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Exact pressure elimination for the Crouzeix-Raviart scheme

applied to the Stokes and Navier-Stokes problems

Eric Chénier∗ and Robert Eymard†

January 10, 2021

Abstract

We show that, using the Crouzeix-Raviart scheme, a cheap algebraic transformation, applied to
the coupled velocity–pressure linear systems issued from the transient or steady Stokes or Navier-
Stokes problems, leads to a linear system only involving as many auxiliary variables as the velocity
components. This linear system, which is symmetric positive definite in the case of the transient
Stokes problem and symmetric invertible in the case of the steady Stokes problem, with the same
stencil as that of the velocity matrix, provides the exact solution of the initial coupled linear system.
Numerical results show the increase of performance when applying direct or iterative solvers to the
resolution of these linear systems.
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1 Introduction

This paper is focused on the resolution of the coupled velocity-pressure linear systems issued from the
discretisation by the Crouzeix-Raviart scheme [7] of the steady (or transient and semi-discretised in
time) Stokes and Navier-Stokes problems, considering for the sake of simplicity homogeneous Dirichlet
boundary conditions for the velocity. In the case of the Navier-Stokes problem, these linear systems are
resulting from the Newton-Raphson method applied to iteratively solve the non-linear equations.

These linear systems are under the form [
A Dt

D 0

] [
U
P

]
=

[
R
0

]
, (1)

where A is the rigidity matrix resulting from the use of the P1 non conforming finite element method
for the velocities, completed by the mass matrix in case of the transient case, and by some derivatives
issued from the convection term in case of the Navier-Stokes problem, D is the discrete divergence matrix
written element by element, U is the vector of all velocity unknowns, P is the vector of all (but one)
pressures unknowns and R is the right hand-side resulting from the momentum source terms.

In the case of the steady or transient Stokes problem, the matrix A is symmetric. This is no longer the
case for the Navier-Stokes problem. But even in the case of the steady or transient Stokes problem, the
matrix of the linear system (1) is not positive definite, due to the fact that there are negative eigenvalues
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since there are zeros on the main diagonal. This property makes much more complicate the use of
iterative solvers based, for example, on conjugate gradient or GMRES [13] methods preconditioned with
Incomplete Lower-Upper (ILU) factorization. Note that the implementation of the ILU preconditioners
on parallel architectures [6] fails to provide the same preconditioning properties as ILU on only one
processor, due to the loss of some sequential computations.

Then many authors are led, on small cases, to use direct solvers (recall the remarkable performances of
the direct MUMPS solvers on parallel architectures [3, 2]). But on large matrices, such direct methods
can no longer be reasonably applied, and there is a need to use all the same an iterative linear solver.

Another option consists in adding a small diagonal pressure-pressure connection, as performed by the
augmented Lagrangian methods. But then, the iterative convergence properties of the solutions for such
a modified system to that of the original one may become very slow.

Such difficulties for solving the linear systems issued from a mixed formulation are well-known when
solving a simple Laplace problem. In this case, Hdiv conforming finite elements are used for the approx-
imation of the gradient of the unknown (the Raviart-Thomas finite element is often used in the case of
simplicial meshes), and piecewise constant elements are used for the unknown. A very clever method is
then known for overcoming the difficulty of solving the linear systems issued from this problem: it is the
famous hybridisation of the problem, leading to solve a symmetric positive definite linear system on the
trace of the unknown on the faces of the mesh [4, 8, 14]. Note that a similar idea is used in [1] in the
case of the Stokes problem, discretised by Hybrid High Order methods.

This paper is based on the extension of the same idea for applying an algebraic hybridisation to the case
of the coupled linear systems (1). Let us emphasize that the solution of the linear system is not modified
by the use of this hybridisation. In order the method to apply to the Navier-Stokes problem, we select
an implementation of the non-linear convection term which does not increase the stencil of the Stokes
problem [10].

In the transient Stokes problem, we get, after hybridisation, a symmetric positive definite linear system
with as many unknowns as the velocities, and the same connection stencil (even in the case of the Stokes
problem, the different space components of the auxiliary unknowns are connected, contrarily to the
original velocity-velocity matrix).

In the steady case, we are led to introduce a modification in the diagonal blocks to have an invertible
block diagonal matrix. Once again, the solution of the linear system is not altered by this modification.
After hybridisation, we obtain in the case of the Stokes problem final symmetric linear system to be
solved with as many unknowns as the velocities, but the matrix is no longer positive definite.

This paper is organised as follows. We first detail in Section 2 the construction of the scheme, with
precising the treatment of the right-hand-side allowing exact numerical solutions in the case where it
resumes to the gradient of a scalar field, and with a formulation of the convection term which does not
enlarge the stencil. We then show in section 3 how the linear systems issued from this scheme can be
algebraically handled for obtaining smaller linear systems with the same sparsity. We finally compare, in
Section 4, the numerical efficiency of different linear solvers, applied to the initial coupled linear system
and applied to their algebraic transformation.

2 The Crouzeix-Raviart scheme for d = 2 or d = 3

Let us first give the strong formulation of the Stokes and Navier-Stokes equations in their steady or
semi-discrete transient versions:
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
µu− ν∆u+∇p+ b(u) = f in Ω

divu = 0 in Ω
u = 0 on ∂Ω∫

Ω
p(x)dx = 0

(2)

where u = (u(i))i=1,...,d with d = 2 or d = 3 represents the velocity field, ∆u = (∆u(i))i=1,...,d, p is the
pressure, the domain Ω with boundary ∂Ω is a bounded open set in Rd, ν > 0 is the invert of the Reynolds

number, f = (f
(i)

)i=1,...,d is a given function defined on Ω, ∇p =
(
∂ip
)
i=1,...,d

, divu =
∑d
i=1 ∂iu

(i).

For the steady problem, µ = 0 and in the case where the problem is transient, µ > 0 is the invert of the
time step: then f includes a term issued from the velocity at the beginning of the time step (and the
transient problem is semi-discretised in time).

For the transient or steady Stokes problems, we let

b(u) = 0, (3)

and for the Navier-Stokes problem, we define the non-linear convection term by

b(u) = (u · ∇)u =
( d∑
j=1

u(j)∂ju
(i)
)
i=1,...,d

. (4)

The standard weak formulation of Problem (2) is the following mixed one. Defining L2
0(Ω) as the set of

elements of L2(Ω) with null mean value on Ω, this formulation is given by
Find u ∈ H1

0 (Ω)d and p ∈ L2
0(Ω) such that

∀v ∈ H1
0 (Ω)d,

∫
Ω

(
µu · v + ν∇u : ∇v − pdivv + b(u) · v

)
dx =

∫
Ω

f · vdx

∀q ∈ L2
0(Ω),

∫
Ω

divu qdx = 0

(5)

The Crouzeix-Raviart scheme [7] is the translation of the weak formulation (5) into discrete sets and
operators applying on simplicial meshes (triangles in 2D, tetrahedra in 3D). It reads

Find u ∈ (Vh)d and p ∈ Qh,0 such that

∀v ∈ (Vh)d,

∫
Ω

(
µΠhu ·Πhv + ν∇hu : ∇hv − pdivhv

)
dx+ bh(u,v) =

∫
Ω

f · Π̂hvdx

∀q ∈ Qh,0,
∫

Ω

divhu qdx = 0.

(6)

Let us define each of the discrete objects involved in (6).

1. The finite dimensional space Vh.
LetM be a simplicial mesh, that is a finite set of disjoint open simplices whose closure recovers Ω.
For K ∈ M, we denote by xK the centre of gravity of K. Denote by F the set of all faces (edges
in 2D) of the mesh, that is partitioned into Fint ∪ Fext (the set of interior and exterior faces), and
denote for any K ∈M by FK the set of the faces of K. We denote by FK,int = FK ∩ Fint.

For any σ ∈ FK , we denote by nK,σ the unit vector, normal to σ and outward to K, and we let

aK,σ = |σ|nK,σ.

We assume that there are no hanging nodes, which implies that the cardinal of any FK is equal to
d + 1 (3 in 2D, 4 in 3D). For any face σ ∈ F , we denote by Mσ the set of the simplices K ∈ M
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such that σ ∈ FK . Then the cardinal of Mσ is 2 for an interior face, 1 for an exterior face. For
any σ ∈ F , we denote by xσ the centre of gravity of σ.

We then define, for any σ ∈ Fint withMσ = {K,L}, the function ϕσ : Ω→ R whose the restriction
ϕσ,K on K (respectively ϕσ,L on L) is an affine function on K (respectively L) and which is null
on any other element of the mesh. Moreover, one requests that the mean values of both ϕσ,K and
ϕσ,L are equal to 1 on σ and equal to 0 on any σ′ ∈ FK ∪ FL different from σ. These conditions
are sufficient for defining in an unique way the affine functions ϕσ,K and ϕσ,L, on each of which
d+1 independent conditions have been specified. This definition ensures the continuity of the mean
value of these functions on any face of the mesh, as well as the continuity of these functions at the
centre of gravity of the faces of the mesh.

Then the space Vh is defined as the space spanned by the family (ϕσ)σ∈Fint
.

For any v ∈ Vh and K ∈ M, we denote by vK the restriction of v to K (it is therefore an affine
function).

For any v ∈ (Vh)d and σ ∈ F , we then denote by Vσ the vector Vσ = (V
(i)
σ := v

(i)
K (xσ))i=1,...,d.

2. The discrete operators ∇h and divh.
The discrete operators ∇h and divh are defined as the “broken” ones, that means that there
restriction to any element of the mesh are defined as the continuous ones:

∀v ∈ Vh, ∀K ∈M, (∇hv)|K = ∇vK and ∀v ∈ (Vh)d, ∀K ∈M, (divhv)|K = divvK .

3. The discrete reconstruction operator Πh.
The operator Πh is introduced in order to obtain some mass lumping in the “mass matrix” term,
that is in order to get a diagonal mass matrix. If d = 2, using the Crouzeix-Raviart basis functions,
the matrix

Mσ,σ′ =

∫
K

ϕσ(x)ϕσ′(x)dx

is already diagonal, and then Πh = Id. But this fails if d = 3. We then denote by Πhϕσ a piecewise
constant function, equal to 1 in a domain surrounding σ and 0 elsewhere (this domain is defined as
the union of the two triangles (2D) or tetrahedra (3D), the basis of which is σ, and the vertex of
which is the centre of gravity of the neighbouring simplices).

4. The discrete reconstruction operator Π̂h.
Following [12], the operator Π̂hv is designed to ensure the following properties: Π̂hv ∈ Hdiv(Ω)

(which means a kind of continuity of the normal trace on any internal boundary), Π̂hv − v tends
to 0 as h tends to 0 if v is the interpolation of any regular function, and finally there holds,

∀v ∈ V dh ,
(
∀q ∈ Qh,0,

∫
Ω

divhv qdx = 0

)
⇒ divΠ̂hv = 0 a.e. in Ω. (7)

Indeed, if we change f into f +∇ϕ, Property (7) implies that the discrete velocity is not modified,
only the pressure field is changed by the addition of an interpolation of ϕ. This property leads to
a substantial decrease of the numerical error, in particular in the case where the major part of f
is constituted by the gradient of a scalar field. To this purpose, we use the Raviart-Thomas basis,
which is conforming in Hdiv(Ω) and defined, for all K ∈M, σ ∈ FK and x ∈ K, by

ψK,σ(x) =
|σ|
d |K|

(x− sσ),
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where sσ is the vertex of K which is not a vertex of σ. Then we define, for any x ∈ K,

Π̂hv(x) =
∑
σ∈FK

Vσ · nK,σψK,σ(x) =
∑
σ∈FK

Vσ · aK,σ
d |K|

(x− sσ).

We then approximate
∫
K
f · Π̂hvdx by∫

Ω

f · Π̂hvdx =
∑
K∈M

∑
σ∈FK

Vσ · aK,σ
( 1

|K|

∫
K

fdx
)
· (xσ − xK). (8)

5. The finite dimensional space Qh,0.
We define Qh as the finite dimensional subset of L2(Ω) spanned by the characteristic functions ψK
of all the simplices K ∈ M (ψK is the piecewise constant function defined on Ω which is equal to
one inside K and 0 elsewhere). Since the pressures can be defined up to a constant value, instead of
defining a space of functions with null average (which would connect all components of the function
together), we select a given element of the meshM, denoted K0, and we define the set Qh,0 as the
set of all elements p ∈ Qh vanishing on K0. Note that, for any p ∈ Qh,0, we retrieve an element of
L2

0(Ω), considering p− 1
|Ω|
∫

Ω
p(x)dx.

6. The non-linear form bh(u,v).
This non-linear form vanishes for the transient or steady Stokes problems. For the Navier-Stokes
problem, the following discretisation for bh(u,v) has been proposed by [10] and is compared to
other choices in [9]. Its main advantage is to keep a reduced stencil in the linear systems. All the
simplices K are split into co-volumes linked to the faces, as shown by Figure 1. The co-volume

nσ,σ′

τσ,σ′

DK,σ

xK

xσ′
xσ

Figure 1: Co-volumes associated with faces

associated with a face σ in a simplex K, is defined as the cone DK,σ based on σ, whose vertex is
the centre of gravity of K (it is then a simplex as well). This sub-mesh leads to the definition of
d(d− 1) internal faces, each of them being common to DK,σ and DK,σ′ , denoted τσ,σ′ , for any pair
σ, σ′ ∈ FK . Then the unit normal vector to the face τσ,σ′ , oriented from DK,σ to DK,σ′ , is denoted
by nσ,σ′ . We then define bh(u,v) by the relation

bh(u,v) :=
∑
K∈M

∑
{σ,σ′}⊂FK

Fσ,σ′(u)(Uσ′ −Uσ) · Vσ + Vσ′

2
, (9)

which also satisfies

bh(u,v) =
1

2

∑
K∈M

∑
σ∈FK

Vσ ·
∑

σ′∈FK\{σ}

Fσ,σ′(u)(Uσ′ −Uσ),
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where Fσ,σ′(u) is defined by

Fσ,σ′(u) =

∫
τσ,σ′

uK(x) · nσ,σ′ds(x).

We remark that, for σ, σ′ ∈ FK , the centre of gravity xσ,σ′ of τσ,σ′ is given by

xσ,σ′ = xσ + xσ′ − xK ,

and we observe that

|τσ,σ′ |nσ,σ′ =
1

d+ 1
(aK,σ′ − aK,σ).

This yields

Fσ,σ′(u) =
(
Uσ +Uσ′ − 1

d+ 1

∑
σ′′∈FK

Uσ′′

)
· 1

d+ 1
(aK,σ′ − aK,σ).

We then check that the relation
∑
σ′∈FK Uσ′ · aK,σ′ = 0 implies that∑
σ′∈FK

Fσ,σ′(u) = −Uσ · aK,σ.

Hence, the above definition is such that, if divhu = 0, then there holds bh(u,u) = 0 for all u ∈ Vh.
Indeed, there holds

0 =

∫
DK,σ

divuK(x)dx =
∑

σ′∈FK\{σ}

Fσ,σ′(u) +

∫
σ

uK(x) · nK,σds(x),

which implies that

bh(u,u) =
1

2

∑
K∈M

∑
{σ,σ′}⊂FK

Fσ,σ′(u)(|Uσ′ |2 − |Uσ|2)

= −1

2

∑
K∈M

∑
σ∈FK

|Uσ|2
∑

σ′∈FK\{σ}

Fσ,σ′(u) =
1

2

∑
K∈M

∑
σ∈FK

|Uσ|2
∫
σ

uK(x) · nK,σds(x),

and this last term vanishes, since if σ ∈ Fext,
∫
σ
uK(x) ·nK,σds(x) = 0, and ifMσ = {K,L}, then,

by definition of Vh from V̂h, there holds∫
σ

uK(x) · nK,σds(x) +

∫
σ

uL(x) · nL,σds(x) = 0.

The main advantage of Definition (9) for bh(u,v) is the following: for a given Vσ, it only involves
values Uσ′ with σ′ ∈ FK , which means that, using a Newton-Raphson method, the stencil of the
Jacobian matrix issued from the trilinear term is block-diagonal, similarly to the diffusion terms
(note that it leads to cross dependencies between all the components of the velocities).

3 Study of the linear systems

3.1 The coupled velocity-pressure linear system

Let us now detail the construction of the linear system which is directly issued from (6) in the case where
bh = 0 or issued from the Newton method applied to (6) if bh 6= 0. For any finite set E, we denote by
#E its cardinal.
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This system of linear equations is obtained, first selecting v in the first equation of (6) with one component
equal to 1 and all the other ones equal to 0, then selecting q in the second equation of (6) with one
component equal to 1 and all the other ones equal to 0. Letting U = ((Ui,σ)i=1,...,d,σ∈Fint

and P =
(PK)K∈M\{K0}, the linear system reads [

A Dt

D 0

] [
U
P

]
=

[
R
0

]
. (10)

Let us detail the construction of the matrices A and D, and of the right-hand side R.

For any K ∈M, we first define the elementary assembly matrix SK , whose side is equal to sK := #FK,int

(recall that this side is equal to 3 in 2D and 4 in 3D for any interior element K), by

(SK)σ,σ′ =

∫
K

(
µΠhϕσΠhϕσ′ + ν∇ϕσ · ∇ϕσ′

)
dx.

Note that the matrix SK is symmetric positive definite if µ > 0 (transient problems) and only symmetric
positive if µ = 0.

We now define the elementary assembly matrix AK , whose side is equal to dsK , such that, if bh = 0,

(AK)i,σ,j,σ′ =

{
(SK)σ,σ′ if i = j

0 otherwise

If bh 6= 0, this matrix is completed with the derivatives of the convection term with respect to the local
velocity unknowns i = 1, . . . , d and σ ∈ FK,int.

We then define, for any element K of the mesh, the rectangular matrix HK with d#Fint lines and dsK
columns, such that, at the column associated to the local velocity unknown (i, σ) ∈ {1, . . . , d} × FK,int,
all the components are null except the one that is at the line associated to the global unknown Ui,σ.
Then the matrix A in (10) is obtained by assembling the elementary matrices, as follows:

A =
∑
K∈M

HKAKH
t
K .

For the line of A associated to the global unknown Ui,σ, non-zero terms may occur at the columns
associated to the global unknown Uj,σ′ such that there exists K ∈ M with σ, σ′ ∈ FK,int. If bh = 0, the
matrix A is symmetric positive definite; its inverse is a full matrix, so one cannot solve the linear system
by eliminating the velocity unknowns.

We define the matrix DK with dsK lines and one column (it is then assimilated to a vector), letting for
i ∈ {1, . . . , d} and σ ∈ Fint,

(DK)i,σ = −a(i)
K,σ.

We then define the rectangular matrix FK , with #M− 1 lines and 1 column, by 0 everywhere, except 1
at the line corresponding to the global unknown PK , for K ∈ M \ {K0}. Then the matrix D in (10) is
defined by

D =
∑

K∈M\{K0}

FKD
t
KH

t
K .

Finally, for any K ∈ M, let RK be the elementary right-hand-side issued from (8), under the form of a
vector with dsK components, defined in the case where bh = 0, for all i ∈ {1, . . . , d} and σ ∈ FK,int by

(RK)i,σ = a
(i)
K,σ

( 1

|K|

∫
K

fdx
)
· (xσ − xK).
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In the case where bh 6= 0, RK is completed by the non-linear terms issued from the Newton method.
Then the assembled right hand side in (10) is given by

R =
∑
K∈M

HKRK .

As recalled in the introduction, the resolution of (10) is then a difficult problem for large meshes. Direct
methods can no longer be used, and iterative methods must be based on efficient preconditioners.

3.2 Hybridisation of the linear system

We construct in this section a linear system, whose the solution directly provides that of (10), and
which can be solved in some cases (see the numerical examples) by cheaper methods. As recalled in the
introduction of this paper, the method used for constructing this linear system follows the hybridisation
method used in [4, 8, 14].
To this purpose, we introduce, for any K ∈ M, two diagonal matrices EK and CK with the same side
dsK , satisfying the following properties:

(EK)i,σ,i,σ + (EL)i,σ,i,σ = 0 for all i = 1, . . . , d, (11)

and
(CK)i,σ,i,σ + (CL)i,σ,i,σ = 0 for all i = 1, . . . , d, (12)

in the case whereMσ = {K,L}. The matrix Ck is meant to be invertible (in practice, we let the diagonal
terms of CK be equal to ±1), whereas, if µ > 0, the choice EK = 0 can be done.

We consider a global vector ÛK,i,σ, associated to the component i ∈ {1, . . . , d} of the velocity defined at
the face σ ∈ FK,int of K ∈ M. The number of components of this vector is equal to

∑
L∈M d sL; this

number is equal to 2d#Fint since any velocity unknown appears twice at any interior face.
We then define, for any element K of the mesh, in a similar way to the matrix HK , the rectangular
matrix ĤK with

∑
L∈M d sL lines and dsK columns, such that, at the column associated to the local

velocity unknown (i, σ) ∈ {1, . . . , d} × FK,int, all the components are null except the one that is at the

line associated to the global unknown ÛK,i,σ.

Let us define the following matrices, using the matrices EK , CK , ĤK defined in this section and the
matrices AK , HK , DK , FK defined in the previous section:

ÂK = AK + EK and Â =
∑
K∈M

ĤKÂKĤ
t
K ,

D̂ =
∑

K∈M\{K0}

FKD
t
KĤ

t
K ,

Ĉ =
∑
K∈M

HKCKĤ
t
K ,

and the following right-hand side, using the right-hand sides RK defined in the previous section:

R̂ =
∑
K∈M

ĤKRK .

We consider the following unknown

• Û = (ÛK,i,σ) for K ∈M, component i ∈ {1, . . . , d} and σ ∈ FK,int,
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• P̂ = (P̂K) for K ∈M \ {K0},

• Ŵ = (Ŵi,σ) for i ∈ {1, . . . , d} and σ ∈ Fint,

solution to the following linear systemÂ D̂t Ĉt

D̂ 0 0

Ĉ 0 0


 ÛP̂
Ŵ

 =

R̂0
0

 . (13)

In the preceding linear system, the equations ÂÛ + D̂tP̂ + ĈtŴ = R̂ can be seen as the splitting of the
equations (AU +DtP )σ = Rσ with P = P̂ , which hold for all σ ∈ Fint, into two equations, one for K,σ

and the other one for L, σ whenMσ = {K,L}, thanks to the introduction of an additional unknown Ŵσ.
The velocity unknowns are also doubled, and the equality between the doubled unknowns is ensured by
the relation ĈÛ = 0.
The next paragraphs are providing details on the following points (among others): the elimination of Ŵ
is done by addition of these two equations (owing to (12)), and then one recovers (AU + DtP )σ = Rσ
(owing to (11)); the system (13) is well-posed, and it is possible, under appropriate choices of the matrices

EK , to eliminate Û and P̂ in (13), in order to obtain a linear system only on Ŵ , with the same stencil
as the matrix A, and which is symmetric positive definite in some situations.

Indeed, the following properties hold.

1. Block diagonal property of ĤK and Â.

We have the property, for all K,L ∈M,

Ĥt
KĤL =

{
IdK if K = L

0 otherwise.
(14)

Moreover, the matrix Â has the blocks ÂK on the diagonal and is null elsewhere. In the case where
all the matrices (ÂK)K∈M are invertible, there holds

Â−1 =
∑
K∈M

ĤKÂ
−1
K Ĥt

K .

This leads to a cheap computation of Â−1 and fully scalable.

2. Recovery of the solution to (10).

Any solution (Û , P̂ , Ŵ ) of (13) must satisfy

ĈÛ =
∑
K∈M

HKCKĤ
t
KÛ = 0.

For any i ∈ {1, . . . , d} and σ ∈ FK,int with Mσ = {K,L}, this means that

(CK)i,σ,i,σÛK,i,σ + (CL)i,σ,i,σÛL,i,σ = 0,

which, together with (12) and the invertibility of CK and CL, provides

ÛK,i,σ = ÛL,i,σ := Ui,σ, (15)

9



denoting by Ui,σ this common value. Introducing the vector U = (Ui,σ)i=1,...,d, σ∈Fint
, we then have

Ĥt
KÛ = Ht

KU for all K ∈M. (16)

We now multiply by the left the equality ÂÛ + D̂tP̂ + ĈtŴ = R̂ by the matrix J which is the
matricial translation of the addition of the two equations K, i, σ and L, i, σ forMσ = {K,L}. This
matrix J , which has d#Fint lines and 2d#Fint columns, is defined by

J =
∑
K∈M

HKĤ
t
K .

On each line of J , all the components are null except two of them, equal to 1, which enables the
addition of pairs of lines. We then obtain

JÂÛ + JD̂tP̂ + JĈtŴ = JR̂.

We then remark that, accounting for (14),

JÂÛ =
∑
K∈M

HKĤ
t
K

∑
L∈M

ĤL(AL + EL)Ĥt
LÛ =

∑
K∈M

HK(AK + EK)Ĥt
KÛ .

We apply (16), thus obtaining

JÂÛ =
∑
K∈M

HK(AK + EK)Ht
KU.

Let us now observe that the matrix
∑
K∈MHKEKH

t
K vanishes applying (11). We then get

JÂÛ =
∑
K∈M

HKAKH
t
KU = AU.

We now compute, again accounting for (14),

JD̂tP̂ =
∑
K∈M

HKĤ
t
K

∑
L∈M\{K0}

ĤKD
t
LF

t
LP̂ =

∑
K∈M\{K0}

HKDKF
t
K P̂ = DtP̂ ,

JR̂ =
∑
K∈M

HKĤ
t
K

∑
L∈M

ĤLRL =
∑
K∈M

HKRK = R.

The matrix JĈt satisfies

JĈt =
∑
K∈M

HKĤ
t
K

∑
L∈M

Ĥt
LCLHL =

∑
K∈M

HKCKHK ,

which vanishes owing to (12). So we get

AU +DtP̂ = R.

Turning to the equation D̂Û = 0, we get

D̂Û =
∑

K∈M\{K0}

FKD
t
KĤ

t
KÛ =

∑
K∈M\{K0}

FKD
t
KU = DU = 0,

applying (16). So we conclude that (U, P̂ ) is solution to (10). Since this latter system is invertible,

we get P̂ = P .
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3. Invertibility of (13).

The invertibility of the linear system is proved, if one assumes that the right-hand side is null, this
implies that the solution is null too. This is done by assuming that, in (13), we let R̂ = 0 (which is
obtained if we let RK = 0 for all K ∈M). Since this is a particular case of the linear system under
study, the conclusions obtained in the preceding paragraphs, that any solution of this linear system
is also a solution to (10), are remaining true in this case. Then, the vectors U issued owing to the

preceding computations from Û and P̂ , are solution to (10) with R = 0, since R is computed from

null RK . We recall that the linear system (10) is invertible, which implies that U = 0 and P̂ = 0.

From U = 0, we deduce by (15) that Û = 0, which proves from ÂÛ + D̂tP̂ + ĈtŴ = R̂ that

ĈtŴ = 0.

The preceding relations are equivalent to (ĈK)i,σ,i,σŴi,σ = 0 and (ĈL)i,σ,i,σŴi,σ = 0 , for any

σ ∈ #Fint with Mσ = {K,L}. which shows that Ŵ = 0 (recall that the matrices Ĉ must have a
non-zero diagonal).

The linear system (13) is therefore invertible, and its resolution provides the solution to (10).

4. Elimination of (Û , P ).

Assuming that, for all K ∈ M, all the eigenvalues of the symmetric matrix ÂK are either strictly
positive or strictly negative, let us proceed to the elimination of Û and P . We first have

Û = Â−1(−D̂tP − ĈtŴ + R̂).

This yields

Û =
∑
K∈M

ĤKÂ
−1(−D̂tP − ĈtŴ + R̂),

Then we have
D̂Â−1(−D̂tP − ĈtŴ + R̂) = 0.

Let us compute the matrix B = D̂Â−1D̂t. Using the property

Ĥt
KÂ
−1ĤL =

{
Â−1
K if K = L

0 otherwise,

we get

B =
∑

K∈M\{K0}

FKD
t
KÂ
−1
K DKF

t
K .

We then get that B is the diagonal matrix with the values BK := Dt
KÂ
−1
K DK on the diagonal.

Letting λK be the smaller absolute value of the eigenvalues of Â−1
K , we get that

|BK | ≥ λK‖DK‖2 > 0,

since there exists at least one component of DK which is different from 0. So the diagonal matrix
B is invertible, and we can write

B−1 =
∑

K∈M\{K0}

1

BK
FKF

t
K ,
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and
P = B−1D̂Â−1(−ĈtŴ + R̂).

We then obtain
ĈÂ−1(−D̂tP − ĈtŴ + R̂) = 0,

which leads, denoting G = Ĉ
(
Â−1− Â−1D̂tB−1D̂Â−1

)
Ĉt and S = Ĉ

(
Â−1− Â−1D̂tB−1D̂Â−1

)
R̂,

to
GŴ = S.

The matrix G is then invertible, since this resolution process is equivalent to the initial linear system
(under the above assumption on ÂK).

5. Stencil of G

Under the same assumption as previously (for all K ∈ M, all the eigenvalues of the symmetric

matrix ÂK are either strictly positive or strictly negative), a simple computation using (14) and
F tKFL = 1 if K = L and 0 otherwise, leads to

G =
∑
K∈M

HKGKH
t
K ,

with, for all K ∈M \K0,

GK = CK

(
Â−1
K −

1

BK
Â−1
K DKD

t
KÂ
−1
K

)
CK ,

and
GK0 = CK0Â

−1
K0
CK0 .

This shows that the assembling of G leads to the same stencil as that of A =
∑
K∈MHKAKH

t
K

(in the case where the matrix AK is full).

6. Case µ > 0 and bh = 0.

In the case µ > 0 and bh = 0, all the matrices AK are symmetric positive definite and we let
EK = 0. Let us show that the resulting matrix G is symmetric positive definite. Indeed, for any
vector Ŵ , let us compute

a = Ŵ tGŴ .

Denoting by ZK = CKH
t
KŴ , and defining the scalar product 〈X,Y 〉K = XtÂ−1

K Y , we get that

a =
∑

K∈M\{K0}

(
〈ZK , ZK〉K −

(〈ZK , DK〉K)2

〈DK , DK〉K

)
+ 〈ZK0

, ZK0
〉K0

.

The Cauchy-Schwarz inequality implying

(〈ZK , DK〉K)2 ≤ 〈ZK , ZK〉K〈DK , DK〉K ,

we get that a ≥ 0. Since we proved above that, under a weaker hypothesis, the matrix G is
invertible, it is then positive symmetric definite.

7. Computation of EK in the case µ = 0.

Different strategies can be used. One of them consists in partitioning M in M1 ∪M2, such M2

is the set of all the neighbours of all K ∈ M1. Then for all K ∈ M1, we let EK = −λId with λ
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larger than all the eigenvalues of AK . Then, for all K ∈M2 and σ ∈ FK,int with Mσ = {K,L}, if
L ∈M1 (such a L exists by construction), we set (EK)σ,σ = λ. If L /∈M1, we set (EK)σ,σ = 0.

Then Property (11) holds, as well as the fact that all the matrices (AK)K∈M1
are symmetric and

have all their eigenvalues strictly negative and all the matrices (AK)K∈M2 are symmetric positive
definite.

In conclusion of this section, we can use the following method, called the hybrid method for solving
(10):

1. One computes the matrix G and the right-hand side S as defined above (this leads to cheap com-
putations).

2. One then solves the linear system GŴ = S by a direct method for the small cases or by an iterative
method for the larger ones. Note that, in the case where µ > 0 and bh = 0, a simple preconditioned
conjugate gradient solver may be used, and the side of this linear system is smaller than that of
(10) with a stencil similar to that of A, which is a part of the matrix of (10).

3. One then recovers P and U by the preceding relations which only leads to cheap and fully scalable
computations.

The numerical section provides a few comparisons of this method with the resolution of (10) by a solver
with unknowns (U,P ).

4 Numerical results

4.1 Numerical convergence of the scheme

Although the Crouzeix-Raviart scheme (6) is highly standard in the transient or steady Stokes case, the

implementation for the right hand side through the reconstruction Π̂h is not completely classical. Note
that, if f is a constant vector (which means that the velocity is null and that the gradient of the exact
pressure is equal to f), a standard computation of the right-hand side by the integration of f against
the Crouzeix-Raviart basis functions provides a significant error on the velocity field. On the contrary,
owing to the reconstruction Π̂h, we obtain a null numerical velocity and the exact pressure field (at the
machine precision).
Let us also observe that the non-linear term (9) introduced by [10] is not so well-known, and that it is
therefore interesting to check, on the analytical Green-Taylor solution, the numerical convergence of this
scheme, independently of the algebraic method used for solving the linear systems.
First letting d = 2, we assume that the analytical solution is given by f = 0,

u(x, t) = Re

(
− cos(2π(x1 + 1

4 )) sin(2π(x2 + 1
2 )) exp(−8π2t)

sin(2π(x1 + 1
4 )) cos(2π(x2 + 1

2 )) exp(−8π2t)

)
(17)

and

p(x, t) = −Re2

4

(
cos(4π(x1 +

1

4
)) + cos(4π(x2 +

1

2
))
)

exp(−16π2t). (18)

We then implement the values u(y, 0) as initial numerical value at all the nodes of the mesh y, and the
values u(yb, t

(n)) at all the boundary nodes of the mesh yb and at the discrete times t(n) = n∆t. The
hybrid method and a direct solver are used for these computations which are not dedicated to observe
computing performances. Letting Re = 100 and the final time be equal 0.01, we find the numerical errors
given by Table 1 with different meshes and time steps.
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∆t h errl2U ratio errl2P ratio
1.25e-04 0.2500 0.277E+02 - 0.487E+03 -
3.13e-05 0.1250 0.854E+01 1.70 0.262E+03 0.89
7.81e-06 0.0625 0.315E+01 1.44 0.112E+03 1.23
1.95e-06 0.0312 0.918E+00 1.78 0.351E+02 1.67
4.88e-07 0.0156 0.240E+00 1.94 0.986E+01 1.83
1.22e-07 0.0078 0.608E-01 1.98 0.299E+01 1.72

Table 1: Numerical errors in the case of the 2D Green-Taylor analytical solution of the Navier-Stokes
problem.

The meshes are those labelled from 1 to 6 of the triangular family Mesh1 used in the 2D benchmark
[11]. The time step ∆t and the mesh size h are such that ∆t/h2 is constant. The numerical errors are
computed at the nodes for the velocities, and at the centre of gravity of the triangles for the pressures.
In Table 1, the ratios are computed by the formula log(Ei−1/Ei)/ log(2), where Ei is a value taken in
the column “errl2U” or “errl2P” and Ei−1 is the value immediately above in the table.

We observe in Table 1 that the numerical order of convergence tends to 2 for the velocity errors and
the finest meshes, and to a value greater than 1 for the pressure errors, as it is currently observed by
numerical schemes in this case.
We now turn out to a 3d case (d = 3) with Re = 100 and the final time equal to 0.01. In order to ensure
that the 3D meshes present the same regularity factor, the tetrahedral mesh is obtained by splitting in 6
tetrahedra each cube of a uniform cubic mesh of the test domain. The common side of all the cubes of
the cubic mesh have all the same side h.
The first 3D numerical test concerns a Stokes problem case, where the analytical solution is an extension
to the 3D case of the preceding Green-Taylor test. The first two components of the velocity are given by
(17) extended for all x3 ∈ [0, 1], the third component is equal to 0 on the whole domain as well as the
pressure (recall that in the Green-Taylor test, the non-linear term is balanced by the pressure gradient).
Using the hybrid method, and a conjugate gradient solver with the “boomer AMG” preconditioners, we
obtain the results provided by Table 2.

∆t h errl2U ratio errl2P ratio
1.00e-4 1.38e-1 3.44 - 33 -
2.50e-5 6.88e-2 0.85 2.02 17 0.96
6.25e-6 3.44e-2 0.22 1.95 8.1 1.07
1.56e-6 1.72e-2 5.4e-2 2.03 4.0 1.02

Table 2: Numerical errors in the case of the 3D Green-Taylor analytical solution of the Stokes problem.

The convergence orders shown in Table 2 are similar to those observed in Table 1. Turning to a 3D
Navier-Stokes case, we again consider the extension to the 3D case of the 2D Green-Taylor test. The first
two components of the velocity are again given by (17) for any x3 ∈ [0, 1], the third component is again
equal to 0 on the whole domain, and the pressure is given by (18) for any x3 ∈ [0, 1]. Again, applying the
same method for solving the linear systems as in the previous test case, we obtain the results provided
by Table 3.
The convergence orders shown in Table 3 show a light loss of convergence order in this case, compared to
the ones observed in Table 2, although they give a numerical confirmation of the efficiency of the scheme.

These tests validate the use of the Crouzeix-Raviart scheme (6) in association with the trilinear term
(9), in 2D and 3D cases. The remaining part of the numerical section is now devoted to 2D and 3D
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∆t h errl2U ratio errl2P ratio
1.56e-4 6.88e-2 10.7 - 297 -
3.91e-5 3.44e-2 4.10 1.38 143 1.05
9.77e-6 1.72e-2 1.28 1.68 48.5 1.56

Table 3: Numerical errors in the case of the 3D Green-Taylor analytical solution of the Navier-Stokes
problem.

comparisons of the computing performances for solving the linear systems, with or without the use of the
hybrid method, in association with a variety of linear solvers.

4.2 Comparison of algebraic methods and solvers on the transient Stokes
problem

The aim of this section is to assess the interest of the hybrid method in the case of transient Stokes
problems (that means that µ = 1/∆t > 0 and bh = 0). In this case, as seen above, the hybrid method
leads to positive symmetric definite linear systems, compared to the non-hybrid method, which only
provides symmetric linear systems which are not positive and larger.

We performed the computation using a direct sequential solver, the only purpose of these tests being to
assess the gain of computing time per time step due to smaller linear systems with the hybrid method
compared to the linear systems without the hybrid method. We consider the 3D Green-Taylor Stokes
problem, with analytical solution given by (17) and p = 0. The linear systems are solved with a simple
Gaussian elimination with natural ordering, the time step is equal to 5.10−4 and various meshes are used
(see Table 4). The decrease in the size of the linear systems leads to a clear diminution in the computing
time.

Ncv not hybrid hybrid
46 2.9e-3 3.7e-3
384 1.7e-1 1.2e-1
3062 2.5e+1 1.4e+1
24576 3.4e+3 2.4e+3

Table 4: Computation time in seconds per linear system solved by Gaussian elimination in the case of
the 3D Green-Taylor analytical solution of the Stokes problem. Ncv denotes the number of tetrahedra.

We now turn to the evaluation of the possibility to use parallel solvers with or without the hybrid
method. All the tests are done using the HYPRE/Euclid library for the solvers and the preconditioners,
on a computer with 16 cpus.

Conjugate gradient with algebraic multi grid preconditioners in 2D.

We study the possibility of using the BoomerAMG preconditioners, which is known to provide an optimal
speed-up in the case of the linear systems issued from diffusion operators. The numerical choices are the
following:

• The mesh is “Mesh1-7” of the triangular family Mesh1 used in the 2D benchmark [11] (it corresponds
to a mesh size equal to h = 3.90625 · 10−3, which leads to 917 504 triangles),

• Smoother algorithm : Hybrid symmetric Gauss-Seidel or SSOR
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• Parallel coarsening algorithm : one-pass Ruge-Stueben coarsening on each processor, no boundary
treatment.

We observe that, without hybridisation, non-convergence is observed in all tested cases.
On the contrary, using hybridisation, the convergence of the method is obtained. In Table 5, we provide
the computing times needed for the resolution of one linear system (in this transient Stokes problem with
constant time step, all the linear systems have the same matrix) for two different values of the time step.

proc
∆t = 0.0001
time/iter (s)

speed-up
∆t = 0.0512
time/iter (s)

speed-up

1 163 - 656 -
2 90 1.81 331 1.98
4 47 1.91 166 1.99
8 25 1.88 89 1.87
16 19 1.32 65 1.37

Table 5: Computation time with hybridisation, using conjugate gradient with boomerAMG

CG, BCGS et GMRES with ILU in 2D.

We now consider the case where we use different linear solvers (we use “Mesh1-7” with ∆t = 0.0001):

• CG : preconditioned conjugate gradient,

• BCGS : Bi-conjugate gradient with stabilization,

• GMRES,

with the Euclid/ ILU preconditioners. Recall that the efficiency of ILU is mainly lost in the case of
multi-processor computations, but that it remains in any case much greater that that of boomer AMG.
A parameter of ILU is the filling degree (from 1 to 4 in our tests).
We again observe that no convergence is obtained using conjugate gradient without hybridisation. We
show in Table 6 the results obtained using conjugate gradient with hybridisation. These results show a
lower speed-up compared to the use of boomer AMG, but better absolute performances. Let us finally
observe that no results were obtained with increasing the filling degree of the ILU method with more
than one processor.

proc ILU time/iter (s)
1 1 25
1 2 19
1 3 22
1 4 18
2 1 18
4 1 11
8 1 11
16 1 8.4

Table 6: Computation time with hybridisation, using conjugate gradient with ILU

We also used the BCGS and GMRES methods without hybridisation. We then get no result with more
that 2 processors, the best performance being 23 s per iteration with 4th degree of ILU, BCGS and 1
processor.
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Numerical results in 3D

We only obtained numerical results using ILU preconditioners and only one processor.

In these conditions, the results without hybridisation with BCGS were better than those with conjugate
gradient, whatever be the degree of filling of the ILU method: for example, using degree 2 and BCGS,
the time per iteration without hybridisation is 376 s with Ncv = 1 572 864 and ∆t = 0.0005 for the Green-
Taylor problem in Stokes conditions, where it is equal to 498 s with conjugate gradient and hybridisation.
Additional tests seem to be necessary for improving this comparison.

4.3 Comparison of linear solvers on the steady lid driven cavity test in 2D

This test is dedicated to the comparison of the efficiency of the different algebraic solvers in the case of
the steady lid driven cavity with Re = 1000, in 2 space dimensions. We again consider the mesh named
“Mesh1-7” of the triangular family Mesh1 used in the 2D benchmark [11] (it corresponds to a mesh size
equal to h = 3.90625 · 10−3 and Ncv = 917 504 ).
The non-linear system provided by the scheme is approximated by the Newton method. Since the
resulting linear systems are no longer symmetric positive, we cannot use the conjugate gradient method;
we use the GMRES method with a convergence threshold equal to 10−11 in association with an ILU
preconditioners with filling degree 2 to 8. This preconditioners has been shown in several tests to provide
a sufficient efficiency, letting the filling degree increase [5]. Unfortunately, this efficiency falls down on
parallel architectures, so this test is only considered with one processor.

In order to assess the additional difficulty issued from the non-linear terms, we first consider the Stokes
problem (in this case, only one Newton iteration is needed, and the linear system is in fact symmetric,
but not positive).
The numerical results presented in Table 7 show that the computation time is largely lower with the
hybrid method, compared to the results without hybridisation, and that the comparison shows higher
contrasts with low filling degree.
This observation remains true in the Navier-Stokes case. To compare the two methods in the Navier-
Stokes case, the GMRES threshold has to be reduced to 10−8 to ensure the convergence of the linear
solver when the non-hybrid approach is employed. The convergence threshold required for the non-
linear iterations is equal to 5.10−7. In this case and starting from a fluid flow at rest, 10 and 9 Newton
iterations are needed respectively for the scheme with and without hybridisation. The results of Table
8 show that, despite one additional Newton iteration, the hybrid method converges about twice quicker
than the standard approach.

5 Conclusions

In 2D and on different test cases of the Crouzeix-Raviart scheme, the numerical results show an advantage
for using the hybridisation method for solving the coupled linear systems issued from the Newton-Raphson
method or from the Stokes problem.

In particular, the hybridisation method allow the use of conjugate gradient solvers.

Additional tests must be done in 3D in order to assess the influence of hybridisation on solvers perfor-
mances.
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