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Abstract: The aim of this work is to propose a design methodology of observers for a class
of Lipschitz nonlinear dynamical systems with sampled measurements by using the differential
mean value theorem (DMVT) which allows us to transform the nonlinear part of the estimation
error dynamics into a linear parameter varying (LPV) system. The designed observer must
ensure the stability of the estimation error subject to a sampled measurements. An LMI-based
minimization problem is provided to ensure the stability and the existence of the observer using
Lyapunov theory. Thus, the measurements sampling period is included in the LMI as a decision
parameter. Indeed, this allows to widen the sampling period as much as possible, which helps
optimization of energy consumption while guaranteeing the convergence of the observer. Finally,
to illustrate the performance of the proposed methodology, a numerical example is presented.

Keywords: Observers design, Lipschitz nonlinarity, Sampled measurements, LMI Approach,
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1. INTRODUCTION

In real applications, most systems are naturally linear
time-varying or nonlinear. Controlling this kind of system
is not an easy task, because it requires the development
of efficient control boxes with sufficient computation fre-
quency to satisfy the process specifications. Generally, the
high number of operation performed, implies a significant
energy consumption. This presents a disadvantage in the
case of embedded systems in some applications like au-
tonomous mobile systems.

Nonlinear observer design has been a topic of great re-
search in the last decades Krener and Respondek (1985),
Simon (2006), Gauthier et al. (1992), Rajamani (1998),
Khalil (2002), Arcak and Kokotovic (2001), Kravaris et al.
(2004), those ones are required especially when we don’t
have access to all the system states. The estimated states
obtained by the observer are used for different purposes
such as the design of control laws for guarantee some
desired performance. For example, in the field of au-
tonomous vehicles, measurement of some variables, such
as longitudinal distances, velocities and accelerations of
other nearby vehicles, requires significant expense in terms
of energy. Some of sensors, such as slip angle and roll angle,
can be extremely expensive to measure, requiring sensors
that cost thousands of dollars Rajamani (2012), Rajamani
et al. (2000). In addition, several important tasks cannot
be performed due to purely and simply unavailability of
sensors.

Designing sampled-data observers has attracted much at-
tention in recent years due to the growth of the num-
ber of applications where the measurements are sampled,
see Bouraoui et al. (2015) and references therein. One of
the major difficulties in the design of sampled-data ob-
servers is how to enlarge the sampling intervals and ensure
the convergence of the estimations. Some results on the
output feedback sampled-data control of nonlinear systems
using high-gain observers are proposed in Dabroom and
Khalil (2001). In Ahmed-Ali et al. (2013), the problem
of global exponential sampled-data observers design for
nonlinear systems with delayed measurements is studied.
The exact and Euler approximate models are used by
the authors of Abbaszadeh and Marquez (2008) to design
Robust H∞ observer for sampled-data Lipschitz nonlinear
systems.

The aim of this note is to analyze and to design observers
for a class of nonlinear systems with sampled measure-
ments by using the LPV approach. Firstly, the nonlinear
part of the considered system is analyzed. This is done by
using the differential mean value theorem (DMVT) which
allows us to transform the nonlinear part of the estimation
error dynamics into a linear parameter varying (LPV)
system (see Zemouche and Boutayeb (2013)). Moreover,
the existence and stability conditions of such observer
are given as an LMI-based minimization problem taking
into account the sampling period of the measure. In fact,
maximize the sampling time enable to reduce the access
frequency to the energy source which quantifies the energy
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consumption. Finally, a simulation example is given to
illustrate the effectiveness of the proposed approach.

Notation: In the sequel Rn and Rn×m will denote the n
dimensional Euclidean space and the set of all n×m real
matrices, respectively. AT denotes the transpose of matrix
A. A is symmetric positive definite matrix if and only if
AT = A and A > 0. Sym{X} is used to denote XT +X.

2. PROBLEM FORMULATION AND PRELIMINARY
RESULTS

2.1 Preliminaries and useful Lemmas

In this section we introduce some definitions and prelimi-
naries which will be of crucial use in the proposed approach

Definition 1. (Zemouche and Boutayeb (2013)) Consider
two vectors

X =

x1

...
xn

 ∈ Rn and Z =

z1

...
zn

 ∈ Rn.

For all i = 0, ..., n, we define an auxiliary vector XZi ∈ Rn
corresponding to X and Z as follows:

XZi =



z1

...
zi
xi+1

...
xn


for i = 1, ..., n

XZ0 = X

(1)

Lemma 1. (Zemouche and Boutayeb (2013)). Consider a
continuous function Ψ : Rn −→ R. Then, for all

X =

x1

...
xn

 ∈ Rn and Z =

z1

...
zn

 ∈ Rn

there exist functions ψj : Rn × Rn −→ R, j = 1, ..., n
such that

Ψ(X)−Ψ(Z) =

j=n∑
j=1

ψj

(
XZj−1 , XZj

)
e>n (j)

(
X − Z

)
(2)

where en(j) is the jth vector of the canonical basis of Rn.

Lemma 2. (Zemouche and Boutayeb (2013)). Consider a
function Ψ : Rn −→ Rn. Then, the two following items
are equivalent:

• Ψ is γΨ-Lipschitz with respect to its argument, i.e.:∥∥∥Ψ(X)−Ψ(Z)
∥∥∥ ≤ γΨ

∥∥∥X − Y ∥∥∥, ∀ X,Z ∈ Rn (3)

• for all i, j = 1, ..., n, there exist functions

ψij : Rn × Rn −→ R
and constants γ

ψij
≤ 0, γ̄ψij

≥ 0, such that ∀ X,Z ∈
Rn,

Ψ(X)−Ψ(Z) =

i=n∑
i=1

j=n∑
j=1

ψijHij

(
X − Z

)
(4)

and
−γΨ ≤ γψij

≤ ψij ≤ γ̄ψij
≤ γΨ (5)

where

ψij , ψij

(
XZj−1 , XZj

)
and Hij = en(i)e>n (j)

Lemma 3. Let X and Y two given matrices of appropriate
dimensions. the following inequality is true:

XTY + Y TX ≤ µXTX +
1

µ
Y TY. (6)

Lemma 4. (Gu (2000)). For any constant symmetric pos-
itive matrix M ∈ Rm×m, scalars t1, t2 and vector function
v : [t1, t2]→Rm then the following inequality holds (Jensen
Inequality):(∫ t2

t1

vT (β)dβ

)
M

(∫ t2

t1

v(β)dβ

)
≤ (t2 − t1)

∫ t2

t1

vT (β)Mv(β)dβ (7)

Remark 1. Lemma 4 can be viewed as a direct application
of a variant of Halanay’s inequality Hien et al. (2015) or
the well-known Razumikhin’s Theorem.

Finally, we introduce the following main lemma, which
will be used to guarantee exponential convergence of the
estimation error.

Lemma 5. If there exist a Lyapunov function V (t, x(t))
and positive scalars α > 0, β > 0, β < α and ϕ = (α −
β)e−ατmax such that

d

dt
V (x(t)) ≤ −αV (x(t)) + βV (x(tk)) (8)

∀t ∈ [tk, tk+1[, k ≥ 0 (9)

Then, the function V (x(t)) converges exponentially to
zero. i.e.

V (x(t)) ≤ e−ϕ(t−tk)V (x(0)) (10)

Proof. By multiplying the inequality (8) by eαt and
integrating from tk to t, leads to∫ t

tk

eαt
d

dt
V (x(t))dt ≤

∫ t

tk

−αeαtV (x(t))dt

+

∫ t

tk

βeαtV (x(tk))dt (11)

∀t ∈ [tk, tk+1[, k ≥ 0

Applying the integration by parts formula to the left hand
side of the inequality (11), we get the following inequality(

eαtV (x(t))− eαtkV (x(tk))
)
−
∫ t

tk

αeαtV (x(t))dt ≤∫ t

tk

−αeαtV (x(t))dt+

∫ t

tk

βeαtV (x(tk))dt (12)

∀t ∈ [tk, tk+1[, k ≥ 0

which can be simplified as

eαtV (x(t)) ≤ eαtkV (x(tk))+(β
α
eαtV (x(tk))− β

α
eαtkV (x(tk))

)
(13)

∀t ∈ [tk, tk+1[, k ≥ 0

or

V (x(t)) ≤
(
e−α(t−tk) +

β

α
− β

α
e−α(t−tk)

)
V (x(tk))

∀t ∈ [tk, tk+1[, k ≥ 0. (14)



Let ϕ = (α− β)e−ατmax since β < α, then it can be easily
shown that

e−α(t−tk) +
β

α
− β

α
e−α(t−tk) ≤ e−ϕ(t−tk) (15)

from (14) and (15) and the fact that V (x(t)) ∈ R+ is
continuous we obtain the inequality (10). This ends the
proof of Lemma 5.

2.2 System Description

For simplicity of the presentation and to explain well
what we propose in this note, we consider the following
triangular form of nonlinear systems as in Gauthier et al.
(1992): 

ẋ =


ẋ1
ẋ2
.
.
.

ẋn−1

ẋn

 =


x2
x3
.
.
.
xn
f(x)


y = x1(tk)

(16)

with f : Rn → R satisfies the Lipschitz property
formulated under the flowing form:∣∣∣f(x1 + ∆1, . . . , xn + ∆n)− f(x1, . . . , xn)

∣∣∣
≤ γf

n∑
j=1

|∆j | . (17)

and x ∈ Rn denotes the state vector, y ∈ R the mea-
surement output vector is sampled at instants tk satisfy
0 ≤ t0 ≤ · · · ≤ tk ≤ tk+1, the sampling interval τk = tk+1−
tk is a positive constant satisfy τk < τmax ∀k ≥ 0, where
τmax is the largest value of the sampling period τk.

System (16) can be written as{
ẋ(t) = Ax(t) +Bf(x)
y(tk) = Cx(tk),

(18)

with
B = [0 . . . 0 1]

T
, C = [1 0 . . . 0]

where the matrix A is defined as

(A)i,j =

{
1 if j = i+ 1
0 if j 6= i+ 1

.

To estimate the state of the system (18) subject to sampled
measurements y(tk), we consider the following Luenberger
observer

˙̂x(t) = Ax̂(t) +Bf(x̂) + L
(
y(tk)− Cx̂(tk)

)
(19)

The dynamics of the estimation error e(t) = x(t)− x̂(t) is
then given by:

ė(t) =
(
A−LC

)
e(t) +B

[
f(x)− f(x̂)

]
+LC

(
e(t)− e(tk)

)
(20)

The aim consists in finding a matrix L that ensures ex-
ponential convergence of the estimation error e(t) despite
the availability of measures only at instants tk.

3. MAIN RESULTS

3.1 LPV/LMI-Based Approach

In this section, the problem of designing an observer for
a non-linear systems is considered, where the non-linear

function satisfies the Lipschitz property defined as (17).
Then, by using the Lemma 2, this allows us to transform
the non-linear part in the dynamic of the estimation error
as LPV term.

Since f(.) is γf -Lipschitz, then following Lemma 2 there
are functions

ψj : Rn × Rn −→ R
and constants γ

ψj
and γ̄ψj

, such that

f(x)− f(x̂) =
[ j=n∑
j=1

ψje
>
n (j)

]
e (21)

and
γ
ψj
≤ ψj ≤ γ̄ψj

(22)

where

ψj , ψj

(
x
x̂j−1

k , xx̂j

)
is defined as in Lemma 2. For the sake of brevity, we use

only ψj instead of ψj

(
xx̂j−1 , xx̂j

)
.

Now, define the matrix function

A
(

Ψ
)

= A+B

j=n∑
j=1

ψje
>
n (j), ∀Ψ ∈ Rn (23)

Consequently, the dynamics (20) can be rewritten as

ė(t) =
[
A
(

Ψ
)
− LC

]
e(t) + LC

(
e(t)− e(tk)

)
(24)

According to (22), the vector parameter Ψ belongs to a
bounded convex set Hn for which the set of vertices is
defined by:

VHn
=
{

Φ ∈ Rn : Φj ∈
{
γ
ψj
, γ̄ψj

}}
. (25)

In the following theorem, the problem of designing an
observer of Lipschitz systems will be formulated as solving
a LMI subject to some constraints.

Theorem 1. The observer (19) is asymptotically conver-
gent if there exist a symmetric positive definite matrix P
and a matrix Y of appropriate dimension such that the
following LMI conditions hold:

A(Ψ)TP − CTYT + PA(Ψ)− YC + YYT +R ≤ −µI,
∀ Φ ∈ VHn

(26)

where

R = 2τ2
maxδR

TR

1 < δ, R = [0, 1, 0, . . . , 0]

Hence

(t− tk) < τmax ∀t ∈ [tk, tk+1[

0 < β = 2τ2
maxλmax(P )L2

1

0 < α1 = µλmin(P )

0 < α2 = 2τmax(δ − 1))

β < min{α1, α2}
and, the observer gain is given by

L = P−1Y.

Proof. To analyse the stability of the estimation error,
we introduce the following candidate Lyapunov function

V (t) = V1(t) + δV2(t) (27a)



where

V1(t) = eT (t)Pe(t) (27b)

V2(t) =

∫ t

tk

∫ t

ς

(
e2(s)

)2

dsdς (27c)

The derivative of V1(t) along the solution of (24) is given
as follows

d

dt
V1(t) = eT (t)

(
Sym

{(
A(Ψ)− LC

)T
P
})
e(t)

+ Sym
{
eT (t)PLC

(
e(t)− e(tk)

)}
︸ ︷︷ ︸

Υ1

(28)

Applying Lemma 3 on Υ1, where µ = 1, leads to the
following inequality

Υ1 ≤
(
e(t)− e(tk)

)T
CTC

(
e(t)− e(tk)

)
+
(
eT (t)PLLTPT e(t)

)
(29)

From (28) and (29), we obtain the following inequality

d

dt
V1(t)≤ eT (t)

(
Sym

{(
A(Ψ)− LC

)T
P
}

+PLLTPT
)
e(t)

+
(
e(t)− e(tk)

)T
CTC

(
e(t)− e(tk)

)
︸ ︷︷ ︸

Υ2

(30)

Since

Υ2 =
(
e1(t)− e1(tk)

)T(
e1(t)− e1(tk)

)
=

∥∥∥∥(e1(t)− e1(tk)
)∥∥∥∥2

=

∥∥∥∥∫ t

tk

ė1(s)ds

∥∥∥∥2

≤ (t− tk)

∫ t

tk

∥∥∥∥ė1(s)

∥∥∥∥2

ds

≤ (t− tk)

∫ t

tk

∥∥∥∥e2(s)− L1e1(tk)

∥∥∥∥2

ds

≤ 2τmax

∫ t

tk

(
e2(s)

)2

+
(
L1e1(tk)

)2

ds (31)

this leads to
d

dt
V1(t)≤eT (t)

(
Sym

{(
A(Ψ)− LC

)T
P
}

+ PLLTPT)e(t)

+ 2τmax

∫ t

tk

(
e2(s)

)2

+
(
L1e1(tk)

)2

ds (32a)

which is equivalent to

d

dt
V1(t)≤ eT (t)

(
Sym

{(
A(Ψ)− LC)TP

}
+ PLLTPT)e(t)

+ 2τ2
max

(
L1e1(tk)

)2

+ 2τmax

∫ t

tk

(
e2(s)

)2

ds

(32b)

The dynamic of the Lyapunov function V2(t) along the
solution trajectories of (24) is

d

dt
V2(t) = τmax

(
e2(t)

)2

−
∫ t

tk

(
e2(s)

)2

ds

≤ 2τ2
max

(
e2(t)

)2

− 2τmax

∫ t

tk

(
e2(s)

)2

ds (33)

then, by substituting (28) and (33) in (27a) we obtain
the derivative of V (t) defined in (27a) along the solution
trajectories of (24) is given as

d

dt
V (t)≤ eT (t)

(
Sym

{(
A(Ψ)− LC)TP

}
+ PLLTPT)e(t)

+ 2τ2
maxδ

(
e2(t)

)2

+ 2τ2
max

(
L1e1(tk)

)2

+ 2τmax

∫ t

tk

(
e2(s)

)2

ds− 2τmaxδ

∫ t

tk

(
e2(s)

)2

ds

From the above inequality, we obtain

d

dt
V (t) ≤ eT (t)

(
Sym

{(
A(Ψ)− LC

)T
P
}

+ PLLTPT

+ 2τ2
maxδR

TR
)
e(t) + 2τ2

max

(
L1e1(tk)

)2

− 2τmax(δ − 1)

∫ t

tk

(
e2(s)

)2

ds (34)

Let 1 < δ, from (27c), we have

V2(t) =

∫ t

tk

∫ t

ς

(
e2(s)

)2

dsdς ≤ τmax

∫ t

tk

(
e2(s)

)2

ds (35)

and,

−2τmax(δ − 1)

∫ t

tk

(
e2(s)

)2

ds ≤ −3

2
(δ − 1)V2(t) (36)

Now, let

Sym
{(
A(Ψ)−LC

)T
P
}

+PLLTPT + 2τ2
maxδR

TR≤−µI
(37)

then,

d

dt
V (t) ≤ −µeT (t)e(t)− 2τmax(δ − 1)

∫ t

tk

(
e2(s)

)2

ds

+ 2τ2
max

(
L1e1(tk)

)2

d

dt
V (t) ≤ −α1V1(t)− α2V2(t) + βV (tk)

where

0 < β = 2τ2
maxλmax(P )L2

1

0 < α1 = µλmin(P )

0 < α2 = 2τmax(δ − 1)

d

dt
V (t) ≤ −µV (t) + βV (tk)

where α = max{−α1,−α2}
Then, according to Lemma 5, we have

V (x(t)) ≤ e−ϕ(t−tk)V (x(tk)) ∀t ∈ [tk, tk+1[, k ≥ 0
(38)

where ϕ = (α − β)e−αT and β < α, then V (t) converge
exponentially toward zero. This completes the theorem
proof.

Remark 2. Let us distinguish between 2 cases. In the first
case where α = α1, we deduce from the fact β < α = α1

that

β < α1 ⇒ τmax < T1 =

√
2µλmin(P )

3λmax(P )L2
1

(39)



In the second case where α = α2, from the fact β < α = α2

we deduce that

β < α2 ⇒ τmax < T2 =

√
(δ − 1)

λmax(P )L2
1

(40)

The obtained conditions (39) and (40) are summarised as

τmax < min{T1, T2} (41)

4. NUMERICAL EXAMPLE

In this section, the performance of the proposed oberver
(19) is tested using a numerical example. We consider
a two-dimensional nonlinear system under the triangular
form (16) given as follows

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C = [1 0], (42a)

and the nonlinear function f(x) = [0 0.3 ∗ sin(x1)]
T

sat-
isfies the Lipschitz property (17).

However, applying the proposed approach, we obtain

A(α1) =

[
0 1
−Lf −Lf

]
, A(α2) =

[
0 1
Lf −Lf

]
, (43a)

A(α3) =

[
0 1
−Lf Lf

]
, A(α4) =

[
0 1
Lf Lf

]
, (43b)

Then, by solving the LMI-based minimization problem
proposed in Theorem 1 leads to deduces the matrix gain
of the observer (19) and the sampling time. This can be
done by using any toolbox dedicated for solving this kind
of optimization problem.

A feasible solution of the optimization problem defined as
(26) is given by the following matrices

P =

[
0.42729 −0.45686
−0.45686 0.5924

]
, Y =

[
0.50133
0.19737

]
, (44a)

L =

[
8.7188
7.0571

]
, (44b)

for τmax = 0.1s which ensures the stability of the estima-
tion error.

To illustrate the effectiveness of the proposed method in
this work, the evolution of the system states ant their
estimates are plotted in figures 1 and 2. In addition, the
sampled measurement and sampled output of the observer
are also plotted in (3).
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Fig. 1. The evolution of x1(t) and its estimate x̂1(t)

Due to scale effect, the figures 1, 2 and 3 are zoomed in
order to show the convergence of the estimated states to
the real states.
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Fig. 2. evolution of x2(t) and its estimate x̂2(t)

0 5 10 15

0

5

10

15

20

25

30

35

y1(tk)
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Fig. 3. The evolution of y1(tk) and its estimate ŷ1(tk)

0 5 10 15

-1.5

-1

-0.5

0

0.5

1

1.5

ex1
(t)

ex2
(t)

A
m
p
li
tu

d
e

Time (s)

Fig. 4. The evolution of the estimation error

ex(t) = x(t)− x̂(t)
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Fig. 5. The evolution of the estimation error

ey(tk) = y(tk)− ŷ(tk)

5. CONCLUSION

In this work, a design methodology of observers for a class
of Lipschitz nonlinear dynamical systems with sampled
measurements is investigated. Firstly, the nonlinear part
of the estimation error dynamics is reformulated by using
the differential mean value theorem (DMVT). Then, to
ensure the stability of the estimation error subject to sam-



pled measurements, an LMI-based optimization problem
is addressed such that, the measurements sampling period
is taken as a decision parameter. This allows to reduce
the energy consumption. Finally, a simulation result is
presented to illustrate the performance of the proposed
methodology.

As future work, we aim to extend the results of this paper
to other interesting estimation problems, namely for sys-
tems with noises and uncertainties. We also plan to extend
the main ideas of this paper to systems with time-varying
sampling period and event-triggered measurements.
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