines 17 through 22 explore the parameters
that minimize Psc4 as shown in Fig. 12. The combination
of CB, W B, and N4 that minimizes Pgc 4 is determined
as the combination of CB,,,;n, W Bin, and Ny, _min.

VI. EVALUATION AND DISCUSSION

A. Experimental setup

In order to evaluate the proposed method, SCA is applied
to the multiplications of the first convolutional layer of a
CNN model for the speech command recognition application
described in [22]. The CNN has five convolutional layers
and recognizes 10 speech commands in the dataset [11]. As
there are 12 parallel filters in the first convolutional layer of
the CNN, Nyeigne is 12. In addition, the speech command
dataset is split into training data, validation data and test
data. The training dataset contains about 25,000 speech
commands, of which about 500 speech commands are used
for the design space exploration of SCA. For evaluation,
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Fig. 12. Effect of number of MC-TCAM words on Psc 4 and Rjsc in
design space exploration when (W B, C'B) = (21, 1) using data set from
[11].

middle frequency components of the speech spectrogram of
256 speech “’yes” in the test data set are used.

The proposed hardware is designed using TSMC 65-
nm CMOS, an SRAM [24] and an MTJ model [17]. The
performance of the hardware except the multiplier is evalu-
ated using HSPICE while the performance of multiplier is
evaluated with the gate-level netlist using Synopsys Design
Compiler.

B. Design space exploration

The design space exploration is performed with W B
and C'B varying from 16 to 24 and 1 to 7, respectively.
Fig. 13 (a) shows Psc 4 using training data for each W B,
CB, and Ny,rq configuration. Ny,_pin, Which is Nyorq
that minimize Psc 4, is determined for each W B and CB
configuration. Fig. 13 (b) shows Rcgs and Rjp;¢ using
training data when Nyorq 1S Ny —pmin in each W B and C'B.
As CB increases, Rog is large, while W B that maximizes
Rysc is small.

Fig. 14 shows the power consumption of the proposed
hardware using training data when Nyoprq 1S Ny—min for
each W B and C B configuration. W B that minimizes Ps¢ 4
is defined as W B,,;, for each CB configuration. When
CB is 1, Ny_min is 256 and W B, is 23. The explored
Ny—_min and W B,,;, in each C'B are used for evaluation.

C. Evaluation

Fig. 15 shows the histogram of the speech spectrograms
used for evaluation. If the speech spectrogram is smaller than
th, the result of multiplication with the weight is obtained
from MC-TCAM.

The proposed SCA is compared with a 32x32-bit multi-
plier and SCA without parameter explorations [18]. Table II
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TABLE II
PERFORMANCE COMPARISON FOR THE SPEECH COMMAND RECOGNITION.
[ [ WBmin |  Nu—min [ Ruc | Ros | Power [mW] [ Accuracy [%] |

32 X 32-bit multiplier - - - - 123.6 95.6

Previous SCA without explorations [18] (C'B = 4) WB =19) | (Nword = 256) 0.66 0.24 67.9 95.6
CB=1 23 256 0.64 0.08 62.2 95.6

CB=2 22 256 0.70 0.15 58.1 95.6

CB=3 22 128 0.70 0.24 54.6 95.6

Proposed CB =4 21 128 0.74 0.28 50.5 95.6
CB=5 20 128 0.79 0.32 46.6 95.6

CB=6 19 128 0.83 0.36 43.4 95.6

CB=17 19 64 0.83 0.43 40.5 95.6
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Fig. 15. Histogram of middle frequency components of the speech
spectrogram of speech “yes” in the test data set [11].
TABLE III
POWER BREAKDOWN OF SCA BASED HARDWARE IN THE BEST
CONFIGURATION.
Multiplier | RAM | MC-TCAM Total
Power [mW] 21.6 15.9 3.0 40.5

shows the comparison of a 32x32-bit multiplier, previous
SCA without parameter explorations and proposed SCA
after parameter explorations. This table shows Ry;c, Res,
and power consumption using the test data in each C'B after
the exploration. As C'B increases, W B,,,;, and Ny —pin
decrease. As CB increases, Ry;c and R¢g increase and
power consumption decreases. We observe the SCA with
the best configuration (CB = 7, WB = 19, Nyorq = 64)
can achieve a significant gain of 67% compared to the
conventional computing using only multipliers, while the
computational accuracy is maintained. Table III shows the
power breakdown in the best configuration. MC-TCAM
consumes 7% of total power consumption.

D. Discussion

It is difficult to directly compare the proposed SCA with
the conventional LUT-based architecture [12] for several

reasons, such as different target applications. In [12], weights
of a target NN are quantized and used for LUT-based
computing. In this method, the power consumption is smaller
than that using only multipliers with a few-percent accuracy
loss. The speech recognition application evaluated in the
conventional LUT-based computing classifies speech signals
of 26 English letters. The quantization method is effective
for such simple applications. However, it is difficult to apply
conventional LUT-based computing that quantizes weights
to the speech command recognition application evaluated in
this paper. When the input values and weights are quan-
tized into 16 bits in the speech command recognition, the
recognition accuracy is greatly reduced as shown in Fig. 2.
As a result, it is difficult to tune up the trade-off between
computational accuracy and power consumption with con-
ventional LUT-based computing, while the proposed SCA
reduces power consumption while maintaining recognition
accuracy.

For the best configuration of the proposed SCA in the
evaluation, N, _ ., is equal to 258 1n this case, MC-
TCAM is not required. SB can be regarded as the input
address of SRAM that stores the multiplication result. Power
consumption is 37.5 mW when MC-TCAM is not used as
shown in Table III. However, this is a special case. MC-
TCAM is basically required because the optimal parameters
vary depending on the data set.

The area of the SRAM is not considered here since first
we reuse a state of the art model of SRAM [24] and secondly
because the aim of memory-based methods is primarily
power savings while relaxing the area constraint. Therefore,
the estimated area of SCA contains only those of multipliers
and MC-TCAM here. The areas of a multiplier and explored
MC-TCAM are 11,500 pm? and 35,600 zm?, respectively.
As shown in Table I, the conventional multiplier-based
solution requires Ny,e;gn¢ multipliers, and the proposed SCA
additionally requires MC-TCAM. The areas of conventional
multiplier-based and proposed SCA-based computing are
estimated to be 138,000 zzm? and 174,000 zzm?2, respectively.
The proposed SCA increases the area by 26% compared



with the conventional method. Note that when the number of
CNN filters increase, the SCA area overhead will decrease.

SCA can actually replace various operations with
memory-based computing. SCA can be applied to other op-
erations, such as pooling and activation functions. However,
these operations have a limited impact on power consump-
tion compared to filters, so gains would be small. SCA is
very effective for operations which are highly numerous and
greedy for power such as multiplications in the convolutional
layers of a CNN.

As the proposed architecture can be applied to each layer
of CNN individually, it is scalable to more layers of CNNs
and/or more complex CNNs. The performance merit of SCA
is determined by the bias of the dataset and the number of
filters in a CNN. For example, if the parameters are CB = 7,
WB =19, Nyora =64, Rye = 0.83, and Nyeignt = 24,
SCA can reduce the power consumption by 69% compared
to the case where only the multiplier is used.

In usual speech recognition applications, the throughput
is moderate since it is equivalent to a phone. For instance,
it would be 512 kb/s with 32 bits/sample @16kHz. The
proposed LUT operation (MC-TCAM + SRAM) has been
confirmed to operate at 1 GHz. Therefore, the throughput
is not the bottleneck of the system. In contrast, the leakage
current must be considered in this system. The LUT opera-
tion is in a sleep state most of the time. MC-TCAM has low
leakage current by power gating because it has non-volatile
structure using MTJ devices. However, it is necessary to pay
attention to the leakage current of the SRAM. The dynamic
energy of one SCA operation is 80 pJ, while the static energy
of SCA due to the leakage current of SRAM is 1.6 nJ. If the
multiplication result is stored in MRAM (magnetoresistive
RAM) [25] using MTJ devices instead of the SRAM, the
non-volatile property can help to significantly reduce the
leakage current of RAM. It is the next step of our work after
this study that demonstrates the relevancy of the proposed
SCA.

The design space exploration is performed once offline
and takes about 1 hour in the data set. However, the novelty
of the paper is not the design space exploration method.
The design space exploration is used to identify the best
configuration and to demonstrate that such a configuration
exists. On the other hand, an efficient method is required to
identify the best configuration. A machine learning method
will be used to perform this training phase. This is another
part of our future work.

VII. CONCLUSION

In this paper, we have proposed the selective computing
architecture using MC-TCAM for low-power multiplications
in NNs. Either the multiplier or the MC-TCAM is selected

by comparing the input value with the threshold. In the pro-
posed architecture, the high-precision multiplication result is
obtained with the low-power consumption. SCA can replace
many uses of multipliers with MC-TCAM computing. MC-
TCAM is used as the LUT, improving the memory capacity,
because the MC-TCAM stores multiple data in one memory
cell using the CMOS/MTJ device-hybrid circuit technique.
By preparing MC-TCAM for only small input values, the bit
width of MC-TCAM is small, and the power consumption
is reduced. The design space exploration is performed for
low-power SCA. As a result, the power consumption of the
proposed hardware is reduced up to 67 % compared to the
solution relying only on multipliers while maintaining the
accuracy in a CNN model using TSMC 65-nm CMOS and
the MTJ model.

SCA is a promising low-power solution for NN inference
and a future work will be devoted to the exploration of dif-
ferent categories of NN applications. If SCA also performs
well on the different layers of deep NN, then very significant
gains can be expected.
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