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Abstract

Modeling strongly correlated random variables is a critical task in the context of latent variable models. A new proba-
bilistic model, called Gaussian Pairwise Markov Field, is presented to generalize existing Markov Fields latent variables
models, and to introduce more correlations between variables. This is done by considering the correlations within Gaus-
sian Markov Random Fields models which are much richer than in the classical Markov Field models. The assets of the
Gaussian Pairwise Markov Field model are explained. In particular, it offers a generalization of the classical Markov Field
modelization that is highlighted. The new model is also considered in the practical case of unsupervised segmentation
of images corrupted by long-range spatially-correlated noise, producing interesting new results.
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1. Introduction

Unsupervised image segmentation is a vast field which
deals with the task of labelling each pixel appropriately, in
homogeneous and meaningful regions, without any ground
truth available [41]. Popular approaches to solve this prob-
lem include clustering-based methods [1], graph-based meth-
ods [6] or Bayesian methods [4]. There have been many
developments of this topic over the years but very few
seem to deal with the processing of images corrupted with
long-range, spatially-correlated noise. Such problem might
be approached with an explicit and precise modelization
of the noise through the development of a new Bayesian
model, as we propose in this paper.

Bayesian image segmentation is often based on the clas-
sical Hidden Markov Field (HMF) model. In the latter, the
image is treated as an observed random variable, while
the desired segmentation map is hidden. When strong
spatially-correlated noise corrupts the image, classical ap-
proaches reach their limit and new dedicated models need
to be considered to improve the accuracy of the segmen-
tation.

On the one hand, more recent probabilistic models have
been developed in order to handle rich correlations be-
tween random variables. Within latent variables models,
Pairwise Markov Fields (PMF) [14] [25] [34] are a model
family generalizing the HMF model, thus enriching the law
of the sample. In this case, the latent and observed random
variables jointly form the Markov process. An appealing
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property of PMF is that they relax the Markovian assump-
tion on the hidden process, which enables the modeling of
more complex correlations, while keeping Bayesian infer-
ence easily available. Figure 1 depicts the graphical models
of the classical HMF, of PMF and of the numerous di-
rect correlations that can be introduced between variables
with the latter model. PMF have in turn been extended
to Triplet Markov Fields [2][13] in which a third auxiliary
process is added to improve the modelization possibilities,
such as non-stationarities in the model parameters.

On the other hand, Gaussian Markov Random Fields
(GMRF) [37] are a powerful probabilistic model to deal
with a large variety of correlated random variables, and
especially with long-range spatial correlation between pix-
els in images. Studies have been done for regression and
classification using conditional GMRF, i.e. these studies
consider a discriminative probabilistic model [33][35][40].
However, to the best of our knowledge, there exists no lit-
erature on generative probabilistic models using GMRF
for image segmentation. Generative models might be ad-
vantageous when no dataset is available, for example, in
the case of unsupervised image segmentation. This article
aims at proposing such a new probabilistic modelization.

Therefore, we introduce a new model, called Gaussian
Pairwise Markov Fields (GPMF), belonging to the PMF
family, and defined such that the GPMF conditional like-
lihood is a GMRF. The new model then combines a gen-
eralization of the classical Gaussian HMF model and the
ability to model strongly correlated variables as a GMRF,
while preserving tractability. Indeed, we will see that the
PMF hypothesis is a natural way to answer the problem
of modeling correlated noise and introducing long correla-
tions by using the GMRF model as conditional likelihood.
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We start by deriving the general probability distribu-
tion that defines a GPMF. We then propose four intances
of the GPMF model whose expressiveness varies, in terms
of direct dependencies that the model can handle. Those
models are studied both theoretically and through exper-
iments. Besides, we handle the unsupervised image seg-
mentation problem which requires a crucial step of pa-
rameter estimation. To this end, we propose a stochastic
parameter estimation algorithm for the PMF models. In
the case of unsupervised image segmentation, the GPMF
model performs better than other classical unsupervised
approaches.

The outline of the paper is the following. We first de-
scribe the new model, its core equations and main proper-
ties (Section 2). Then we illustrate the successive general-
izations made with GPMF by studying models which are
special cases of the GPMF (Section 3). We develop a pa-
rameter estimation procedure to solve the problem of un-
supervised segmentation (Section 4). Finally, the models
are successfully evaluated on synthetic and on real world
images linked with a medical application (Section 5).

Remark: They are other works in the literature called
Pairwise Markov Fields, for example, [18] and [32]. How-
ever, those works mostly focus on structure learning with
only visible variables. Thus, they should not be confused
with the latent variables models presented in this article.

2. Gaussian Pairwise Markov Fields

2.1. Pairwise Markov Fields
This first section introduces main definitions, Hidden

Markov Fields (HMF) and Pairwise Markov Fields (PMF).
XXX = (X1, . . . , XN ) is a discrete-valued random vec-

tor with values in ΩN , with Ω = (ω1, . . . , ωK). YYY =
(Y1, . . . , YN ) is a real-valued random vector with values
in RN . In this article, we deal with stationary Markov
processes defined on a graph, whose vertices are indexed
by S such that |S| = N , with respect to a neighborhood
N . A neighborhood Ns is defined as the set of vertices in
relation with a given vertice s (s /∈ Ns). We also denote
by Cn the set of cliques of size n [28].

We use the notation shortcut p(XXX = xxx) = p(xxx) to re-
fer to the probability of the realizations of random vectors
and variables and p̃ to refer to an unnormalized probability
distribution. The classical Hidden Markov Field (HMF)
model with independent noise is defined by the joint dis-
tribution [26]:

p(xxx,yyy) =
1

Z

∏
s∈S

p̃(xs|xxxNs
)p̃(ys|xs), (1)

where Z is the normalization constant. In this model, XXX
is a Markovian process with respect to the neighborhood
N .

The PMF family of models generalizes the HMFmodel [14]
[34]. In the PMF family, the assumption of (XXX,YYY ) being

a Markov process is made. Note that this implies that
XXX given some realizations yyy of YYY is a Markov process. A
PMF is defined by the distribution:

p(xxx,yyy) =
1

Z

∏
s∈S

p̃(xs, ys|xxxNs , yyyNs), (2)

where Z is the normalization constant. The greater gen-
erality of the pairwise fields hypothesis (that can be seen
in Equation 2) enables the modeling of more complex cor-
relations between variables. Indeed, neither XXX nor YYY is
necessarly a Markovian process.

In the context of unsupervised image segmentation, the
{Xn}Nn=1 are the hidden variables, and the {Yn}Nn=1 are the
visible or observed variables.

In the context of Bayesian image segmentation, one can
use the Maximum A Posteriori (MAP) estimator [28]:

x̂xxMAP = argmaxxxx∈ΩN p(xxx|yyy), (3)

as well as the Maximum Posterior Mode (MPM) estima-
tor [29]:

x̂MPM
s = argmaxxs∈Ωp(xs|yyy),∀s ∈ S. (4)

In the context of random fields, the MAP estimator is clas-
sicaly approximated with an algorithm using simulated an-
nealing approaches [24]. The MPM can be approximated
by sampling techniques based on the Gibbs sampler [29]
and the following local expression of the posterior Markov
field:

p(xs|xxxNX
s
, yyy) =

p̃(xs, ys|xxxNs
, yyyNs

)∑
x′
s
p̃(x′s, ys|xxxNs

, yyyNs
)
. (5)

2.2. Graphical representations
Figure 1 illustrates the graphical representations, for a

four-neighbor system, of the HMF and PMF models de-
fined so far as well as intermediate models in terms of de-
pendencies that can be modeled. Note that an edge repre-
sents a dependency that can possibly be directly modeled,
while in the absence of edge, the direct dependency cannot
be modeled. It appears clearly that the PMF model is the
most general.

In the case when YYY is defined as a continuous Gaussian
process, probabilistic models from each of the four types
shown in Figure 1 will be defined and used in experiments
later in this article.

2.3. Gaussian Pairwise Markov Fields
In this section we define the new Gaussian Pairwise

Markov Field (GPMF) model. While it is a subclass of
the PMF model, it is still a very rich family which can
rigorously model complex situations.

We state that a GPMF is a PMF where the distribution
of YYY given a realization XXX = xxx is a GMRF. Then we have
the following property: (XXX,YYY ) is a GPMF with respect to
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Figure 1: Graphical models of (a) the classical Hidden Markov Field (HMF) with independent noise, (b) the Pairwise Markov Field (PMF)
with full dependencies, (c) the Pairwise Markov Field-Uncorrelated Noise (PMF-UN), (d) and the Hidden Markov Field-Correlated Noise
(HMF-CN). A graph edge indicates a variable upon which the local conditional distribution of the Markov process is directly conditioned.
An arrow indicates a one-way dependency while an edge indicates a two-way dependency.

a neighborhood N if, and only if, p(xxx,yyy) has the following
joint Gibbs distribution with respect to N :

p(xxx,yyy) =
1

Z
exp

(
− E(xxx,yyy)

)
, (6)

where Z is the normalization constant and E(xxx,yyy) is the
joint energy with:

E(xxx,yyy) =

|N |∑
n=1

( ∑
ccc∈Cn

Vn(xxxccc, yyyccc)
)
. (7)

In Equation 7, the Vn are potentials functions subject to
constraints:

• ∀n ∈ {1, 2},
∑

ccc∈Cn Vn(xxxccc, yyyccc) =
∑

ccc∈Cn V̄n(yyyccc,xxxccc)

+
∑

ccc∈Cn Ṽn(xxxccc), where
∑

ccc∈Cn V̄n(yyyccc,xxxccc) is a posi-
tive semidefinite quadratic form in the yyy variables
and Ṽn are potential functions where the yyy variables
have no play.

• ∀n ∈ {3, . . . , |N |}, Vn are potential functions where
the yyyccc variables have no play.

Equivalently, the GPMF can be defined by its local
conditional factorization (Equation 2). It can be shown,
starting from Equation 7, that:

p̃(xs, ys|xxxNs , yyyNs) = exp

(
−
( |N |∑

n=1

(
n
∑
ccc∈Cn

s.t. s∈ccc

Vn(xxxccc, yyyccc)
)))

,

(8)

This proposition is proven in Appendix A.
Remark: One can draw a parallel with a specific type

of PMF developed in [34], which is also called "Gaus-
sian". Indeed, the decomposition of the model given in [34]
makes their model seem to appear as a special case of our
new GPMF model. Note that, unlike the article we men-
tion, our definition ensures that p(yyy|xxx) is defined and is a
GMRF.

3. Models from the GPMF family

After this general introduction of GPMF, we now de-
fine models of varying generalities, which belong to the
GPMF family. Those models will subsequently be used in
image segmentation experiments.

3.1. A general instance of the GPMF model
This is the most general instance of GPMF that we

will define. Since there will be no ambuigity, we will de-
note this model as GPMF in the rest of this article. Its
graphical representation is given in Figure 1b: we will take
advantage of all the dependencies that can be modeled.

We define the GPMF model energy by:

E(xxx,yyy) =
∑
s∈S

∑
s′∈Ns

V (xs, ys, xs′ , ys′)+

∑
s∈S

∑
s′∈
Ns∪{s}

[
1[s′∈N 2

s ]
1

2
Qs,s′ ȳsȳs′

]
,

(9)

and the potential function V is given by:

V (xs, ys, xs′ , ys′) = −1[s′∈N 1
s ]δ

xs′
xs
β

(
1− 1

2
(ȳs − ȳs′)2

)
,

(10)
where we denote ȳs = ys−µxs

and δ is the Kronecker delta
function.

Equivalently, the corresponding unnormalized local con-
ditional probabilities are:

p̃(xs, ys|xxxNs
, yyyNs

) = exp

(
−
(

2
∑

s′∈Ns

V (xs, ys, xs′ , ys′)+

1

2
Qs,sȳ

2
s +

∑
s′∈Ns

1[s′∈N 2
s ]Qs,s′ ȳsȳs′

))
,

(11)

In Equations 9, 10 and 11, we encounter several parame-
ters, a granularity parameter β ∈ R∗+, a spatially varying
vector µµµxxx (which depend on the realization X = x) and
a symmetric positive semidefinite (SPD) matrix QQQ such
that:

∀s ∈ S, if s′ /∈ N 2
s , Qs,s′ = 0. (12)

Moreover N 1 and N 2 are neighborhood systems, which
we call subneighborhoods, which enable to modulate the
summation ranges.

This GPMF model then offers new modelizations prop-
erties, notably, it is able to handle Gaussian spatially cor-
related noise. Moreover, in addition to the correlated
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noise, XXX is clearly not Markovian due to mixed products
between terms depending on xxx and yyy. In Appendix B, we
show that the proposed model complies with the definition
of the GPMF model given in Section 2.3.

Remark: The potential function of Equation 10 can
be seen as an enhanced Potts potential [28] where the gran-
ularity coefficient β is adjusted to the observations avail-
able in the neighborhood of each site.

3.2. Details on the GPMF model parameters
We now detail the model parameters that define the

most general instance of GPMF model proposed in the
previous section. Similar parameters will be found in the
other models we will define.

We first need to explain an approximation that is made
for the model to be tractable. This approximation also ex-
plains the origin of the parametrization seen in Section 3.1:
it justifies the link between the model parameters and a
GMRF conditional likelihood. Indeed, QQQ is a sparse SPD
matrix which is approximated to be the precision matrix
of the GMRF defined by the conditional likelihood of the
GPMF model. By definition of a GMRF we have:

p(yyy|xxx) =
1√

(2π)Ndet(RRR−1)
exp

(
1

2
ȳyyTRRRȳyy

)
. (13)

In the latter equation, RRR is the original precision matrix of
the GMRF conditional likelihood and we have RRR = PPP +QQQ.
PPP (which will be defined in Equation B.4) approximates a
diagonally banded matrix whose non-zero entries are much
smaller than QQQ entries (practical β values are much lower
than 1), hence QQQ ≈ RRR. So by making the assumption
QQQ = RRR, i.e., QQQ is the precision matrix of a GMRF field, we
can derive a computationally efficient parameter estima-
tion procedure that is described in Section 4. Therefore,
from now on, we will carry the description of the parame-
ters in terms of GMRF vocabulary.

Remark: In the following, the variance of the GMRF
is stationary, as opposed to the mean of the GMRF. The
simulation of the GMRF must be carried through its con-
ditional equations [7][37] which are updated at each iter-
ations since the neighbor values change. In this context
it is known that introducing a non-stationary variance is
very complex [23], and this is out of scope of the article.

• r and σ. Here we describe the precision matrix QQQ of
the GMRF. QQQ is linked to the covariance matrix ΣΣΣ such
thatQQQ−1 = ΣΣΣ. The latter is assumed to be generated by an
exponential correlation function with decay r ∈ R∗+. Let
‖.‖t be the Euclidean distance on the torus (of dimensions
L1 × L2). For aaa = (a1, a2) ∈ R2, bbb = (b1, b2) ∈ R2, it is
defined by:

‖aaa− bbb‖t =
(

min(|a1 − b1|, L1 − |a1 − b1|)2+

min(|a2 − b2|, L2 − |a2 − b2|)2
) 1

2

.

(14)

Then, ∀a ∈ R2,∀b ∈ R2, the correlation function is:

ρ(a, b; r) = exp

(
−‖a− b‖t

r

)
. (15)

Finally the covariance between two observed variables is:

∀(s, s′) ∈ S2, Cov(Ys, Ys′) = Σs,s′ = σ2ρ(s, s′; r), (16)

where σ is another parameter of the model. It is a strictly
positive scalar that we associate with the (constant) vari-
ance of the GMRF. It is important to note that r and σ
totally define ΣΣΣ and then QQQ.
• N 2. Following the common practice in GMRF stud-

ies, ΣΣΣ is a dense matrix but its values are getting arbi-
trarly small according to the range r. The same is true for
QQQ = ΣΣΣ−1. Then, the values of QQQ whose magnitude drops
below a given theshold are forced to 0 to induce sparsity.
The values that are set to 0 are those outside N 2. The
Markovianity of YYY given a realization xxx of XXX is then re-
flected in QQQ because we assumed QQQ = RRR.
• µµµ is a spatially-varying vector that we associate with

the non-stationary mean of the GMRF. It depends on xxx,
the realizations of XXX, such that ∀s ∈ S, µs = µxs

∈ R.
• β ∈ R∗+ is a coefficient whose role is similar to the

granularity parameter in a classic Potts model [28].
• N 1 is a subneighborhood that can be freely cho-

sen. In the following we choose the classic eight-nearest-
neighbor system.

Remark: The periodic boundary assumption [37] (also
called torus assumption) is made. In this context, the bor-
ders of the image are wrapped to induce a continuity along
the rows and columns of the image. When the assumption
is done,QQQ is a block-circulant matrix with circulant blocks.
It follows that the operations involving matrices (inverses,
determinants, ...) become computationally efficient since
they rely on Fourier transforms. We also gain in efficiency
for the storing of QQQ: because of the special matrix struc-
ture, we only need to store the base matrix ofQQQ which has
the same dimension as the image. The periodic bound-
ary assumption is then crucial to build a computationally
tractable model and, in practice, it was not a limiting fac-
tor to the quality of the results.

3.3. Other GPMF submodels
In this section, we propose three other models that

are particular, specific cases of GPMF model. We first
present some new local distributions and then we use them
to define the particular GPMF models.

Let us recall the Potts prior for Markov fields [26],
which is based on the following local conditional proba-
bilities:

p̃(xs|xxxNs) = exp

(
−2

∑
s′∈Ns

V P (xs, xs′)

)
, (17)
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where V P is the Potts potential function making use of a
granularity coefficient β:

V P (xs, xs′) = −1[s′∈N 1
s ]δ

xs′
xs
β. (18)

Let us also recall the independent Gaussian conditional
likelihood [26] which leads to the local conditional proba-
bilities:

p̃(ys|xs) = exp

(
− ln

(√
2πσ

)
− ȳ2

s

2σ2

)
. (19)

We also have the strict generalization of Equation 19 to
the conditional GMRF likelihood in its local form [7] [37]:

p̃(ys|xs,xxxNs , yyyNs) = exp

(
− ln

(√
2πvs

)
− (ys −ms)

2

2vs

)
,

(20)
with

ms = µxs
− vs

∑
s′∈Ns

1[s′∈N 2
s ]Qs,s′ ȳs′ and vs = Q−1

s,s. (21)

Let us also introduce a generalized version of the Potts
potential taking into account the spatial context, using
the function V defined in Equation 10:

p̃(xs|ys,xxxNs
, yyyNs

) = exp

(
−
(

2
∑

s′∈Ns

V (xs, ys, xs′ , ys′)
))

.

(22)
Given the local conditional probabilities stated so far,

three particular GPMF models can be designed:

• Potts-Independent Noise (P-IN), with local distribu-
tions given by Equation 17 and Equation 19, which
is a HMF model (Figure 1a). It corresponds to the
most popular model of HMF with independent noise
[26] [28].

• Pairwise Markov Field with Uncorrelated Noise (PMF-
UN), with local distributions given by Equation 22
and Equation 19. It belongs to the models depicted
by Figure 1c). A similar model has already been
studied in [14].

• Potts-Gaussian Markov Random Field (P-GMRF),
with local distributions given by Equation 17 and
Equation 20, which belongs to the HMF-CN family
(depicted in Figure 1d). We are not aware of similar
models in the literature.

Table 1 summarizes the local distributions of these mod-
els. Note that the GPMF (Section 3.1), PMF-UN and P-
GMRF models all introduce more dependencies than the
P-IN model. PMF-UN enhances the local law for the hid-
den variables and P-GMRF for the observed variables. Be-
sides, note that the PMF-UN, P-GMRF and P-IN models
are submodels of the GPMF in the sense that they have
conditional dependencies that are ignored with respect to
the GPMF dependencies.

Model p(xs, ys|xxxNs
yyyNs

) factorizes using
P-IN Eq. 17 and Eq. 19
PMF-UN Eq. 22 and Eq. 19
P-GMRF Eq. 17 and Eq. 20
GPMF Eq. 11

Table 1: Factorization of the GPMF submodels.

4. Parameter estimation in the GPMF model

In this section, we develop an algorithm for the unsu-
pervised parameter estimation task in the GPMF model.
Without loss of generality, in the following development we
consider K = 2, i.e. Ω = {ω0, ω1}. Therefore the model is
described with 5 parameters. Let θθθ ∈ ΘΘΘ be the vector of
parameters, then:

θθθ = {µω0 , µω1 , β, σ, r} , {µ0, µ1, β, σ, r},
with ΘΘΘ = R2 × (R∗+)3.

(23)

We develop a variation of the Stochastic Expectation
Maximization algorithm [9], which we call Stochastic Pa-
rameter Estimation (SPE). We first give the statistical es-
timators of the parameters given the complete data (xxx,yyy).

A generalization of the approach of [17] is established
to retrieve the parameter β in the PMF family, using the
Least Squares (LS) estimator [22]. This estimation makes
use of the probabilities p(xs,xxxNX

s
|yyy), ∀xs ∈ Ω. The latter

denote the probability of encountering a certain configura-
tion of hidden variables at site s and its neighboring sites.
These probabilities are independent of s and are estimated
using the frequency estimator.

In the case of the GPMF model we show in Appendix
C that:

β̂ = (AAATAAA)−1AAATBBB, (24)

where β ∈ R∗+ and AAA,BBB are real vectors with N elements
with generic term, ∀s ∈ S, ∀(xs, x′s) ∈ Ω2:

As = ln

(
p(xs,xxxNs |yyy)

p(x′s,xxxNs
|yyy)

)
+

1

2
Qs,sȳ

2
s −

1

2
Qs,s(ȳ

′
s)

2+∑
t∈Ns

1[t∈N 2
s ]Qs,tȳsȳt −

∑
t∈Ns

1[t∈N 2
s ]Qt,sȳ

′
sȳt,

(25)

and

Bs =
∑
t∈Ns

1[t∈N 1
s ]

(
2δxt

xs
− 2δxt

x′
s

+ (µx′
s
− µxs)×

(−ȳ′s − ȳs + 2ȳt)

)
.

(26)

with ȳ′s = (ys − µx′
s
).

The Maximum Likelihood (ML) estimator is used to
estimate µ0, µ1, σ. The expressions are, for i ∈ {0, 1}:

µ̂i =
1∑

s∈S 1{xs=i}

∑
s∈S

ys1{xs=i}, (27)
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and

σ̂ =

(
1

|S|
∑
s∈S

(ys − µ̂xs
)
2

) 1
2

. (28)

Let us now write an estimator of the range of the ex-
ponential correlation function, r, given the complete data
(xxx,yyy). As given in [15][Section 2.4], the correlogram of the
field can be estimated by:

Ĉ(d) =
1

|D(d)|
∑

(s,s′)∈N(d)

1

σ̂2
(ys − µ̂xs

)(ys′ − µ̂xs′ ), (29)

where D(d) is the set of pixel pairs whose Manhattan dis-
tance on torus is d ∈ N+, i.e.:

D(d) = {(s, s′) ∈ S2 : min(|s1 − s′1|, L1 − |s1 − s′1|)+
min(|s2 − s′2|, L2 − |s2 − s′2|) = d}.

(30)

The exponential correlation function has the form u =
e−

d
r , where u is the correlation value, d the distance (be-

tween 0 and N) and r the range to estimate. There is
no constant in front of the exponential since the GRF has
been standardized, so we will estimate r ∈ R+∗ by fit-
ting the exponential correlation function to the data points
Ĉ(d) [3]. The LS estimator yields:

r̂ = ((EEETEEE)−1EEETwww)−1, (31)

with vectors of N elements such that: EEET = (0, . . . , N)
and wwwT = (log Ĉ(0), . . . , log Ĉ(N)).

In the context of latent variables, we only possess the
observations and not the complete data. Thus the SPE al-
gorithm successively repeats two steps. The first consists
in simulating an estimation of the hidden layer, x̂xx, which
is then used to form the completed data (x̂xx,yyy), to approx-
imate the complete data. The second step uses the pa-
rameter estimators defined previously over the completed
data. Algorithm 1 details the steps of the procedure.

SPE is an iterative procedure inspired by the Stochas-
tic Expectation Maximization (SEM) algorithm [9]. SPE
differs from SEM because β and r are not estimated using
a maximum likelihood estimator.

In SPE, at each iteration t we sample from the poste-
rior law to get a completed data, using Gibbs sampling,
run through K(t) iterations. We set K(t) = t as proposed
in [8].

Remark: The same estimation procedure can be
used to estimate the parameters of the related models de-
scribed in Section 3.3.

Remark: The computational time of the SPE algo-
rithm is directly linked to the time needed for the posterior
samplings since none of the estimator computation is com-
putationally intensive. We have that at iteration t of the
SPE algorithm, we have t(t+1)

2 Gibbs sampler iterations

Algorithm 1: The Stochastic Parameter Estima-
tion (SPE) procedure to train the GPMF model.
Data: θθθ0 = {β0, µ0

0, µ
0
1, σ

0, r0}, the initial set of
parameters,
yyy, the observations,
x̂xx0, the initial configuration for Gibbs
sampler.

Result: θ̂θθ = {β̂, µ̂0, µ̂1, σ̂, r̂}, the estimated
parameters.

t← 1
while convergence is not attained do

/* Posterior sampling with a Gibbs sampler
initialized at x̂xxt−1 and run during K(t) steps:
*/
x̂xxt ∼ p(xxx|yyy;θθθt−1)
/* Estimation: */
• LS estimator for βt (Eq.24).
• ML estimator for µt

0 and µt
1 (Eq.27).

• ML estimator for σt (Eq.28).
• Estimation via correlogram for rt (Eq:31).
θθθt ← {βt, µt

0, µ
t
1, σ

t, rt}
t← t+ 1

end

done. The algorithm is stopped when the estimated pa-
rameters reach stability, in practice, we found that ∼ 30
SPE iterations are sufficient.

5. Experiments and Results

This section illustrates the models from the PMF fam-
ily in the practical task of image segmentation in situations
of various complexity. These models are also compared to
other methods from the literature of unsupervised image
segmentation.

In this section we consider real-world images but also
semi-real images. The latter are real binary images arti-
ficially corrupted by correlated noise, in order to test the
relevance and tractability of the new model and its coun-
terparts. The images used come from the "1070-Binary
Shape Database" 1. We want to evaluate the capacity of
our model to handle correlated noise, the main purpose of
this work, but also to test the parameter estimation pro-
cedures with the proposed SPE algorithm (Algorithm 1).

Thus, from the binary image we construct an observa-
tion with an additive correlated Gaussian noise over the
image. Such a noise is modeled by the conditional likeli-
hood p(yyy|xxx) of a GMRF. This GMRF has a non-stationary
mean µµµxxx parametrized by the states of the natural binary
image and a stationary covariance matrix ΣΣΣ parametrized
by a variance σ2 and exponential correlation rates of range

1https://vision.lems.brown.edu/content/
available-software-and-databases
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r (as described in Section 3.2). Thus, the artificial images
can be considered as sampled from :

yyy ∼ p(yyy|xxx) =
exp

(
(yyy −µµµxxx)TΣΣΣ−1(yyy −µµµxxx)

)√
(2π)Ndet(ΣΣΣ)

. (32)

In all the experiments, we call error rate the proportion
of misclassified pixels: for an estimate x̂xx and a ground
truth xxx, the error rate e is given by:

e =
1

|S|
∑
s∈S

1[xs 6=x̂s]. (33)

Beforehand, we discuss the efficiency of sampling in the
probabilistic models.

5.1. Improved sampling with Tempered-Gibbs sampler
In this section we study more in depth the problem-

atic of sampling in the new distributions. Indeed, it is
known that the classic Gibbs sampler procedure (or other
MCMC-based sampling approaches) suffers from a poor
exploration of the probability distribution. The algorithm
is moreover dependent on the initialization of the Gibbs
sampler. Running several Gibbs sampler with different
random initializations might not be satisfactory as well as
being costly. These issues are discussed in [30] which also
introduces parallel tempering. The idea of parallel temper-
ing is to run in parallel several Gibbs sampler at different
temperatures (in the same meaning as in simulated anneal-
ing [24]). Samples from Gibbs samplers at high temper-
ature can swap and become the current state of a Gibbs
sampler of low temperature. At high temperature the dis-
tribution is less severely peaked and the Gibbs sampler
explores more easily this distribution. This approach is
called the Tempered Gibbs sampler (T-Gibbs sampler).

In our case we use the parallel tempering approach to
improve the sampling procedures from the P-GMRF and
GPMF models. We develop a similar methodology as [11]
where the temperature factor was used to rescale some
precise terms of the energy function rather than the whole
energy. We then build a tempered energy so that, at high
temperature, the probability distribution of the complex
model tends towards the distribution of the P-IN model
since sampling is easier in the P-IN model. This uses the
fact that the PMF models are more general than the P-IN
model. To do so we modify the potentials and make them
dependent on a temperature parameter that we explicitly
add in the notation.

The tempered version of the potentials are given in
Appendix D. The T-Gibbs sampler can replace the clas-
sic Gibbs sampler in the Marroquin algorithm for MPM
computation [29]. In the T-Gibbs algorithm we then pro-
ceed to samplings using the tempered versions of the local
unnormalized probabilities.

Remark: The tempered Gibbs sampler is clearly much
more computationally intensive than the classical Gibbs

sampler. This constitutes an important drawback despite
the improved performance that will study in the next sec-
tions.

5.2. Supervised segmentation on semi-real images with the
PMF models

In this section the task of image segmentation is per-
formed with the models from the PMF family in the con-
text of supervised segmentation. The pair of complete
data (xxx,yyy) is then available to estimate θ̂θθ from it (with
the estimators described in Section 4) before estimating x̂xx
using yyy and θ̂θθ.

The PMF models are here tested in the case of super-
vised image segmentation according to the two segmenta-
tion criteria, MAP and MPM. The MPM will be computed
either with Marroquin’s algorithm [29] or the T-Gibbs al-
gorithm (Section 5.1). We compute the average error rate
for each PMF model in the segmentation of a series of im-
ages from the dataset with varying noise level. Recall that
the noise is modeled by a GMRF for the semi-real image
formation. In the first case, the noise parameter that is
varying is ∆µ = |µ1 − µ0|, in the second case, the range r
of the noise is the variable. The experiment is summed up
in Figure 2.

Remark: r represents the scale of the "textures" in
the image, while ∆µ represents the scale of the pixel in-
tensities. A smaller ∆µ means that the image is harder to
restore (bigger noise level) but this is not necesarly true
for a larger r.

First of all, we note the overall reduced error rate
thanks to the new pairwise models over the classical P-IN
model. The GPMF model yields the best segmentations
for all noise levels. This behaviour illustrates the capac-
ity for the new model to take into account the correlated
noise.

Note that in the case of varying range, for all three seg-
mentation algorithms (especially for the MAP), the GPMF
and P-GMRF models perform worse than the P-IN and
PMF-UN models at the smallest correlation ranges. This
leads us to believe that in such situations the models which
can handle correlated noise are prone to overfitting. In-
deed, at fixed parameters, the GPMF (resp. P-GMRF)
models is equivalent to the PMF-UN (resp. P-IN) model
expect for the term which models the correlated noise (last
term of Equation 8). Thus we would except the error rates
of these equivalent to finally become similar for the small-
est ranges. It is, however not happening, and might be
due to overfitting for the more complex models. This is-
sue is, however, unlikely to appear in practical cases when
the noise is known to be correlated.

5.3. Unsupervised segmentation on semi-real images
In this section, we address the problem of unsuper-

vised image segmentation. We use the semi-real images
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Figure 2: Error rate in function of varying model parameters and of several estimators in the supervised segmentation of the ’dude’ images
of the dataset. Each line, from top to bottom, respectively corresponds to the MAP, MPM (with Marroquin’s algorithm) and MPM (with
T-Gibbs algorithm) segmentation criteria. Each column, from left to right, respectively corresponds to ∆µ variable and r variable. For the
∆µ column, the other parameters of the GRF noise were fixed to σ = 0.5 and r = 2. For the r column, they were fixed to µ0 = 0, µ1 = 0.6
and σ = 0.5. The dashed red lines are common between the graphs on each line. In such case we notice that the models have identical
performances relative to each other. Each point of the curves is the average error rate (Equation 33) for the segmentation of the 30 ’dude’
images of the dataset, repeated 10 times.
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Figure 3: MPM (T-Gibbs) unsupervised segmentation over the ’dude’ images. For the ∆µ column, the other parameters of the GRF noise
were fixed to σ = 0.5 and r = 2. For the r column, they were fixed to µ0 = 0, µ1 = 0.6 and σ = 0.5. The dashed vertical red lines highlight
parameter the situation when the parameter configuration is identical. In such case we notice that the models have identical performances
relative to each other. Tha dashed green lines reproduce the results of the GPMF model from the supervised case experiment (last row
of Figure 2). Each point of the curves is the average error rate (Equation 33) for the segmentation of the 30 ’dude’ images ofthe dataset,
repeated 10 times.
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previously introduced but consider only the observations
YYY . We here only consider the GPMF model and the MPM
(T-Gibbs) segmentation criterion which were the best per-
forming approaches of the previous section. To compare
with the GPMF model, we used 3 approaches in unsuper-
vised image segmentation:

• The classical Hidden Markov Field model with Potts
prior and Independent Noise (P-IN) [28] [26], which
is also a the simplest member of the PMF model
family (see Section 3.3).

• The KMeans clustering2 algorithm [1].

• The pyImSegm3 (pyIS) segmentation algorithm pro-
posed in [5]. The core of this technique also relies on
a Markov Random Field energy minimization prob-
lem using super-pixel based and graph-cut based ap-
proaches.

• Based on the recent developments of [36] for corre-
lated noise reduction (which were not available on-
line), we propose to combine the Block-Matching
3D filter4 from [16] and the graph-cut algorithm5

from [6]. This approach is then the combination
of a popular noise reduction technique and a pop-
ular graph-cut based segmentation. We call this ap-
proach BM3D+GC.

Let us now compare the unsupervised segmentations
obtained with the GPMF model with the results given by
other models. Figure 3 illustrates the segmentation per-
formance of the models for a varying noise level. More-
over, since the settings of the supervised experiment (Sec-
tion 5.2) and of this unsupervised experiment are compa-
rable, we reproduced the result of the GPMF model in the
supervised case. By comparing the GPMF model perfor-
mances in both cases we can see the stable degradation of
the performance in the unsupervised case, which illustrates
the robustness of the SPE method.

Figure 4 depicts some segmentations of images from
the database. We notice, in all cases, the superiority of
the new probabilistic model GPMF in its capacity to han-
dle the correlated noise, improving the segmentation error
and giving stable results. The GPMF model always per-
forms best or equally best at all noise level. In the best sce-
narii, the GPMF model increases the average error rate by
around 4 points. The graph-cut approaches, BM3D+GC
and pyIS, are more unstable and perform worse when deal-
ing with an image corrupted with correlated noise, despite
manually tuned hyperparameters. Finally, note that, as
expected, the overall error rates are higher in this unsu-
pervised segmentation experiment than in the supervised
segmentation experiment of Section 5.2.

2Implementation from https://opencv.org.
3Implementation from https://github.com/Borda/pyImSegm.
4Implementation from http://www.cs.tut.fi/~foi/GCF-BM3D/.
5Implementation from https://github.com/shaibagon/GCMex/.

xxx

Ground truth

yyy

Observations

x̂xxKM

26.3% 19.8% 26.3%

x̂xxBM3D+GC
11.0% 4.5% 7.7%

x̂xxpyIS
5.1% 6.6% 13.0%

x̂xxP−IN
3.5% 4.1% 5.5%

x̂xxGPMF
3.3% 3.2% 3.7%

Figure 4: Unsupervised segmentation of images from the dataset
with the new model and 4 other models. The error rates with re-
spect to the ground truth appear below each sample. For the 3
images, the GMF parameters are µ0 = 0, µ1 = 2, σ = 1, r = 3.
The segmentation is here done under the MPM criterion computed
with Marroquin’s algorithm [29]: it is the best compromise between
segmentation performance and computation time as explained in our
study.
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5.4. On real world images
We now present the model in a real world application

from the medical field, where unsupervised image segmen-
tation needs to be done on strongly spatially corrupted
data.

We consider micro-computed tomography X-rays scans [20]
of human arteries containing a metallic biomaterial (called
a stent). The scarcity of this data obliges the use of an un-
supervised approach. These images are very noisy because
of the beam hardening artifacts caused by the interactions
between X-rays and the metallic stent. To improve the de-
sign of biomaterials and their implantation in the human
body, it is crucial to analyze, in situ, the biomaterial when
it fails and need to be explanted from the patient body.
In such process of analysis, we need to precisely segment
stent, organic material and background despite the strong
noise in the image. In this image processing problem, the
stent beam hardening artifacts can be modeled as a corre-
lated noise. An automatization of the segmentation pro-
cess could help processing more data and create enhanced
inputs for biomechanical studies carried to increase the
knowledge about the vascular diseases.

Some works have been proposed using different tech-
niques for stent artifact reduction, see for example, [10]
[19]. However these works do not propose a segmenta-
tion step and they often rely on physical additional data
about the acquisition technique. Moreover, to the best of
our knowledge, there is no counterpart of our model in
the literature involving spatially-correlated noise. Thus, a
comparison with the techniques developed for this precise
application is out of the scope of this article.

The goal of the experiment is to segment precisely the
organic material from the background of the images. The
two classes we wish to distinguish are visible by the naked
eye, but they are very corrupted by the artifacts and are
challenging to segment using automatic unsupervised al-
gorithms. We treat 512× 512-pixel 2D images.

Figure 5 depicts the results obtained by three meth-
ods described in the previous section (BM3D+GC, P-IN
and GPMF). While the overall error rate is in favor of the
GPMF model, it does not truly reflects the capacity of
the model to resolve correlated noise and offer a proper
segmentation. Therefore we consider the organic mate-
rial as the true class and we compute the False Negative
(FN) and False Positive (FP) percentage of pixels in areas
around the stent where the correlations are the strongest.
We can see that the GPMF model best captures the corre-
lated noise and resolve much of the stent hardening beam
problem: it offers the best compromise between the FN
and FP scores. On the other hand, the KMeans, P-IN
and, to a smaller extent, the BM3D+GC results are parti-
curlarly prone to misclassifications because of the artifacts.
The results of the pyIS method were essentially similar to
that of BM3D+GC and are omitted here for brevity, as
well as the results from the KMeans algorithm which are
omitted because of the poor performance of the algorithm

studied in Section 5.3. In addition the results obtained
with the GPMF model were also judged very satisfying by
the pathologists.

6. Conclusion

In this article, we presented a new kind of probabilis-
tic latent variable model called Gaussian Pairwise Markov
Fields. We established its formal definition and considered
fours models that are GPMF to address the problem of un-
supervised image segmentation corrupted with correlated
noise. We showed in theory and in practice that these
models are generalizations of the classical hidden Markov
field model. We exhibited important links between this ex-
tension of pairwise Markov fields and the Gaussian fields
theory. We also developed an efficient parameter estima-
tion procedures to answer the problem of unsupervised
image segmentation. In this setting, the GPMF model
which was able to model the more dependencies was the
best performing method to segment images in presence
of correlated noise on the considered dataset. The same
conclusion was true considering real world data, with con-
vincing results in a medical imaging application.

Future work will consider modeling the non-stationarities
in the observed process, which seems to be the major limi-
tation in the currrent model. To this end, works have been
carried directly in the modelization of the GRF, through a
complexification of the correlation function that we might
investigate [27] [21] [31]. Another approach would be that
of building a "superposition" of GRFs [12] [39]. Improve-
ments of the model in these directions might lead to better
performances, especially on real world images.

Acknowledgement

The authors want to thank Pr. Nabil Chakfé (head
of Vascular Surgery and Kidney Transplantation Depart-
ment and GEPROVAS, Strasbourg, France) for support-
ing this work and Salomé Kuntz, Matthew D. Kutyna and
Dr. Renu Virmani from CVPath Institute Inc. (Gaithers-
burg, Maryland, USA) for their collaboration to this work
and for the acquisition of the micro-computed tomography
images.

References

[1] David Arthur and Sergei Vassilvitskii. K-means++: The advan-
tages of careful seeding. In Proceedings of the 18th ACM-SIAM
symposium on Discrete algorithms, pages 1027–1035, 2007.

[2] Dalila Benboudjema and Wojciech Pieczynski. Unsupervised
statistical segmentation of nonstationary images using triplet
Markov fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(8):1367–1378, 2007.

[3] Ottar N Bjørnstad and Wilhelm Falck. Nonparametric spatial
covariance functions: estimation and testing. Environmental
and Ecological Statistics, 8(1):53–70, 2001.

[4] Andrew Blake, Pushmeet Kohli, and Carsten Rother. Markov
Random Fields for Vision and Image Processing. The MIT
Press, 2011. ISBN 0262015773, 9780262015776.

10



yyy xxx x̂xxBM3D+GC (2.2%)

x̂xxP−IN (1.6%) x̂xxGPMF (1.4%)

FN FP
BM3D+GC 0.14 0.01
P-IN 0.08 0.08
GPMF 0.08 0.04

(a) Case 1

yyy xxx x̂xxBM3D+GC (2.3%)

x̂xxP−IN (2.6%) x̂xxGPMF (1.7%)

FN FP
BM3D+GC 0.05 0.07
P-IN 0.02 0.14
GPMF 0.02 0.07

(b) Case 2

Figure 5: Unsupervised segmentations of organic material in corrupted X-rays images. For these 2 cases, which illustrate different explanted
biomaterials, we have: the real image yyy, the ground truth image xxx, the BM3D-GC segmentation, the P-IN segmentation and the GPMF
segmentation. The segmentation criterion for the probabilistic models is the MPM (Marroquin). The stent parts (brightest pixels in yyy) were
segmented beforehand by a thresholding technique and then considered as image borders. They appear in red on the segmented images and
did not take part in the segmentation. The ground truth could be provided by experts since an histological analysis is available. Error rates
with respect to the ground truth on the whole image appear in parenthesis. FN and FP rates computed in the blue areas for each model
appear in the table.

11



[5] Jiří Borovec, Jan Švihlík, Jan Kybic, and David Habart. Super-
vised and unsupervised segmentation using superpixels, model
estimation, and graph cut. Journal of Electronic Imaging, 26
(6):061610, 2017.

[6] Yuri Boykov and Vladimir Kolmogorov. An experimental com-
parison of min-cut/max-flow algorithms for energy minimiza-
tion in vision. IEEE transactions on Pattern Analysis and Ma-
chine Intelligence, 26(9):1124–1137, September 2004.

[7] D. Andraw Brown, Christopher S. McMahan, and Stella Wat-
son. Sampling strategies for fast updating of Gaussian Markov
random fields. The American Statistician, (just-accepted):1–32,
2019.

[8] Miguel A Carreira-Perpinan and Geoffrey E Hinton. On con-
trastive divergence learning. In AISTATS, volume 10, pages
33–40. Citeseer, 2005.

[9] Gilles Celeux. The sem algorithm: a probabilistic teacher algo-
rithm derived from the em algorithm for the mixture problem.
Computational statistics quarterly, 2:73–82, 1985.

[10] Yang Chen, Yinsheng Li, Hong Guo, Yining Hu, Limin Luo,
Xindao Yin, Jianping Gu, and Christine Toumoulin. CT metal
artifact reduction method based on improved image segmenta-
tion and sinogram in-painting. Mathematical Problems in En-
gineering, 2012, 2012.

[11] KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Paral-
lel tempering is efficient for learning restricted boltzmann ma-
chines. In The 2010 International Joint Conference on Neural
Networks, pages 1–8. IEEE, 2010.

[12] Jean-Baptiste Courbot, Emmanuel Monfrini, Vincent Mazet,
and Christophe Collet. Oriented triplet Markov fields. Pattern
Recognition Letters, 103:16–22, 2018.

[13] Jean-Baptiste Courbot, Emmanuel Monfrini, Vincent Mazet,
and Christophe Collet. Triplet Markov trees for image segmen-
tation. In 2018 IEEE Statistical Signal Processing Workshop
(SSP), pages 233–237. IEEE, 2018.

[14] Jean-Baptiste Courbot, Vincent Mazet, Emmanuel Monfrini,
and Christophe Collet. Pairwise Markov fields for segmentation
in astronomical hyperspectral images. Signal Processing, 163:
41 – 48, 2019.

[15] Noel Cressie. Statistics for spatial data. Wiley Online Library,
1992.

[16] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. BM3D image denoising with shape-adaptive
principal component analysis. 2009.

[17] Haluk Derin and Howard Elliott. Modeling and segmentation
of noisy and textured images using Gibbs random fields. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (1):
39–55, 1987.

[18] Tamara Dimitrova and Ljupco Kocarev. Graphical models over
heterogeneous domains and for multilevel networks. IEEE Ac-
cess, 6:69682–69701, 2018.

[19] Elena Faggiano, Tommaso Lorenzi, and Alfio Quarteroni. Metal
artefact reduction in computed tomography images by a fourth-
order total variation flow. Computer Methods in Biomechanics
and Biomedical Engineering: Imaging & Visualization, 4(3-4):
202–213, 2016.

[20] Brian P Flannery, Harry W Deckman, Wayne G Roberge, and
Kevin L D’Amico. Three-dimensional x-ray microtomography.
Science, 237(4821):1439–1444, 1987.

[21] Francky Fouedjio, Nicolas Desassis, and Thomas Romary. Esti-
mation of space deformation model for non-stationary random
functions. Spatial Statistics, 13:45–61, 2015.

[22] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The
elements of statistical learning, volume 1. Springer series in
statistics New York, NY, USA:, 2001.

[23] Geir-Arne Fuglstad, Finn Lindgren, Daniel Simpson, and Hå-
vard Rue. Exploring a new class of non-stationary spatial Gaus-
sian random fields with varying local anisotropy. Statistica
Sinica, pages 115–133, 2015.

[24] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of images. IEEE
Transactions on pattern analysis and machine intelligence, (6):

721–741, 1984.
[25] Ivan Gorynin, Hugo Gangloff, Emmanuel Monfrini, and Woj-

ciech Pieczynski. Assessing the segmentation performance of
pairwise and triplet Markov models. Signal Processing, 145:
183–192, 2018.

[26] Zoltan Kato, Josiane Zerubia, et al. Markov random fields in
image segmentation. Foundations and Trends® in Signal Pro-
cessing, 5(1–2):1–155, 2012.

[27] William Kleiber. High resolution simulation of nonstationary
Gaussian random fields. Computational Statistics & Data Anal-
ysis, 101:277–288, 2016.

[28] Stan Z Li. Markov random field modeling in image analysis.
Springer Science & Business Media, 2009.

[29] Jose Marroquin, Sanjoy Mitter, and Tomaso Poggio. Proba-
bilistic solution of ill-posed problems in computational vision.
Journal of the american statistical association, 82(397):76–89,
1987.

[30] Radford M Neal. Sampling from multimodal distributions using
tempered transitions. Statistics and computing, 6(4):353–366,
1996.

[31] Douglas Nychka, Dorit Hammerling, Mitchell Krock, and Ash-
ton Wiens. Modeling and emulation of nonstationary Gaussian
fields. Spatial statistics, 28:21–38, 2018.

[32] Youngsuk Park, David Hallac, Stephen Boyd, and Jure
Leskovec. Learning the network structure of heterogeneous data
via pairwise exponential Markov random fields. Proceedings of
machine learning research, 54:1302, 2017.

[33] Andrija Petrović, Mladen Nikolić, Miloš Jovanović, and Boris
Delibašić. Gaussian conditional random fields for classification.
arXiv preprint arXiv:1902.00045, 2019.

[34] Wojciech Pieczynski and Abdel-Nasser Tebbache. Pairwise
Markov random fields and segmentation of textured images.
Machine graphics and vision, 9(3):705–718, 2000.

[35] Vladan Radosavljevic, Slobodan Vucetic, and Zoran Obradovic.
Continuous conditional random fields for regression in remote
sensing. In Proceedings of the 19th European Conference on
Artificial Intelligence, pages 809–814, 2010.

[36] Oleksii Rubel, Vladimir Lukin, and Karen Egiazarian. Additive
spatially correlated noise suppression by robust block match-
ing and adaptive 3D filtering. Journal of Imaging Science and
Technology, 62(6):60401–1, 2018.

[37] Håvard Rue and Leonhard Held. Gaussian Markov random
fields: theory and applications. CRC press, 2005.

[38] Ruslan R Salakhutdinov. Learning in markov random fields
using tempered transitions. In Advances in neural information
processing systems, pages 1598–1606, 2009.

[39] Cornelia Vacar and Jean-François Giovannelli. Unsupervised
joint deconvolution and segmentation method for textured im-
ages: a Bayesian approach and an advanced sampling algorithm.
EURASIP Journal on Applied Signal Processing, 2019:17, De-
cember 2019. doi: 10.1186/s13634-018-0597-x.

[40] Raviteja Vemulapalli, Oncel Tuzel, Ming-Yu Liu, and Rama
Chellapa. Gaussian conditional random field network for se-
mantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3224–3233,
2016.

[41] Hongyuan Zhu, Fanman Meng, Jianfei Cai, and Shijian Lu. Be-
yond pixels: A comprehensive survey from bottom-up to seman-
tic image segmentation and cosegmentation. Journal of Visual
Communication and Image Representation, 34:12–27, 2016.

Appendix A. Proof of the GPMF definition

Necessity: We now show that if (XXX,YYY ) is a GPMF,
then its Gibbs distribution is necessarly of the form of
Equation 7. If (XXX,YYY ) is a GPMF with respect to N , it is
then a PMF with repect to the same neighborhood and,
thanks to the Hammersley-Clifford theorem we can write
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−
∑

s,s′∈S2

ysCs,s′ys′ − log
√

2πdet(CCC−1) =

|N |∑
n=1

( ∑
ccc∈Cn

Vn(xxxccc, yyyccc)
)
− log

∫
RN

dyyy exp

(
−
|N |∑
n=1

( ∑
ccc∈Cn

Vn(xxxccc, yyyccc)
))

. (A.1)

−

(∑
ccc∈C1

V̄1(yyyccc,xxxccc) +
∑
ccc∈C2

V̄2(yyyccc,xxxccc)

)
− log

∫
RN

dyyy exp

(∑
ccc∈C1

V̄1(yyyccc,xxxccc) +
∑
ccc∈C2

V̄2(yyyccc,xxxccc)

)
=

−
|N |∑
n=1

( ∑
ccc∈Cn

Vn(xxxccc, yyyccc)
)
− log

∫
RN

dyyy exp

(
−
|N |∑
n=1

( ∑
ccc∈Cn

Vn(xxxccc, yyyccc)
))

.

(A.2)

−

(∑
ccc∈C1

V̄1(yyyccc,xxxccc) +
∑
ccc∈C2

V̄2(yyyccc,xxxccc)

)
︸ ︷︷ ︸

A

+

|N |∑
n=1

( ∑
ccc∈Cn

Vn(xxxccc, yyyccc)
)

︸ ︷︷ ︸
B

= − log

∫
RN

dyyy exp

(
−
|N |∑
n=1

( ∑
ccc∈Cn

Vn(xxxccc, yyyccc)
))

+

log

∫
RN

dyyy exp

(∑
ccc∈C1

V̄1(yyyccc,xxxccc) +
∑
ccc∈C2

V̄2(yyyccc,xxxccc)

)
.

(A.3)

that:

p(xxx,yyy) =
1

Z
exp

(
−
|N |∑
n=1

( ∑
ccc∈Cn

Vn(xxxccc, yyyccc)
))

, (A.4)

On the other hand, if we want to meet the second condition
of the GPMF definition, we need to ensure that p(yyy|xxx) is
the density of a multivariate Gaussian function. Thus,
there exists a SPD matrix CCC such that:

p(yyy|xxx) =
1√

2πdet(CCC−1)
exp

− ∑
s,s′∈S2

ysCs,s′ys′

 .

(A.5)
Then, using:

p(yyy|xxx) =
p(xxx,yyy)∫

RN dyyyp(xxx,yyy)
, (A.6)

we get Equation A.1 by Equations A.4 and A.5. Now note
that since CCC is SPD,

∑
(s,s′)∈S2 ysCs,s′ys′ can be written

as a positive semidefinite quadratic form in the variables
yyy, such that:∑

(s,s′)∈S2

ysCs,s′ys′ =
∑
ccc∈C1

V̄1(yyyccc,xxxccc) +
∑
ccc∈C2

V̄2(yyyccc,xxxccc).

(A.7)
V̄1 and V̄2 are polynomial function of yyy variables where
terms involving a mix of yyy and xxx variables can be found,
but terms with xxx variables alone cannot be found. More-
over there is the constraint that the RHS of Equation A.7
is a positive semidefinite quadratic form in the yyy variables.

Using Equation A.7 as well as the result of the multi-
variate Gaussian integral "backwards", Equation A.1 be-
comes Equation A.2. We finally rearrange Equation A.2
into Equation A.3. In Equation A.3 it is clear that the
RHS does not depend on yyy then so does the LHS. Thus,
in the LHS, the terms containg yyy variables in A must sim-
plify with terms in B. Therefore, we are able to deduce
the constraints on the terms of B that we are looking for:

•
∑

ccc∈C1 V1(xxxccc, yyyccc) =
∑

ccc∈C1

(
V̄1(yyyccc,xxxccc) + Ṽ1(xxxccc)

)
,

•
∑

ccc∈C2 V2(xxxccc, yyyccc) =
∑

ccc∈C2

(
V̄2(yyyccc,xxxccc) + Ṽ2(xxxccc)

)
,

• all the other terms in B does not involve yyy variables.

We introduced Ṽ1 and Ṽ2 to be potential functions which
only involve xxx variables.

This concludes the necessity part of the demonstration.

Sufficiency: Let us first show that a factorization of
the form of Equation 2 using Equation 8 or, equivalently,
that a Gibbs distribution whose energy is given by Equa-
tion 7 is a PMF. It is straightforward to see that p(xxx,yyy) >
0,∀xxx ∈ ΩN ,∀yyy ∈ RN . Moreover, from the conditional for-
mulation we have clearly that, ∀s ∈ S, p(xs, ys|xxxS\s, yyyS\s) =
p(xs, ys|xxxNs

, yyyNs
). These first two points show that (XXX,YYY )

is a PMF with respect to N .
We now need to show that p(yyy|xxx) is the density of

a GMRF. Using the energy formulation, we show using
Bayes theorem that:

p(yyy|xxx) =

exp

(
−
(∑2

n=1

(∑
ccc∈Cn V̄n(xxxccc, yyyccc)

)))
∫
RN dyyy exp

(
−
(∑2

n=1

(∑
ccc∈Cn V̄n(xxxccc, yyyccc)

))) .
(A.8)

In the previous equations, we remove all the Vn where the
yyyccc variables do not play a role. The remaining terms are
V̄1 and V̄2, which are assumed to be positive semidefinite
forms in yyyccc. Thus, by definition, there existsAAA andBBB SPD
matrices of size N ×N such that:

2∑
n=1

∑
ccc∈Cn

V̄n(xxxccc, yyyccc) =
∑
s∈S

As,sy
2
s +

∑
s∈S

∑
s′∈Ns

Bs,s′ysys′ ,

=
∑
s∈S

∑
s′∈Ns∪{s}

Cs,s′ysys′ .

(A.9)
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Note that AAA and BBB can depend on xxx but we omit it in
notations for clarity. Note also that AAA is a diagonal ma-
trix. Since CCC = AAA +BBB, CCC is a SPD matrix since it is the
sum of two SPD matrices. Finally, using the result of the
multivariate Gaussian integral we find Equation 13. The
latter equation shows that YYY given XXX = xxx is a GMRF,
which is the second element of the GPMF definition and
concludes the sufficiency part of the demonstration.

Appendix B. Proof that the model is a GPMF

In this section we show that the model defined in Sec-
tion 3.1, by the energy of Equation 9, or equivalently,
the unnormalized local conditional probabilities of Equa-
tion 11, is a GPMF.

First, it is clear that ∀xxx ∈ ΩN ,∀yyy ∈ RN , p(xxx,yyy) >
0. Along with Equation 11 wihch attests the Markovian
property, we can conclude that (X,Y ) is a PMF.

We now need to show that YYY given a realization xxx of
XXX is a GMRF. The model energy can be written:

E(xxx,yyy) =
∑
s∈S

∑
s′∈
Ns∪{s}

[
− I[s′∈N 1

s ]δ
xs′
xs
β
(

1− 1

2
(ȳs − ȳs′)2

)]

+
∑
s∈S

∑
s′∈
Ns∪{s}

[1

2
I[s′∈N 2

s ]Qs,s′ ȳsȳs′
]
− β

(
1− 1

2
(ȳs − ȳs)2

)
,

(B.1)

which gives:

E(xxx,yyy) =
∑
s∈S

∑
s′∈

N 1
s∪{s}

−δxs′
xs
β +

∑
s∈S

∑
s′∈

N 2
s∪{s}

[1

2
Qs,s′ ȳsȳs′

]
+

∑
s∈S

∑
s′∈

N 1
s∪{s}

[
1

2
δxs′
xs
β(ȳs − ȳs′)2

]
− β.

(B.2)

A detailed derivation can show that:∑
s∈S

∑
s′∈

N 1
s∪{s}

1

2
δxs′
xs
β(ȳs − ȳs′)2 =

1

2
ȳyyTPȳyy, (B.3)

where PPP is a matrix with elements:

Ps,s′ =


2
∑

s′∈N 1
s
δ
xs′
xs β, if s = s′,

−2δ
xs′
xs β, if s′ ∈ N 1

s ,

0 otherwise.
(B.4)

Then note that, since with restrict β ∈ R∗+, ∀s ∈ S:

|Ps,s| ≥
∑
s′∈S
s′ 6=s

|Ps,s′ |. (B.5)

ThusPPP has the diagonal dominance property, which makes
PPP a SPD matrix. In the model definition, we also restrict
QQQ to be a SPD matrix with the constraint of Equation 12,
then, RRR = PPP +QQQ is a SPD matrix. The energy can then
be written:

E(xxx,yyy) =
∑

(s,s′)∈S2

[
1

2
Ps,s′ ȳsȳs′

]
+

∑
(s,s′)∈S2

[
1

2
Qs,s′ ȳsȳs′

]
−
∑
s∈S

∑
s′∈

N 1
s∪{s}

δxs′
xs
β,

=
∑

(s,s′)∈S2

[
1

2
Rs,s′ ȳȳs′

]
−
∑
s∈S

∑
s′∈

N 1
s∪{s}

δxs′
xs
β.

(B.6)

Using the result of the integral of the multivariate Gaus-
sian we finally have:

p(yyy|xxx) =
1√

(2π)Ndet(RRR−1)
exp

(
−1

2
ȳyyTRRRȳyy

)
, (B.7)

which is the expression of a Gaussian Markov Random
Field (GMRF) with non stationary mean and precision
matrix RRR = PPP +QQQ.

This concludes the proof that the model defined in Sec-
tion 3.1 is a GPMF.

Appendix C. Least-Square estimator for β

In this section we show how to adapt the Linear Least-
Square estimator [17] for the β parameter, using the a
completed pair of realizations of (xxx,yyy). The derivation is
done for the GPMF model and is similar for the other
models.

First note that, ∀s ∈ S:

p(xs,xxxNs |yyy)

p(xxxNs
|yyy)

= p(xs|xxxNs
, yyy),

=
p(xs, ys|xxxNs

, yyyNs
)∑

x′
s∈Ω p(x

′
s, ys|xxxNs , yyyNs)

,

=
p̃(xs, ys|xxxNs

, yyyNs
)∑

x′
s∈Ω p̃(x

′
s, ys|xxxNs , yyyNs)

.

(C.1)

Here the second equality has been seen in Equation 5.
Then we have, ∀s ∈ S:

p̃(xs, ys|xxxNs , yyyNs)

p(xs,xxxNs
|yyy)

=

∑
x′
s
p̃(x′s, ys|xxxNs , yyyNs)

p(xxxNs
|yyy)

, (C.2)

where we can make the same key observation as in [17]: the
right-hand side of the last equation is independent of the
realization xs ∈ Ω. Then so is the left-hand side. Then,
∀s ∈ S, ∀(xs, x′s) ∈ Ω2, we can write:

p̃(xs, ys|xxxNs , yyyNs)

p(xs,xxxNs
|yyy)

=
p̃(x′s, ys|xxxNs , yyyNs)

p(x′s,xxxNs
|yyy)

,

⇐⇒ p̃(xs, ys|xxxNs
, yyyNs

)

p̃(x′s, ys|xxxNs , yyyNs)
=
p(xs,xxxNs

|yyy)

p(x′s,xxxNs |yyy)
.

(C.3)
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Now, taking the exponential on each side, and using the
expression of Equation 11, ∀s ∈ S, ∀(xs, x′s) ∈ Ω2:

ln

(
p(xs,xxxNs

|yyy)

p(x′s,xxxNs
|yyy)

)
− 1

2
Qs,s(ȳ

′
s)

2 +
1

2
Qs,sȳ

2
s +

∑
t∈Ns

I[t∈N 2
s ]Qs,tȳsȳt −

∑
t∈NY

s

I[t∈N 2
s ]Qt,sȳ

′
sȳt =

2
∑
t∈Ns

V (xs, ys, xt, yt)− 2
∑
t∈Ns

V (x′s, ys, xt, yt),

(C.4)

where we define ȳ′s = (ys − µx′
s
) which gives:

ln

(
p(xs,xxxNs

|yyy)

p(x′s,xxxNs
|yyy)

)
+

1

2
Qs,sȳ

2
s −

1

2
Qs,s(ȳ

′
s)

2 +
∑
t∈Ns

I[t∈N 2
s ]Qs,tȳsȳt −

∑
t∈Ns

I[t∈N 2
s ]Qt,sȳ

′
sȳt =

β

(
2
∑
t∈Ns

I[t∈N 1
s ]δ

xt
xs

(
1− 1

2
(ȳs − ȳt)2

)
− 2

∑
t∈Ns

I[t∈N 1
s ]δ

xt

x′
s

(
1− 1

2
(ȳ′s − ȳt)2

))
.

(C.5)

The last equation can be written for every each site s,
∀(xs, x′s) ∈ Ω2. All these equations can be put in the
form:

AAA = BBBβ, (C.6)
where β ∈ R∗+ and AAA,BBB are real vectors with N elements
with generic term As and Bs respectively defined in Equa-
tion 25 and Equation 26.

The probabilities p(xs,xxxNs
|yyy), ∀xs ∈ Ω (which are in-

dependent of s) are estimated using the frequency estima-
tor, and β can then be estimated with the LS estimator
given in Equation 24.

Appendix D. Tempered equations

We introduce tempered versions of the potentials to be
used with the T-Gibbs sampler [11].

• Equations 11 and 10 become:

p̃T (xs, ys|xxxNs , yyyNs) = exp

(
−
(

2
∑

s′∈Ns

VT (xs, ys, xs′ , ys′)+
1

2
Qs,sȳ

2
s+

1

T

∑
s′∈Ns

I[t∈N 2
s ]Qs,s′ ȳsȳs′

))
,

(D.1)
where

VT (xs, ys, xs′ , ys′) = −I[t∈N 1
s ]δ

xs′
xs
β

(
1− 1

2T
(ȳs − ȳs′)2

)
.

(D.2)

• Equation 20 becomes:

p̃T (ys|xs,xxxNs
, yyyNs

) = exp

(
−ln

(√
2πVs

)
− (ys −MT,s)

2

2Vs

)
,

(D.3)
with

MT,s = µxs
− Vs
T

∑
s′∈Ns

I[t∈N 2
s ]Qs,s′ ȳs′ and Vs = Q−1

s,s.

(D.4)

Combinations of these potentials are used to sample
with the T-Gibbs sampler with the P-GMRF and GPMF
models. It consists in Equations 17 and D.3 for P-GMRF
and Equation D.1 for GPMF.

Appendix E. Tempered-Gibbs sampler

Algorithm 2: Tempered Gibbs sampler
Data: A set of ordered temperatures {Tk}k=K

k=1

Initial states of the parallel Markov chains
{xxx1

k}k=K
k=1

Result: xxxi1 the sample at model temperature
i← 1
while not converged do

/* Gibbs sampler for each chain */
for k ∈ {K, . . . , 1} do

xxxi+1
k drawn by Gibbs sampler from pTk

(xxx)
with initialization at xxxik

end
/* Test to swap chains */
for k ∈ {K − 1, . . . , 1} do

xxxi+1
k ← xxxi+1

k+1 with probability
αk(xxxi+1

k ,xxxi+1
k+1)

end
i← i+ 1

end

Algorithm 2 details the Gibbs sampler with tempered
distributions which we call Tempered Gibbs sampler (T-
Gibbs sampler). In this algorithm, let K be the number
of Gibbs samplers that we run in parallel. We then have
K associated and ordered temperatures starting from the
temperature at which the probabilistic model is defined;
which is 1 in our case. Two chains with successive temper-
atures can swap with probability:

αk(xxxi+1
k ,xxxi+1

k+1) = min

(
exp

(
(

1

Tk
− 1

Tk+1
)(E(xxxi+1

k )−E(xxxi+1
k+1))

)
, 1

)
.

(E.1)
In our experiments, the set of temperatures is fixed for

all the PMF models to 16 linearly spaced temperatures
ranging from 1 to 20 [38].
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