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Abstract

This paper deals with new finite-time estimation algorithms for Linear Parameter Varying (LPV) discrete-time systems and their application
to output feedback stabilization. Two exact finite-time estimation schemes are proposed. The first scheme provides a direct and explicit
estimation algorithm based on the use of delayed outputs, while the second scheme uses two combined asymptotic observers, connected
by a condition of invertibility of a certain time-varying matrix, to recover solution of the LPV system in a finite-time. Furthermore, two
stabilization strategies are proposed. The first strategy, called Delayed Inputs/Outputs Feedback (DIOF) stabilization method, is based
on the use of the explicit estimation algorithm. The second technique, called Two Connected Observers Feedback (2-COF) stabilization
method, is based on the use of two combined observers providing exact finite-time estimation. A numerical example is given to show the
validity and effectiveness of the proposed algorithms by simulation.

Key words: Estimation; observer design; LMI approach; LPV systems; output feedback stabilization.

1 Introduction the observer design and to cover a wide class of nonlinear
systems, it still remains a challenge to design a nonlinear
observer (Zemouche et al., 2017), (Alessandri and Rossi,

tems design. It is needed for the implementation of control 2015), (Agikmese and Corless, 2011), (Wang er al., 2017),

. . (Kao et al., 2015).
laws and 3159 for fault diagnosis (Gao .and Ho, 2006).’ Among the widely used and investigated class of non-
(Alcorta-Garcia and Frank, 1997), (Marino and Tomei, . . . .

: . L linear systems is the Linear Parameters Varying (LPV)
1995), (Arcak and Kokotovic, 2001). Nonlinear estimation
. . o ) class (Heemels et al., 2010), (Wu et al., n.d.), (Wu, 2001),
is more complex than the linear one; it lacks a general

and systematic methodology. Although several methods (.S ong and Yang, 2011). Th1§ particular structure of non-
. - . linearity attracts the automatic control community for two
have been proposed, recently, in the literature to improve

State estimation has many applications in control sys-

reasons:
Email address: ali.zemouche@univ-lorraine.fr (A. e Some real-world models in the literature can be repre-
Zemouche). sented under the form of LPV systems by tacking into ac-
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count the measurement of some state variables (Sename
et al., 2013). For instance, a vehicle lateral model can be
written under an LPV form due to the availability for mea-
surement of the longitudinal velocity (Wang et al., 2019).

e Stabilizing LPV systems from an observer-based feed-
back control point of view is not an easy task due to the
difficulty in obtaining non conservative sufficient condi-
tions ensuring closed-loop exponential convergence (Jetto
and Orsini, 2010), (Heemels et al., 2010). For instance,
from a Linear Matrix Inequality (LMI) point of view, all
the available design methods for this class of systems pro-
vide conservative LMI design conditions. Although a re-
cent and new technique has been proposed in (Bibi ez al.,
2017) to reduce the conservatism of these LMIs, the issue
is far from being well solved.

In this paper, we focus first on the exact and finite-time
state estimation for a class of LPV systems in discrete-time.
Then, we provide an extension to output feedback stabiliza-
tion. Based on the ideas given in (Engel and Kreisselmeier,
2002; Sauvage et al., 2007; Mazenc et al., 2015) for lin-
ear continuous-time systems, we propose a generalization to
LPV systems, which is not obvious in the continuous-time
case. Indeed, in continuous-time case, it is difficult to inte-
grate differential equations and get explicit solutions of the
system where the complexity of the computation will lead to
differentiating the time-varying parameters of the LPV sys-
tem. The parameters’ derivatives require additional and con-
servative assumptions and constraints on the system (such
as boundedness of derivatives of the parameters). However,
in discrete-time systems, only delayed values of the LPV
parameters appear in the derivation of the explicit solution.
This paper proposes two finite-time estimation algorithms:

e A direct and explicit estimation: The proposed algorithm
for the three above mentioned classes of systems provides
explicit state estimation in finite-time and is based on
the use of delayed outputs to recover the solution of the
system.

e Two observers-based estimation: This technique consists
in combining two asymptotic state observers to recon-
struct the solution of the system in finite-time.

Moreover, two numerical algorithms are proposed to design
parameters of the above two estimation methods. The first
algorithm is based on poly-quadratic stability, which con-
sists in determining the parameters by solving a set of LMIs,
while the second method is based on the use of pole assign-
ment.

To demonstrate the value of the proposed exact finite-time
estimation algorithms, an extension to output feedback sta-
bilization is provided where two direct stabilization methods
are proposed. The first method is based on the use of de-
layed inputs/outputs of the system (DIOF), while the second
approach uses two connected observers feedback (2-COF).
It is shown that both stabilization methods avoid solving Bi-
linear Matrix Inequalities (BMIs), which are computation-
ally unsuitable for numerical solvers.

Compared to the short conference version in (Chaib-Draa

et al., 2019), this extended journal version contains several
further contributions, namely detailed proofs; additional re-
marks and comments on the estimation algorithms; a de-
tailed section on design of the parameters where two design
algorithms are proposed; an additional output feedback sta-
bilization technique; and extended numerical illustrations of
both estimation and stabilization algorithms.

The advantages of the proposed approach, compared to other
observer design methods existing in the literature for LPV
systems, is the exact estimation in finite-time. Such class of
systems is widely investigated in the literature, where nu-
merous methods have been proposed (Wang et al., 2019),
(Pandey and de Oliveira, 2018), (Efimov et al., 2013), (Kose
and Jabbari, 1999). These methods provide asymptotic or
exponential convergence of the observer. In case of the use
of such observers in close-loop control systems, the results
may be conservative because BMI conditions are encoun-
tered. As shown in Section 4, the exact estimation in finite-
time allows getting a kind of separation principle when the
estimation is combined with output feedback. This avoids
solving BMI constraints often encountered in the output sta-
bilization problem for LPV systems. On other hand, one
of the estimation algorithm proposed in this paper (Algo-
rithm 1) combines two standard asymptotic observers to get
exact and finite-time estimation. Then, the proposed algo-
rithm can exploit all the advantages of standard asymptotic
observers established in the literature for this class of LPV
systems (Sename et al., 2013), (Pandey and de Oliveira,
2018), (Chadli et al., 2008).

The rest of this paper is organized as follows: Section 2
is devoted to the development of two exact finite-time es-
timation algorithms. Section 3 provides two numerical pro-
cedures to show how to design the parameters of the two
estimation methods presented in Section 2. Extension and
application of the proposed estimation algorithms are pre-
sented in Section 4. To show validity and effectiveness of
the proposed design algorithms, an illustrative example is
given in Section 5. Finally, Section 6 concludes this work.

2 Exact Finite-Time Estimation of LPV systems

This section is dedicated to development of two exact
finite-time estimation algorithms for a class of LPV sys-
tems. We consider the class of LPV systems defined by the
following set of equations:

X1 = A(p)xi + Buyg (1a)
Vi = Cxg, (1b)

where x; € R” is the state vector, y; € R” is the output mea-
surement and u; € R™ is the control input vector, py € © C
R” is a bounded time-varying parameter. B and C are con-
stant matrices of appropriate dimensions. The matrix A(py)
is affine in py.

We introduce the following assumptions:



e for any k € N, p; is known and bounded. Furthermore,
the set © is independent from k;

e the matrix A(p;) can be written in the form A(p;) =
Ao +AA(py), where AA(py) € Co(Ay, -+ ,Ap, ), namely

bl np
rlp .
A(pr) = Ao+ Y & (pr)A; 2
i=1

. np o .
where for any k > 1, £'(pr) > 0and Y &'(py) =1,
i=1

o the pairs (A;,C) are observable for all i =0,...,np.

The parameters &(py) (functions of p;) come from rewriting
the bounded parameters p,ﬂ in a convex combination of their
constant bounds by using some mathematical developments
issued from convexity principle and convex sets. An example
to show how we compute &/(py) is given in the illustrative
example provided in Section 5.

Remark 2.1 Even if (2) is needed to perform proofs and
design the estimation schemes we propose in this paper, it
is not restrictive because for bounded parameters py and
since A(py) is affine (or piecewise affine) in py, we can
rewrite (1) under the form (2) by using some mathematical
transformations issued from convexity principle and convex
sets.

2.1 Explicit Solutions Using Delayed Outputs

In order to simplify the presentation, we introduce the
following notations:

o Ei(pe) 2 E fori>0 with E%(py) £ 1.
e For any set Ty = {Mo, My, --- ,M,, } of np + 1 matrices,
set

np . er .
M(py) =Mo+ Y &M =Y &M,
i=1 i=0

Before proposing the first algorithm that provides an ex-
act finite-time estimation of the state x;, the following useful
lemma is stated.

Lemma 1 Assume that the pairs (A;,C) are observable for
all j=0,...,np. Then there exist Lj, Kj, j=0,...,np, such
that the matrix

—1

=

En(k) £ (A(Pkfi) - L(Pk—i)c>

1

-1

am

<A(Pk—i) - K(Pkfi)c> 3)

Il
—

exists and is invertible for all k > m.

PROOFEF. The proof is given in Appendix A.

Consequently, we can provide a direct and exact estima-
tion of the state xy, presented in the following theorem.

Theorem 2 Assume that there exist
ﬂp ) np )
L(px) = Lo+ Y &iLi, K(p) = Ko+ ) &K
i=1 i=1

and m > 1 so that matrix E,,(k), defined in (3), exists and is
invertible for all k > m. Then a direct and exact estimation
of the state x; can be computed as in (4).

PROOF. It is easy to show that iteratively x; can be written
under the forms (5) and (6). Then, by subtracting (6), after

multiplication by ( il (A(pk_,-) - K(pk_,-)C)) , from (5)
i=1
—i

multiplied by , We get eas-

i=1

ily (4) by using the inverse of E,, (k).

< ﬁ (A(pk—i) - ILJ(P/H')C>)

Remark 2.2 Since we are in discrete-time, continuity of the
parameter Py is not necessary. Indeed, in continuous-time,
in certain cases, continuity may play an important role be-
cause the derivative of the parameter are used in the de-
sign. However, in discrete-time, such a property is not nec-
essary and it does not make sense. For instance, the class of
LPV systems studied in this paper contains the class of lin-
ear switched systems with known switching mode. It is clear
that in switched systems, the switching mode parameter is
not continuous and belongs to a finite set of integers. As for
the boundedness of py, it is not a necessary condition. The
necessary condition is the existence and invertibility of the
matrix B,,(k) for k > m. If we can find gains L;,K; so that
the matrix E,,(k) exists and is invertible for a non-bounded
Pk, then the estimation algorithm remains valid. However,
to guarantee existence and invertibility of E,,(k), we need
boundedness of py, which justifies the introduction of such
an assumption. The boundedness of py, or equivalently of 5,1
is the main key of the proof of Lemma 1 in Appendix A. As
for the link between py and élé it can be deduced from the
convexity principle; we refer the reader to (Sename et al.,
2013) for a deepen investigation of this issue. In addition to
boundedness of py, the particular structure (2) plays an im-
portant role in the proposed estimation schemes because by
combining it with the boundedness of é,é we can guarantee
existence and invertibility of the matrix E,,(k) for k > m. It
is not so easy to consider implicit form (1) in LMI context
or eigenvalues assignment.



m -1 j—1
( (A(Pk—l)K(pk—l)C)> (H(A(pk—i)K(pk—i)C)> Buy_; “

and

i=1

m -1
)y <1H (A(pe—i) = L(Pki)c)> [L(Pr—j)yi-j + Bug—j] )

He = <ﬁ (A(pk—j) - K(Pk_j)C)> Xkm
+

m -1
Y (h (A(pe—i) — K(Pki)C)> [K(px—j)yk—j + Bur—j] (6)

2.2 Estimation By Using Two Combined Observers

Unlike the previous section where a sum of delayed out-
puts weighted by powers of A — LC and A — KC have been
used, this section is devoted to state estimation using two
different asymptotic state observers. By using tools bor-
rowed from the continuous-time results in (Engel and Kreis-
selmeier, 2002) and (Mazenc et al., 2015), we get an exact
estimation of the solution without using explicitly the de-
layed outputs. Indeed, the delayed output measurements are
hidden and appear implicitly in states of the intermediate
observers. This way to provide an exact estimation of the
state x; is more suitable from a practical point of view.

Considering the class of systems (1), then an exact esti-
mation of x; may be obtained by using two combined asymp-
totic observers, instead of using directly an explicit solution.

The result is summarized in the following theorem.

Theorem 3 Assume that the gain matrices L; and K; are
selected such that:

i) all the eigenvalues of (A,- —L,C) and (A,- — K,-C) are non-
zero and within the unit circle of the complex plane;

ii) there exists m > 1 so that the matrix E,,(k) exists and is
invertible.

Then the extended state dynamic system

Cir1 = A(pr) G + Bug + L(p) ()’k - CCk) (7a)
M1 = A(pi) Mk + Bu + K(px) ()’k - an) (7b)



3

He= (,_1< (Pr—j) = L(pr—j)C )>1Ck
<H (A Pi-j) (pkj)C>>I un

J=1

+ Nk—m — Ckm:| (7C)

is an observer for system (1), which converges in finite time
m>1.

PROOF. The proof exploits the explicit solution technique.
Indeed, by analogy to (5) and (6), we get (8) and (9). Hence,
by substituting (8) and (9) in (4) and using the definition of
E,(k), we get from (7c) that £ = xi, Vk > m.

3 Design of the Estimation Parameters

This section is devoted to the numerical implementation
of the proposed exact finite-time estimation methods. We
provide a structured algorithm for computing the values of
L; and K; fori =0,...,np.

Since the LPV parameter p; (or equivalently &) is
known, then designing a single observer under the form (7a)
or (7b) is not a difficult task. We can use some observer
design techniques for LPV systems available in the litera-
ture. In this section, we use the well known poly-quadratic
stability (Pandey and de Oliveira, 2018), (Bara et al., 2001),
(Daafouz and Bernussou, 2001). However, we need to
slightly modify the standard LMIs to get different gains L;
and K; for each i. The goal is to add a scalar parameter to
place the eigenvalues of A; — L;C and A; — K;C, respectively,
in different regions in order to get m > 1 satisfying the
invertibility of the matrix E,, (k) defined in (3), for all k > m.

3.1 Poly-quadratic stability based algorithm

To have a consistent and well-structured algorithm, we
propose to design the gains L; ( or K;) stabilizing asymptot-
ically the error & —x; (or My —x;). The overall LMI syn-
thesis conditions providing the observer gains are given in
the following proposition.

Proposition 1 Assume that there exist symmetric positive
definite matrices IP;, square matrices X;, and matrices Z;, i =
0,---,np, of appropriate dimensions such that the following
LMI conditions hold:

LMI/ (P, X,Z) < 0,¥i,j =0,...,n,. (10)

where

P, —X;— X 2(X,-A,~ - Z,»C)
LML/ (P,X,Z) £
.
Z(X,Ai - Z,-c) P,
(11

Then the estimation error § — x; converges asymptotically
to zero for L; = X;IZ,-.

PROOF. For k > m, the dynamics of the estimation error
X = & — xy is expressed as follows:

fen = (Alp0) ~ LipK)C) 3

To get global asymptotic stability of the estimation error, we
exploit (Pandey and de Oliveira, 2018) by using the poly-
quadratic Lyapunov function

W= )?;P(pk))?k

ﬂp .
with P(p;) £ Z &P; and P; = P > 0. If such Lyapunov
i=0
function exists and satisfies A% £ D1 — K < 0,Vip #0,
then X converges asymptotically to zero. By developing A¥,
we get

80 =5" | (Ao~ LipIC) Plprc)

(A(p) ~L(pr)C) ~Plpo)| & (1)

Using Schur Lemma, it follows that A% < 0,V%; # 0 if and
only if the following inequality holds,

:
—F(p) (A(P)—L(pIC) Plpis1)

<0, (13)

(%) —P(Pt1)

np

for all k € N. Since }" & = Z g/, = 2. for all k, then (13)
i=0 Jj=0

can be rewritten under the form:

.
~in (a-Lc) B

np np 2

Y&y &
=0 j=0

<0, (14)
P (A,»—Ll-C) ~1p,

which is satisfied if



=

o
j=1

J
£

1

+
™=

1

(A(pk_]) ]L(pk—j)c)) Ck—m

(A(px—i) _]L(Pki)c)> [L(px—j)yk—j + Bur—j] , (®)

Mk = (ﬁ (A(pk*J) - K(pkj)c>) Nk—m

J’_
agE
/_}
i

(Alpr—i) — K(Pki)c)> [K(px—j)ye—j + Bur—j] - ©®

1 T
~1p (A,-fL,C> P;
<0Vi,j=0,....ny (I5)
Pj(AifL,-C> .y

or equivalently

.
-r 2(a-LcC)
<0Yi,j=0,....np. (16)

2 (A,- - LiC) P!

017
By multiplying (16) on the right by [ } and its transpose
i

on the left, and by using the inequality
-X/ P <P -X[ X (17)

one get inequality (11). Indeed, inequality (17) is obtained
by applying the Young’s relation

X'Y+Y'x<Xx'S'x+v'Ssy

with X =X;, Y =1 and S = P;. Hence, inequality (11) im-
plies (14), which means that A% < 0, V% # 0. This ends the
proof of Proposition 1.

The same LMIs (11) ensure asymptotic stability of 1y —
x; with K; = X;IZi, since §; and 7y have the same dy-
namics. However, to achieve exact finite-time estimation,
we need invertibility of the matrix E,,(k), which may not
be satisfied if the eigenvalues of A; — L;C and A; — K;C are
close to each other. On other hand, even if E,,(k) is invert-
ible, the main issue is its condition number (k(E,(k)) =

B (k)| |IE;. L (k) |]). By construction of the matrix E,,(k),
if the eigenvalues of A; — L;C and A; — K;C are close, then
even if E,, (k) is invertible, its condition number will be high,
which leads to numerical problems and bad estimation. In-
deed, from numerical analysis viewpoint, if the condition
number of a matrix is high, then there will be numerical
issues in inverting the matrix and solving linear system of
equations. To overcome this issue and augment the possi-
bility to get invertibility of E,, (k) with a small condition
number, we propose to slightly modify (11) by including a
positive parameter o; < 1,i =0,...,n,. Thatis, LMI (11) is
replaced by the following one:

P —X; - X/ (o) ! (X,»A,«—Z,C)
<0.
(06) " (X — ZiC) ! _p,
(18)

Hence, if we need the eigenvalues of A; — L;C to be lower
than o;, we should solve LMIs (18). Indeed, if A% is an
eigenvalue of é (Ai — L,~C) = Af, then it is well known in
discrete-time case that when LMIs (18) are feasible we have
|[A%| < 1. On the other hand, we know that

A;
1 ~ =
det(/l;"ﬂ,, fA;") = —det | AT, — <A,~ le-c) =0,

1

which means that A; £ o; A% is an eigenvalue of (A,- —-LC )

It follows that since |A*| < 1 from LMIs (18), we have
|l,‘ < 0.

Moreover, if we need the eigenvalues of A; — K;C to be
greater than o; while ensuring poly-quadratic convergence,
we should solve

LMI (P,Y,S) <0,Vi,j=0,...,n, (19)



with respect to the new variables Y; and S; with K; = Y;IS[,
together with the quadratic matrix inequality (QMI) for §; >
O

(A,- - K,-c) Tp <A,~ - KI-C> BP0, (20)

which characterizes the QMI-region, see e.g. (Ebihara et al.,
2015, Lemma 2.6):

QMI; 2 {1 €C; |A| > B} 1)

Note that this quadratic constraint allows guaranteeing only
that the eigenvalues of (4; — K;C) belong to an LMI region;
which can ensure invertibility of the matrix E,, (k). However,
since (21) is a non-convex set then one can not convert (20)
to an equivalent LMI. As a fallback solution, we propose to
consider the two LMI sub-regions:

K, ={A € C; |A| <L;Re(A) < —B;} CQMI,;,  (22)

Ay, ={A €C; [A| <1;Re(A) > B} CQMI;,  (23)

which lead to the following two LMI constraints:

.
2B, — (Y,-A,- —S,-c) - <Y,~A,- —S,-C) <0 24)

T
~2BYi+ (Yii +8C) + (Yiai —S,C) <0, 25)

Then, it is sufficient to solve (11) together with (24) or (25).
Both sub-regions (22) and (23) guarantee that

) min M,](A,*K,C)‘ >ﬁi.
=0, np

Once the gains L; and K; are computed, one checks existence
and invertibility of the matrix E,,(k), for 1 <m < m*, where
m”* is a prescribed integer representing the maximum of the
desired finite-time to achieve exact estimation. If E,,(k) is
not invertible for all m < m*, then the values of a;, f;,i =
0,...,np, must be changed. The numerical design procedure
is summarized in the following Algorithm.

Remark 3.1 Algorithm 1 uses sufficient LMI conditions re-
lated to poly-quadratic stability, which may lead to non-
invertible matrix E,, (k). However, after including a second
parameter B to conveniently separate the eigenvalues and
by using QMI-regions, we reduced the conservatism of the
algorithm and we augmented the possibility to get invertible
matrix B, (k). In addition, Algorithm 1 plays an important
role because it guarantees asymptotic stability of the esti-
mation errors £ — 1, and %, — §. This is one of the reason
for which it is introduced. This property affects the estima-
tion before finite-time convergence (fork=1,...,m—1). For
instance, in case of systems with high dimension, the finite-
time convergence m > 1 may be high. Hence if the asymp-
totic convergence of £ — 1M, and £ — §; is not ensured, the
estimation may be bad for k =1,...,m— 1. On the other

Algorithm 1: Poly-quadratic stability based algorithm

Step 1. Choose m* > 1 and small values
(Xi,ﬁi,,i: 1,...,I’lp, with o; < Bi'
Step 2. Solve LMIs (18) and compute the gains:
o ;= X;lz,‘.
Step 3. Solve jointly LMIs (19) and (24)
if LMIs (19) and (24) are feasible then

L Compute K; = Yi_lS,-;
else

Solve LMIs (19) and (25) and compute

L o K= Y;lgi.
Step 4. Check invertibility of the matrix E,(k):
for /< 1 tom* and k > 1 do

if E;(k) is invertible then
| return m < /; break;
else
Increase the values of a;, f; and go to Step 2 to
L generate new observer gains L; and K;.

hand, the fact that Algorithm 1 cannot systematically ensure
invertibility of E,,(k) has motivated us to introduce a sec-
ond algorithm, namely Algorithm 2 to be stated in the next
Subsection 3.2.

3.2 Pole placement based algorithm

The previous poly-quadratic stability based algorithm is
based on feasibility of the sufficient LMIs (19) and (24) or
LMISs (19) and (25), which are not always easy to tune more
suitable eigenvalues of A; — L;C and A; — K;C. To overcome
this obstacle, we proposed a second algorithm based directly
on fixing the eigenvalues of A; — L;C and A; — K;C in such
a way that they will not be close to each other, according
to the proof of Lemma 1. To this end, we propose to intro-
duce scalar variables 6, < 1, 8k < 1. Then, we compute the
eigenvalues of A; — L;C and A; — K;C, respectively, so that:

max Amax(A; — LiC) < 6 < Amin(Ao —LoC);  (26)

lgignp

max Apax(4; — KiC) < 8k < Amin(Ag —KoC);  (27)
P

1<i<n

max Amax (Ai - LiC) + Amax (AO - LOC)

1<i<np

< Amin(Ag — KoC) —  max Amax (Ai —KiC)  (28)
<i<np

with Apax(.) = max{|A|, 2 € Sp(.)} and Amin(.) =
min{|A|, A € Sp(.)}, guaranteeing the invertibility of E,, (k).

Conditions (26), (27), and (28) provide a separation be-
tween the different eigenvalues of the matrices A; — L;C and
A; — K;C. They show clearly that the eigenvalues of Ag — KoC
are larger in module than those of other matrices. In order to
ensure (A.7), we can introduce another separation between



the eigenvalues of the matrix Ao — LoC and those of A; — K;C,
i=1,---,np, by introducing a positive parameter & x < 1
so that

Amax (Ao —LoC) < Orpx < min Amin(4; —KiC)  (29)
lgzgnp

Then, for (28) to be verified, it is sufficient to separate the
eigenvalues of A; — K;C, fori=1,--- ,n, from those of Ag —
KoC by a minimum distance equal to

8% £ 8k — 268,k > 0. (30
Hence, the following separation

max )Lmax(Ai —KiC) <0< 61( < ;Lmin(AO —K()C) (31)

lgignp
guarantees the required condition (28).

Note that since we study discrete-time systems, we have
also max <<, | Amax (A; — K;C) |< 1. The idea consists in
assigning eigenvalues satisfying (26), (27), and (28) and such
that for a prescribed m* > 1, there exists m < m* for which
E,,(k) is invertible. Therefore, if such properties are not
satisfied, we propose to decrease A; (A; — L;C) and increase
A;(Ai — KiC) until E,,(k) is invertible, where A;(A) is the
j™ eigenvalue of the matrix A.

Hence, we are ready to propose a second algorithm,
which is more easier and simpler than Algorithm 1.

Algorithm 2: Eigenvalues assignment based algorithm

Step 1. Choose m* > 1, 8, < 1, 8, > &1

Ok > 20r,k- Compute §* according to (30);

Step 2. Assign eigenvalues for A; — L;C and A; — K;C,
i=0,---,np according to (26), (29), and (31);

Step 3. Compute the corresponding gains L; and Kj,
respectively;

Step 4. Check invertibility of the matrix E,(k):

for /<1 tom* and k> 1 do

if E¢(k) is invertible then
| return m < {; break;

else
L Decrease the eigenvalues of A; — L;C and increase

those of A; — K;C and go to Step 3 to generate
new observer gains L; and K;.

Remark 3.2 It is well-known that, in a general way, the sta-
bility of each A; — L;C is not sufficient to guarantee stability
of the estimation error in an LPV form. However, what Sec-
tion 3.2 proposes is an efficient design algorithm based on
pole assignment, namely the separation of the eigenvalues
of Aj — LiC from those of Aj — K;C so that there exists m > 1
for which the matrix E,, (k) is invertible for any k > m. The-
orem 3 provides all the finite-time convergence conditions.

This means that the errors £ — 1, and % — §, are not nec-
essary stable. The only conditions are the existence and in-
vertibility of By, (k). As for the convergence of the estimation
errors £ — M, and %, — &, it is guaranteed by the results of
Section 3.1, namely the poly-quadratic stability based anal-
ySis.

Remark 3.3 As in the previous subsection, Algorithm 2
gives a global view of the numerical procedure to design
parameters of the proposed finite-time exact estimator by
using eigenvalues assignment. For instance, to increase and
decrease eigenvalues of A; — L;C and A; — K;C, we can in-
troduce a small scalar parameter € that we will increase at
each iteration, and put

lj (A,' —LiC) — lj (A,' —LiC) — &,

Aj(Ai = KiC) = 2;(Ai = KiC) + €.

4 Output Feedback Stabilization of LPV Systems

In this section, we propose two different output feed-
back stabilization methods. Both methods are based on the
exact finite-time estimation methodologies proposed in the
previous sections.

4.1 2-COF stabilization method

In this paper, due to the exact finite-time estimation of
the system state, we will propose necessary and sufficient
LMI conditions ensuring poly-quadratic stabilization of the
system state.

Theorem 4 Assume that the gain matrices L;, K; and F; are
selected such that:

i) L; are solutions of LMIs (18) and K; are solutions of (11)
and (24) or (11) and (25), respectively, for prescribed
(X,',i:(),...,np;

ii) there exists m > 1 so that the matrix E, (k) exists and

invertible;
iii) there exist matrices P; = IP’,T >0,i=0,...,np and matri-
ces X;,i=0,...,np of appropriate dimensions such that

the following LMI conditions hold:

—P; 2(A;P; — BX;) o
<0,Vi,j=0,...,np.
2(PA —X[BT) —P;
(32)
Then the following observer-based controller
et =Alpi) G +Buk+L(Pk)(yk —CCk> (33a)

Mt = AlpOMc+Bui+K(p) (e —Cmi) - (330)



+ Mk — Ckm:| (33¢)
up = —F(p) &y (33d)
with
np )
F(pe) £ Fo+ Y &(F, F=XP;! (34)
i=1

i=

stabilizes globally asymptotically the system (1).

PROOF. From Theorem 3, we know that if /) and ii) of
Theorem 4 are satisfied, then (33c) provides an exact and
finite-time estimation of xi. that is £; = x, Vk > m. It follows
that for k > m, equation (33d) becomes

uy = fIF(pk)xk.

Consequently, for k£ > m, system (1) can be rewritten, after
using feedback control, as:

Xp1 = (A(Pk) —B]F(Pk)>xk

np X
=) &(Aj—BF)x (35)
=0

which is globally asymptotically stable if there exists a Lya-
punov function

np .
=) Elxl Py
=0

such that A% £ ¥ — % < 0,Vx # 0.

By proceeding as in the proof of Proposition 1, it fol-
lows that AW < 0, Vx; # 0 if the following inequalities hold,
Vi, j=0,...,np:

.
—p 2 <A,~ - BFi)
<0 (36)
2 (A,» - L,-C) —P;
or equivalently
-p;  2(4i-BF)
<0. 37)

T 1
2(A,- fL,-C> —P"

1
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Pre- and post-multiplying (37) by [O } leads to (32) with

X; = F;IP;. This ends the proof.

Remark 4.1 The proof of Theorem 4 is more straightfor-
ward than that of Proposition 1 because it does not need the
introduction of a new slack variable when applying the con-
gruence principle to linearize the inequalities. In addition,
in Theorem 4, we used a Lyapunov function with matrices

Pfl instead of P, in order to avoid the introduction of a new

variable S; = Pfl.

Remark 4.2 It is worth to notice that LMIs (32) are neces-
sary and sufficient conditions for the global poly-quadratic
stabilization of system (1), however, they are only sufficient
for its global asymptotic stabilization. Indeed, according
to (Daafouz and Bernussou, 2001, Definition 2), the notion
of poly-quadratic stability is stronger than asymptotic sta-
bility. Poly-quadratic stability is basically, by definition, a
sufficient criterion to ensure asymptotic stability.

Remark 4.3 In the presence of uncertainties, the proof of
convergence is different and the LMIs (32) are not sufficient
to ensure poly-quadratic stability of the system. This issue
is one of the future work we aim to tackle. Especially, we
aim to investigate the class of LPV systems with inexact
parameters. Indeed, to cover nonlinear systems, we need to
extend the results of this paper to systems with unknown
parameters or to quasi-LPV systems. When the nonlinearity
is globally Lipschitz, it has been demonstrated in Zemouche
and Boutayeb (2013) that the reformulation of the Lipschitz
condition allows rewriting the system as a quasi-LPV one
with unknown parameter. This leads to the case where py =
p,? +Apy, with p,? is known and Apy is unknown but bounded.
Solving this problem allows to generalize the methodology
to a class of nonlinear systems.

4.2 DIOF stabilization method

This section is dedicated to a new stabilization technique,
called DIOF stabilization method, which allows overcoming
the issue of static output feedback (SOF) stabilization prob-
lem. Although SOF controller is simple, from LMI point of
view, it is not so obvious because of resulting Bilinear Matrix
Inequalities (BMIs), which are not easy to solve (from com-
plexity point of view) by using available convex optimiza-
tion algorithms. SOF controller consists in stabilizing (1) by
using u; = —F(py)yk, which leads to

np .
X1 = Y, &l (Aj = BFiC)x;. (38)
j=0

However, by following the steps in Section 4.1, equation (38)
leads to the BMIs



—P; 2(4; - BFC)P;
<0,

.
2P (Ai - BF,-C) _P;

Vi,j=0,...,np, (39)
which are not easy to linearize. Several techniques have been
proposed in the literature, but the challenge of obtaining less
conservative LMISs is still open. To have a precise idea on the
difficulty of this problem in linear case, we refer to (Huynh
et al., 2019) and the references therein. On the other hand,
by exploiting the first exact estimation methodology pro-
posed in Section 2.1, we are able to stabilize (1) by using
delayed inputs/outputs. Indeed, to overcome the BMIs (39),
we propose the following output feedback controller, which
uses only measured quantities:

u, = —F(pg)xx, with x; given by (4),Vk > m;
up=uy, fork=0,--- m—1,

(40)
(41)

where ' is a given input vector for the initial values of
k <m—1, and to be chosen by the user. It is introduced
because (40) gives only uy for k > m.

It follows that with (40), instead of system (38), we
get (35). Consequently, instead of facing the complicated
BMIs (39), we only need to solve LMIs (32).

Remark 4.4 The explicit estimation technique proposed in
this paper is applied to output feedback stabilization issue,
nevertheless, we need the value of uj' for k=0,--- ,;m—1,
which is necessary from (40)-(41). We propose to fix these
values by putting uj! = —F &, where { is defined in (7a).
Since generally, we have small value of m (we can fix small
values of m for appropriate L and K), hence we can also
select ui! =0 fork=0,--- ,m—1.

Remark 4.5 The aim of Subsection 4.2 is to consolidate
Section 4. Although the synthesis of the gains F;,i=0,...,np
is the same in both subsections and is based on solving
LMIs (32), Subsection 4.2 has two objectives:

(1) to offer the possibility for users to stabilize systems un-
der the use of only delayed outputs according to the
first estimation algorithm (direct and explicit estima-
tion);

(2) to show that the use of a sliding window of weighted
outputs leads to avoid a complex BMI problem encoun-
tered in static output feedback stabilization problem.

Remark 4.6 Notice that both stabilization methods DIOF
and 2-COF use the same synthesis conditions to determine
the parameters L;,K;, and F; because both techniques give
uy = fIF(pk)xk f()r k> m.
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5 Illustrative Example

This section is devoted to illustrate the theoretical con-
tributions presented in the previous sections. Due to lack of
space, only the methodology based on the use of two com-
bined observers will be illustrated.

5.1 System description

As an example, consider the LPV system described by
the following equations (Heemels et al., 2010):

025 1 0 1
Xt1=1] 0 01 0 X+ |0 ug (42a)
0 0 0.64p 1
we=[102]x (42b)

with pg € [O 0.5} ,k € N. This model can be rewritten under
the form (2) with

0.05 05 0 02 05 0
Ao=1] 0 005 0,4 =0 005 0],
0 0 0.1 0 0 05
02 050 (05—
D Pk) g2 Pk
Ay = o= % g2 =
2 0 0.050], & 05 » & 05
0 0 1

5.2 Estimation without feedback stabilization

By using Algorithm 1, we obtain the following solutions:

—0.0156 0.0474 0.0134
Ly=| 0.0002 | ,L; = |—-0.0007]| ,L, = | 0.0009 |,
0.2484 —0.3637 —0.6372
—1.5234 0.0314 0.0638
Ko= 0.8312 | ,K; = | 0.0010 | ,K> = |—0.0033
—0.0383 —0.3260 —0.7513

with m = 3. The matrix E,,(k) in (3) exists and found in-
vertible for any k£ > 0.

For simulations, we use

1
Pk=5

3 | sin(ﬁk) | and uy = sin(%k).

10



-
The initial state of the system is xg = [1 1 1] . As for §

) ' T T
and 1 in (7a)-(7b) are given by [10 10 10} and [5 5 5] s

respectively. We also use £ = § for k=0,....m—1. It is
quite clear from Figure 1 that the estimation £; given by (7c)
reaches exactly the solution x; of (42a) in finite-time.

(a) x1 and its exact estimation £

A g e T

(c) x3 and its exact estimation {3
Fig. 1. Behavior of the states and their estimates.

To show, by simulation, performance of the proposed es-
timation algorithm, we add a measurement noise. The out-
put yi is assumed to be disturbed by a Gaussian noise with
mean zero and standard deviation ¢ = 0.3. The simulation

11

results are depicted in Figure 2.

e A B D o v &2 o o= =

Fig. 2. Estimation results with measurement noise.

5.3 Observer-based feedback stabilization

This subsection is devoted to show effectiveness of the
exact estimation based output feedback control method pro-
posed in Section 4. The parameters related to the exact esti-
mation are those obtained in the previous subsection devoted
to estimation only. Furthermore, to compute the controller
parameters F;,i = 1,...,np, we need to solve LMIs (32).
Hence, by using Matlab LMI toolbox with Yalmip interface,
we get the following solutions:

0.0075 0.0356 0.0297
Fo=10.0024| , F1 = [0.0003| , F»= |0.0009
0.4411 0.4422 0.8510

It is quite clear from Figure 3 that with these parameters,
the exact finite-time estimation based controller (33) ensures
asymptotic stabilization of system (1). Real states and their
estimations are depicted in Figure 3 to show, at the same
time, that the exact estimation is done in finite-time with the



new control input. Additional simulations are presented in
Figure 4 to show performance of the proposed stabilization
scheme. Both the output y,and each component of the system
are assumed to be disturbed by a Gaussian noise with mean
zero and standard deviation ¢ = 0.1.

‘N -z - -

0 1 2 3 4 5 6 7 8 9 10
10 T T T T T T T T —
\ 22— -T2
8,\ 4
\
\
6 il
\
4+ \ 4
\
\
2r \ il
9 ‘o
o\ 3 - ————0
2b 1
0 1 2 3 4 5 6 7 8 9 10
10 T T T T T T T
\ ——x3 - -3

0 1 2 3 4 5 & 7 8 9 10
Fig. 3. Stabilized states.

6 Conclusion

This paper provides powerful state estimation algorithms
for LPV discrete-time systems. Two new estimation proce-
dures are proposed. The first one allows computing explic-
itly solution of the system through delayed outputs/inputs,
while the second one uses the strategy of two connected
asymptotic observers. Due to the exact estimation in finite-
time, the problem of output feedback stabilization of LPV
systems is solved by mean of simple and non conservative
LMI conditions. Therefore, two novel control design strate-
gies are proposed and two well-structured algorithms are
given to design parameters of the estimation and stabiliza-
tion schemes. A numerical example is provided to show ef-
fectiveness of the proposed exact finite-time estimation algo-
rithms and their application to output feedback stabilization.
As a future work, we aim to generalize the results, in this
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Fig. 4. Stabilized states under dynamics and measurement noise.

paper, to systems with unknown parameters (p; = p,? +Apy)
in order to provide robust stabilization schemes.

A Proof of Lemma 1

Here we give the proof of Lemma 1, which ensures ex-
istence and invertibility of the matrix E,, (k). First, for any
o > 0, we denote by #(0;0) a ball in the complex plane
centered at the origin with radius ©.

For all k£ > 1, and 1 < m < k, the matrix E,, (k) is well-
defined. Indeed, the observability property allows chosing
Ljand K;, j=0,---,np, such that the eigenvalues of (A; —
L;C)and (A; —K;C), for j=0,--- ,np, are inside #(0;5) —
{0}, for a given 6 < 1. To simplify the presentation, let us
introduce the notation:

A A .
,%:(A]—LJC), %:(AJ—KJC), j:(),"',}’lp.

Invertibility of

1

m np .
(Z é,fl.fj> is equivalent to the in-
=1\ j=0

np .
vertibility of Y} ékjﬂ..fj, for all k> 1 and all i < m. On
=0



the other hand, we can separate the eigenvalues of .7},
(resp. #j) j=1,---,np, , inside the ball #(0;0.), (resp.
A(0;0k)) with & < & (resp. 6k < 9) that is

max ||[Z]|<& <L <I1%l<5<1,  (AD
1<j<np

max H,%/H<5K<H,%’ 1|

12jSnp s, (A2)
which lead to
1<l <1, Yi=1,--.np

Now, using the boundedness and convexity properties of the
sequence (&), it follows that

Zik’ 20
J=

<Zék’ %7l max |l]] <1

1<j<n
j=1

(A3)
From (A.3), we deduce that the matrix

np

I +Z§’ 7

is invertibile, for any k > 1 and any i < k. The invertibility of

np .
the matrix ) ékjﬂ.,fj can be deduced from the factorization
j=0

Zékj Zi=2

ilp
I+ Z gLy lzj} (A4)

The prev10us arguments remain valid for the invertibility of

H Z ék A, for any k > 1 and m < k. Now, to show that
i=1j=0
(k) is invertible, we use the factorization

b - {1@1 y é/f,-fj]

i=1,j=0
-1
(ﬂ—{nlza;,f] Mg )

1 _]7 i=1 ‘]7
We have
[y ) <[ (10 ms 1))
i=1j=0 <js

= (1ii+ max 141)°
and

i=1j=0

m
S (B

m np o -1
fin(eefnn)) | s
j=1

i=1

—1
Ilp X

(Hn +) 5,5%%)
j=1

np —1
(H RS x)

j=1
-1
) ; (A.6)
-1
)

< 1. Hence, (A.6) becomes

< (% )"

< ("1 (1 .

i=1

’lp .
Y &
j=1

where the last inequality (A.6) is due to

—1
oo oo
(HﬁZék’i%%) S(l Y &l
J=1

Jj=1

since

Vogi o1
¥ g ot
=

m

g Y B
é‘%%-) <
‘(HZ ’ =T e ]
= (Il - max 50)

Summarizing, we get

m Np . m Np -1
fiEe =) (e =)
i=1j=0 i=1j=0
[|-Zoll + max Il \"
E - max [[7]

Therefore, by choosing the eigenvalues of .Z; and %}, j =
0,---,np, in a convenient way such that

1ol + max [L25]] < 45| = max (|, )

1<j<np

we get

<1

My .2

i=1j=0

(I"l[nzpék, )l

i=1 ‘]7




for every k, and m < k. This guarantees the invertibility of
E,,(k) for all k and m < k. This ends the proof.
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