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Bayesian analysis for mediation and moderation using
g−priors.

Jean-Michel Galharret and Anne Philippe ∗

Abstract

This paper proposes a Bayesian analysis using an extension of g-priors for moderated mediation
models. For this choice of priors, an explicit form of the marginal distribution is obtained. Testing
procedure on the existence of direct, indirect and moderated effects are constructed using Bayes
factor approach. This methodology is applied to analyze the association between empowering lead-
ership and organisational commitment in two companies.

keywords: Bayes factor, direct and indirect effects, g−priors.

1 Introduction

In human sciences, mediation refers to a phenomenon in which the effect of an exposure variable X on an
outcome Y can be decomposed into a direct effect and an indirect effect via a third variable M . In this
paper, we focus on the association between empowering leadership and organizational commitment me-
diated by work place well-being. This mediation analysis is performed on two populations corresponding
to different companies. We are interested in the effect of the company factor on the associations between
the previous variables. From a statistical point of view, such problems can be addressed by mediation
analysis and moderated mediation analysis.

Mediation analysis is one of the classical applications of the Structural Equation Modeling (SEM)
(see for instance Judd and Kenny, 1981; Bollen, 2014; Muthén et al., 2016) and regression models (see
for instance MacKinnon, 2008; Hayes, 2018). These effects can be interpreted in terms of correlation
and association. The total effect of X on Y is the association between X and Y . The direct effect of X
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on Y is the partial correlation between X and Y controlling the M effect. The indirect effect of X on Y
is the remaining of the total effect that will pass through M . More precisely, in the standard situation,
where M,Y are continuous, the most widely used model to evaluate the effect of X on Y is the linear
regression: Y = i0 + CX + ε. In this case, C measures the total effect of X on Y . In the presence of
the mediator M , the linear model is of the form:

!
Y = i2 + bM + cX + ε2

M = i1 + aX + ε1,
(1)

where εi have Gaussian distributions with 0 mean and σ2
i variance for i = 1, 2 (see for instance MacK-

innon, 2008; Jose, 2013; Hayes, 2018). Combining both equations, the total effect is equal to c+ ab, c is
the direct effect, and the indirect effect is the product ab. In one of the most cited articles on mediation,
Baron and Kenny (1986) describe the test procedure introduced by Sobel (1982) to test the indirect
effect using the product ab. This is an asymptotic procedure based on the Delta method and on the
central limit theorem. More generally, all these effects can be redefined within the context of causality
(see for instance Pearl, 2001; Robins, 2003; VanderWeele, 2015). In this case, they measure the causal
effects of X on Y instead of the association between X and Y . The correspondance between the causal
and SEM mediation analyses is discussed in MacKinnon et al. (2020). Consider a generalisation of the
mediation model (1) defined as follows:

[M0] :

!
Y = i2 +Xc+ bM + e0W + εY

M = i1 +Xa+ d0W + εM ,
(2)

where Y ∈ Rn is the continuous outcome, M ∈ Rn is the continuous mediator, X ∈ Rn,p is the matrix
of exposure vectors and W is a covariate. The exposure variables X and the covariate W are supposed
to be deterministic. We assume that the error terms are independent Gaussian random variables:
εM ∼ Nn(0, σ

2
MIn), εY ∼ Nn(0, σ

2
Y In). The unknown parameters satisfy a ∈ Rp, c ∈ Rp; b, d0, e0 ∈ R.

In this multivariate exposure model, the effects are defined for each component. The direct effect of
component Xk on Y is ck and its indirect effect is ak × b.

In our application, X corresponds to the four dimensions of the empowering leadership (enhancing
the meaningfulness of work, fostering participation in decision making, expressing confidence in high
performance, providing autonomy) M corresponds to work place well-being and W is the activity sector
(see Section 4 for details). To evaluate the effect of the populations, we consider a binary variable W
as a moderator.

Moderating the mediation model consists of adding interaction effects in equations of [M0]. Here-
after, the matrix X : W designates the interactions between the variables X1, ..., Xp and W . Severals
moderations can be investigated: one path (or all paths) between X and Y is (are) moderated by W
(i.e. a, c in Figure 1), the path b between M and Y can also be moderated by W . Preacher et al. (2007)
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discuss all these different cases and they compare normal-theory and bootstrapping standard errors for
assessing conditional indirect effects.

The model including all paths is written as follows

[M1] :

!
Y = i2 +Xc+ bM + e0W +X : We1 + f1M : W + εY ,

M = i1 +Xa+ d0W +X : Wd1 + εM ,
(3)

where d1 ∈ Rp, e1 ∈ Rp, f1 ∈ R correspond respectively to the moderation of the effect of X on M , X
on Y and M on Y . Figure 1 gives a graphical summary of both models [M0] and [M1].

X

M

W

X : W

M :
W

Y

a

c

d0

d1

b

e0

e1

f1

Figure 1: Mediation model (solid lines) and moderated mediation model (with dashed lines added).

We want to test the existence of these effects, this amounts to testing the null hypothesis

H0 : d1 = e1 = 0p, f1 = 0.

The statistical problem in the SEM framework is standard (see for instance Bollen, 2014, pages 292-300).
The nested models [M0] and [M1] are compared using the likelihood ratio test (LR-test)

λ = 2 log

"
L(#θ1)
L(#θ0)

$
,

where #θ1 and #θ0 are respectively the maximum likelihood estimators of the parameters in models [M0]
and [M1]. Under the null hypothesis λ has a chi-square distribution with 2p+ 1 degrees of freedom.

3



We address this problem from a Bayesian framework using the Bayes factor. The Bayesian parameter
estimation for mediation models is studied (for instance in Yuan and MacKinnon, 2009; Miočević et al.,
2018). They consider independent Gaussian priors on mediation coefficients or non informative priors
in the spirit of prior distributions used in linear regression models. Nuijten et al. (2015) and Biesanz
et al. (2010) propose a Bayesian testing procedure for the indirect effect ab. For each linear regression
model, Nuijten et al. (2015) use the g−priors distribution introduced by Zellner (1984). They test the
indirect effect by combining Bayes factors calculated independently on these two regression equations
that define (1). More precisely, for testing that the product term αβ is equal to zero, they calculate
two Bayes factor, one for testing α = 0 and another for testing β = 0. Then, the final decision rule
is obtained as the product of these two Bayes factors. This choice is not well justified as it is based
on an assumption of independence between the two regression equations. This approach does not take
into account the fact that mediation is defined by a system of linear equations. This aspect is however
fundamental since the mediator M is an explanatory variable in one equation and a response variable in
the other. In a more general context than Nuijten et al. (2015), including a covariate W and interaction
terms X : W and M : W , we show that it is possible to address this problem from the joint distribution
of (Y,M) given by both equations in (2). This approach makes it possible to obtain the joint posterior
distribution of all parameters from which one can deduce posterior distribution of direct and indirect
effect. Unlike Nuijten et al. (2015), the Bayes factor for testing the absence of effects is well defined in a
standard way. The Bayesian method is also studied for moderation. For instance, Wang (2015) extends
the Yuan and MacKinnon (2009) model for testing whether mediation is moderated.

The paper is organized as follows. In Section 2, we construct an extension of g−priors adapted to
models (2) and (3). In Section 3, we show that an explicit form of Bayes factor can be obtained for
selecting the best model between [M0] and [M1] defined in (2) and (3). This Bayes factor gives a tool
for testing the moderation of the effects (i.e. H0 : d1 = e1 = f1 = 0). Finally, Section 4 contains our
application on the effect of empowering leadership on organizational commitment.

2 Zellner’s g−priors choice

The g−priors were introduced by Zellner (see for instance Zellner, 1971, 1984), for the coefficients of
multiple linear regression models

Y = Xβ + ε,

where X ∈ Rn×p is the design matrix, Y ∈ Rn, ε is a zero mean Gaussian vector with independent
coordinates. We denote σ2 the variance of the Gaussian noise ε. The Zellner’s g−priors on the parameters
(β, σ2) are of the form

πg(β, σ
2) = πg(β|σ2)σ−2

where the conditionnal distribution of β given σ2 is a Gaussian distribution with covariance matrix
proportional to the inverse Fisher information of β. Recall that the Fisher information for the coefficient
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β is
I(β) = σ−2XTX, (4)

and therefore we have
β|σ2 ∼ Np(β̃, gσ

2(XTX)−1). (5)

To designate the g−priors we use the notation

(β, σ2) ∼ Zg(g, %β,X).

This prior depends on hyper-parameters %β ∈ R, g ∈ R to be fixed according to the prior information.

Our objective is to adapt the g−priors to the context of mediation models. A first attempt was made
by Nuijten et al. (2015) who construct the g−priors by considering the model (2) as two independent
regression models. From this point of view, it is not possible to obtain the posterior distribution of the
indirect effect ab since the parameters a, b are estimated in both independent models.

The challenge is to define a joint g−priors on all the parameters of the mediation model gathering
the parameters of the two equations defined in (2), that is θ := (θM , σ2

M , θY , σ
2
Y ), where θM = (i1, a, d0)

and θY = (i2, c, b, d0).

Proposition 1 The Fisher information for the regression coefficients (θY , θM) of the mediation model
defined in (2) is

I(θY , θM) =

&

'(

1
σ2
Y
XTX 1

σ2
Y
XTXθM 0

1
σ2
Y
θTMXTX 1

σ2
Y
( θTM XTXθM + σ2

MI) 0

0 0 1
σ2
M

XTX

)

*+ ,

where X denotes the design matrix [1, X,W ].

Proof 1 In the model (2), the joint distribution of Y,M is:

pθ(m, y|X,W ) = fY (y|m, θ, X,W )fM(m|θ, X,W ),

where fY is the Gaussian distribution with mean i2 +Xc+ bm+ e0W and variance σ2
Y and where fM is

the Gaussian distribution with mean i1 +Xa+ d0W and variance σ2
M . Then the log likelihood function

can be split as the sum of two functions L(θY , σ2
Y ) and L(θM , σ2

M),

log V (θ) = log fY (Y |M, θY , σ
2
Y , X,W ) + log fM(M |θM , σ2

M , X,W )

:= L(θY , σ2
Y ) + L(θM , σ2

M). (6)
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Note that L(θY , σ2
Y ) and L(θM , σ2

M) are respectively the log likelihood functions of the two Gaussian
regression models appearing in (2). According to (4) and (6), we deduce that

I(θY , θM) =

"
1
σ2
Y
E([X,M ]T [X,M ]) 0

0 1
σ2
M

XTX

$
.

Since

E(M) = XθM
E( MTM) = E( (XθM + εM)T (XθM + εM)) = θTM XTXθM + σ2

MIn,

we have

E( [X,M ]T .[X,M ]) = E
,

XTX XTM
MTX MTM

-
=

,
XTX XTXθM

θTM XTX θTM XTXθM + σ2
MIn

-
.

This concludes the proof. □

According to Proposition 1, the Fisher information depends on the parameter θM . Therefore, the
g−prior cannot be defined as previously where the conditional distribution of the coefficients (θY , θM) is
a Gaussian distribution whose covariance matrix is proportional to the inverse of the Fisher information.

It is also not possible to assume that the parameters of both equations in (2) are independent

π(θ) = π1(θM , σ2
M)π2(θY , σ

2
Y ),

and to choose for π1, π2 the g−priors defined in (5) with design matrix [1, X,W ] and [1, X,W,M ]
respectively. Indeed, the random variable M appears in the design matrix of π2.

To avoid this problem we propose a new strategy whose main idea is to the decompose the joint
distribution of M,Y, θ as follows,

p(m, y, θY , σ
2
Y , θM , σ2

M |X,W ) = fY (y|M = m, θY , σ
2
Y , θM , σ2

M , X,W )πY (θY , σ
2
Y |M = m, θM , σ2

M , X,W )×
fM(m|θM , σ2

M , X,W )πM(θM , σ2
M |X,W ).

According to the dependencies defined by the directed acyclic graph represented in Figure 2, we can
simplify p as follows,

p(m, y, θY , σ
2
Y , θM , σ2

M |X,W ) = fY (y|M = m, θY , σ
2
Y , X,W )πY (θY , σ

2
Y |M = m,X,W )×

fM(m|θM , σ2
M , X,W )πM(θM , σ2

M |X,W ), (7)
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where fY is the Gaussian distribution with mean i2 +Xc + bm + e0W and variance σ2
Y and where fM

is the Gaussian distribution with mean i1 +Xa+ d0W and variance σ2
M .

The g−priors defined in (5) can be chosen for πM and πY with a design matrix [1, X,W ] and
[1, X,W,M ] respectively. More precisely, we have

πM(θM , σ2
M |X,W ) ∝ 1

σp+4
M

exp
.
− 1

2gMσ2
M

(θM − %θM)T [1, X,W ]T [1, X,W ](θM − %θM)
/

(8)

πY (θY , σ
2
Y |X,W,M) ∝ 1

σp+5
Y

exp
.
− 1

2gY σ2
Y

(θY − %θY )T [1, X,W,M ]T [1, X,W,M ](θY − %θY )
/
, (9)

where gM , %θM , gY , %θY are the hyperparameters of the g−priors. Equations (7), (8), (9) fully define the
Bayesian mediation model with the g−priors. The posterior distribution satisfies

π(θM , σ2
M , θY , σ

2
Y |X,W,M, Y ) ∝ p(M,Y, θY , σ

2
Y , θM , σ2

M |X,W ), (10)

where p is defined in (7).

Remark 1 Like Zellner (1984), we include the intercept of the model in the parameter β. Indeed, in
many applications of mediation, the problem of location scale is not relevant since the outcome is a score
without units.

Remark 2 This model can be easily adapted to moderated mediation model defined in (3). Indeed, it is
enough to add X : W and M : W in the design matrix.

Discussion of the choice of g: These prior distributions cover a wide range of contexts from nonin-
formative to informative. Indeed we can bring information on θ from the hyperparameters %θM , %θY , and
gM , gY quantify the weight of this information. In absence of information, %θM = %θY = 0 and gM = gY = n
are the standard choices recommended for instance by Kass and Wasserman (1995). Such choices are
motivated by the fact that this g−prior provides the same amount of information on the regression
parameters as one observation. Many articles deal with the choice of g parameter in the particular case
of Gaussian linear regression model. In Berger and Pericchi (2001) and George and Foster (2000), the
empirical Bayes approach is considered in choosing g. The parameter g can be seen as an unknown
parameter. In this case, we have to choose prior on g, for instance, the Zellner-Siow prior (see Zellner
and Siow, 1980) and the hyper g−priors (see Cui and George, 2008). In Remark 4, we also comment on
the impact of the choice of g on the behavior of the Bayes factor.

Inference on the effects: In applications, one of the main issues of statistical analysis is to test
the existence of the mediated effect and if this effect is moderated by W . The posterior distribution
πI(•|X,W,M, Y ) of the indirect effect I = ab can be deduced from (10). As suggested by Biesanz et al.
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Figure 2: Directed acyclic graph for the mediation model [M0]

(2010), a decision rule for testing the absence of this effect (i.e. ab = 0) is obtained from the highest
posterior density (HPD) region of level 1− α. More precisely we accept the absence of effect if

0 ∈ Hα := {t : πI(t|X,W,M, Y ) > kα},

where kα is chosen such that 0

Hα

πI(t|X,W,M, Y )dt = 1− α.

This procedure can be applied for all the other effects in particular for the moderation model. Indeed,
we can easily calculate the posterior distribution of both moderated effects: the moderate direct effect
c+ e1 and the moderate indirect effect (a+ d1)(b+ f1).

An alternative approach is to treat moderation as a problem of model selection. It is this approach
that we discuss in the next section.

3 Bayes factor for testing moderated mediation

Our aim is to test if the variable W moderates the associations between X,M, Y . This problem can be
expressed as a model selection problem between the two models [M0] and [M1]. For both models, we
consider as prior distribution the g−priors defined in Section 2. The Bayes factor provides a classical
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solution for comparing two models. Let us recall the definition of Bayes factor for comparing two
Bayesian models. Let Mi be the marginal distribution of the model [Mi], i ∈ {0, 1},

Mi(y) =

0

Θi

fi(y|θ)πi(θ) d θ,

where fi, πi are respectively the likelihood and the prior distribution of model [Mi]. The Bayes factor
is the ratio of the marginal densities for the two models

BF10 =
M1(y)

M0(y)
. (11)

The evidence of [M1] over [M0] corresponds to BF10 > 1.
For the moderation model, we show that an explicit form of the Bayes factor is available. Our

competing Bayesian models are as follows,

• Model M1:

Y = i2 +Xc+ bM + e0W +X : We1 + f1M : W + εY ,

(θY , σ
2
Y )|X,W,M ∼ Zg(g2, %β2,XY1) with XY1 =

1
1,W,X,M,X : W,M : W

2
,

M = i1 +Xa+ d0W +X : Wd1 + εM ,

(θM , σ2
M)|X,W ∼ Zg(g1, %β1,

1
1,W,X,X : W

2
) with XM1 =

1
1,W,X,X : W

2
.

• Model M0:

Y = i2 +Xc+ bM + e0W + εY ,

(θY , σ
2
Y )|X,W,M ∼ Zg(g2, β̌2,

1
1,W,X,M

2
) with β̌2 = (%β1

2 , ...,
%βp+3
2 ) and XY0 =

1
1,W,X,M

2

M = i1 +Xa+ d0W + εM ,

(θM , σ2
M)|X,W ∼ Zg(g1, β̌1,

1
1,W,X

2
) with β̌1 = (%β1

1 , ...,
%βp+2
1 ) and XM0 =

1
1,W,X

2
.

The form of the hyperparameters ensures that the information on common parameters are the same.

Proposition 2 The Bayes factor to compare the models M1 versus M0 defined above is given by

BF10 =
(g1 + 1)p/2

(g2 + 1)(p+1)/2

&

(Y TY − g2
g2+1

Y TXY0(XT
Y0
XY0)

−1XT
Y0
Y − ‖XY0

β̌2‖2
g2+1

Y TY − g2
g2+1

Y TXY1(XT
Y1
XY1)

−1XT
Y1
Y − ‖XY1

!β2‖2
g2+1

)

+
n/2

×

&

(MTM − g1
g1+1

MTXM0(XT
M0

XM0)
−1XT

M0
M − ‖XM0

β̌1‖2
g1+1

MTM − g1
g1+1

MTXM1(XT
M1

XM1)
−1XT

M1
M − ‖XM1

!β1‖2
g1+1

)

+
n/2

.
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Proof 2 By definition, the Bayes factor is the ratio of the marginal densities

BF10 =
M1(m, y|X,W )

M0(m, y|X,W )
. (12)

For model M0, the marginal density is

M0(m, y|X,W ) =

0

Θ0

p(m, y, θY , σ
2
Y , θM , σ2

M |X,W ) d θY d σ2
Y d θM d σ2

M ,

where p is defined in (7). It can be rewritten

M0(m, y|X,W ) =

0

Θ0

fY (y|X,W,M = m, θY , σ
2
Y )πY (θY , σ

2
Y |X,W,M = m)×

fM(M |X,W, θM , σM)πM(θM , σ2
M |X,W ) d θY d σ2

Y d θM d σ2
M ,

where fY , fM , πY , πM in (7), (8), (9). By Fubini theorem, we obtain

M0(m, y|X,W ) =

0

Θ0,Y

fY (y|X,W,M = m, θY , σ
2
Y )πY (θY , σ

2
Y |X,W,M = m) d θY d σ2

Y×
0

Θ0,M

fM(m|X,W, θM , σ2
M)πM(θM , σ2

M |X,W ) d θM d σ2
M .

From the last equation, we can identify M0 as the product of the marginal densities of both linear
regression models defining M0,

M0(m, y|X,W ) = M0
M(m|X,W )×M0

Y (y|X,W,M), (13)

where M0
M(m|X,W ) and M0

Y (y|X,W,M) correspond respectively to the marginal densities of M and Y
in each linear equation in model [M0]. The same result is valid for the model M1 after adaptation of
the design matrix. Therefore, the Bayes factor is expressed in the form

BF10 = BF
M |X
10 × BF

Y |M,X
10 , (14)

where

• BF
M |X
10 is the Bayes factor of competing models M = i1 + Xa + d0W + X : Wd1 + εM versus

M = i1 +Xa+ d0W + εM ,

• BF
Y |M,X
10 is the Bayes factor of competing models Y = i2+Xc+bM+e0W+X : We1+f1M : W+εY

versus Y = i2 +Xc+ bM + e0W + εY .
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For the linear regression model with g−priors the form of the marginal densities are well-known (see for
instance Zellner, 1984). Indeed, if we consider the Gaussian linear model

y|β, σ2 ∼ Nn(Xβ, σ2In),

with (β, σ2) ∼ Zg(g, %β,X), then the marginal density of y is

p(y) = (g + 1)−(p+1)/2π−n/2Γ(n/2)

"
yTy − g

g + 1
yTX(XTX)−1XTy − ‖X%β‖2

g + 1

$−n/2

. (15)

Using (14), we deduce the expression announced in the statement of the Proposition and this concludes
the proof. □

Remark 3 The Bayes factor is not defined when the prior distributions are improper. However there
is a major exception to this ban on improper priors that we apply to the g−priors for the parameters
σ2
M , σ2

Y . Indeed, the two competing models have the variance of the noise as a common parameter. If
this parameter has the same prior distribution 1

σ2 in both models then the normalization issue disappears
(see Marin and Robert, 2014, Section 3.4.3).

Remark 4 The choice of g parameter has a strong impact on the behavior of the Bayes factor. When g is
fixed, the Bayes factor suffers from a consistency issues, for instance, when the coefficient determination
R2 tends to 1 (see Berger and Pericchi, 2001). The use of Bayes’ empirical approach or of a hierarchical
prior on g (already mentioned in Section 2) brings a solution to this problem (see Liang et al., 2008,
for Gaussian regression model). For g = n in regression, the Bayes factor behaves like the well-known
model selection criterion, the BIC (see Kass and Wasserman, 1995). An alternative approach is to
use a hierarchical prior on g such as the Zellner-Siow prior (see Zellner and Siow, 1980) or the hyper
g−priors (see Cui and George, 2008). The Proposition 2 provides the explicit form of the Bayes factor
for g1 = g2 = n or the empirical Bayes approach. For hierarchical priors on g, some specific priors
(such as for instance Zellner-Siow prior) also give a closed form of the Bayes factor.

Decision rule from Bayes factor The BF10 > 1 threshold gives evidence of [M1] over [M0]. Different
scales have been proposed to quantify the evidence ofM1 overM0 from the value of the Bayes factor (see
Jeffreys, 1961; Kass and Raftery, 1995). However, these scales have no rationale validation to justify their
use in any model. We propose two alternative approaches to these scales to try to quantify the evidence
of M1 over M0 taking into account the specific form of the model. The two proposed approaches use the
fact that we compare nested models M0 ⊂ M1. The first is based on the Bayes factor BF10 distribution
under the predictive distribution. The second consists in constructing a frequentist test where the test
statistic is the Bayes factor.
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Approach 1. To quantify the evidence of M1 over M0, we would like to evaluate the probability that
BF10 > 1. We consider p1(z

%|Z) the predictive distribution under the model M1

p1(z
%|Z) =

0
f1(z

%|Z, θ)π1(θ|Z) d θ,

where f1, π1 are respectively the conditional likelihood and the posterior distribution under model M1,
and Z is the observed sample. Let Z% be a sample distributed according to the predictive distribution
p1(z

%|Z). As the models are nested, the distribution of BF10(Z
%) should behave similarly to the Bayes

factor of the original sample BF10(Z). Therefore, we propose quantifying the evidence of M1 over M0

by the probability P(BF10(Z
%) > 1|Z). Indeed, this corresponds to the probability of deciding M1

against M0 for predictive samples that look like the observed sample Z.

Approach 2. The Bayes factor can also be used as a test statistic, this frequentist approach requires
the knowledge of the Bayes factor distribution under the null hypothesis defined by M0. This approach
is studied by Zhou and Guan (2018) in the particular case of linear regression. They build the critical
region, and calculate the associated p-value using the asymptotic distribution of the Bayes factor. The
Bayes factor distribution under the null hypothesis can also be estimated by parametric bootstrap since
the models are nested. Indeed, let M0 = {fθ0 , θ0 ∈ Θ0} and M1 = {fθ0,λ, (θ0,λ) ∈ Θ0×Λ} be the two

nested parametric families. A consistent parametric estimator (#θ0, #λ) of (θ0,λ) for the model M1 will
also be a consistent one for θ0 if λ = 0. Therefore, we can approximate the Bayes factor distribution
under the null hypothesis using bootstrapping samples from f"θ0 ∈ M0. This frequentist context does
not allow us to speak about the evidence of M1 against M0, but the usual Type I error is used to
evaluate the significance of λ.

In the context of moderation, the explicit form of the Bayes obtained in Proposition 2 makes ap-
proximation of these distributions easier.

4 Application to the case study of empowering leadership in

two different companies

The aim is to explain the organizational commitment (Y ) as a function of the empowering leadership.
In particular, we want to understand if a part of the effect passes through well-being (M). We are
also interested in the variations of these effects between two activity sectors (represented by W ). For
this study, the data come from a statistical survey carried out on 255 employees in the aeronautical
industry and 211 firemen in the area of Nantes, France. Empowering leadership is evaluated through
four dimensions: meaning at work (X1), participation in decision-making (X2), confidence (X3), and
autonomy (X4). Well-being, organizational commitment and empowering leadership are not directly
observed, but they are measured by survey questionaries (see Table 1). This dataset has been studied
in Caillé et al. (2020).
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Table 1: Number of survey questions for each variable of interest.

empowering leadership well-being organizational commitment
Ahearne et al. (2005) Gilbert et al. (2011) Meyer et al. (1993)

X1 X2 X3 X4 M Y

3 3 3 3 22 6

The scatterplots in Figure 3 clear associations between the variables X,M, Y . We assume that these
variables satisfy the mediation model (2).

In the absence of prior information on the parameters, we choose hyperparameters of g−prior so
that they will be noninformative. So, we take %β = 0 and g = n for both the mediation model and the
moderate mediation model.

Moderation analysis: Using the moderation model defined in (3), we analyse the effect of activity
sector W . We assume that all the paths between empowering leadership, work place well-being and
organizational commitment are moderated by the activity sector. We compare the model without
interaction [M0] and the overall model [M1] using the Bayes factor. Thanks to Proposition 2, we have
an explicit form of the Bayes factor and so we easily get its value Λn = log10(BF10) = −8.635. The
evidence is in favor of [M0] i.e. the activity sector does not moderate the associations between the
variables X,M, Y . To confirm this conclusion, we evaluate the predictive distribution of log(BF10) as
described in Section 3 (see Figure 4). It is negative with a high probability

P(log(BF10(M
%, Y %)) < 0|M,Y ) = 0.96.

This leads to a strong evidence of 96% in favor of M0.
We can compare this approach to the frequentist test based on the Bayes factor. Its distribution

under the null hypothesis [M0] is represented in Figure 5. The p-value is equal to p = .057. At
significance level 5%, this test leads to the same conclusion of the absence of moderate effects.

Caillé et al. (2020) apply a likelihood ratio test, and they obtained a p-value equal to p = .058. The
two frequentist tests give very similar results, and lead to the same conclusion as the Bayes factor.

Table 2 gives the Bayes estimate and HPD interval for all parameters of the moderation model.
For all interaction parameters, the HPD intervals contain the value 0, and so these coefficients are not
significant at level 5%. This confirms again the absence of moderation.

Mediation model Given the absence of moderation, we focus on the mediation model (2) estimated
on the full population corresponding to the employees of the two companies. From this model, we are
testing the existence of the direct and indirect effects of each component. Recall that the direct effect
of component Xk on Y is ck and its indirect effect is the product akb.
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Table 2: Bayes estimates and HPD interval under the moderate model [M1] defined in (3).

parameter Estimate Lower 95% Upper 95%

θM

Intercept 3.165 2.844 3.485
W -0.104 -0.514 0.267
X1 0.167 0.074 0.260
X2 -0.030 -0.107 0.044
X3 -0.017 -0.115 0.083
X4 0.100 -0.007 0.205

X1 : W -0.033 -0.156 0.094
X2 : W -0.001 -0.112 0.117
X3 : W 0.067 -0.065 0.198
X4 : W -0.013 -0.156 0.120

θY

Intercept 0.352 -0.612 1.310
W -0.139 -1.331 1.128
X1 0.235 0.076 0.400
X2 0.121 -0.006 0.245
X3 0.095 -0.071 0.263
X4 0.145 -0.037 0.325
M 0.231 -0.025 0.484

X1 : W -0.118 -0.332 0.097
X2 : W -0.048 -0.244 0.135
X3 : W -0.059 -0.282 0.165
X4 : W -0.157 -0.392 0.076
M : W 0.244 -0.092 0.572

14



The interest of the Bayesian analysis is to easily infer the indirect effect from the posterior distribution
of the product akb. In particular, for testing the absence of indirect effect at level α, a possible decision
rule is to accept the absence of effect if 0 belongs in the 100(1− α)% HPD interval of akb (see Biesanz
et al., 2010, for Gaussian priors). The Bernstein-von Mises theorem implies that this critical region
provides a test of asymptotic level α.

The classical approach to test the indirect effect is to estimate the distribution of the product akb
using boostrap (see Preacher and Hayes, 2004). Table 3 presents the results of these two approaches. The
conclusions are the same: there are direct effects of X1, X2 and indirect effects of X1, X4. Therefore,
each dimension of empowering leadership contributes differently to the prediction of organizational
commitment.

The indirect testing problem can also be interpreted as a problem of model selection. We have to
take into account four competing models for testing the indirect effect of Xj on Y .
They are defined as follows: the full model

[Med
(j)
4 ] :

!
Y = i2 +Xc+ bM + εY

M = i1 +Xa+ εM ,

that corresponds to the existence of the indirect effect and the three nested models of [Med
(i)
4 ]

[Med
(j)
1 ] :

!
b = 0

ai = 0
,

[Med
(j)
2 ] : ai = 0,

[Med
(j)
3 ] : b = 0.

Previously, we used the Bayes factor to compare two competing models. To extend this approach to
more than two models, the model index m(j) is added to the unknown parameters (see for instance Marin
and Robert, 2014, section 2.3.1). The posterior distribution of m(j) is

P(m(j) = i|X,M, Y ) =
P(m(j) = i)M

(j)
i (m, y|X)

34
k=1 P(m(j) = k)M

(j)
k (m, y|X)

, i = 1, ..., 4,

where M
(j)
i is the marginal distribution of model [Med

(j)
i ] and P(m(j) = i) is its prior probability. Using

(13) and (15), we easily obtain an explicit form of the marginal distribution M
(j)
i . The decision rule is

to select the model with the higher posterior probability

m(j)
∗ = argmaxi=1,...,4P(m(j) = i|X,M, Y ).
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Table 3: Comparison of Bayesian estimation (Bayes estimate and HPD interval) with the bootstrapping
estimation under mediation model [M0].

Bayesian estimation Bootstrap estimation
Estimate Lower95% Upper95% Estimate Lower95% Upper95%

direct effects of

X1 0.161 0.055 0.270 0.161 0.036 0.280
X2 0.111 0.015 0.207 0.112 0.017 0.211
X3 0.050 -0.066 0.158 0.051 -0.070 0.170
X4 0.049 -0.068 0.167 0.049 -0.075 0.177

indirect effects of

X1 0.055 0.023 0.090 0.055 0.028 0.095
X2 -0.012 -0.035 0.011 -0.012 -0.034 0.005
X3 0.008 -0.018 0.034 0.008 -0.015 0.036
X4 0.035 0.006 0.065 0.035 0.009 0.071

Table 4: Posterior distribution of m(j) for testing the existence of the indirect effect of each exposure Xj

on Y , j = 1, ..., 4. The probabilities in bold indicate m
(j)
∗ .

P(m(j) = i|X,M, Y )
1 2 3 4

indirect effects of

X1 0.000 0.000 0.002 0.997
X2 0.002 0.920 0.000 0.078
X3 0.002 0.945 0.000 0.053
X4 0.001 0.362 0.001 0.636

If the selected model is [Med
(j)
4 ] (i.e. m

(j)
∗ = 4), then there is evidence for the existence of the indirect

effect of Xj on Y .
In our application, we choose the uniform prior for m(j) since there is no objective argument in favour

of one of the models. Table 4 presents the posterior distribution of m(j). This approach leads to the
same decisions as the approaches based on HPD and boostrap intervals.

In conclusion, the dimensions of empowerment leadership X1, X4 have an indirect effect on organi-
zational commitment (Y ) through the well-being (M). In contrast, there is absence of indirect effects
of the variables X2 (resp. X3) on Y due to the absence of association between X2 (resp. X3) and the
mediator M .

16



Figure 3: Representation of scatterplots of exposure variables, mediator and outcome
(X1, X2, X3, X4,M, Y ).
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Figure 4: Predictive distribution of log(BF10) under the moderation model [M1].

Figure 5: Approximation of the null distibution of log(BF10) by parametric bootstrap. For the value
−8.635 of the Bayes factor calculated on the observed dataset, the p-value is equal to p = .057.
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