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This paper deals with new finite-time estimation algorithms for Linear Parameter Varying (LPV) discrete-time systems and their application to output feedback stabilization. Two exact finite-time estimation schemes are proposed. The first scheme provides a direct and explicit estimation algorithm based on the use of delayed outputs, while the second scheme uses two combined asymptotic observers, connected by a condition of invertibility of a certain time-varying matrix, to recover solution of the LPV system in a finite-time. Furthermore, two stabilization strategies are proposed. The first strategy, called Delayed Inputs/Outputs Feedback (DIOF) stabilization method, is based on the use of the explicit estimation algorithm. The second technique, called Two Connected Observers Feedback (2-COF) stabilization method, is based on the use of two combined observers providing exact finite-time estimation. A numerical example is given to show the validity and effectiveness of the proposed algorithms by simulation.

Introduction

State estimation has many applications in control systems design. It is needed for the implementation of control laws and also for fault diagnosis [START_REF] Gao | State/noise estimator for descriptor systems with application to sensor fault diagnosis[END_REF], [START_REF] Alcorta-Garcia | Deterministic nonlinear observer-based approaches to fault diagnosis: a survey[END_REF], [START_REF] Marino | Nonlinear Control Design[END_REF], [START_REF] Arcak | Observer-based control of systems with slope-restricted nonlinearities[END_REF]. Nonlinear estimation is more complex than the linear one; it lacks a general and systematic methodology. Although several methods have been proposed, recently, in the literature to improve Email address: ali.zemouche@univ-lorraine.fr (A. Zemouche).

the observer design and to cover a wide class of nonlinear systems, it still remains a challenge to design a nonlinear observer [START_REF] Zemouche | Circle criterion-based H ∞ observer design for Lipschitz and monotonic nonlinear systems: Enhanced LMI conditions and constructive discussions[END_REF], [START_REF] Alessandri | Increasing-gain observers for nonlinear systems: Stability and design[END_REF], (Ac ¸ikmese and [START_REF] Laleg-Kirati | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF], [START_REF] Wang | Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation[END_REF], [START_REF] Kao | A sliding mode approach to H ∞ non-fragile observerbased control design for uncertain Markovian neutral-type stochastic systems[END_REF]. Among the widely used and investigated class of nonlinear systems is the Linear Parameters Varying (LPV) class [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF], (Wu et al., n.d.), [START_REF] Wu | A generalized LPV system analysis and control synthesis framework[END_REF], [START_REF] Song | An improved approach to robust stability analysis and controller synthesis for LPV systems[END_REF]. This particular structure of nonlinearity attracts the automatic control community for two reasons: count the measurement of some state variables [START_REF] Sename | Robust control and linear parameter varying approaches: application to vehicle dynamics[END_REF]. For instance, a vehicle lateral model can be written under an LPV form due to the availability for measurement of the longitudinal velocity [START_REF] Wang | A quadratic matrix inequality based pid controller design for LPV systems[END_REF].

• Stabilizing LPV systems from an observer-based feedback control point of view is not an easy task due to the difficulty in obtaining non conservative sufficient conditions ensuring closed-loop exponential convergence [START_REF] Jetto | Efficient LMI-based quadratic stabilization of interval LPV systems with noisy parameter measures[END_REF], [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF]. For instance, from a Linear Matrix Inequality (LMI) point of view, all the available design methods for this class of systems provide conservative LMI design conditions. Although a recent and new technique has been proposed in [START_REF] Bibi | Output feedback stabilization of switching discrete-time linear systems with parameter uncertainties[END_REF] to reduce the conservatism of these LMIs, the issue is far from being well solved.

In this paper, we focus first on the exact and finite-time state estimation for a class of LPV systems in discrete-time.

Then, we provide an extension to output feedback stabilization. Based on the ideas given in [START_REF] Engel | A continuous-time observer which converges in finite time[END_REF][START_REF] Sauvage | Design of a nonlinear finite-time converging observer for a class of nonlinear systems[END_REF][START_REF] Mazenc | Estimation of solutions of observable nonlinear systems with disturbances[END_REF] for linear continuous-time systems, we propose a generalization to LPV systems, which is not obvious in the continuous-time case. Indeed, in continuous-time case, it is difficult to integrate differential equations and get explicit solutions of the system where the complexity of the computation will lead to differentiating the time-varying parameters of the LPV system. The parameters' derivatives require additional and conservative assumptions and constraints on the system (such as boundedness of derivatives of the parameters). However, in discrete-time systems, only delayed values of the LPV parameters appear in the derivation of the explicit solution. This paper proposes two finite-time estimation algorithms:

• A direct and explicit estimation: The proposed algorithm for the three above mentioned classes of systems provides explicit state estimation in finite-time and is based on the use of delayed outputs to recover the solution of the system. • Two observers-based estimation: This technique consists in combining two asymptotic state observers to reconstruct the solution of the system in finite-time.

Moreover, two numerical algorithms are proposed to design parameters of the above two estimation methods. The first algorithm is based on poly-quadratic stability, which consists in determining the parameters by solving a set of LMIs, while the second method is based on the use of pole assignment.

To demonstrate the value of the proposed exact finite-time estimation algorithms, an extension to output feedback stabilization is provided where two direct stabilization methods are proposed. The first method is based on the use of delayed inputs/outputs of the system (DIOF), while the second approach uses two connected observers feedback (2-COF).

It is shown that both stabilization methods avoid solving Bilinear Matrix Inequalities (BMIs), which are computationally unsuitable for numerical solvers.

Compared to the short conference version in [START_REF] Chaib-Draa | State estimation of LPV discrete-time systems with application to output feedback stabilization[END_REF], this extended journal version contains several further contributions, namely detailed proofs; additional remarks and comments on the estimation algorithms; a detailed section on design of the parameters where two design algorithms are proposed; an additional output feedback stabilization technique; and extended numerical illustrations of both estimation and stabilization algorithms.

The advantages of the proposed approach, compared to other observer design methods existing in the literature for LPV systems, is the exact estimation in finite-time. Such class of systems is widely investigated in the literature, where numerous methods have been proposed [START_REF] Wang | A quadratic matrix inequality based pid controller design for LPV systems[END_REF], [START_REF] Pandey | On the necessity of LMI-based design conditions for discrete time LPV filters[END_REF], [START_REF] Efimov | Control of nonlinear and LPV systems: Interval observer-based framework[END_REF], [START_REF] Kose | Control of LPV systems with partly measured parameters[END_REF]. These methods provide asymptotic or exponential convergence of the observer. In case of the use of such observers in close-loop control systems, the results may be conservative because BMI conditions are encountered. As shown in Section 4, the exact estimation in finitetime allows getting a kind of separation principle when the estimation is combined with output feedback. This avoids solving BMI constraints often encountered in the output stabilization problem for LPV systems. On other hand, one of the estimation algorithm proposed in this paper (Algorithm 1) combines two standard asymptotic observers to get exact and finite-time estimation. Then, the proposed algorithm can exploit all the advantages of standard asymptotic observers established in the literature for this class of LPV systems [START_REF] Sename | Robust control and linear parameter varying approaches: application to vehicle dynamics[END_REF], [START_REF] Pandey | On the necessity of LMI-based design conditions for discrete time LPV filters[END_REF], [START_REF] Chadli | Static output stabilisation of singular LPV systems: LMI formulation[END_REF].

The rest of this paper is organized as follows: Section 2 is devoted to the development of two exact finite-time estimation algorithms. Section 3 provides two numerical procedures to show how to design the parameters of the two estimation methods presented in Section 2. Extension and application of the proposed estimation algorithms are presented in Section 4. To show validity and effectiveness of the proposed design algorithms, an illustrative example is given in Section 5. Finally, Section 6 concludes this work.

Exact Finite-Time Estimation of LPV systems

This section is dedicated to development of two exact finite-time estimation algorithms for a class of LPV systems. We consider the class of LPV systems defined by the following set of equations:

x k+1 = A(ρ k )x k + Bu k (1a) y k = Cx k , (1b) 
where x k ∈ R n is the state vector, y k ∈ R p is the output measurement and u k ∈ R m is the control input vector, ρ k ∈ Θ ⊂ R r is a bounded time-varying parameter. B and C are constant matrices of appropriate dimensions. The matrix A(ρ k ) is affine in ρ k .

We introduce the following assumptions:

• for any k ∈ N, ρ k is known and bounded. Furthermore, the set Θ is independent from k;

• the matrix A(ρ k ) can be written in the form A(ρ k ) = A 0 + ∆A(ρ k ), where ∆A(ρ k ) ∈ Co(A 1 , • • • , A nρ ), namely A(ρ k ) = A 0 + nρ ∑ i=1 ξ i (ρ k )A i (2)
where for any k ≥ 1, ξ i (ρ k ) ≥ 0 and

nρ ∑ i=1 ξ i (ρ k ) = 1;
• the pairs (A i ,C) are observable for all i = 0, . . . , n ρ .

The parameters ξ i (ρ k ) (functions of ρ k ) come from rewriting the bounded parameters ρ i k in a convex combination of their constant bounds by using some mathematical developments issued from convexity principle and convex sets. An example to show how we compute ξ i (ρ k ) is given in the illustrative example provided in Section 5.

Remark 2.1 Even if (2) is needed to perform proofs and design the estimation schemes we propose in this paper, it is not restrictive because for bounded parameters ρ k and since A(ρ k ) is affine (or piecewise affine) in ρ k , we can rewrite (1) under the form (2) by using some mathematical transformations issued from convexity principle and convex sets.

Explicit Solutions Using Delayed Outputs

In order to simplify the presentation, we introduce the following notations:

• ξ i (ρ k ) ξ i k for i ≥ 0 with ξ 0 (ρ k ) 1. • For any set Σ M = {M 0 , M 1 , • • • , M nρ } of n ρ + 1 matrices, set M(ρ k ) = M 0 + nρ ∑ i=1 ξ i k M i = nρ ∑ i=0 ξ i k M i .
Before proposing the first algorithm that provides an exact finite-time estimation of the state x k , the following useful lemma is stated.

Lemma 1 Assume that the pairs (A j ,C) are observable for all j = 0, . . . , n ρ . Then there exist L j , K j , j = 0, . . . , n ρ , such that the matrix

E m (k) m ∏ i=1 A(ρ k-i ) -L(ρ k-i )C -1 - m ∏ i=1 A(ρ k-i ) -K(ρ k-i )C -1 . ( 3 
)
exists and is invertible for all k ≥ m.

PROOF. The proof is given in Appendix A.

Consequently, we can provide a direct and exact estimation of the state x k , presented in the following theorem.

Theorem 2 Assume that there exist

L(ρ k ) = L 0 + nρ ∑ i=1 ξ i k L i , K(ρ k ) = K 0 + nρ ∑ i=1 ξ i k K i
and m ≥ 1 so that matrix E m (k), defined in (3), exists and is invertible for all k ≥ m. Then a direct and exact estimation of the state x k can be computed as in (4).

PROOF. It is easy to show that iteratively x k can be written under the forms ( 5) and ( 6). Then, by subtracting (6), after multiplication by

m ∏ i=1 A(ρ k-i ) -K(ρ k-i )C -1 , from (5) multiplied by m ∏ i=1 A(ρ k-i ) -L(ρ k-i )C -1
, we get easily (4) by using the inverse of E m (k).

Remark 2.2 Since we are in discrete-time, continuity of the parameter ρ k is not necessary. Indeed, in continuous-time, in certain cases, continuity may play an important role because the derivative of the parameter are used in the design. However, in discrete-time, such a property is not necessary and it does not make sense. For instance, the class of LPV systems studied in this paper contains the class of linear switched systems with known switching mode. It is clear that in switched systems, the switching mode parameter is not continuous and belongs to a finite set of integers. As for the boundedness of ρ k , it is not a necessary condition. The necessary condition is the existence and invertibility of the matrix E m (k) for k ≥ m. If we can find gains L i , K i so that the matrix E m (k) exists and is invertible for a non-bounded ρ k , then the estimation algorithm remains valid. However, to guarantee existence and invertibility of E m (k), we need boundedness of ρ k , which justifies the introduction of such an assumption. The boundedness of ρ k , or equivalently of ξ i k is the main key of the proof of Lemma 1 in Appendix A. As for the link between ρ k and ξ i k , it can be deduced from the convexity principle; we refer the reader to [START_REF] Sename | Robust control and linear parameter varying approaches: application to vehicle dynamics[END_REF] for a deepen investigation of this issue. In addition to boundedness of ρ k , the particular structure (2) plays an important role in the proposed estimation schemes because by combining it with the boundedness of ξ i k , we can guarantee existence and invertibility of the matrix E m (k) for k ≥ m. It is not so easy to consider implicit form (1) in LMI context or eigenvalues assignment.

x k = E -1 m (k) m ∑ j=1   m ∏ l=1 A(ρ k-l ) -L(ρ k-l )C -1 j-1 ∏ i=1 A(ρ k-i ) -L(ρ k-i )C L(ρ k-j ) - m ∏ l=1 A(ρ k-l ) -K(ρ k-l )C -1 j-1 ∏ i=1 A(ρ k-i ) -K(ρ k-i )C K(ρ k-j )   y k-j + E -1 m (k) m ∑ j=1   m ∏ l=1 A(ρ k-l ) -L(ρ k-l )C -1 j-1 ∏ i=1 A(ρ k-i ) -L(ρ k-i )C - m ∏ l=1 A(ρ k-l ) -K(ρ k-l )C -1 j-1 ∏ i=1 A(ρ k-i ) -K(ρ k-i )C   Bu k-j (4) 
with the following convention for j = 1:

j-1 ∏ i=1 A (ρ k-i ) -L (ρ k-i )C j=1 = j-1 ∏ i=1 A (ρ k-i ) -K (ρ k-i )C j=1 = I n . x k = m ∏ j=1 A(ρ k-j ) -L(ρ k-j )C x k-m + m ∑ j=1 j-1 ∏ i=1 A(ρ k-i ) -L(ρ k-i )C L(ρ k-j )y k-j + Bu k-j (5) 
and

x k = m ∏ j=1 A(ρ k-j ) -K(ρ k-j )C x k-m + m ∑ j=1 j-1 ∏ i=1 A(ρ k-i ) -K(ρ k-i )C K(ρ k-j )y k-j + Bu k-j (6)

Estimation By Using Two Combined Observers

Unlike the previous section where a sum of delayed outputs weighted by powers of A -LC and A -KC have been used, this section is devoted to state estimation using two different asymptotic state observers. By using tools borrowed from the continuous-time results in [START_REF] Engel | A continuous-time observer which converges in finite time[END_REF] and [START_REF] Mazenc | Estimation of solutions of observable nonlinear systems with disturbances[END_REF], we get an exact estimation of the solution without using explicitly the delayed outputs. Indeed, the delayed output measurements are hidden and appear implicitly in states of the intermediate observers. This way to provide an exact estimation of the state x k is more suitable from a practical point of view.

Considering the class of systems (1), then an exact estimation of x k may be obtained by using two combined asymptotic observers, instead of using directly an explicit solution.

The result is summarized in the following theorem.

Theorem 3 Assume that the gain matrices L i and K i are selected such that: i) all the eigenvalues of A i -L i C and A i -K i C are nonzero and within the unit circle of the complex plane; ii) there exists m ≥ 1 so that the matrix E m (k) exists and is invertible.

Then the extended state dynamic system

ζ k+1 = A(ρ k )ζ k + Bu k + L(ρ k ) y k -Cζ k (7a) η k+1 = A(ρ k )η k + Bu k + K(ρ k ) y k -Cη k (7b) xk = E -1 m (k)   m ∏ j=1 A(ρ k-j ) -L(ρ k-j )C -1 ζ k - m ∏ j=1 A(ρ k-j ) -K(ρ k-j )C -1 η k + η k-m -ζ k-m (7c)
is an observer for system (1), which converges in finite time m ≥ 1.

PROOF. The proof exploits the explicit solution technique. Indeed, by analogy to ( 5) and ( 6), we get ( 8) and ( 9). Hence, by substituting ( 8) and ( 9) in ( 4) and using the definition of E m (k), we get from (7c) that xk = x k , ∀k ≥ m.

Design of the Estimation Parameters

This section is devoted to the numerical implementation of the proposed exact finite-time estimation methods. We provide a structured algorithm for computing the values of L i and K i for i = 0, . . . , n ρ .

Since the LPV parameter ρ k (or equivalently ξ k ) is known, then designing a single observer under the form (7a) or (7b) is not a difficult task. We can use some observer design techniques for LPV systems available in the literature. In this section, we use the well known poly-quadratic stability [START_REF] Pandey | On the necessity of LMI-based design conditions for discrete time LPV filters[END_REF], [START_REF] Bara | Parameter-dependent state observer design for affine LPV systems[END_REF], [START_REF] Daafouz | Parameter dependent lyapunov functions for discrete time systems with time varying parametric uncertainties[END_REF]. However, we need to slightly modify the standard LMIs to get different gains L i and K i for each i. The goal is to add a scalar parameter to place the eigenvalues of A i -L i C and A i -K i C, respectively, in different regions in order to get m ≥ 1 satisfying the invertibility of the matrix E m (k) defined in (3), for all k ≥ m.

Poly-quadratic stability based algorithm

To have a consistent and well-structured algorithm, we propose to design the gains L i ( or K i ) stabilizing asymptotically the error ζ kx k (or η kx k ). The overall LMI synthesis conditions providing the observer gains are given in the following proposition.

Proposition 1 Assume that there exist symmetric positive definite matrices P i , square matrices X i , and matrices Z i , i = 0, • • • , n ρ , of appropriate dimensions such that the following LMI conditions hold:

LMI i, j L (P, X, Z) < 0, ∀i, j = 0, . . . , n ρ . ( 10 
)
where

LMI i, j L (P, X, Z)      P j -X i -X i 2 X i A i -Z i C 2 X i A i -Z i C -P i      . (11) Then the estimation error ζ k -x k converges asymptotically to zero for L i = X -1 i Z i .
PROOF. For k ≥ m, the dynamics of the estimation error xk = ζ kx k is expressed as follows:

xk+1 = A(ρ k ) -L(ρ k )C xk .
To get global asymptotic stability of the estimation error, we exploit (Pandey and de Oliveira, 2018) by using the polyquadratic Lyapunov function

ϑ k = x k P(ρ k ) xk with P(ρ k ) nρ ∑ i=0 ξ i k P i and P i = P i > 0. If such Lyapunov
function exists and satisfies ∆ϑ ϑ k+1ϑ k < 0, ∀ xk = 0, then xk converges asymptotically to zero. By developing ∆ϑ , we get

∆ϑ = xk A(ρ k ) -L(ρ k )C P(ρ k+1 ) A(ρ k ) -L(ρ k )C -P(ρ k ) xk . ( 12 
)
Using Schur Lemma, it follows that ∆ϑ < 0, ∀ xk = 0 if and only if the following inequality holds,

     -P (ρ k ) A (ρ k ) -L (ρ k )C P(ρ k+1 ) ( ) -P(ρ k+1 )      < 0, (13) for all k ∈ N. Since nρ ∑ i=0 ξ i k = nρ ∑ j=0 ξ j k+1 = 2, for all k, then (13) 
can be rewritten under the form:

nρ ∑ i=0 ξ i k nρ ∑ j=0 ξ j k+1      -1 2 P i A i -L i C P j P j A i -L i C -1 2 P j      < 0, ( 14 
)
which is satisfied if

ζ k = m ∏ j=1 A(ρ k-j ) -L(ρ k-j )C ζ k-m + m ∑ j=1 j-1 ∏ i=1 A(ρ k-i ) -L(ρ k-i )C L(ρ k-j )y k-j + Bu k-j , (8) 
η k = m ∏ j=1 A(ρ k-j ) -K(ρ k-j )C η k-m + m ∑ j=1 j-1 ∏ i=1 A(ρ k-i ) -K(ρ k-i )C K(ρ k-j )y k-j + Bu k-j . (9)      -1 2 P i A i -L i C P j P j A i -L i C -1 2 P j      < 0, ∀i, j = 0, . . . , n ρ (15)
or equivalently

     -P i 2 A i -L i C 2 A i -L i C -P -1 j      < 0, ∀i, j = 0, . . . , n ρ . (16) 
By multiplying ( 16) on the right by 0 I X i 0 and its transpose on the left, and by using the inequality

-X i P -1 j X i ≤ P j -X i -X i (17) 
one get inequality (11). Indeed, inequality ( 17) is obtained by applying the Young's relation

X Y +Y X ≤ X S -1 X +Y SY
with X = X i , Y = I and S = P j . Hence, inequality (11) implies ( 14), which means that ∆ϑ < 0, ∀ xk = 0. This ends the proof of Proposition 1.

The same LMIs (11) ensure asymptotic stability of η kx k with K i = X -1 i Z i , since ζ k and η k have the same dynamics. However, to achieve exact finite-time estimation, we need invertibility of the matrix E m (k), which may not be satisfied if the eigenvalues of

A i -L i C and A i -K i C are close to each other. On other hand, even if E m (k) is invert- ible, the main issue is its condition number (κ(E m (k)) = E m (k) . E -1 m (k) ). By construction of the matrix E m (k), if the eigenvalues of A i -L i C and A i -K i C are close, then even if E m (k)
is invertible, its condition number will be high, which leads to numerical problems and bad estimation. Indeed, from numerical analysis viewpoint, if the condition number of a matrix is high, then there will be numerical issues in inverting the matrix and solving linear system of equations. To overcome this issue and augment the possibility to get invertibility of E m (k) with a small condition number, we propose to slightly modify (11) by including a positive parameter α i < 1, i = 0, . . . , n ρ . That is, LMI ( 11) is replaced by the following one:

     P j -X i -X i (α i ) -1 X i A i -Z i C (α i ) -1 X i A i -Z i C -P i      < 0.
(18) Hence, if we need the eigenvalues of A i -L i C to be lower than α i , we should solve LMIs (18). Indeed, if λ α i is an eigenvalue of 1 α i A i -L i C A α i , then it is well known in discrete-time case that when LMIs (18) are feasible we have |λ α i | < 1. On the other hand, we know that

det λ α i I n -A α i = 1 α n i det    λ i α i λ α i I n -A i -L i C    = 0, which means that λ i α i λ α i is an eigenvalue of A i -L i C . It follows that since |λ α i | < 1 from LMIs (18), we have |λ i | < α i .
Moreover, if we need the eigenvalues of A i -K i C to be greater than α i while ensuring poly-quadratic convergence, we should solve

LMI i, j K (P, Y, S) < 0, ∀i, j = 0, . . . , n ρ (19) 
with respect to the new variables Y i and S i with K i = Y -1 i S i , together with the quadratic matrix inequality (QMI) for β i > α i :

A i -K i C P -1 i A i -K i C -β 2 i P -1 i > 0, (20) 
which characterizes the QMI-region, see e.g. (Ebihara et al., 2015, Lemma 2.6):

QMI i {λ ∈ C; |λ | > β i }. (21) 
Note that this quadratic constraint allows guaranteeing only that the eigenvalues of (A i -K i C) belong to an LMI region; which can ensure invertibility of the matrix E m (k). However, since ( 21) is a non-convex set then one can not convert (20) to an equivalent LMI. As a fallback solution, we propose to consider the two LMI sub-regions:

R 1 β i = {λ ∈ C; |λ | < 1; Re(λ ) < -β i } ⊂ QMI i , (22) R 2 β i = {λ ∈ C; |λ | < 1; Re(λ ) > β i } ⊂ QMI i , (23) 
which lead to the following two LMI constraints:

2β i Y i -Y i A i -S i C -Y i A i -S i C < 0 (24) -2β i Y i + Y i A i + S i C + Y i A i -S i C < 0. (25) 
Then, it is sufficient to solve (11) together with ( 24) or ( 25).

Both sub-regions ( 22) and ( 23) guarantee that min

j=0,••• ,nρ |λ j (A i -K i C)| > β i .
Once the gains L i and K i are computed, one checks existence and invertibility of the matrix E m (k), for 1 ≤ m ≤ m , where m is a prescribed integer representing the maximum of the desired finite-time to achieve exact estimation. If E m (k) is not invertible for all m ≤ m , then the values of α i , β i , i = 0, . . . , n ρ , must be changed. The numerical design procedure is summarized in the following Algorithm.

Remark 3.1 Algorithm 1 uses sufficient LMI conditions related to poly-quadratic stability, which may lead to noninvertible matrix E m (k). However, after including a second parameter β i to conveniently separate the eigenvalues and by using QMI-regions, we reduced the conservatism of the algorithm and we augmented the possibility to get invertible matrix E m (k). In addition, Algorithm 1 plays an important role because it guarantees asymptotic stability of the estimation errors xtη t and xtζ t . This is one of the reason for which it is introduced. This property affects the estimation before finite-time convergence (for k = 1, . . . , m-1). For instance, in case of systems with high dimension, the finitetime convergence m ≥ 1 may be high. Hence if the asymptotic convergence of xtη t and xtζ t is not ensured, the estimation may be bad for k = 1, . . . , m -1. On the other Algorithm 1: Poly-quadratic stability based algorithm

Step 1. Choose m ≥ 1 and small values α i , β i , , i = 1, . . . , n ρ , with α i < β i .

Step 2. Solve LMIs (18) and compute the gains: hand, the fact that Algorithm 1 cannot systematically ensure invertibility of E m (k) has motivated us to introduce a second algorithm, namely Algorithm 2 to be stated in the next Subsection 3.2.

• L i = X -1 i Z i . Step 3.

Pole placement based algorithm

The previous poly-quadratic stability based algorithm is based on feasibility of the sufficient LMIs ( 19) and ( 24) or LMIs ( 19) and ( 25), which are not always easy to tune more suitable eigenvalues of A i -L i C and A i -K i C. To overcome this obstacle, we proposed a second algorithm based directly on fixing the eigenvalues of A i -L i C and A i -K i C in such a way that they will not be close to each other, according to the proof of Lemma 1. To this end, we propose to introduce scalar variables δ L < 1, δ K < 1. Then, we compute the eigenvalues of A i -L i C and A i -K i C, respectively, so that:

max 1≤i≤nρ λ max (A i -L i C) < δ L < λ min (A 0 -L 0 C); (26) max 1≤i≤nρ λ max (A i -K i C) < δ K ≤ λ min (A 0 -K 0 C); (27) max 1≤i≤nρ λ max (A i -L i C) + λ max (A 0 -L 0 C) < λ min (A 0 -K 0 C) -max 1≤i≤nρ λ max (A i -K i C) (28)
with λ max (.) = max{|λ |, λ ∈ Sp(.)} and λ min (.) = min{|λ |, λ ∈ Sp(.)}, guaranteeing the invertibility of E m (k).

Conditions ( 26), ( 27), and (28) provide a separation between the different eigenvalues of the matrices A i -L i C and A i -K i C. They show clearly that the eigenvalues of A 0 -K 0 C are larger in module than those of other matrices. In order to ensure (A.7), we can introduce another separation between the eigenvalues of the matrix A 0 -L 0 C and those of A

i -K i C, i = 1, • • • , n ρ , by introducing a positive parameter δ L 0 K < 1 so that λ max (A 0 -L 0 C) < δ L 0 K ≤ min 1≤i≤nρ λ min (A i -K i C) (29) 
Then, for (28) to be verified, it is sufficient to separate the eigenvalues of

A i -K i C, for i = 1, • • • , n ρ from those of A 0 - K 0 C by a minimum distance equal to δ * δ K -2δ L 0 K > 0. ( 30 
)
Hence, the following separation

max 1≤i≤nρ λ max (A i -K i C) < δ * < δ K ≤ λ min (A 0 -K 0 C) (31)
guarantees the required condition (28).

Note that since we study discrete-time systems, we have also max 1≤i≤nρ | λ max (A i -K i C) |< 1. The idea consists in assigning eigenvalues satisfying ( 26), ( 27), and (28) and such that for a prescribed m ≥ 1, there exists m ≤ m for which E m (k) is invertible. Therefore, if such properties are not satisfied, we propose to decrease λ j (A i -L i C) and increase λ j (A i -K i C) until E m (k) is invertible, where λ j (A) is the j th eigenvalue of the matrix A.

Hence, we are ready to propose a second algorithm, which is more easier and simpler than Algorithm 1.

Algorithm 2: Eigenvalues assignment based algorithm

Step

1. Choose m ≥ 1, δ L < 1 2 , δ L 0 K > δ L , δ K > 2δ L 0 K . Compute δ * according to (30);
Step 2. Assign eigenvalues for A i -L i C and A i -K i C, i = 0, • • • , n ρ according to ( 26), (29), and (31);

Step 3. Compute the corresponding gains L i and K i , respectively;

Step 4. Check invertibility of the matrix E (k): for ← 1 to m and k ≥ 1 do if E (k) is invertible then return m ← ; break; else Decrease the eigenvalues of A i -L i C and increase those of A i -K i C and go to Step 3 to generate new observer gains L i and K i .

Remark 3.2 It is well-known that, in a general way, the stability of each A i -L i C is not sufficient to guarantee stability of the estimation error in an LPV form. However, what Section 3.2 proposes is an efficient design algorithm based on pole assignment, namely the separation of the eigenvalues of A i -L i C from those of A i -K i C so that there exists m ≥ 1 for which the matrix E m (k) is invertible for any k ≥ m. Theorem 3 provides all the finite-time convergence conditions.

This means that the errors xtη t and xtζ t are not necessary stable. The only conditions are the existence and invertibility of E m (k). As for the convergence of the estimation errors xtη t and xtζ t , it is guaranteed by the results of Section 3.1, namely the poly-quadratic stability based analysis.

Remark 3.3 As in the previous subsection, Algorithm 2 gives a global view of the numerical procedure to design parameters of the proposed finite-time exact estimator by using eigenvalues assignment. For instance, to increase and decrease eigenvalues of A i -L i C and A i -K i C, we can introduce a small scalar parameter ε that we will increase at each iteration, and put

λ j (A i -L i C) ← λ j (A i -L i C) -ε, λ j (A i -K i C) ← λ j (A i -K i C) + ε.

Output Feedback Stabilization of LPV Systems

In this section, we propose two different output feedback stabilization methods. Both methods are based on the exact finite-time estimation methodologies proposed in the previous sections.

2-COF stabilization method

In this paper, due to the exact finite-time estimation of the system state, we will propose necessary and sufficient LMI conditions ensuring poly-quadratic stabilization of the system state.

Theorem 4 Assume that the gain matrices L i , K i and F i are selected such that: i) L i are solutions of LMIs (18) and K i are solutions of (11) and ( 24) or ( 11) and (25), respectively, for prescribed α i , i = 0, . . . , n ρ ; ii) there exists m ≥ 1 so that the matrix E m (k) exists and invertible; iii) there exist matrices P i = P i > 0, i = 0, . . . , n ρ and matrices X i , i = 0, . . . , n ρ of appropriate dimensions such that the following LMI conditions hold:

-P j 2(A i P i -BX i ) 2(P i A i -X i B ) -P i < 0, ∀i, j = 0, . . . , n ρ . ( 32 
)
Then the following observer-based controller

ζ k+1 = A(ρ k )ζ k + Bu k + L(ρ k ) y k -Cζ k (33a) η k+1 = A(ρ k )η k + Bu k + K(ρ k ) y k -Cη k (33b) xk = E -1 m (k)   m ∏ j=1 A(ρ k-j ) -L(ρ k-j )C -1 ζ k - m ∏ j=1 A(ρ k-j ) -K(ρ k-j )C -1 η k + η k-m -ζ k-m (33c) u k = -F(ρ k ) xk (33d)
with

F(ρ k ) F 0 + nρ ∑ i=1 ξ i k F i , F i = X i P -1 i ( 34 
)
stabilizes globally asymptotically the system (1).

PROOF. From Theorem 3, we know that if i) and ii) of Theorem 4 are satisfied, then (33c) provides an exact and finite-time estimation of x k . that is xk = x k , ∀k ≥ m. It follows that for k ≥ m, equation (33d) becomes

u k = -F(ρ k )x k .
Consequently, for k ≥ m, system (1) can be rewritten, after using feedback control, as:

x k+1 = A(ρ k ) -BF(ρ k ) x k = nρ ∑ j=0 ξ j k A j -BF j x k (35) 
which is globally asymptotically stable if there exists a Lyapunov function

ϑ k = nρ ∑ i=0 ξ i k x k P -1 i x k such that ∆ϑ ϑ k+1 -ϑ k < 0, ∀x k = 0.
By proceeding as in the proof of Proposition 1, it follows that ∆ϑ < 0, ∀x k = 0 if the following inequalities hold, ∀i, j = 0, . . . , n ρ :

     -P -1 i 2 A i -BF i 2 A i -L i C -P j      < 0 (36) or equivalently      -P j 2 A i -BF i 2 A i -L i C -P -1 i      < 0. (37) 
Pre-and post-multiplying (37) by I 0 0 P i leads to (32) with X i = F i P i . This ends the proof.

Remark 4.1 The proof of Theorem 4 is more straightforward than that of Proposition 1 because it does not need the introduction of a new slack variable when applying the congruence principle to linearize the inequalities. In addition, in Theorem 4, we used a Lyapunov function with matrices P -1 i instead of P i , in order to avoid the introduction of a new variable S i P -1 i .

Remark 4.2 It is worth to notice that LMIs (32) are necessary and sufficient conditions for the global poly-quadratic stabilization of system (1), however, they are only sufficient for its global asymptotic stabilization. Indeed, according to [START_REF] Daafouz | Parameter dependent lyapunov functions for discrete time systems with time varying parametric uncertainties[END_REF], Definition 2), the notion of poly-quadratic stability is stronger than asymptotic stability. Poly-quadratic stability is basically, by definition, a sufficient criterion to ensure asymptotic stability.

Remark 4.3 In the presence of uncertainties, the proof of convergence is different and the LMIs (32) are not sufficient to ensure poly-quadratic stability of the system. This issue is one of the future work we aim to tackle. Especially, we aim to investigate the class of LPV systems with inexact parameters. Indeed, to cover nonlinear systems, we need to extend the results of this paper to systems with unknown parameters or to quasi-LPV systems. When the nonlinearity is globally Lipschitz, it has been demonstrated in [START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF] that the reformulation of the Lipschitz condition allows rewriting the system as a quasi-LPV one with unknown parameter. This leads to the case where ρ k = ρ 0 k +∆ρ k , with ρ 0 k is known and ∆ρ k is unknown but bounded. Solving this problem allows to generalize the methodology to a class of nonlinear systems.

DIOF stabilization method

This section is dedicated to a new stabilization technique, called DIOF stabilization method, which allows overcoming the issue of static output feedback (SOF) stabilization problem. Although SOF controller is simple, from LMI point of view, it is not so obvious because of resulting Bilinear Matrix Inequalities (BMIs), which are not easy to solve (from complexity point of view) by using available convex optimization algorithms. SOF controller consists in stabilizing (1) by using u k = -F(ρ k )y k , which leads to

x k+1 = nρ ∑ j=0 ξ j k A j -BF j C x k . (38) 
However, by following the steps in Section 4.1, equation ( 38) leads to the BMIs

  -P j 2 A i -BF i C P i 2P i A i -BF i C -P i   < 0, ∀i, j = 0, . . . , n ρ , (39) 
which are not easy to linearize. Several techniques have been proposed in the literature, but the challenge of obtaining less conservative LMIs is still open. To have a precise idea on the difficulty of this problem in linear case, we refer to [START_REF] Huynh | Static output feedback control of positive linear systems with output time delays[END_REF] and the references therein. On the other hand, by exploiting the first exact estimation methodology proposed in Section 2.1, we are able to stabilize (1) by using delayed inputs/outputs. Indeed, to overcome the BMIs (39), we propose the following output feedback controller, which uses only measured quantities:

u k = -F(ρ k )x k , with x k given by (4), ∀k ≥ m; (40) u k = u m k , for k = 0, • • • , m -1, (41) 
where u m k is a given input vector for the initial values of k ≤ m -1, and to be chosen by the user. It is introduced because (40) gives only u k for k ≥ m.

It follows that with (40), instead of system (38), we get (35). Consequently, instead of facing the complicated BMIs (39), we only need to solve LMIs (32).

Remark 4.4 The explicit estimation technique proposed in this paper is applied to output feedback stabilization issue, nevertheless, we need the value of u m k for k = 0, • • • , m -1, which is necessary from (40)-( 41). We propose to fix these values by putting u m k = -Fζ k , where ζ k is defined in (7a). Since generally, we have small value of m (we can fix small values of m for appropriate L and K), hence we can also select u m k = 0 for k = 0, • • • , m -1.

Remark 4.5 The aim of Subsection 4.2 is to consolidate Section 4. Although the synthesis of the gains F i , i = 0, . . . , n ρ is the same in both subsections and is based on solving LMIs (32), Subsection 4.2 has two objectives:

(1) to offer the possibility for users to stabilize systems under the use of only delayed outputs according to the first estimation algorithm (direct and explicit estimation); (2) to show that the use of a sliding window of weighted outputs leads to avoid a complex BMI problem encountered in static output feedback stabilization problem.

Remark 4.6 Notice that both stabilization methods DIOF and 2-COF use the same synthesis conditions to determine the parameters L j , K j , and F j because both techniques give u k = -F(ρ k )x k for k ≥ m.

Illustrative Example

This section is devoted to illustrate the theoretical contributions presented in the previous sections. Due to lack of space, only the methodology based on the use of two combined observers will be illustrated.

System description

As an example, consider the LPV system described by the following equations [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF]:

x k+1 =     0.25 1 0 0 0.1 0 0 0 0.6 + ρ k     x k +     1 0 1     u k (42a) y k = 1 0 2 x k (42b)
with ρ k ∈ 0 0.5 , k ∈ N. This model can be rewritten under the form (2) with

A 0 =     0.05 0.5 0 0 0.05 0 0 0 0.1     , A 1 =     0.2 0.5 0 0 0.05 0 0 0 0.5     , A 2 =     0.2 0.5 0 0 0.05 0 0 0 1     , ξ 1 k = (0.5 -ρ k ) 0.5 , ξ 2 k = ρ k 0.5 .

Estimation without feedback stabilization

By using Algorithm 1, we obtain the following solutions:

L 0 =     -0.0156 0.0002 0.2484     , L 1 =     0.0474 -0.0007 -0.3637     , L 2 =     0.0134 0.0009 -0.6372     , K 0 =     -1.5234 0.8312 -0.0383     , K 1 =     0.0314 0.0010 -0.3260     , K 2 =     0.0638 -0.0033 -0.7513    
with m = 3. The matrix E m (k) in (3) exists and found invertible for any k ≥ 0.

For simulations, we use

ρ k = 1 2 | sin( π 10 k) | and u k = sin( π 15 k).
The initial state of the system is x 0 = 1 1 1 . As for ζ 0 and η 0 in (7a)-(7b) are given by 10 10 10 and 5 5 5 , respectively. We also use xk = ζ k for k = 0, . . . , m -1. It is quite clear from Figure 1 that the estimation xk given by (7c) reaches exactly the solution x k of (42a) in finite-time. To show, by simulation, performance of the proposed estimation algorithm, we add a measurement noise. The output y k is assumed to be disturbed by a Gaussian noise with mean zero and standard deviation σ = 0.3. The simulation results are depicted in Figure 2. 

Observer-based feedback stabilization

This subsection is devoted to show effectiveness of the exact estimation based output feedback control method proposed in Section 4. The parameters related to the exact estimation are those obtained in the previous subsection devoted to estimation only. Furthermore, to compute the controller parameters F i , i = 1, . . . , n ρ , we need to solve LMIs (32). Hence, by using Matlab LMI toolbox with Yalmip interface, we get the following solutions:

F 0 =     0.0075 0.0024 0.4411     , F 1 =     0.0356 0.0003 0.4422     , F 2 =     0.0297 0.0009 0.8510     .
It is quite clear from Figure 3 that with these parameters, the exact finite-time estimation based controller (33) ensures asymptotic stabilization of system (1). Real states and their estimations are depicted in Figure 3 to show, at the same time, that the exact estimation is done in finite-time with the new control input. Additional simulations are presented in Figure 4 to show performance of the proposed stabilization scheme. Both the output y k and each component of the system are assumed to be disturbed by a Gaussian noise with mean zero and standard deviation σ = 0.1. 

Conclusion

This paper provides powerful state estimation algorithms for LPV discrete-time systems. Two new estimation procedures are proposed. The first one allows computing explicitly solution of the system through delayed outputs/inputs, while the second one uses the strategy of two connected asymptotic observers. Due to the exact estimation in finitetime, the problem of output feedback stabilization of LPV systems is solved by mean of simple and non conservative LMI conditions. Therefore, two novel control design strategies are proposed and two well-structured algorithms are given to design parameters of the estimation and stabilization schemes. A numerical example is provided to show effectiveness of the proposed exact finite-time estimation algorithms and their application to output feedback stabilization. As a future work, we aim to generalize the results, in this paper, to systems with unknown parameters (ρ k = ρ 0 k + ∆ρ k ) in order to provide robust stabilization schemes.

A Proof of Lemma 1

Here we give the proof of Lemma 1, which ensures existence and invertibility of the matrix E m (k). First, for any σ > 0, we denote by B(0; σ ) a ball in the complex plane centered at the origin with radius σ . For all k ≥ 1, and 1 ≤ m ≤ k, the matrix E m (k) is welldefined. Indeed, the observability property allows chosing L j and K j , j = 0, • • • , n ρ , such that the eigenvalues of (A j -L j C) and (A j -K j C), for j = 0, • • • , n ρ , are inside B(0; δ ) -{0}, for a given δ < 1. To simplify the presentation, let us introduce the notation: 

L j ∆ = (A j -L j C); K j ∆ = (A j -K j C); j = 0, • • • , n ρ .

Invertibility of

I n + nρ ∑ j=1 ξ j k-i K -1 0 K j -1 ≤ K -1 0 m m ∏ i=1 I n + nρ ∑ j=1 ξ j k-i K -1 0 K j -1 ≤ K -1 0 m m ∏ i=1 1 - nρ ∑ j=1 ξ j k-i K -1 0 K j -1 , (A.6)
where the last inequality (A.6) is due to

I n + nρ ∑ j=1 ξ j k-i K -1 0 K j -1 ≤ 1 - nρ ∑ j=1 ξ j k-i K -1 0 K j -1 since nρ ∑ j=1 ξ j k-i K -1 0 K j < 1. Hence, (A.6) becomes m ∏ i=1 nρ ∑ j=0 ξ j k-i K j -1 ≤    K -1 0 1 -K -1 0 max 1≤ j≤nρ K j    m = K -1 0 -1 -max 1≤ j≤nρ K j -m
.

Summarizing, we get

m ∏ i=1 nρ ∑ j=0 ξ j k-i L j m ∏ i=1 nρ ∑ j=0 ξ j k-i K j -1 ≤    L 0 + max 1≤ j≤nρ L j K -1 0 -1 -max 1≤ j≤nρ K j    m .
Therefore, by choosing the eigenvalues of L j and K j , j = 0, • • • , n ρ , in a convenient way such that

L 0 + max 1≤ j≤nρ L j < K -1 0 -1 -max 1≤ j≤nρ K j , (A.7) we get m ∏ i=1 nρ ∑ j=0 ξ j k-i L j m ∏ i=1 nρ ∑ j=0 ξ j k-i K j -1 < 1
for every k, and m ≤ k. This guarantees the invertibility of E m (k) for all k and m ≤ k. This ends the proof.
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  L j , for all k ≥ 1 and all i ≤ m. On the other hand, we can separate the eigenvalues of L j , (resp.K j ) j = 1, • • • , n ρ , , inside the ball B(0; δ L ), (resp. B(0; δ K )) with δ L < δ (resp. δ K < δ ) j < 1, ∀ j = 1, • • • , n ρ .Now, using the boundedness and convexity properties of the sequence (ξ i k ) k , it follows that nρ for any k ≥ 1 and any i ≤ k. K j , for any k ≥ 1 and m ≤ k. Now, to show that m (k) is invertible, we use the factorizationE m (k) =
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