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Abstract

We propose a Bayesian analysis of moderate mediation model. We show that g-priors can be
extended to mediation model. For this choice of prior, we provide an explicit form of the marginal
distribution. This result is applied to testing moderation using Bayes factor and indirect effects in
mediation models. We apply our results to the study of the association between empowering leadership
and organizational commitment.

Keywords: Bayes factor, direct and indirect effects, g−priors, interaction, linear model, model selec-
tion, structural equation, testing procedure.

1 Introduction

In human sciences, mediation refers to a phenomenon in which the effect of an exposure variable X on
an outcome Y can be decomposed into a direct effect and an indirect effect via a third variable M . In
this paper, we focus on the association between empowering leadership and organizational commitment
mediated by well-being at work. This mediation analysis is performed on two populations corresponding
to different companies. We are interested in the invariance of the associations between the previous
variables. From a statistical point of view, such problems can be dealt with using mediation analysis and
moderate mediation analysis.

Mediation analysis is one of the classic applications of the Structural Equation Modeling (SEM) (see
for instance Judd and Kenny, 1981; Bollen, 2014; Muthén et al., 2016) and regression models (see for
instance MacKinnon, 2008; Hayes, 2018). These effects can be interpreted in terms of correlation and
association. The total effect of X on Y is the association between X and Y . The direct effect of X on
Y is the partial correlation between X and Y controlling the M effect. The indirect effect of X on Y
is the remaining of the total effect that will pass through M . More precisely, in the standard situation,
where X,M, Y are continuous, the most widely model used to evaluate the effect of X on Y is the linear
regression: Y = i0 +CX + ε. In this case, C measures the total effect of X on Y . In the presence of the
mediator M , the linear model is of the form:{

Y = i2 + bM + cX + ε2

M = i1 + aX + ε1,
(1)
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where εi have Gaussian distributions with 0 mean and σ2
i variance for i = 1, 2 (see for instance MacKinnon,

2008; Jose, 2013; Hayes, 2018). Combining both equations, the total effect is equal to c + ab, c is the
direct effect, and the indirect effect is the product ab. In one of the most cited articles on mediation,
Baron and Kenny (1986) describe the test procedure introduced by Sobel (1982) to test the indirect effect
using the product ab. This is an asymptotic procedure based on the Delta method and on the central
limit theorem. More generally, all these effects can be redefined within the context of causality (see for
instance Pearl, 2001; Robins, 2003; VanderWeele, 2015). In this case, they measure the causal effects of
X on Y instead of the association between of X and Y . The correspondance between the causal and SEM
mediation analysis is discussed in MacKinnon et al. (2020). Consider a generalisation of the mediation
model (1) defined as follows:

[M0] :

{
Y = i2 + cTX + bM + e0W + εY

M = i1 + aTX + d0W + εM
(2)

where Y ∈ Rn is the continuous outcome, M ∈ Rn is the continuous mediator, X ∈ Rn,p is the matrix of
exposition vectors and W is a covariate. The exposition variables X and the covariate W are supposed
to be deterministic. We assume that the error terms are independent Gaussian random variables: εM ∼
Nn(0, σ2

MIn), εY ∼ Nn(0, σ2
Y In). The unknown parameters satisfy a ∈ Rp, c ∈ Rp; b, d0, e0 ∈ R. In this

multivariate exposition model, the effects are defined for each component. The direct effect of component
Xk on Y is ck and its indirect effect is ak × b.

In our application, X corresponds to the four dimensions of the empowering leadership (enhancing
the meaningfulness of work, fostering participation in decision making, expressing confidence in high
performance, providing autonomy) M corresponds to well-being at work and W is the activity sector
(industry or fire station, see details to follow). To evaluate the effect of the populations, we consider the
binary variable W as a moderator.

Moderating the mediation model consists of adding interaction effects in equations of [M0]. Hereafter,
the matrix X : W designates the interactions between the variables X1, ..., Xp and W . Severals modera-
tions can be investigated: one path (or all paths) between X and Y is (are) moderated by W (i.e. a, c
in Figure 1), the path b between M and Y can also be moderated by W . Preacher et al. (2007) discuss
all these different cases and they compare normal-theory and bootstrapping standard errors for assessing
conditional indirect effects.

The model including all paths is written as follows

[M1] :

{
Y = i2 + cTX + bM + e0W + eT1 X : W + f1M : W + εY ,

M = i1 + aTX + d0W + dT1 X : W + εM
(3)

where d1 ∈ Rp, e1 ∈ Rp, f1 ∈ R correspond respectively to the moderation of the effect of X on M , the
moderation of the effect of X on Y and the moderation of the effect of M on Y . Figure 1 gives a graphical
summary of both models [M0] and [M1].

We want to test the existence of these effects, this amounts to testing the null hypothesis

H0 : d1 = e1 = 0p, f1 = 0.
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Figure 1: Mediation model (solid lines) and moderate mediation model (with dashed lines added).

The statistical problem in the SEM framework is standard (see for instance Bollen, 2014, P 292-300).
The nested models [M0] and [M1] are compared using the likelihood ratio test (LR-test)

λ = 2 log

(
L(θ̂1)

L(θ̂0)

)
,

where θ̂1 and θ̂0 are respectively the maximum likelihood estimators of the parameters in models [M0]
and [M1]. Under the null hypothesis λ has a chi-square distribution with 2p+ 1 degrees of freedom.

In this paper, we address this problem from a Bayesian framework using the Bayes factor. The
Bayesian parameter estimation for mediation models is studied (for instance in Yuan and MacKinnon,
2009; Miočević et al., 2018). They consider an independent Gaussian priors on mediation coefficients or
non informative priors in the spirit of prior distributions used in linear regression models. Nuijten et al.
(2015) and Biesanz et al. (2010) propose a Bayesian testing procedure for the indirect effect ab. More
precisely, Nuijten et al. (2015) test the indirect effect by combining Bayes factors calculated independently
on the two regression equations that define (1). For each linear regression model, they use the g−priors
distribution introduced by Zellner (1984). To get one step estimation, we complete this approach by
extending the g−prior construction to the mediation model defined in (2). One avantage is to obtain a
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joint posterior distribution of all parameters from which one can deduce posterior distribution of direct
and indirect effect. The Bayesian method is also studied for moderation. For instance, Wang (2015)
extends the Yuan and MacKinnon (2009) model for testing whether mediation is moderated.

The paper is organized as follows. In Section 2, we construct an extension of g−prior adapted to
models (2) and (3). In Section 3, we show that an explicit form of Bayes factor can be obtained for
selecting the best model between [M0] and [M1] defined in (2) and (3). This Bayes factor gives a tool
for testing the moderation of the effects (i.e. H0 : d1 = e1 = f1 = 0). Finally, Section 4 contains our
application on the effect of empowering leadership on organizational commitment.

2 Zellner’s g−priors choice

The g−prior distributions were introduced by Zellner (see for instance Zellner, 1971, 1984), for the coef-
ficients of multiple linear regression models

Y = Xβ + ε,

where X ∈ Rn×p is the design matrix, Y ∈ Rn is a Gaussian vector. We denote σ2 the variance of the
Gaussian noise ε. The Zellner’s g−priors distribution on the parameters (β, σ2) is1

β|σ2 ∼ Np(β̃, gσ2(XTX)−1) and π(σ2) ∝ σ−2. (4)

To designate the g−priors we use the notation

(β, σ2) ∼ Zg(g, β̃,X).

This prior depends on hyper-parameters β̃ ∈ R, g ∈ R to be fixed according to the prior information. The
standard choice g = N gives the prior the same weight as one observation (see Marin and Robert, 2014).

In the context of mediation models, Nuijten et al. (2015) use the g−priors by addressing the model (2)
as two independent regression models. From this point of view, it is not possible to obtain the posterior
distribution of the indirect effect ab since the parameters a, b are estimated in both independent models.

We show that it is possible to define an extension of g−prior to the parameters θ := (θM , σ
2
M , θY , σ

2
Y )

of the mediation model. Using the notations in (2) we have θM = (i1, a, d0) and θY = (i2, c, b, d0). In the
global model (2), the joint distribution of M,Y, θ is:

p(m, y, θ|X,W ) = fY (y|m, θ,X,W )fM (m|θ,X,W )π(θ),

where fY is the Gaussian distribution with mean i2 + cTX + bm+ e0W and variance σ2
Y and where fM

is the Gaussian distribution with mean i1 + aTX + d0W and variance σ2
M .

A simple way to construct the prior distribution of θ is to assume that the parameters of both equations
in (2) are independent, i.e.

π(θ) = πM (θM , σ
2
M )πY (θY , σ

2
Y ).

1the notation Z1|Z2 ∼ P means that the conditional distribution of Z1 given Z2 is P.
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From this decomposition, it is not possible to take the g−priors for πM , πY as defined in (4), because the
observation M will appear in the design matrix of πY .

We propose the following approach to adapt g−priors to model (2). The main idea is to decompose
the joint distribution of M,Y, θ as follows

p(m, y, θY , σ
2
Y , θM , σ

2
M |X,W ) = fY (y|M = m, θY , σ

2
Y , θM , σ

2
M , X,W )π(θY , σ

2
Y |M = m, θM , σ

2
M , X,W )×

fM (m|θM , σ2
M , X,W )π(θM , σ

2
M |X,W ).

According to the dependencies defined by the directed acyclic graph represented in Figure 2, we can
simplify p,

p(m, y, θY , σ
2
Y , θM , σ

2
M |X,W ) = fY (y|M = m, θY , σ

2
Y , X,W )πY (θY , σ

2
Y |M = m,X,W )×

fM (m|θM , σ2
M , X,W )πM (θM , σ

2
M |X,W ), (5)

where fY is the Gaussian distribution with mean i2 + cTX + bm+ e0W and variance σ2
Y and where fM is

the Gaussian distribution with mean i1 + aTX + d0W and variance σ2
M . The g−priors defined in (4) can

be chosen for πM and πY with a design matrix [1, X,W ] and [1, X,W,M ] respectively. More precisely,
we have

πM (θM , σ
2
M |X,W ) ∝ 1

σp+4
M

exp
(
− 1

2gMσ2
M

(θM − θ̃M )T [1, X,W ]T [1, X,W ](θM − θ̃M )
)

(6)

πY (θY , σ
2
Y |X,W,M) ∝ 1

σp+5
Y

exp
(
− 1

2gY σ2
Y

(θY − θ̃Y )T [1, X,W,M ]T [1, X,W,M ](θY − θ̃Y )
)
, (7)

where gM , θ̃M , gY , θ̃Y are the hyperparameters of the g−priors.

Remark 1. Like Zellner (1984), we include the intercept of the model in the parameter β. Indeed, in
many applications of mediation, the problem of location scale is not relevant since the outcome is a score
without units.

Equations (5), (6), (7) fully defined the Bayesian mediation model with the g−priors. The posterior
distribution satisfies

π(θM , σ
2
M , θY , σ

2
Y |X,W,M, Y ) ∝ p(M,Y, θY , σ

2
Y , θM , σ

2
M |X,W ). (8)

These prior distributions cover a wide range of contexts from non-informative to informative. Indeed
we can bring information on θ from the hyperparameters θ̃M , θ̃Y , and gM , gY quantify the weight of this
information. In the absence of information, θ̃M = θ̃Y = 0 and gM = gY = N are the standard choices.

Remark 2. This model can be easily adapted to moderate mediation model defined in (3). Indeed, it is
enough to add X : W and M : W in the design matrix.
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Inference on the effects: In applications, one of the main issues is to test the existence of the mediated
effect and if this effect is moderated by W . The posterior distribution πI(•|X,W,M, Y ) of the indirect
effect I = ab can be deduced from (8). As suggested by Biesanz et al. (2010), a decision rule for testing
the absence of this effect (i.e. ab = 0) is obtained from the HPD region of level 1− α. More precisely we
accept the absence of effect if

0 ∈ Hα := {t : πI(t|X,W,M, Y ) > kα},

where kα is chosen such that ∫
Hα

πI(t|X,W,M, Y )dt = 1− α.

This procedure can be applied for all the other effects in particular for the moderation model. Indeed,
we can easily calculate the posterior distribution of both moderate effects: the moderate direct effect
c+ e1 and the moderate indirect effect (a+ d1)(b+ f1).

An alternative is to treat moderation as a problem of model selection. It is this approach that we
discuss in the next section.

3 Bayes factor for testing moderate mediation

Our aim is to test if the variable W moderates the associations between X,M, Y . This problem can be
expressed as a model selection problem between the two models [M0] and model [M1]. For both models
[M0] and [M1], we consider as prior distribution the g−priors defined in Section 2. The Bayes factor
provides a classical solution for comparing two models. Let us recall the definition of Bayes factor for
comparing two Bayesian models. Let Mi be the marginal distribution of the model [Mi],

Mi(y) =

∫
Θi

fi(y|θ)πi(θ) d θ,

where fi, πi are respectively the likelihood and the prior distribution of model [Mi]. The Bayes factor is
the ratio of the marginal densities for the two models

BF10 =
M1(y)

M0(y)
. (9)

The evidence of [M1] over [M0] is obtained for BF10 > 1.
For the moderation model, we show that an explicit form of the Bayes factor is available. Our

competing Bayesian models are as follows

• Model M1:

Y = i2 + cTX + bM + e0W + eT1 X : W + f1M : W + εY ,

(θY , σ
2
Y )|X,W,M ∼ Zg(g2, β̃2,XY1) with XY1 =

[
1,W,X,M,X : W,M : W

]
M = i1 + aTX + d0W + dT1 X : W + εM

(θM , σ
2
M )|X,W ∼ Zg(g1, β̃1,

[
1,W,X,X : W

]
) with XM1 =

[
1,W,X,X : W

]
6
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Figure 2: Directed acyclic graph for the mediation model [M0]

• Model M0:

Y = i2 + cTX + bM + e0W + εY ,

(θY , σ
2
Y )|X,W,M ∼ Zg(g2, β̌2,

[
1,W,X,M

]
) with β̌2 = (β̃1

2 , ..., β̃
p+3
2 ) and XY0 =

[
1,W,X,M

]
M = i1 + aTX + d0W + εM

(θM , σ
2
M )|X,W ∼ Zg(g1, β̌1,

[
1,W,X

]
) with β̌1 = (β̃1

1 , ..., β̃
p+2
1 ) and XM0 =

[
1,W,X

]
The form of the hyperparameters ensures that the information on common parameters are the same.
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Proposition 1. The Bayes factor to compare the models M1 versus M0 defined above is given by

BF10 =
(g1 + 1)p/2

(g2 + 1)(p+1)/2

Y TY − g2
g2+1Y

TXY0(XTY0XY0)−1XTY0Y −
‖XY0 β̌2‖

2

g2+1

Y TY − g2
g2+1Y

TXY1(XTY1XY1)−1XTY1Y −
‖XY1 β̃2‖2
g2+1

n/2

×

MTM − g1
g1+1M

TXM0(XTM0
XM0)−1XTM0

M − ‖XM0
β̌1‖2

g1+1

MTM − g1
g1+1M

TXM1(XTM1
XM1)−1XTM1

M − ‖XM1
β̃1‖2

g1+1

n/2

.

Proof. By definition, the Bayes factor is the ratio of the marginal densities

BF10 =
M1(m, y|X,W )

M0(m, y|X,W )
. (10)

For model M0, the marginal density is

M0(m, y|X,W ) =

∫
Θ0

p(m, y, θY , σ
2
Y , θM , σ

2
M |X,W ) d θY dσ2

Y d θM dσ2
M ,

where p is defined in (5). It can be rewritten

M0(m, y|X,W ) =

∫
Θ0

fY (y|X,W,M = m, θY , σ
2
Y )πY (θY , σ

2
Y |X,W,M = m)×

fM (M |X,W, θM , σM )πM (θM , σ
2
M |X,W ) d θY dσ2

Y d θM dσ2
M ,

where fY , fM , πY , πM in (5), (6), (7). By the Fubini theorem, we obtain

M0(m, y|X,W ) =

∫
Θ0,Y

fY (y|X,W,M = m, θY , σ
2
Y )πY (θY , σ

2
Y |X,W,M = m) d θY dσ2

Y×∫
Θ0,M

fM (m|X,W, θM , σ2
M )πM (θM , σ

2
M |X,W ) d θM dσ2

M .

From the last equation, we can identify that M0 is the product of the marginal densities of both linear
regression models which define M0,

M0(m, y|X,W ) = M0
M (m|X,W )×M0

Y (y|X,W,M), (11)

where M0
M (m|X,W ) and M0

Y (y|X,W,M) correspond respectively to the marginal densities of M and Y
in each linear equations in model [M0]. The same result is valid for the model M1 after adaptation of
the design matrix. Therefore, the Bayes factor is expressed in the form

BF10 = BF
M |X
10 ×BF Y |M,X

10 , (12)

where
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• BF
M |X
10 is the Bayes factor of competing models M = i1 + aTX + d0W + dT1 X : W + εM versus

M = i1 + aTX + d0W + εM ,

• BF
Y |M,X
10 is the Bayes factor of competing models Y = i2 + cTX + bM + e0W + eT1 X : W + f1M :

W + εY versus Y = i2 + cTX + bM + e0W + εY .

For the linear regression model with g−priors the form of the marginal densities are well-known (see for
instance Zellner, 1984). Indeed, if we consider the Gaussian linear model

y|β, σ2 ∼ Nn(Xβ, σ2IN ),

with (β, σ2) ∼ Zg(g, β̃,X), then the marginal density of y is

p(y) = (g + 1)−(p+1)/2π−n/2Γ(n/2)

(
yT y − g

g + 1
yTX(XTX)−1XT y − ‖Xβ̃‖

2

g + 1

)−n/2
. (13)

Using (12), we deduce the expression stated and this concludes the proof.

Remark 3. The Bayes factor is not defined when the priors are improper. However there is a major
exception to this ban on improper priors that we apply to the g−priors for the parameters σ2

M , σ
2
Y . Indeed

for both models under comparison have a common parameter, the variance of the noise. If this parameter
shares the same prior distribution 1

σ2 for both models then the normalization issue vanishes (see Marin
and Robert, 2014, Section 3.4.3).

Decision rule from Bayes factor The BF10 > 1 threshold gives evidence of [M1] over [M0]. Different
scales have been proposed to quantify the evidence ofM1 overM0 from the value of the Bayes factor (see
Jeffreys, 1961; Kass and Raftery, 1995). However, these scales have no validation to justify their use to
any model. We propose two ways to adapt the quantification of the evidence to a specific model selection
problem with nested models M1 ⊂M0.

First, we can consider the predictive distribution of BF10 under M1. More precisely, this is the
distribution of BF10(Z?) where Z? is distributed according to the predictive distribution under the model
M1

p1(z?|z) =

∫
f1(z?|z, θ)π1(θ|z) d θ,

where f1, π1 are respectively the conditional likelihood and the posterior distribution under model M1

and z the observation. This distribution provides the behavior of the Bayes factor for predicted samples
Z∗ under M1, which behave similarly to the original sample Z. The probability P(BF10(Z?) > 1|Z)
quantifies the evidence of M1 over M0.

A frequentist alternative to this approach is to compute a p-value associated to the Bayes factor.
For linear regression, Zhou and Guan (2018) calculated this p-value from the asymptotic distribution
of Bayes factor. This distribution can be also estimated by parametric bootstrap since the models are
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nested. Indeed, by estimating θ inM1, we get a consistent estimate of all components of θ, independently
of the true model.

In the context of moderation, the explicit form of the Bayes obtained in Proposition 1 makes approx-
imation of these distributions easier.

4 Application to empowering leadership study in both companies

The aim is to explain the organizational commitment (Y ) as a function of the empowering leadership.
In particular, we want to understand if a part of the effect passes through well-being (M). We are also
interested in the variations of these effects between two activity sectors (represented by W ). For this study,
the data come from a statistical survey carried out on 255 employees in the aeronautical industry and 211
firemen in the area of Nantes, France. The empowering leadership is evaluated through four dimensions:
meaning at work (X1), participation in decision-making (X2), confidence (X3), and autonomy (X4). The
well-being, the organizational commitment and the empowering leadership are not directly observed, but
they are measured by survey questionaries (see Table 1). This dataset has been studied in Caillé et al.
(2020), where details are given on the sample collection and issues from a psychology perspective.

empowering leadership well-being organizational commitment
Ahearne et al. (2005) Gilbert et al. (2011) Meyer et al. (1993)

X1 X2 X3 X4 M Y

3 3 3 3 22 6

Table 1: Number of survey questions for each variable of interest.

The scatterplots in Figure 3 show the associations between the variables X,M, Y . We assume that
these variables satisfy the mediation model (2).

In the absence of prior information on the parameters, we choose hyperparameters of g−prior so that
they will be non informative. So, we take β̃ = 0 and g = n for both the mediation model and the moderate
mediation model.

Moderation analysis: Using the moderation model defined in (3), we analyse the effect of activity sector
W . We assume that all the paths between empowering leadership, well-being at work and organizational
commitment are moderated by the activity sector. We compare the model without interaction [M0] and
the overall model [M1] using the Bayes factor. Thanks to Proposition 1, we have an explicit form of the
Bayes factor and so we easily get its value Λn = log10(BF10) = −8.635. The evidence is in favor of [M0]
i.e. the activity sector does not moderate the associations between the variables X,M, Y . To confirm this
conclusion, we evaluate the predictive distribution of log(BF10) as described in Section 3 (see Figure 4).
It is negative with a high probability

P(log(BF10(M?, Y ?)) < 0|M,Y ) = 0.96.
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Figure 3: Representation of scatterplots of exposition variables, mediator and outcome
(X1, X2, X3, X4,M, Y ).

This leads to a strong evidence of 96% in favor of M0.
We can compare this approach with the frequentist test based on the Bayes factor. Its distribution

under the null hypothesis [M0] is represented in Figure 5. The p-value is equal to p = .057. This test at
significant level 5% leads to the same conclusion on the absence of moderate effects.

Caillé et al. (2020) apply a likelihood ratio test, and they obtained a p-value equal to p = .058. The
two frequentist tests give very similar results, and lead to the same conclusion as the Bayes factor.

Table 2 gives the Bayes estimate and HPD interval for all parameters of the moderation model. For all
interaction parameters, the HPD intervals contain the value 0, and so these coefficients are not significant
at level 5%. This confirms again the absence of moderation.

Mediation model Given the absence of moderation, we focus on the mediation model (2) estimated
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parameter Estimate Lower 95% Upper 95%

θM

Intercept 3.165 2.844 3.485
W -0.104 -0.514 0.267
X1 0.167 0.074 0.260
X2 -0.030 -0.107 0.044
X3 -0.017 -0.115 0.083
X4 0.100 -0.007 0.205

X1 : W -0.033 -0.156 0.094
X2 : W -0.001 -0.112 0.117
X3 : W 0.067 -0.065 0.198
X4 : W -0.013 -0.156 0.120

θY

Intercept 0.352 -0.612 1.310
W -0.139 -1.331 1.128
X1 0.235 0.076 0.400
X2 0.121 -0.006 0.245
X3 0.095 -0.071 0.263
X4 0.145 -0.037 0.325
M 0.231 -0.025 0.484

X1 : W -0.118 -0.332 0.097
X2 : W -0.048 -0.244 0.135
X3 : W -0.059 -0.282 0.165
X4 : W -0.157 -0.392 0.076
M : W 0.244 -0.092 0.572

Table 2: Bayes estimates and HPD interval under the moderate model [M1] defined in (3).

on the full population corresponding to the employees of the two companies. From this model, we are
testing the existence of the direct and indirect effects of each component. Recall that the direct effect of
component Xk on Y is ck and its indirect effect is the product akb.

The interest of the Bayesian analysis is to easily infer the indirect effect from the posterior distribution
of the product akb. In particular, for testing the absence of indirect effect at level α, a possible decision
rule is to accept the absence of effect if 0 belongs in the 100(1−α)% HPD interval of akb (see Biesanz et al.,
2010, for Gaussian priors). The Bernstein-von Mises theorem implies that this critical region provides
test of asymptotic level α.

The classical approach to test the indirect effect is to estimate the distribution of the product akb
using boostrap (see Preacher and Hayes, 2004). Table 3 presents the results of these two approaches. The
conclusions are the same: there are direct effects of X1, X2 and indirect effects of X1, X4. Therefore, each
dimension of empowering leadership contribute differently to the prediction of organizational commitment.

The indirect testing problem can be also interpreted as a problem of model selection. We have to take
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into account four competing models for testing the indirect effect of Xj on Y .
They are defined as follows, the full model

[Med
(j)
4 ] :

{
Y = i2 + cTX + bM + εY

M = i1 + aTX + εM ,

that corresponds to the existence of the indirect effect and the three nested models of [Med
(i)
4 ]

[Med
(j)
1 ] :

{
b = 0

ai = 0
,

[Med
(j)
2 ] : ai = 0,

[Med
(j)
3 ] : b = 0.

Previously, we used the Bayes factor to compare two competing models. To extend to more than two
models, the model index m(j) is added to the unknown parameters (see for instance Marin and Robert,
2014, section 2.3.1). The posterior distribution of m(j) is

P(m(j) = i|X,M, Y ) =
P(m(j) = i)M

(j)
i (m, y|X)∑4

k=1 P(m(j) = k)M
(j)
k (m, y|X)

, i = 1, ..., 4,

where M
(j)
i is the marginal distribution of model [Med

(j)
i ] and P(m(j) = i) its prior probability. Using

(11) and (13), we easily obtain an explicit form of the marginal distribution M
(j)
i . The decision rule is to

select the model with the higher posterior probability

m
(j)
∗ = argmini=1,...,4P(m(j) = i|X,M, Y ).

If the selected model is [Med
(j)
4 ] (i.e. m

(j)
∗ = 4), then there is evidence for the existence of the indirect

effect of Xj on Y .

Remark 4. Note that Nuijten et al. (2015) obtained the same decision rule by writing the evidence in
favour of the mediation model as a comparison between two independent regression models. The concor-
dance between the two approaches is explained by the product form of the marginal distribution given in
(11).

In our application, we choose the uniform prior for m(j) since there is no objective argument in favour
of one of the models. Table 4 presents the posterior distribution of m(j). This approach leads to the same
decisions as the approaches based on HPD and boostrap intervals.

In conclusion, the dimensions of empowerment leadership X1, X4 have an indirect effect on organiza-
tional commitment (Y ) through the well-being (M). In contrast, there is absence of indirect effects of the
variables X2 (resp. X3) on Y due to the absence of association between X2 (resp. X3) and the mediator
M .
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Bayesian estimation Bootstrap estimation
Estimate Lower95% Upper95% Estimate Lower95% Upper95%

direct effects of

X1 0.161 0.055 0.270 0.161 0.036 0.280
X2 0.111 0.015 0.207 0.112 0.017 0.211
X3 0.050 -0.066 0.158 0.051 -0.070 0.170
X4 0.049 -0.068 0.167 0.049 -0.075 0.177

indirect effects of

X1 0.055 0.023 0.090 0.055 0.028 0.095
X2 -0.012 -0.035 0.011 -0.012 -0.034 0.005
X3 0.008 -0.018 0.034 0.008 -0.015 0.036
X4 0.035 0.006 0.065 0.035 0.009 0.071

Table 3: Comparison of Bayesian estimation (Bayes estimate and HPD interval) with the bootstrapping
estimation under mediation model [M0] .

P(m(j) = i|X,M, Y )
1 2 3 4

indirect effects of

X1 0.000 0.000 0.002 0.997
X2 0.002 0.920 0.000 0.078
X3 0.002 0.945 0.000 0.053
X4 0.001 0.362 0.001 0.636

Table 4: Posterior distribution of m(j) for testing the existence of the indirect effect of each exposure Xj

on Y , j = 1, ..., 4. The probabilities in bold indicate m
(j)
∗ .

Figure 4: Predictive distribution of log(BF10) under the moderation model [M1].
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Figure 5: Approximation of the null distibution of log(BF10) by parametric bootstrap. For the value
−8.635 of the Bayes factor calculated on the observed dataset, the p-value is equal to p = .057.
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