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Integrin alpha-5 in human breast cancer is a mediator of bone metastasis
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ABSTRACT

Bone metastasis remains a major cause of mortality and morbidity in breast cancer. Therefore, there
is an urgent need to better select high-risk patients in order to adapt patient’s treatment and prevent
bone recurrence. Here, we found that integrin alpha5 (ITGA5) was highly expressed in bone
metastases, compared to lung, liver or brain metastases. High ITGAS5 expression in primary tumors
correlated with the presence of disseminated tumor cells in bone marrow aspirates from early-stage
breast cancer patients (n=268; P=0.039). ITGA5 was also predictive of poor bone metastasis-free
survival in two separate clinical datasets (n=855, HR=1.36, P=0.018 and n=427, HR=1.62, P=0.024).
This prognostic value remained significant in multivariate analysis (P=0.028). Experimentally, ITGA5
silencing impaired tumor cell adhesion to fibronectin, migration and survival. ITGA5 silencing also
reduced tumor cell colonization of the bone marrow and formation of osteolytic lesions in vivo.
Conversely, ITGAS overexpression promoted bone metastasis. Pharmacological inhibition of ITGA5
with humanized monoclonal antibody M200 (voloxicimab) recapitulated inhibitory effects of ITGAS
silencing on tumor cell functions in vitro and tumor cell colonization of the bone marrow in vivo. M200
also markedly reduced tumor outgrowth in experimental models of bone metastasis or tumorigenesis,
and blunted cancer-associated bone destruction. ITGA5 was not only expressed by tumor cells but
also osteoclasts. In this respect, M200 decreased human osteoclast-mediated bone resorption in vitro.
Overall, this study identifies ITGA5 as a mediator of breast-to-bone metastasis and raises the
possibility that volociximab/M200 could be repurposed for the treatment of ITGA5-positive breast

cancer patients with bone metastases.
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INTRODUCTION

Breast cancer can be successfully treated when the disease is detected early, but the patient
survival markedly decreases once metastatic spread occurs (1). In this respect, the prognosis for
patients with bone metastasis is generally poor and accompanied by skeletal complications
(pathological fractures, bone pain, disability) (2). Several studies have underlined that tumor cell
dissemination to the bone marrow is an early metastasis event and represents an independent
prognostic factor for poor clinical outcome (3-5). The bone marrow acts as a reservoir where
disseminated tumor cells (DTCs) could survive in a cell-cycle arrest state for long periods of time until
environmental conditions are sufficiently permissive for proliferation, at which time they become
competent to seed secondary organs and/or cause overt local bone metastasis (6-8). Molecular
mechanisms regulating bone homing and colonization by breast cancer cells remain however still
poorly understood.

In this study, we searched for potential target genes involved in breast cancer dissemination to
distant organs using in silico transcriptomic analyses of primary tumors and metastases. We found
that integrin alpha5 (ITGAS) is expressed at high levels in bone metastases compared to non-bone
metastases. Furthermore, multivariate analysis showed that ITGA5 expression in primary breast
tumors is an independent prognostic factor for bone relapse. ITGAS hetero-dimerizes with integrin
beta1 to form the fibronectin receptor o531 (9). In breast cancer, ITGA5 mediates tumor cell adhesion,
extracellular matrix-guided directional migration along fibronectin, and tumor cell survival in vitro (9-
13). ITGAS5 also mediates lung metastasis in animal models of breast cancer (14,15). Additionally, a
synthetic peptide inhibitor derived from the synergy region of fibronectin that binds to o581 and avp3
integrins (ATN-161, also called PHSCN) reduces both MDA-MB-231 breast cancer bone metastasis
formation and skeletal tumor outgrowth (14,16). However, ATN-161 interacts with avB3 (16), and the
treatment of tumor-bearing animals with a specific nonpeptide antagonist of avp3 (PSK 1404) also
inhibits bone metastasis formation (17), suggesting that the inhibitory effect of ATN-161 on bone

metastasis formation was mediated through the therapeutic targeting of avp3. Beside ATN-161, a
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humanized 1IgG4 monoclonal antibody against a531, known as M200 (volociximab), was developed as
an antiangiogenic agent for the treatment of solid tumors and age-related macular degeneration
(18,19). A phase-l study conducted in 22 patients with advanced stage solid tumors showed that the
pharmaco-toxicologic profile of M200 is safe, and preliminary evidence of antitumor activity was
reported in one patient with renal cell carcinoma (18). Clinical trials also evaluated its safety in the
treatment of ovarian cancer and non-small cell lung cancer, as a single agent or in combination with
chemotherapy (20,21).

Here, we provide evidence that ITGA5 is a mediator of bone metastasis and a potential
therapeutic target for bone metastasis treatment. Using genetic overexpression or silencing strategies,
we show that ITGA5 in breast cancer cells mediates metastatic tumor cell colonization of the bone
marrow and promotes formation of osteolytic lesions in vivo. Furthermore, we show that M200 could
be effective in the treatment of breast cancer patients with osteolytic bone metastases by targeting
both tumor cells and osteoclasts, the latter being bone-resorbing cells that mediate cancer-induced

bone destruction.



102
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

RESULTS

ITGAS is a bone metastasis-associated gene in breast cancer

We compared the transcriptomic profile of 21 bone metastases with that of 59 metastases from
other distant organs. This analysis identified 246 genes (gene set #1) that were expressed at higher
levels in bone metastases compared to non-bone metastases (Fig. 1a and Table S1). In parallel, the
analysis of 855 radically resected primary breast tumors with known location of the first distant
metastasis led to 146 genes (gene set #2) that were significantly upregulated in primary tumors from
patients who first relapsed in bone, compared to patients who first relapsed at non-bone metastatic
sites or did not relapse after 200 months follow-up (Fig. 1b and Table S1). Nine genes were common
to gene sets #1 and #2: EFEMP2 (EGF-containing fibulin-like extracellular matrix protein 2), ITGA5
(integrin alpha 5), KIAA1199 [cell migration-inducing and hyaluronan-binding protein (CEMIP)],
MFAP5 (microfibrillar-associated protein 5), PLXDC1 (plexin domain-containing protein 1), SPOCK1
[SPARC (Osteonectin), Cwcv And Kazal Like Domains Proteoglycan 1], TCIRG1 (T Cell Immune
Regulator 1) and TGFB1I1 (Transforming Growth Factor Beta 1 Induced Transcript 1) (Fig. 1c).
Beside the role played by ITGA5 in promoting breast cancer cell adhesion, invasion and survival (9-
16), EFEMP2, KIAA1199, and MFAPS also enhance breast cancer motility and invasiveness (22-24).
SPOCK1 and TGFB1I1 [also called hydrogen peroxide-inducible clone 5 (Hic-5)] are induced by TGF-
B and promote breast cancer cell invasion (25,26). PLXDC1 increases invasion in gastric cancer (27),
and TCIRG1 is an osteoclast-specific vacuolar proton pump subunit that acts as a metastasis
enhancer in hepatocellular carcinoma (28). In addition, MFAPS5 is upregulated in human breast cancer
bone metastases compared to primary tumors (24).

The functional importance of these genes was assessed by gene network analysis, revealing a
prominent role for ITGAS, given its high connectivity degree within the network structure (Fig. S1).
Moreover, as shown in Fig. 1d, ITGA5 was highly expressed in bone metastases compared to lung (P
= 0.001), liver (P = 5.10°) and brain (P = 3.10™) metastases. We therefore focused our attention to the

role of ITGAS in breast cancer bone metastasis.
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ITGAS is an independent prognostic factor for breast cancer bone metastasis

We quantified ITGA5 expression levels in 427 radically resected primary breast tumors (29).
Kaplan-Meier survival analysis revealed that the risk of bone metastasis was significantly higher for
patients with high ITGAS levels (HR= 1.62, P = 0.024) (Fig. 1e). Furthermore, ITGA5 predicted bone
relapse (P = 0.028) independently of clinicopathological characteristics (Table 1). To confirm these
findings, we conducted in silico analysis of a cohort of 855 radically resected primary mammary
tumors with clinical annotation for recurrences and observed that breast cancer patients with tumors
expressing high ITGA5 mRNA levels were more likely to relapse in bone (HR= 1.36, P = 0.018) (Fig.
S2). After adjusting for clinicopathological factors, ITGA5 remained significantly associated with bone

relapse (P = 0.034) (Fig. S2).

Elevated ITGA5S protein levels in primary tumors are associated with the presence of DTCs in
bone marrow aspirates from patients with breast cancer

To examine the potential contribution of ITGA5 in the homing of breast cancer cells to bone,
we analyzed by immunohistochemistry ITGAS5 protein levels in 268 radically resected primary tumors
from a cohort of breast cancer patients with no clinical signs of metastasis for whom the presence or
absence of DTCs in the bone marrow was documented (Table S2) (30). A significantly higher
percentage of breast cancer patients having elevated ITGA5 protein levels in primary tumors were
DTC-positive (P = 0.039), compared to that observed for patients with low ITGA5 levels in primary
tumors (Fig. 1f and Table S2). Additionally, flow cytometry analysis of a breast cancer DTC cell line

(BC-M1) (31,32) showed cell surface expression of integrin a5B1 (Fig. S3A).

ITGAS5 promotes breast cancer cell dissemination to the bone marrow and formation of

osteolytic bone metastases in vivo
Human MDA-MB-231, Hs578T and MDA-B02 breast cancer cells, which are ER- and PR-
negative and do not bear an amplification of HER-2 gene (referred to as triple-negative breast cancer
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cells), had higher cell surface expression levels of integrin a5B1 and higher ITGAS protein levels than
luminal A (T47D, MCF-7, BT-474) and HER2-expressing luminal B (SKBr3) breast cancer cell lines, as
judged by flow cytometry and western blotting, respectively (Fig. S3A, B). ITGA5 mRNA expression
levels in tumor cells were further investigated using 51 distinct breast cancer cell lines with different
molecular phenotypes and degree of invasiveness (GSE12777) (33). A significant correlation was
observed between high ITGA5 mRNA expression levels and high tumor cell invasiveness (P = 0.0083)
(Fig. S3C, D). In particular, the highest ITGA5 mRNA levels were observed in claudin-low, triple-

negative breast cancer cell lines (P <0.01) (Fig. S3E).

We therefore silenced ITGA5 in claudin-low MDA-MB-231 and MDA-B02 breast cancer cells,
the latter being a bone metastatic cell subpopulation of the MDA-MB-231 cell line, which constitutively
and specifically overexpresses avf3 integrin compared to the parental cell line (17, 34). ShRNA-
mediated silencing of ITGA5S in these cells drastically reduced ITGA5 expression, both at the protein
and cell surface expression levels compared to shRNA control cells (Fig. 2a, b). The flow cytometry
analysis of shITGA5-MDA-MB-231 and shITGA5-MDA-B02 cells showed that the silencing of ITGAS
did not modify cell surface expression levels of integrin subunits 02, o3, o4 and B1 and of avp3
integrin, when compared to shRNA control cells (Figs. S4 and S5). The silencing of ITGA5 led to a
60% reduction of tumor cell adhesion to fibronectin (Fig. S6A), whereas tumor cell adhesion to glass,
poly-D-Lysine and laminin remained unchanged (Fig. S6B). In addition, ITGA5 silencing reduced by
half the number and size of mammospheres formed by MDA-B02-shITGA5 cells, compared to that
observed with MDA-B02-shCtrl cells (Fig. S6C).

To investigate whether ITGA5 could drive tumor cell anchorage in bone marrow in vivo, MDA-
MB-231 cells that have the propensity to form lung and bone metastases were injected into the tail
artery of immunodeficient mice and, two weeks after tumor cell inoculation, these animals were culled
and the number of micrometastases in bone marrow and lungs quantified. Abrogating ITGA5
expression in MDA-MB-231-ShITGA5 cells significantly reduced bone marrow micrometastasis

formation (P = 0.015), whereas the extent of tumor cell dissemination to lungs remained unchanged,
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compared to MDA-MB-231-Sh-Ctrl cells (Fig. 2c). These results may be explained by the fact
fibronectin was strongly expressed in bone tissue, whereas only a weak expression was observed in
lungs, the immunostaining being essentially localized around blood vessels within the lung
parenchyma (Fig. 2d). Moreover, high fibronectin expression levels in bone marrow stroma were
observed compared to lung parenchyma, when analyzing EST profiles of Mus Musculus and Homo
Sapiens tissue samples (Fig. S7). Thus, these data suggested that ITGAS preferentially mediates

tumor cell anchorage in the bone marrow by binding to fibronectin.

To determine whether ITGA5 could play a role in the formation and progression of bone
metastases, bone-seeking MDA-B02 cells, silenced or not silenced for ITGA5, were injected into the
tail artery of immunodeficient mice. Radiographic analysis of tumor-bearing animals 4 weeks after
tumor cell inoculation showed a significant decrease (P = 0.0268) of the extent of osteolytic lesions in
hind limbs of mice injected with MDA-B02-shITGA5 cells compared to that observed with MDA-B02-

shCtrl cells (Fig. S8).

Experiments were also conducted with human MCF-7 breast cancer cells that express low
amounts of ITGA5 (Fig. S3A, B). Transduction of luciferase2-expressing MCF-7 cells (MCF-7-luc2)
with a retroviral plasmid containing the ITGA5 open reading frame (MCF-7-luc2-ITGA5) resulted in a
strong expression of integrin a5B1 (Fig. 3a, b). As judged by flow cytometry analysis, ITGA5
overexpression led to decreased cell surface expression levels of a2 and o3 integrins, whereas cell
surface expression levels of a4, B1 and avB3 remained unchanged, when compared to control MCF-7-
luc2 cells (Figs. S4 and S5). Integrin a2B1 and a3B1 are acting as cell surface receptors for collagen
and laminin, respectively (35). We cannot exclude a decreased attachment of MCF-7-luc2-ITGA5 cells
to these extracellular matrix proteins. However, as expected, MCF-7-luc2-ITGA5 cell adhesion and
spreading to fibronectin was increased compared to that observed with MCF-7-luc2-Ctrl cells (Fig.
3c). MCF-7-luc2-ITGAS or MCF-7-luc2-Ctrl cells were therefore inoculated intra-arterially to nude mice
(Fig. 3d, e). Bioluminescence imaging revealed an earlier onset (P = 0.0186) of skeletal tumor burden

in mice injected with MCF-7-luc2-ITGAS cells, compared to animals bearing MCF-7-luc2-Ctrl cells
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(Fig. 3d). Microcomputed tomography of metastatic long bones showed that the BV/TV ratio (a
measure of the bone volume) was decreased (P = 0.035) in mice inoculated with MCF-luc2-ITGA5
cells, indicating a higher extent of bone destruction compared to animals bearing MCF-7-luc2-Ctrl
tumor cells (Fig. 3e).

Overall, these data indicated that ITGA5 mediates the homing of breast cancer cells in the

bone marrow and promotes formation of osteolytic bone metastases in vivo.

Pharmacological inhibition of ITGA5 reduces breast cancer cell dissemination to the bone

marrow and formation of osteolytic bone metastases in vivo

We examined the therapeutic potential of targeting ITGAS for the treatment of bone metastasis,
using a humanized monoclonal antibody against a581 (M200, volociximab) (18). Antibody M200
selectively binds to human a5p1, but not murine a5p1 (18). In vitro, M200 treatment dose-dependently
decreased MDA-B02 cell adhesion to fibronectin (P < 0.0003), but not to type | collagen, or vitronectin
(Fig. 4a). The paxillin immunofluorescent labelling of focal adhesion contacts showed that M200
specifically inhibited MDA-B02 and MDA-MB-231 cell spreading to a fibronectin matrix, but not to type
| collagen or vitronectin (Fig. 4b). In line with this inhibitory effect on tumor cell spreading, M200
treatment dose-dependently reduced MDA-B02 cell migration through inserts coated with fibronectin
(P < 0.001) (Fig. 4c). In vivo, immunodeficient mice were treated with M200 or a negative control IgG
antibody beginning 1 day (D-1) before intra-arterial inoculation of MDA-B02 cells (D0). The treatment
with the antibody then continued every other day until day 7 (D7), at which time animals were culled,
and the bone marrow collected and placed under antibiotic selection, enabling the selective outgrowth
of antibiotic-resistant tumor cells (Fig. 4d). After two weeks in culture, the average number of tumor
cell colonies recovered in the bone marrow from animals treated with M200 was significantly impaired,
compared to that recovered from animals treated with a control IgG (7 = 2 and 128 = 10 colonies/well,
respectively; P < 0.0003) (Fig. 4d). Using a similar treatment protocol from D-1 to D28 (Fig. 5a),
antibody M200 also significantly delayed the onset of skeletal tumor burden and extent of osteolytic
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lesions in animals (Fig. 5b, c). Histomorphometric analysis of metastatic legs from M200-treated
animals showed that the BV/TV ratio was enhanced when compared with control IgG-treated tumor-
bearing animals (Fig. 5d). This difference was accompanied by a sharp reduction in the TB/STV ratio (a
measure of the skeletal tumor burden) (Fig. 5d). Moreover, immunostaining of metastatic legs showed a

concomitant decrease of Ki-67 index, a measure of tumor cell proliferation (M200, 15.5 + 2.5 % vs Ctrl

IgG, 28.5 + 2.5 %; P < 0.05) (Fig. 5d).

To be free from the impact of bone-derived growth factors released from resorbed bone that
stimulate tumor growth, the anti-tumor potential of antibody M200 was investigated in animals bearing
subcutaneous MDA-B02 tumor xenografts (Fig. 6a). A statistically significant reduction of tumor
growth was observed in M200-treated tumor-bearing animals, compared to control IgG-treated tumor-
bearing animals (P < 0.005) (Fig. 6b, c). At day 35 after tumor cell inoculation, the median weight of
tumors from M200-treated animals was almost 3-fold lower than that of tumors from Ctrl IgG-treated
animals (P = 0.05) (Fig. 6d). Similarly, ITGAS silencing in MDA-B02 cells substantially reduced
subcutaneous growth of MDA-B02-shITGA5 tumors compared to control (Fig. S9). Furthermore, cell
cycle analysis showed that M200 treatment inhibited MDA-B02 cells entering into S phase, when
compared to that observed with a negative control IgG antibody (Fig. S10). Thus, M200 exhibits a

direct anti-tumor effect in vitro and in vivo.

Anti-ITGA5 function-blocking antibody M200 decreases human osteoclast differentiation and

activity.

M200 did not interfere with murine osteoclastogenesis induced by RANKL and MCS-F in
combination with the conditioned medium from MDA-BO02 cells (Fig. S11A), nor did it modulate gene
expression of murine osteoblast during osteoblastogenesis_in vitro (Fig. S11B). However, ITGAS is
expressed in human osteoclasts (36). We therefore tested the effect of M200 on human osteoclasts,

using PBMCs treated with RANKL and MCS-F to induce osteoclast differentiation, as previously
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258 described (37). When compared to cathepsin K (an osteoclast marker), osteoclasts did express
259 ITGAS5, both at the mRNA and protein levels (Fig. 7a, b). ITGA5 expression gradually decreased
260 during the course of osteoclast differentiation (Fig. 7b, c). Nevertheless, M200 was nearly as potent
261 as anti-RANKL antibody denosumab to inhibit human osteoclast differentiation in vitro, compared to a
262  control IgG (Fig. 7d). Furthermore, antibody M200 inhibited osteoclast activity, decreasing by 80% the
263 resorption of a synthetic inorganic bone matrix (Fig. 7e). By contrast, it did not affect osteoclast
264  viability (Fig. 7f).
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DISCUSSION

Our study establishes a bone-metastasis-promoting role for ITGA5 in breast cancer.
Specifically, we report that high ITGA5 levels in primary tumors were predictive of poor bone
metastasis-free survival in two separate clinical datasets (HR=1.36, P=0.018 and HR=1.62, P=0.024).
Additionally, using a clinical cohort of breast cancer patients without any clinical signs of metastasis,
we showed that high ITGA5S expression levels in primary tumors correlated with the presence of DTCs
in the bone marrow. Moreover, ITGA5 was expressed in human DTCs (this study and 12). Our clinical
data are consistent with those obtained in previous prospective clinical trials demonstrating that the
risk of recurrence in early-stage breast cancer is significantly higher in patients with detectable DTCs
in the bone marrow than in those without (3-5). These findings (3-5,12 and this study) collectively
suggest that ITGA5 mediates DTC colonization of the bone marrow. This contention was also
supported by our preclinical data. Using genetic silencing and overexpression strategies or
pharmacological inhibition, we uncovered a specific association between ITGA5 expression levels in
breast cancer and the development of bone metastasis. Although bone is a predominant site of
metastasis for ER-positive breast cancer with a frequency as high as 65 to 70%, triple negative breast
cancer exhibits a rate of bone metastasis (39%) similar to lung metastasis (43%), which is
comparatively higher than that observed in other distant metastatic sites such as brain (25%) and liver
(21%) (38). ITGAS5 could therefore contributes to the tropism of triple negative breast cancer cells to
bone. Several factors have been shown to regulate ITGA5 expression in triple negative breast cancer
(10, 39-41). For example, steroid receptor coactivator (SRC-1), which is an ER transcriptional
coactivator, enhances ITGA5S expression in ER-negative breast cancer cells (10). Additional factors
expressed by human breast cancer cells, such as PTH-rP and angiopoietin-2, promote tumor cell
adhesiveness to fibronectin and tumor cell motility and invasion through the specific up-regulation of
ITGA5 (39,40). Conversely, members of the miR-30 family impede breast cancer bone metastasis
formation by directly targeting ITGA5 (41). In this respect, ITGAS silencing in Hs578T cells (a triple-

negative breast cancer cell line expressing high ITGAS5 levels) recapitulates inhibitory effects of miR-
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30s on bone metastasis formation in vivo (41). Here, we found that abrogating ITGA5 in human MDA-
MB-231 cells also blunted tumor burden in the bone marrow, whereas the formation of pulmonary
micrometastases remained unaffected. These results may be explained by the fact that fibronectin is
naturally expressed in the bone stroma, whereas its expression in lung parenchyma is essentially
localized around blood vessels (11,42 and this study). This observation does not preclude a role for
ITGAS in lung metastasis. Indeed, ITGAS has been associated with lung metastasis in animal models
of breast cancer (14,15). However, our study suggests that additional molecular mechanisms
associated with lung metastasis formation may likely compensate for the lack of ITGA5 in human
breast cancer cells, whereas ITGAS5 is crucial for the homing of these cancer cells in the bone marrow.
It has previously been reported that ITGA5 promotes survival of breast cancer cells in the bone
marrow (12). Here, we showed that ITGA5 silencing reduced the survival of breast cancer cells (Fig.
S6C). We therefore propose that ITGAS provides breast cancer cells (and DTCs) with a survival
advantage by binding to fibronectin in the bone marrow, which explains, at least in part, why high
ITGA5 expression levels in primary tumors predict the occurrence of future bone metastases in
patients with early-stage breast cancer.

We previously reported that bone-seeking MDA-B02 cells specifically overexpress avp3
integrin, compared to parental MDA-MB-231 cells (34 and Fig. S5), and its overexpression by MDA-
MB-231 cells reproduces the bone metastatic phenotype of MDA-BO2 cells in vivo (17). Here, ITGA5S
had a bone-metastasis-promoting role, whereas ITGA5 expression in MDA-B02 cells was 20% lower
than that observed in MDA-MB-231 cells (Fig. S4). Although counterintuitive, expression levels of
integrins are not always a direct readout of integrin functions in cells (35). Additional levels of
regulation exist. Upon binding of integrins to extracellular matrix proteins, there is a crosstalk between
integrins that determines downstream signaling and cell behavior (35). For example, 531 and av33
integrins both bind fibronectin and this is the collaborative interactions among these two integrins
rather than their respective expression levels that determine cell migration response toward fibronectin

(43). Interestingly, the knockdown of integrin B1 in murine 4T1 triple negative breast cancer cells
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induces a compensatory increase in 3 integrin expression and a switch in the migratory behavior of
4T1 cells from collective to single cell movement in vitro that leads to metastasis in vivo (44). The B1
integrin subunit heterodimerizes with different o subunits (35), which probably explains why ITGA5
silencing did not modify cell surface expression levels of 1 and av3 in MDA-MB-231 and MDA-B02
cells (Figs. S4 and S5). Yet, it is conceivable that a5B1 helps triple negative breast cancer cells
survive in the bone marrow until environmental conditions are sufficiently permissive for tumor growth,
at which time integrin switching from a5B1 to avB3 triggers pro-invasive signals. This hypothesis
warrants further investigation.

Having shown that there is an explicit role for ITGA5 in mediating early breast cancer cell
colonization in the bone marrow, we then investigated whether ITGA5 also plays a role in the
development of metastatic skeletal lesions. In bone metastasis, there is a vicious cycle where tumor
cells stimulate osteoclast-mediated bone resorption and, in turn, bone-derived growth factors released
from resorbed bone stimulate skeletal tumor burden (2). We showed that the silencing or
pharmacological inhibition of ITGA5 markedly reduced tumor outgrowth in experimental models of
bone metastasis or tumorigenesis. This inhibition of tumor growth (and subsequent overall decrease in
the secretion of tumor-derived pro-osteoclastic factors) led to the reduction in osteoclast-mediated
bone destruction as would be predicted by the vicious cycle theory. However, there is some evidence
in the literature showing that human osteoblasts and osteoclasts do express ITGA5 (36,45). It is
possible that M200 could act upon human osteoblast differentiation. Here, we found that a clinically
relevant concentration of M200 antibody was nearly as effective as the anti-RANKL antibody
denosumab to inhibit human osteoclast differentiation and activity in vitro. Thus, in addition to its anti-
tumor effect, we anticipate antibody M200 may also be effective at inhibiting bone resorption.

Clinical trials have repeatedly failed to demonstrate therapeutic benefits of integrin inhibitors in
cancer patients (35). Volociximab has shown preliminary evidence of efficacy in early phase /Il trials
but failed in larger phase lll trials (18,20,21). However, none of these clinical trials using patients with

advanced cancer and metastasis have specifically addressed the efficacy of volociximab on bone
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metastasis. A focus for further work would be to establish if ITGAS-positive breast cancer patients with

bone metastases are likely to benefit from volociximab in combination with denosumab, which is the

best standard of care for prevention of the skeletal morbidity associated with bone metastases in

patients with advanced malignancies (2).
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MATERIAL AND METHODS
Patients

ITGA5 mRNA expression was quantified by RT-qPCR in primary breast carcinomas obtained from the
Curie Institute/René Huguenin  Hospital (Saint-Cloud, France) (29). ITGA5 protein
immunohistochemistry was performed using primary tumors from breast cancer patients for whom the
presence or absence of DTCs in bone marrow aspirates was known (University Medical Center

Hamburg-Eppendorf, Germany) (30,31,46,47).

Analysis of human breast tumor microarray data sets

Analysis were conducted using public breast cancer microarray data sets GSE2034, GSE12276,
GSE2603 and NKI295, consisting of 855 patients with clinical outcomes (48), and data sets

GSE11078 and GSE14020 for 80 distant breast cancer metastases (49,50).

Real-Time qPCR

PCR experiments were conducted as previously described (51). All primers are shown in Table S3.

Tissue microarray and immunohistochemistry

Immunodetection of ITGA5 in breast tumor tissue microarrays was performed following a previously

described method (4).

Cell lines and cell transduction

Human breast cancer cell lines T47D, MCF-7, Hs587T, SKBR3, BT-474 and MDA-MB-231 were
obtained from the American Type Culture Collection (ATCC, Manassas, VA) and authenticated using

short tandem repeat analysis. The human MDA-B02 breast cancer cell line (MDA-B02) is a
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subpopulation of the MDA-MB-231 cell line (MDA-MB-231) that was selected for its high and selective

efficiency to metastasize to bone in mice (34,52).

Stable silencing of ITGAS was achieved in luciferase-2-expressing MDA-MB-231 and MDA-BO2 cells
(MDA-231-shITGA5 and MDA-BO2-shITGAS5, respectively) by transduction with lentiviral plasmids
containing hairpin shRNAs targeting ITGA5. ITGAS5 was overexpressed in luciferase-2-expressing

MCEF-7 cells (MCF-7luc2 ITGAS5) using the amphotropic retroviral packaging system (Clontech).

Cell-based assays

Tumor cell functions were investigated using cell adhesion and migration assays, and cell cycle
analysis, as previously described (41,53,54). The effect of antibody M200 on differentiation of mature

osteoclasts or osteoblasts was studied using previously described methods (37,41,55).

Animal studies

All procedures involving animals, including housing and care, method of euthanasia, and experimental
protocols were conducted in accordance with a code of practice established by the local ethical
committee (Comité d'Expérimentation Animale de I'Université Claude Bernard Lyon 1, CEEA-55)
under project licence MESR number: APAFIS#4798-2016040510106615. Four-week-old female
BALB/c nude mice were purchased from Janvier Laboratories (Saint-Berthevin). For bone metastasis
experiments, immunodeficient BALB/c female nude mice were randomly assigned to receive
intraperitoneal injection of M200 antibody or control IgG (15 mg/kg) one day before tumor cell
injection. MDA-BO2 cells were then inoculated into the tail artery (5.10°100 pL of PBS) of
anesthesized mice at day 0. Alternatively, MDA-BO2 shCtrl or MDA-BO2 shITGA5 cells (5.10°/100 pL
of PBS) were inoculated into the tail artery. Hormone-responsive MCF-7luc2 ITGA5 and MCF-7luc2

control cells (4 X 10° cells /100 pL of PBS) were injected intra-arterially to female BALB/c nude mice
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two days after subcutaneous implantation of 17B-estradiol pellet in animals. Measurements of the
extent of osteolytic lesions and skeletal tumor burden were performed by radiography/micro-computed
tomography and bioluminescence imaging, respectively, as previously described (41,52-54). On day
28 after tumor cell inoculation, anesthetized mice were sacrificed by cervical dislocation and hind
limbs were collected and embedded in paraffin for further analyses by histomorphometry, histology
and immunohistochemistry. Ex vivo bone marrow micrometastasis and tumorigenesis experiments

were conducted as previously described (41,52-54).

Statistical analysis

All statistical analyses were performed using PASW Statistics (version 21.0; SPSS Inc, Chicago) or
GraphPad Prism (version 5, San Diego). All in vitro experimental procedures consisted of at least 3
independent biological repeats, and appropriate negative and positive controls. Comparisons were
performed using two-sided unpaired Student-t test or ANOVA test followed by Tukey’s test for in vitro
experiments and by Mann-Whitney U test for in vivo experiments with significance at <0.05 being used
to determine significant differences. Cox proportional regression model was used to estimate hazard
ratios and 95% Cls for distant relapse to bone in relation to the ITGA5 expression as a continuous
variable, with adjustment for classic prognostic factors: age, tumor size, node involvement, estrogen
receptor and progesterone receptor status, and Her2 status. Survival analyses were visualized using
Kaplan-Meier plots and differences in survival across the strata were calculated using a log-rank P
test. In total, data were obtained from 855 patients with, as the first site of relapse, bone (n=238), brain
(n=49), lung (n=101) or liver metastasis (n=107). For analyses of bone relapse free survival, non-bone

events, including liver, lung and brain relapses were censored.

The power calculation for ex vivo experiments is based on our previous work (41,53,54), showing that

bone marrow micrometastases occur in 80% of animals. Similarly, for bone metastasis experiments,
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80% of animals have skeletal lesions 4 weeks after intra-arterial tumor cell inoculation (17,41,52-54).
Assuming a power of 80% and a level of significance of 5%, we estimated that we will be able to
measure a difference of 60% or greater with 10 animals per group, using a Mann-Whitney test. With
regard to tumor xenograft experiments, the tumor take in this animal model is 90-100%. From our
previous work (17,41,52-54), assuming a power of 80% and a level of significance of 5%, we
estimated that we will be able to measure a difference of 60% or greater with 5 animals per group,
using a Mann-Whitney test. Only the animals that were alive at the end of the protocols were included

in the statistical analyses.

In order to avoid bias for in vivo experiments, staff injecting transduced tumor cells into animals were
different from those assessing the effects of transduction. Mice and subsequent tissue samples were
labelled such that staff assessing the effects of transduction and analyzing the results were unaware
which group received mock-transduced tumor cells or tumor cells in which ITGA5 was silenced or

overexpressed until analyses were complete.

Additional methods

A more detailed description of methods outlined above, and additional methods used in this study are

provided in the Supplementary Methods section.
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FIGURE LEGENDS

Figure 1: ITGAS is a bone metastasis-associated gene in breast cancer. (A) Heat map analysis of
genes that are highly expressed in bone metastases (n=21) compared to visceral metastases (n=59).
Each row represents a gene, and each column represents a metastasis specimen. Class comparison
analysis was performed using a univariate t test (p < 10, fold-change > 1.5). (B) Heat map of genes
associated with bone metastasis-free survival. Transcriptomic gene profile of 855 radically resected
primary breast tumors were hierarchized according to the location of the first distant metastasis. Bone
metastasis-negative patients: patients who first relapsed at non-bone sites or did not relapse after 200
months follow-up. Bone-metastasis-positive patients: patients who first relapsed in bone after 100
months follow-up. (C) Venn diagram of (a) genes upregulated in bone versus visceral breast cancer
metastasis (gene set #1) and (b) genes upregulated in primary tumors from patients with early
occurrence of bone metastasis (gene set #2), which underscores a set of 9 genes (gene set #3)
shared between gene sets #1 and #2. EFEMP2: EGF-containing fibulin-like extracellular matrix protein
2. ITGAS: integrin alpha 5. KIAA1199: Cell migration-inducing and hyaluronan-binding protein
(CEMIP). MFAPS5: Microfibrillar-associated protein 5. PLXDC1: Plexin domain-containing protein 1.
SPOCK1: SPARC (Osteonectin), Cwcv And Kazal Like Domains Proteoglycan 1. TCIRG1: T Cell
Immune Regulator 1. TGFB1I1: Transforming Growth Factor Beta 1 Induced Transcript 1. (D) ITGA5
MRNA expression levels in breast cancer metastases. Data are expressed as mean + SEM. (E)
Kaplan-Meier estimates for rates of bone metastasis-free survival of breast cancer patients (n = 427),
according to high and low ITGA5 expression levels. HR: hazard ratio; Cl: confident interval. HR and
95% CI are based on Cox univariate analysis. (F) Percentage of breast cancer patients with DTCs in
the bone marrow according to high or low ITGA5 expression levels in matched primary mammary

tumors (n = 268). ITGAS+: ITGAS-high. ITGA5-: ITGAS-low. *: P = 0.039.

Figure 2: ITGAS5 in triple negative MDA-MB-231 and MDA-B02 breast cancer cells promotes the

burden of micrometastatic disease in the bone marrow in vivo. (A) ITGAS expression in MDA-MB-231
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and MDA-B02 cells silenced for ITGA5 (shITGA5), compared to control cell lines (shCtrl), as
measured by western blotting. (B) Cell surface expression levels of integrin a5B1 in MDA-MB-231-
(left-hand panel) and MDA-B02-shCtrl and shITGA5 cells (right-hand panel), as measured by flow
cytometry using anti-ITGA5 monoclonal antibody IIA1 (red and black histograms) or an isotype-
matched negative control antibody (grey histograms). (C) Top-left panel: Schematic representation of
the experimental protocol. MDA-MB-231-shCtrl or MDA-MB-231-shITGA5 cells were inoculated intra-
arterially to Balb/c nude mice (n = 5 per group). Two weeks after tumor cell inoculation, animals were
culled, and the bone marrow and lungs collected for tumor cell colony assays. Bottom-left panel:
Representative images of tumor cell colonies in the bone marrow and lung are shown for each cell
line. Right panel: Bar graphs showing the average number of tumor cell colonies formed in the bone
marrow and lungs for each cell line. Data are expressed as the mean + SEM. (D) Fibronectin
immunostaining in bone and lung. Right-hand panels are a magnification of insets shown in left-hand
panels. In bone, a strong immunostaining for fibronectin was observed in osteoblasts (white arrows),
osteocytes (red asterisks) and endothelial cells (black arrows). In lungs, the immunostaining was

mainly localized around blood vessels.

Figure 3: Overexpression of ITGAS in human luminal-A MCF-7 breast cancer cells promotes tumor
cell adhesion to fibronectin in vitro and enhances skeletal tumor burden and the extent of metastatic
osteolytic lesions in vivo. (A) Western blot analysis of ITGAS in MCF-7-luc2 cells (MCF-7 Ctrl) after
transduction with the retroviral plasmid (MCF-7 ITGA5). (B) Flow cytometry analysis of cell surface
expression of a5p1 integrin in MCF-7-Ctrl and MCF-7-ITGA5 cells. (C) Left panels: Representative
images of MCF-7-Ctrl and MCF-7-ITGAS5 cell adhesion to fibronectin as a function of time. Right panel:
Quantification of the number of adherent cells to fibronectin at 20 and 40 min. *: P <0.001, **: P
<0.0001. (D) Top panel: Schematic representation of the experimental protocol. MCF7-luc2-Ctrl or
MCF7-luc2-ITGA5 cells were inoculated intra-arterially to Balb/c nude mice (n = 4 to 5 per group).

Eighty days after tumor cell inoculation, animals were analyzed by bioluminescence imaging and
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histomorphometry of metastatic legs was measured by microcomputed tomography (uCT). Bottom-left
panel: whole-body bioluminescence imaging of a representative animal for each group at day 80 after
tumor cell inoculation. Bottom-right panel: Kaplan-Meier estimates for rates of invasive-disease-free
survival (IDFS) of animals, as measured by bioluminescence imaging. (E) Left panel: uCT of
representative metastatic tibiae for each group. Right panel: Assessment of bone destruction by
histomorphometry, as measured by the bone volume (BV)/tissue volume (TV) ratio of metastatic legs

from mice injected with MCF7-luc2-Ctrl (n=5) or MCF7-luc2-ITGAS cells (n=4).

Figure 4: Function-blocking humanized anti-ITGA5 monoclonal antibody M200 specifically inhibits
breast cancer cell adhesion and spreading to fibronectin and blocks MDA-B02 cell colonization in the
bone marrow. (A) MDA-B02 cells treated or not treated with increasing concentrations of M200 (50,
150 and 250 ug/ml) were allowed to adhere for 1 hour to human fibronectin, type | collagen or
vitronectin. Attached cells were then fixed, stained and counted under microscope. Data are
expressed as mean + SEM of three separate experiments. ***: P < 0.0001. (B) Representative
images of paxillin immunofluorescent labelling of focal adhesion contacts (black spots at the edge of
the plasma membrane) in MDA-MB-231 and MDA-B02 cells treated with a control IgG or M200 (250
ug/ml) that attached and spread to fibronectin, type | collagen or vitronectin. (C) Effect of increasing
concentrations of control IgG or M200 (50, 150 and 250 ug/ml) on MDA-B02 cell migration through 8-
um diameter pore-size inserts coated with fibronectin. Data are the mean + SEM of three separate
experiments. **: P <0.001; ***: P <0.0001. (D) Top-left panel: Schematic representation of the
treatment protocol. MDA-B02 cells were inoculated intra-arterially to Balb/c nude mice. Animals
received a treatment with a control IgG or M200 (15 mg/kg) every other day, starting one day before
tumor cell inoculation. Seven days after tumor cell inoculation, animals were culled, and the bone
marrow collected for tumor cell colony assays. Bottom panel: Representative images of tumor cell

colonies in the bone marrow from animals treated with M200 or the control IgG.
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Figure 5: Pharmacological inhibition of ITGAS with M200 treatment reduces bone metastasis
formation in vivo. (A) Top panel: Schematic representation of the treatment protocol. MDA-B02 cells
were inoculated intra-arterially to Balb/c nude mice. Animals (10 mice per group) received a treatment
with a control IgG or M200 (15 mg/kg) every other day, starting one day before tumor cell inoculation.
Bone metastasis formation in animals was monitored over time by bioluminescence imaging and
radiography. Twenty-eight days after tumor cell inoculation, animals were culled, and metastatic bones
were analyzed by histomorphometry and immunohistochemistry. (B) Left panels: whole-body
bioluminescence imaging of a representative animal for each group at day 28. Middle panel:
Progression of tumor burden in control IgG- and M200-treated animals, as measured by whole body
bioluminescence imaging. Right panel: Kaplan-Meier estimates for rates of invasive-disease-free
survival (IDFS) of animals, as measured by bioluminescence imaging. (C) Left panels: radiograph of a
representative metastatic leg for each group at day 28. Middle panel: Progression of osteolytic lesion
areas in control IgG- and M200-treated animals, as measured by radiography. Right panel: Kaplan-
Meier estimates for rates of bone metastasis-free survival (BMFS) of animals, as measured by
radiography. (D) Left panels: Goldner’s trichrome staining of tibial tissue sections of metastatic legs
from tumor-bearing mice treated with the control IgG or M200. Bone is stained green, whereas bone
marrow (BM) and tumor cells are stained purple. Middle panel: Assessment of bone destruction and
tumor burden as measured, respectively, by the bone volume (BV)/tissue volume (TV) ratio and tumor
burden (TB)/soft tissue volume (STV) ratio of metastatic legs from tumor-bearing mice treated with the
control IgG or M200. *: P < 0.05. Right panel: Representative Ki67 staining of tumor areas in bone

tissue sections from metastatic legs of animals treated with the control IgG or M200.

Figure 6: Pharmacological inhibition of ITGA5 with M200 treatment reduces growth of subcutaneous
tumor xenografts in vivo. (A) Schematic representation of the treatment protocol. MDA-B02 cells were
inoculated subcutaneously to Balb/c nude mice. Animals (5 mice per group) received a treatment with

a control 1gG or M200 (15 mg/kg) every other day, starting one day before tumor cell inoculation.
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Tumor growth in animals was monitored over time by bioluminescence imaging and using a Vernier
caliper. At day 35 after tumor cell inoculation animals were culled and tumors weighted. (B) Left panel:
Whole-body bioluminescence imaging of 3 representative mice per group at day 35. Right panel:
Tumor burden curves of tumor-bearing animals treated with the control IgG or M200, as judged by
bioluminescence imaging (photons/second). (C) Tumor growth curves of tumor-bearing animals
treated with the control IgG or M200, as judged by Vernier caliper measurement (mm?). (D) Bar graph
represents the average weight of tumors for each group. Data are presented as mean + SEM. *: P

<0.05, **: P <0.01, ***: P <0.005.

Figure 7: Pharmacological inhibition of ITGA5 with M200 antibody inhibits human osteoclast
differentiation and activity in vitro. (A) ITGA5 and cathepsin K mRNA expression levels (relative to
GSUb housekeeping gene) at different stages of human osteoclast differentiation. (B) Western blot
analysis of ITGA5 at different stages of human osteoclast differentiation. (C) Fluorescence-based
staining of ITGAS and F-actin ring (white arrowheads) at different stages of human osteoclast
differentiation, using phycoerythrin-conjugated anti-ITGA5 antibody and FITC-labeled phalloidin,
respectively. Scale bar: 100 um. (D) In vitro osteoclast differentiation of human peripheral blood
mononuclear cells treated with M-CSF and RANKL, alone (Ctrl) or in combination with anti-RANKL
antibody denosumab (250 ug/ml) or anti-ITGA5 antibody M200 (250 pg/ml). Mature osteoclasts were
quantified as multinucleated (more than three nuclei), TRAP-positive cells. Representative images are
shown for each group. *,**: P < 0.05 and 0.001, respectively. (E) Resorption of an inorganic 3-
dimensional crystalline material by human osteoclasts treated with a control IgG or M200 (250 pg/ml).
Representative images are shown for each group. *: P < 0.05. (F) Effect of control IgG and M200 on

viability of human osteoclasts, as measured by MTT assay.
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Figure 7: Pantano et al.



Table 1. Association of ITGAS expression with clinical and biological characteristics
of patients with early-stage breast cancer from the Curie Institute/Centre René

Huguenin cohort.*

Characteristics Hazard 95% CI 95% ClI P value

Ratio lower limit  upper limit

Age 1.000 0.985 1.016 0.965
Tumor size 1.003 0.991 1.015 0.650
Nodal status 2.635 1.271 5.462 0.009
Estrogen receptor status 0.825 0.524 1.297 0.404
Progesterone receptor status 1.267 0.858 1.872 0.234
Her2 status 0.784 0.526 1.170 0.234
ITGAS expression 1.359 1.083 1.707 0.028

(*) Hazard ratios and 95% Confidence Intervals (Cls) are based on Cox multivariate regression
analysis.
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