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ON THE KADOMTSEV-PETVIASHVILI HIERARCHY IN AN
EXTENDED CLASS OF FORMAL PSEUDO-DIFFERENTIAL

OPERATORS

JEAN-PIERRE MAGNOT1 AND VLADIMIR ROUBTSOV2,3,4

Abstract. We study the existence and uniqueness of the Kadomtsev-Petviashvili
(KP) hierarchy solutions in the algebra of FCl(S1,Kn) of formal classical
pseudo-differential operators. The classical algebra ΨDO(S1,Kn) where the
KP hierarchy is well-known appears as a subalgebra of FCl(S1,Kn). We inves-
tigate algebraic properties of FCl(S1,Kn) such as splittings, r-matrices, exten-
sion of the Gelfand-Dickii bracket, almost complex structures. Then, we prove
the existence and uniqueness of the KP hierarchy solutions in FCl(S1,Kn)

with respect to extended classes of initial values. Finally, we extend this KP
hierarchy to complex order formal pseudo-differential operators and we de-
scribe their Hamiltonian structures similarly to previously known formal case.
.

Keywords: Formal pseudo-differential operators, Kadomtsev-Petviashvili hierar-
chy, almost complex structure, almost quaternionic structure.
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Introduction

In the classical theory of the Kadomtsev-Petviashvili (KP) hierarchy, the con-
sidering algebra of pseudo-operators is

ΨDO(S1,K) = C∞(S1,K)((∂−1))

where ∂ is a derivation and K = R,C or H. Classically, ∂ = d
dx , x ∈ S

1. It is well-
known that this KP hierarchy is an integrable system, with existence and uniqueness
of solutions with respect to a fixed initial value, ( see e.g. [6] for a classical treatise).
There exists various generalizations, or deformations, of the KP hierarchy which
almost all satisfy the formal integrability condition, and solutions satisfy properties
similar to the properties of the solutions of the (classical) KP hierarchy. Recently,
well-posedness have been stated for these equations [10, 25]. Classical algebraic
settings that arise in the theory of the KP hierarchy will be reviewed in section 1.3,
in section 1.4 and in section 1.7.

Pseudo-differential operators appear also in some contexts other than the theory
of integrable systems. In general, larger classes of such operators are studied, see e.g.
[13, 30, 32, 33], starting from non-formal operators, i.e. operators acting on spaces
of sections of a vector bundle. These non-formal operators, in particular classical
pseudo-differential operators, have their own applications and one can build from
them spaces of formal classical operators. The algebra of operators that we intend
to use in this paper is the algebra of formal classical pseudo-differential operators
FCl(S1,Kn) that are obtained from classical pseudo-differential operators acting
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on smooth sections of the trivial vector bundle S1 × Kn over S1, for K = C or
H, see e.g. [13, 30]. In this algebra, it is possible to define functions of an elliptic
positive operator that satisfy mild properties of the spectrum using a Cauchy-like
formula [30, 32, 33]. In particular the square root of the Laplacian |D| = ∆1/2 is
well-defined, as well as the sign of the Dirac operator D = i ddx defined by

ε(D) = D|D|−1 = |D|−1D.

This operator is not in ΨDO(S1,Kn). In fact, the algebra ΨDO(S1,K) is the formal
part of the so-called even-even class of (non-formal) classical pseudo-differenbtial
operators first defined, to our knowledge, by Kontsevich and Vishik [16, 17] and
named as even-even class operators in [30, 32], mostly motivated by problems about
renormalized determinants. As a consequence, ΨDO(S1,K) is a subalgebra of
FCl(S1,Kn) which is noted in [30, 32] as FClee(S1,Kn). The necessary properties
of these pseudo-differential operator algebras, both formal and non-formal, will be
reviewed in section 1.1. The key properties of ε(D) that we use in our constructions
are:

• the formal operator ε(D) ∈ FCl(S1,Kn) commutes with any formal oper-
ator A ∈ FCl(S1,Kn),

• ε(D)2 = Id
• the composition on the left A 7→ ε(D) ◦A is an endomorphism of the alge-

bra FCl(S1,Kn), which restricts to a bijiective map from ΨDO(S1,Kn) =
FClee(S1,Kn) to an algebraic complement in FCl(S1,Kn) noted as FCleo(S1,Kn)
following the terminology of [32]

• the restriction of the Wodzicki residue to ΨDO(S1,Kn) = FClee(S1,Kn),
which is similar to but not equal to the Adler functional, is vanishing.

Our first remarks are the following:
• The space FCl(S1,Kn) splits in various ways: one is derived from the

splitting of T ∗S1 − S1 into two connected components (section 1.1.2), the
splitting with respect to ΨDO(S1,Kn) as a subalgebra (section 1.1.3),
and the extension of the splitting related to the classical Manin triple on
ΨDO(S1,Kn) to FCl(S1,Kn) (section 1.5.1) .

• The operator ε(D) is in the center of FCl(S1,Kn). It generates then a
polarized Lie bracket using it as a r−matrix (section 1.6) and an integrable
almost complex structure on FCl(S1,Kn).

These technical features enables us to state the announced main results of this
paper: existence and uniqueness of solutions of the KP hierarchy with various initial
conditions (section 3.1) and KP hierarchy with complex powers (section 3.2).

The paper is organized as follows:
Section 1 is devoted to technical preliminaries: we remind and review some op-

erator algebras, Poisson structures and Manin pairs. We give an overview of the
classical method for solving the KP hierarchy. New results of this Section are
concentrated in section 1.2 where formal operators of complex order that general-
ize operators in FCL(S1,Kn), extending the definitions present in [11], [19], are
described. In section 1.5, we explore some Manin pairs on FCl(S1Kn), and in
section 1.6 we present some polarized brackets, inherited from the richer structure
of FCl(S1Kn).

Section 2.1 is focused on the comparison of FCl(S1Kn) with ΨDO(S1,Kn).
First, we develop various injections of ΨDO(S1,Kn) in FCl(S1Kn), beyond the
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standard one described in section 1. Second, we describe three almost complex
structures on FCl(S1Kn) J1, J2 and J3 such that each couple (J1, J2), (J1, J3)
and (J2, J3) form an almost quaternionic structure on FCl(S1Kn). We prove the
integrability of J1, derived from iε(D), and the non-integrability of the two others
J2 and J3.

Section 3 deals with various type of initial values for the KP system, which are
derived from the various injections of ΨDO(S1,Kn) in FCl(S1,Kn), and ends up
with a generalization to the KP hierarchy with operators of complex order. As it
was announced, the existence and uniqueness of the solutions, depending on the
initial value, is stated. We make few short remarks about well-posedness.

The final part of the paper extends the classical Hamiltoinian formulations of
the KP hierarchy from ΨDO(S1,Kn) to FCL(S1,Kn), using a generalized Adler-
Gelfand-Dickii construction.

All technical and routine proofs are gathered and organized in the Appendix.
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1. Technical preliminaries

1.1. Preliminaries on pseudo-differential operators.

1.1.1. Description. We shall start with a description of (non-formal!) pseudo-
differential operator groups and algebras which we consider in this work. Through-
out this section E denotes a complex finite-dimensional vector bundle over S1. We
shall specialize below to the case E = S1×V in which V is a n−dimensional vector
space. The following definition appears in [2, Section 2.1].

Definition 1.1. The graded algebra of differential operators acting on the space of
smooth sections C∞(S1, E) is the algebra DO(E) generated by:
• elements of End(E), the group of smooth maps E → E leaving each fibre

globally invariant and which restrict to linear maps on each fibre. This group acts
on sections of E via (matrix) multiplication;
• covariant derivation operators

∇X : g ∈ C∞(S1, E) 7→ ∇Xg

where ∇ is a smooth connection on E and X is a smooth vector field on S1.

We assign as usual the order 0 to smooth function multiplication operators.
The derivation operators and vector fields have the order 1. A differential op-
erator of order k has the form P (u)(x) =

∑
pi1···ir∇xi1 · · · ∇xiru(x) , r ≤ k ,

In local coordinates (the coefficients pi1···ir can be matrix-valued). We denote by
DOk(S1),k ≥ 0, the differential operators of order less or equal than k. The alge-
bra DO(E) is filtered by the order. It is a subalgebra of the algebra of classical
pseudo-differential operators Cl(S1, V ) that we describe shortly hereafter, focusing
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on its necessary aspects. This is an algebra that contains, for example, the square
root of the Laplacian

(1) |D| = ∆1/2 =

∫
Γ

λ1/2(∆− λId)−1dλ,

where ∆ = − d2

dx2 is the positive Laplacian and Γ is a contour around the spec-
trum of the Laplacian, see e.g. [33, 30] for an exposition on contour integrals of
pseudo-differential operators. Cl(S1, V ) contains also the inverse of Id+ ∆, and all
smoothing operators on L2(S1, V ). Among smoothing operators one can find the
heat operator

e−∆ =

∫
Γ

e−λ(∆− λId)−1dλ.

pseudo-differential operators (maybe non-scalar) are linear operators acting on
C∞(S1, V ) which reads locally as

A(f) =

∫
eix.ξσ(x, ξ)f̂(ξ)dξ

where σ ∈ C∞(T ∗S1,Mn(C)) satisfying additional estimates on its partial deriva-
tives and f̂ means the Fourier transform of f . Basic facts on pseudo-differential
operators defined on a vector bundle E → S1 can be found e.g. in [13].

Remark 1.2. Since V is finite dimensional, there exists n ∈ N∗ such that V ∼ Cn.
Through this identification, a pseudo-differential operator A ∈ Cl(S1, V ) can be
identified with a matrix (Ai,j)(i,j)∈N2

n
with coefficients

Ai,j ∈ Cl(S1,C).

In other words, the identification V ∼ Cn that we fix induces the isomorphism of
algebras

Cl(S1, V ) ∼Mn(Cl(S1,C)).

This identification will remain true and useful in the successive constructions below,
and will be recalled if appropriate. When it will not carry any ambiguity, we will
use the notation DO(S1), Cl(S1), etc. instead of DO(S1,C), Cl(S1,C), etc. for
operators acting on the space of smooth functions from S1 to C.

Pseudo-differential operators can be also described by their kernel

K(x, y) =

∫
R
ei(x−y)ξσ(x, ξ)dξ

which is off-diagonal smooth. Pseudo-differential operators with infinitely smooth
kernel (or "smoothing" operators), i.e. that are maps: L2 → C∞ form a two-
sided ideal that we note by Cl−∞(S1, V ). Their symbols are those which are in the
Schwartz space S(T ∗S1,Mn(C)). The quotient FCl(S1, V ) = Cl(S1, V )/Cl−∞(S1, V )
of the algebra of pseudo-differential operators by Cl−∞(S1, V ) forms the algebra of
formal pseudo-differential operators. Another algebra, which is actually known as
a subalgebra of FCl(S1, V ) following [26], is also called algebra of formal pseudo-
differential operators. This algebra is generated by formal Laurent series

ΨDO(S1, V ) = C∞(S1, V )((∂−1)) =
⋃
d∈Z

∑
k≤d

ak∂
k


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where each ak ∈ C∞(S1,Mn(C)) and ∂ = d
dx . Let us precise hereafter a short but

complete description of basic correspondence between ΨDO(S1, V ) and FCl(S1, V ).
Symbols σ project to formal symbols and there is an isomorphism between for-

mal pseudo-differntial operators and formal symbols. A detailed study can be found
in [7, Tome VII]. Classical pseudo-differential operators are operators A which as-
sociated formal symbol σ(A) reads as an asymptotic expansion

σ(A)(x, ξ) ∼
∑

k∈Z,k≤o
σk(A)(x, ξ)

where the partial symbol of order k

σk(A) : (x, ξ) ∈ T ∗S1 \ S1 7→ σk(A)(x, ξ) ∈Mn(C)

is k−positively homogeneous in the ξ−variable, smooth on T ∗S1 \ S1 = {(x, ξ) ∈
T ∗S1 | ξ 6= 0} and such that d ∈ Z is the order of the operator A. The order of
a smoothing operator we put equal to −∞ and the formal symbol of a smoothing
operator is 0.

The set FCl(S1, V ) is not the same as the space of formal operators ΨDO(S1, V )
which naturally arises in the algebraic theory of PDEs, see e.g. [18] for an overview,
but here the partial symbols σk(A) of A ∈ ΨDO(S1, V ) are k−homogeneous. By
the way one only has ΨDO(S1, V ) ⊂ FCl(S1, V ). Following the remarks given
in [26], ΨDO(S1, V ) correspond to even-even class formal pseudo-differential
operators that we describe in section 1.1.3. Two approaches for a global symbolic
calculus of pseudo-differential operators have been described in [4, 34]. It is shown in
these papers how the geometry of the base manifold M furnishes an obstruction to
generalizing local formulas of of symbol composition and inversion; we do not recall
these formulas here since they are not involved in our computations. We assume
henceforth (following e.g. [24], along the lines of the more general description of
[13]), that S1 is equipped with charts such that the changes of coordinates are
translations. Under these assumptions,

σ(A ◦B) ∼
∑
α∈N

(−i)α

α!
Dα
ξ σ(A)Dα

xσ(B), ∀A,B ∈ Cl(S1, V ),

and specializing to partial symbols:

∀k ∈ Z, σ(A ◦B)k =
∑
α∈N

∑
m+n−α=k

(−i)α

α!
Dα
ξ σm(A)Dα

xσn(B).

The composition σ(A ◦ B) for A,B ∈ ΨDO(S1, V ) ⊂ FCl(S1, V ) gives rise to a
(unitary) associative algebra structure on ΨDO(S1, V ) and we shall write in this
case (by abuse of notation)

(2) A ◦B =
∑
α∈N

(−i)α

α!
Dα
ξ AD

α
xB

Remark 1.3. In such an "operator product" we shall always suppose so called
"Wick order" which means that we write functions on C∞(S1) on (or "in front
of") left-hand side of all degrees of D.

Notations. We shall denote note by Cld(S1, V ) the vector space of classical
pseudo-differential operators of order ≤ d. We also denote by Cl∗(S1, V ) the group
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of invertible in Cl(S1, V ) operators. We denote the sets of formal operators adding
the script F . The algebra of formal pseudo-differential operators, identified wih
formal symbols, is noted by FCl(S1, V ), and its group of invertible element is
FCl∗(S1, V ), while formal pseudo-differential operators of order less or equal to
d ∈ Z is noted by FCld(S1, V ).

Remark 1.4. Through identification of FCl(S1, V ) with the corresponding space
of formal symbols, the space FCl(S1, V ) is equipped with the natural locally convex
topology inherited from the space of formal symbols. A formal symbol σk is a smooth
function in C∞(T ∗S1\S1,Mn(C)) which is k−homogeneous (for k > 0)), and hence
with an element of C∞(S1,Mn(C))2 evaluating σk at ξ = 1 and ξ = −1. Identifyting
Cld(S1, V ) with ∏

k≤d

C∞(S1,Mn(C))2,

the vector space Cld(S1, V ) is a Fréchet space, and hence

Cl(S1, V ) = ∪d∈ZCld(S1, V )

is a locally convex topological algebra.
We have to precise that the classical topology on non-formal classical pseudo-

differential operators Cl(S1, V ) is finer than the one obtained by pull-back from
FCl(S1, V ). A “useful” topology on Cl(S1, V ) needs to ensure that partial sym-
bols and off-diagonal smooth kernels converge. The topology on spaces of classical
pseudo differential operators has been described by Kontsevich and Vishik in [16]; see
also [5, 30, 32] for descriptions. This is a Fréchet topology on each space Cld(S1, E).
However, passing to the quotients FCld(S1, E) = Cld(S1, E)/Cl−∞(S1, E), the
push-forward topology coincides with the topology of FCld(S1, V ) described at the
beginning of this remark.

1.1.2. The splitting with induced by the connected components of T ∗S1\S1.. In this
section, we define two ideals of the algebra FCl(S1, V ), that we call FCl+(S1, V )
and FCl−(S1, V ), such that FCl(S1, V ) = FCl+(S1, V ) ⊕ FCl−(S1, V ). This
decomposition is explicit in [15, section 4.4., p. 216], and we give an explicit
description here following [21, 22].

Definition 1.5. Let σ be a partial symbol of order o on E. Then, we define, for
(x, ξ) ∈ T ∗S1 \ S1,

σ+(x, ξ) =

{
σ(x, ξ) if ξ > 0
0 if ξ < 0

and σ−(x, ξ) =

{
0 if ξ > 0
σ(x, ξ) if ξ < 0.

We define p+(σ) = σ+ and p−(σ) = σ− .

The maps p+ : FCl(S1, V )→ FCl(S1, V ) and p− : FCl(S1, V )→ FCl(S1, V )
are clearly smooth algebra morphisms (yet non-unital morphisms) that leave the
order invariant and are also projections (since multiplication on formal symbols is
expressed in terms of point-wise multiplication of tensors).

Definition 1.6. We define FCl+(S1, V ) = Im(p+) = Ker(p−) and FCl−(S1, V ) =
Im(p−) = Ker(p+).

Since p+ is a projection, we have the splitting

FCl(S1, V ) = FCl+(S1, V )⊕FCl−(S1, V ).
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Let us give another characterization of p+ and p−. The operator D = −i ddx splits
C∞(S1,Cn) into three spaces :

• its kernel E0, built of constant maps
• E+, the vector space spanned by eigenvectors related to positive eigenvalues
• E−, the vector space spanned by eigenvectors related to negative eigenval-

ues.
The L2−orthogonal projection on E0 is a smoothing operator, which has null formal
symbol. By the way, concentrating our attention on thr formal symbol of operators,
we can ignore this projection and hence we work on E+ ⊕ E−. The following
elementary result will be useful for the sequel.

Lemma 1.7. [21, 22]
• σ(D) = ξ, σ(|D|) = |ξ|
• σ(ε) = ξ

|ξ| , where ε = D|D|−1 = |D|−1D is the sign of D.
• Let pE+

(resp. pE−) be the projection on E+ (resp. E−), then σ(pE+
) =

1
2 (Id+ ξ

|ξ| ) and σ(pE−) = 1
2 (Id− ξ

|ξ| ).

Let us now give an easy but very useful lemma:

Lemma 1.8. [21] Let f : R∗ → V be a 0-positively homogeneous function with
values in a topological vector space V . Then, for any n ∈ N∗, f (n) = 0 where f (n)

denotes the n-th derivative of f .

From this, we have the following result.

Proposition 1.9. [21, 22] Let A ∈ FCl(S1, V ). p+(A) = σ(pE+
) ◦A = A ◦σ(pE+

)
and p−(A) = σ(pE−) ◦A = A ◦ σ(pE−).

Notation. For shorter notations, we note by A± = p±(A) the formal operators
defined from another viewpoint by

σ(A+)(x, ξ) ( resp. σ(A−)(x, ξ)) =

{
σ(A)(x, ξ) if ξ > 0 ( resp. ξ < 0)
0 if ξ < 0 ( resp. ξ > 0)

1.1.3. The “odd-even” splitting. We note by σ(A)(x, ξ) the total formal symbol of
A ∈ FCl(S1, V ). The following proposition is trivial:

Proposition 1.10. Let φ : FCl(S1, V )→ FCl(S1, V ) defined by

φ(A) =
1

2

∑
k∈Z

σk(A)(x, ξ)− (−1)kσk(A)(x,−ξ).

This map is smooth, and ΨDO(S1, V ) = FClee(S1, V ) = Ker(φ).

Following [32], one can define even-odd class pseudo-differential operators

FCleo(S1, V ) =

{
A ∈ FCl(S1, V ) |

∑
k∈Z

σk(A)(x, ξ) + (−1)kσk(A)(x,−ξ) = 0

}
.

Remark 1.11. This terminology is inherited from [32]. This reference is mostly
concerned with non-formal operators. We have also to mention that the class of
non formal even-even pseudo-differential operators was first described in [16, 17].
In these two references, even-even class pseudo-differential operators are called odd
class pseudo-differential operators. By the way, following the terminology of [16, 17]
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even-odd class pseudo-differential operators should be called even class. In this paper
we prefer to fit with the terminology given in the textbooks[30, 32] even if the initial
terminology given in [16, 17] and its natural extension would appear more natural
to us.

Proposition 1.12. φ is a projection and FCleo(S1, V ) = Imφ.

By the way, we also have

FCl(S1, V ) = FClee(S1, V )⊕FCleo(S1, V ).

We have the following composition rules for the class of a formal operator A ◦B :

A even-even class A even class

B even-even class A ◦B even-even class A ◦B even-odd class

B even-odd class A ◦B even-odd class A ◦B even-even class

Example 1.13. ε(D) and |D| are even-odd class, while we already mentioned that
differential operators are even-even class.

Remark 1.14. The operator ε(D) satisfies the following properties:

• Since ε(D)2 = Id, the left composition A ∈ FCl(S1, V ) 7→ ε(D) ◦ A is an
involution on FCl(S1, V )

• Since ε(D) ∈ FCleo(S1, V ), the restriction of ε(D) ◦ (.) to ΨDO(S1, V ) =
FClee(S1, V ) is a bijection from FClee(S1, V ) to FCleo(S1, V ).

One can also define the operator s on FCl(S1, V ) which extends the operator
s : T ∗S1 → T ∗S1 defined by s(x, ξ) = (x,−ξ) by

s :
∑
n

σn(x, ξ) 7→
∑
n

(−1)nσn (s(x, ξ)) .

This operator obviously satisfies s2 = Id, and we remark the following properties:

Proposition 1.15. • s
(
FCl±(S1, V )

)
= FCl∓(S1, V )

• FClee(S1, V ) = Ker(Id− s)
• FCleo(S1, V ) = Ker(Id+ s)

Remark 1.16. One can consider also s′ :
∑
n σn(x, ξ) 7→

∑
n σn (s(x, ξ)) . We still

have s′2 = Id, s′
(
FCl±(S1, V )

)
= FCl∓(S1, V ) but the two other properties are

not fulfilled.

Under these properties, FClee(S1, V ) and FCleo(S1, V ) appear respectively as
eigen-spaces for the eigen values 1 and −1 of the symmetry s, and hence an operator
a ∈ FCl(S1, V ) = FClee(S1, V )⊕FCleo(S1, V ) decomposes as a = aee + aeo and

s[a, b] = [a, b]ee − [a, b]eo = ([aee, bee] + [aeo, beo])− ([aee, beo] + [aeo, bee]) .
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1.2. Complex powers of a formal pseudo-differential operator. Following
[12] inspired by [33], this is possible to define the complex power of an elliptic formal
operator. Concerning formal operators, ellipticity is fully obtained by a condition
on the principal symbol of the operator. This provides the possibility, when the
algebra of functions R is e.g. a complete topological vector space with bounded
addition and multiplication laws, to define complex powers Aα of a formal operator
A for Re(α) < 0 via contour integrals similar to (1) and then extend it to arbitrary
complex powers. Beyond these technical problems, for any formal C−algebra of
functions R with differentiation ∂, it is possible to define the same complex powers
of the Lax-type operators L ∈ ΨDO(R) present in the KP hierarchy, along the lines
of [19] and [11]. Let α ∈ C and let ΨDOα(R) be the affine space of formal series of
the form ∑

k∈N
aα−k∂

α−k,

formally defined as ΨDOα(R) = ΨDO0(R).∂α. On the total spce of formal pseudo-
diferential operators of complex order generated by the family (ΨDOα(R))α∈C , the
same addition and multiplication rules as in ΨDO(R) holds true and consistent.
Let A ∈ ΨDOα(R) with aα ∈ R∗+ ⊂ R, one can define

log(A) ∈ α log a∂ + ΨDO0(R)

such that exp (log(A)) = A by standard rules of formal series.
Let L ∈ ΨDO1(R) with principal symbol ∂. We can then define the complex

power Lα for α ∈ C∗, and following the notations of [11, 18], the affine space
L = ∂ + ΨDO0(R) has an affine isomorphism, for α ∈ C∗, with

Lα = ∂α + ΨDOα−1(R)

through the identification L ∈ L 7→ Lα = exp (α log(L)) ∈ Lα. From this con-
struction on ΨDO(S1,K), one can push forward complex powers on subalgebras
of FCl(S1,K) via the identifications already described. More precisely, one use
heuristically the bijection Φ1,0 : ΨDO(S1,K) → FCl+(S1,K) to define, for A =
d
dx+

+
∑
k≤0 ak

d
dx

k

+
∈ FCl1+(S1,K), first the logarithm

logA = log
d

dx+
+
∑
k≤0

ak
d

dx

k

+

and the complex power Aα = exp (α logA) which formal symbol vanishes for ξ < 0.
Then we define

FClα+(S1,K) = FCl0+(S1,K)
d

dx

α

+

and (after these constructions) Φ1,0 extends naturally to a bijection from ΨDOα(S1,K)
to FClα+(S1,K). The same construction holds to extend the identification of ΨDO(S1,K)
with FCl−(S1,K) to complex powers Φ0,1 : ΨDOα(S1,K)→ FClα−(S1,K) and de-
fine

FClα(S1,K) = FClα+(S1,K)⊕FClα−(S1,K) = (Φ1,0 × Φ0,1)
(
ΨDOα(S1,K)2

)
.

One can also understand FClα(S1,K) as FClα(S1,K) = FCl0(S1,K)|D|α where
|D|α = ∆

α
2 is defined via Seeley’s complex powers [33]. Alternatively, setting(

d

dx

)α
=

(
d

dx

)α
+

+

(
d

dx

)α
−

= iε(D)|D|α,
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we get FClα(S1,K) = FCl0(S1,K)
(
d
dx

)α
. These spaces of complex powers contain

the projections on formal operators (up to smoothing oprators) of the classes of
pseudo-differential operators of complex order defined in [16, section 3].

1.3. Lie-algebraic digression.

1.3.1. Operator bialgebras and Manin pairs. One can easily define a Lie algebra
structure by antysimmetrisation of the associative product [A,B] = A ◦B−B ◦A.
We remark that the vector field Lie algebra Vect(S1) and its semi-direct product
with C∞(S1) = C∞(S1,C) is a natural Lie subalgebra of the differential operator
Lie algebra DO(S1) which is formed by the order 1 differential operators and the
order less or equal to 1. This remark can be also deduced from Definition 1.1
by setting E = S1 × C, i.e. V = C. When V = Cn with n ≥ 2, an operator
X ∈ V ect(S1) can be identified with the degree 1 differential opeartor X ⊗ IdCn ∈
DO(S1, V ) while order 0 differential operators coincide with multplication operators
in C∞(S1,Mn(C)). We also have that C∞(S1,Mn(C)) o V ect(S1) ⊂ DO1(S1, V )
as a Lie algebra, but the off-diagonal operator

A =
d

dx
⊗
(

0 1
1 0

)
=

(
0 d

dx
d
dx 0

)
∈ DO1(S1, V )

is not an operator in the Lie algebra C∞(S1,Mn(C)) o V ect(S1). One can always
embed DO(S1) = DO(S1,C) into DO(S1, V ) by identifying A ∈ DO(S1) with
A ⊗ IdCn ∈ DO(S1, V ). This identification is a morphism of unital algebras and
a morphism of Lie algebras. It is a straightforward to check that the similar anti-
symmetrization of the product (2) gives a Lie algebra structure on ΨDO(S1) and
the algebra DO(S1) is a Lie subalgebra in it.

One of the most exciting properties of this pair of infinite-dimensional Lie al-
gebras is an existence of a trace functional (which is quite atypical in the infinite-
dimensional world). This functional is known as Adler trace

Tr(A) =

∮
S1

trn(a−1(x))dx,

where trn is the classical trace of n× n matrices, and it defines a bilinear invariant
symmetric form on ΨDO(S1)

(A,B)→ Tr(A ◦B), A,B ∈ ΨDO(S1),

which is invariant with respect the multiplication: (C ◦A,B) = (A,B ◦C) and also
invariant with respect to the Lie bracket: ([C,A], B) = (A, [B,C]) for any triple
A,B,C ∈ ΨDO(S1). This form is a non-degenerate and can be used to build an
injective map from the algebra ΨDO(S1) with its dual: to each A ∈ ΨDO(S1) one
can assign the linear functional lA ∈ (ΨDO(S1))∗ such that lA(X) = Tr(A ◦X)

Let A ∈ ΨDO(S1) such that it contains only negative degrees of the symbol
D = ∂:

A =

−1∑
k=−∞

bk(x)∂k.

Such "purely Integral"operators are also closed with respect to both operations ◦
and [, ] and we shall denote this subalgebra in ΨDO(S1) by IO(S1). It is easy to
check that the subalgebra DO(S1) is dual to the subalgebra IO(S1) via the bilinear
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invariant form (−,−) and the "full" algebra ΨDO(S1) = DO(S1)⊕ IO(S1). Both
subalgebras are isotropic with respect to (−,−). The algebra triple

(ΨDO(S1), DO(S1), IO(S1))

is known as a Manin triple and the algebra DO(S1) carries a structure of a Lie
bialgebra. We should admit that strictly speaking this triple and this bialgebra are
not a genuine example of both structures in view of the following remark:

Remark 1.17. We should remark that while DO(S1) = (IO(S1))∗ the natural map
IO(S1)→ (DO(S1))∗ is not surjective since not every continuous linear functional
on C∞(S1) is of the form F → (F, f), F ∈ C∞(S1) ([8]).

In what follows by abuse of the rigorous terminology ("pseudo-Manin triple",
"pseudo-Lie bialgebra", "Khovanova triple" etc.) we shall call the operator triple
above by Manin triple and refer DO(S1) as a Lie bialgebra.

1.3.2. Differential and integral part. We first remind that if V = Cn and use the
notations

DO(S1, V ) =
⋃
o∈N

 ∑
0≤k≤o

ak∂
k

 , IO(S1, V ) =

∑
k≤−1

ak∂
k


we get also the vector space decomposition

ΨDO(S1, V ) = DO(S1, V )⊕ IO(S1, V ).(3)

such that any (matrix) order k pseudo-differential operator A =
∑k
i=−∞ ai∂

i is
splitted in two components A = A+ + A− with A+ =

∑k
i=0 ai∂

i and A− =∑−1
i=−∞ ai∂

i. In that case, when V = Cn and with obvious extension of notations,
the algebra triple

(
ΨDO(S1, V ), DO(S1, V ), IO(S1, V )

)
is known as a Manin triple

and the algebra DO(S1, V ) carries a structure of a Lie bialgebra. We shall use also
(by abuse of notation) the notation Res(A) for the residue-matrix function:

Res : Mn(ΨDO(S1,C))→ C∞(S1,Mn(C)), , A→ a−1(x)

Let A,B be some matrix-valued pseudo-differential operators, such that A =∑k
i=−∞ ai∂

i, B =
∑l
j=−∞ bj∂

i with aj , bj some matrix-valued functions. Then
it is a straightforward exercise to check that there exists a matrix-valued function
F such that

Tr([A,B]) =

∮
trn(Res[A,B]) =

∮
dF = 0.

Remark 1.18. The same holds when we replace concrete algebras of functions
C∞(S1) by an abstract associative algebra R with unit element, equipped with in-
tegration properties, we refer to [28, 29] for a detailed description for the corre-
sponding algebra of formal operators ΨDO(R). Then, in presence of a non-trivial
one-form

∮
: R → C, one can define an analogous ot the Adler map that we note

also Tr by

Tr :
∑
k∈Z

ak∂
k 7→

∮
a−1.

For example, when R = C∞(S1,Mn(C)) for n ≥ 2, i.e. when

ΨDO(R) = ΨDO(S1,Cn) = Mn(ΨDO(S1,C)),

the natural 1-form
∮

on R is exactly
∮
S1 ◦trn already described.
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1.4. Poisson structures on matrix pseudo-differential operators. . In anal-
ogy with the "scalar" (n = 1) case one can define the first and the second Gelfand-
Dikii Poisson structures in the framework of the formal Gelfand "variational"
differential-geometric formalism in the infinite-dimensional setting. The results
of this subsection are not new and are well-known since almost 30 years (see for
example [3]). We define an infinite dimensional affine variety Lk whose points,
monic differential operators of order k, are defined by k matrix function coefficients
ū = (u1(x), . . . , uk(x)) such that ∀j : 1 ≤ j ≤ k, uj(x) ∈ C∞(S1,Mn(C)) :

Lk = {L = ∂k + u1∂
k−1 + . . .+ uk}.

We consider a function algebra C(Lk) as a set of functionals l : Lk → C of type

l[ū] :=

∮
tr(pol(∂αx (uj))),

where pol(∂αx (uj)) is a differential polynomial on uj(x). The tangent space to Lk
consists of differential operators of order k − 1 and the cotangent space T ∗Lk can
be identified with the quotient IO(S1, V )/IO−k(S1, V ) : via the coupling T ∗Lk ×
TLk → C(Lk), 〈X,V 〉 = Tr(X ◦ V ). Here X ∈ T ∗Lk is the set of "covectors" of
the type X =

∑k
j=1 ∂

−j
x ◦ pj , pj ∈ pol(∂αx (uj). We shall remind the definition of

variational derivative of a functional l[ū] ∈ C(L) :

δl[ū]

δuj
(x)pq =

∞∑
s=o

(−1)s
dr

dxr

(
∂tr(pol)(ū)(x)

∂(u
(s)
j )pq

)
, 1 ≤ p, q ≤ n.

The variational derivative assigns to each functional l[ū] ∈ C(L) the pseudo-differential
operator

Xl =

k∑
r=0

∂−r
(

δl[ū]

δuk+1−r

)
.

Let Xl1,2 be two such operators which can be interpreted as two covectors on T ∗Lk.
We define a family of brackets

{−,−}λ : C(L)× C(L)→ C(L) :

{l1, l2}λ(L) =

∮
trn(Res((L+ λ)(Xl1(L+ λ))+Xl2 − ((L+ λ)Xl1)+(L+ λ)Xl2) =

{l1, l2}2(L) + λ{l1, l2}1(L) =∮
trn(Res(L(Xl1L)+Xl2 − (LXl1)+LXl2)) + λ

∮
trn(Res([L,Xl1 ]+Xl2).

Theorem 1.19. (Adler-Gelfand-Dickey)
(1) The family {−,−}λ is a family of Poisson structures on C(L);
(2) The corresponding Hamiltonian map Hλ : T ∗Lk → TLk : is given by

Hλ(X) = (LX)+L− L(XL)+ + λ[L,X]+, X ∈ T ∗Lk, L ∈ Lk.

(3) Hλ(X) = H2(X)+λH1(X) and each Vi, i = 1, 2 are Hamiltonian mappings.
(4) The Hamiltonian maps Hi relate to the Poisson brackets via

{l1, l2}λ(L) = Hλ(δl1)(l2).
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(5) Covector fields T ∗Lk carry a Lie algebra structure with the bracket

[X,Y ] = [(XL)+Y + (Y L)−X −X(LY )− − Y (LX)+ +H2(X)Y )−H2(Y )(X)]−

which will be called the second Gelfand-Dikii algebra GD2.

This structure relates in some sense to the Manin triple on ΨDO(S1, V ).

1.4.1. Semenov-Tyan-Shansky r−matrix construction. Let A± two elements of the
Lie algebra ΨDO(S1, V ) such that A+ ∈ DO(S1, V ) and A− ∈ IO(S1, V ). Then
one can identify ΨDO(S1, V )⊗ΨDO(S1, V ) with Hom(ΨDO(S1, V ),ΨDO(S1, V )
using the inner product on ΨDO(S1, V ). Therefore, if we consider the bi-vector
r ∈ Λ2(ΨDO(S1, V )) such that 〈r, A∗+ ∧ A∗−〉 = (A+, A−) = Tr(A+ ◦ A−), where
A∗ is a dual to A with respect to the inner product., then we can identify it with
the operator r̃ ∈ End(ΨDO(S1, V )) such that r̃|DO(S1,V ) = 1, r̃|IO(S1,V ) = −1.

1.4.2. Analogues of splittings. Back to FCl(S1, V ), the maps

A ∈ FCl(S1, V ) 7→
∑
k∈Z

σk(A)(x, 1)∂k

and
A ∈ FCl(S1, V ) 7→

∑
k∈Z

σk(A)(x,−1)∂k,

identify ΨDO(S1, V ) with FCl+(S1, V ) for the first one and FCl−(S1, V ) for the
second one.

Thus, there exists a decomposition FCl+(S1, V ) = FCl+,D(S1, V )⊕FCl+,S(S1, V )
and another FCl−(S1, V ) = FCl−,D(S1, V )⊕FCl−,S(S1, V ), and setting

FClD(S1, V ) = FCl+,D(S1, V )⊕FCl−,D(S1, V ),

FClS(S1, V ) = FCl+,S(S1, V )⊕FCl−,S(S1, V ),

we get the vector space decomposition analogous to (3):

FCl(S1, V ) = FClD(S1, V )⊕FClS(S1, V ),

1.5. Manin pairs on FCl(S1, V ).

1.5.1. Extension of the classical Manin triple to FCl(S1, V ). The Adler trace [1]
defined by

Tr : A =
∑
k≤o

ak∂
k 7→

∫
S1

tr(a−1)

is the only non trivial trace on ΨDO(S1, V ). Morover, see e.g. [11] and [19],

Theorem 1.20. (ΨDO(S1, V ), IO(S1, V ), DO(S1, V ), T r) is a Manin triple.

The Wodzicki residue ([35], see e.g. [15]) is usually known as an “extension”
of the Adler trace to FCl(S1, V ) and hence to Cl(S1, V ). For the sake of deeper
insight on what is described in the rest of this paper, we need to precise that the
space of traces on FCl(S1, V ) is 2-dimensional, generated by two functionals:

res+ : A 7→
∫
S1

σ−1(A)(x, 1)|dx|
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and

res− : A 7→
∫
S1

tr(σ−1(A))(x,−1)|dx|.

The functionals res± are the only non-vanishing traces on FCl±(S1, V ) (up to a
scalar factor) and are vanishing on FCl∓(S1, V ). The (classical) Wodzicki residue
reads as res = res+ + res−. Because the partial symbol σ−1(A) of an opera-
tor A ∈ ΨDO(S1, V ) is skew-symmetric in the ξ−variable, res is vanishing on
ΨDO(S1, V ) = FClee(S1, V ), so that it is superficial to state that the Wodzicki
residue is “simply” the extension of the Adler trace. However the two linear func-
tionals already described, namely

A ∈ FCl(S1, V ) 7→
∑
k∈Z

σk(A)(x, 1)∂k

and
A ∈ FCl(S1, V ) 7→

∑
k∈Z

σk(A)(x,−1)∂k,

identity res+ and res− respectively with Tr. By the way, we can state:

Theorem 1.21. We have three Manin triples:

(FCl+(S1, V ),FCl+,S(S1, V ),FCl+,D(S1, V ), res+),

(FCl−(S1, V ),FCl−,S(S1, V ),FCl−,D(S1, V ), res−)

and
(FCl(S1, V ),FClS(S1, V ),FClD(S1, V ), res).

1.5.2. A remark on two "non-invariant Manin triples". Following [11], given an op-
erator r acting on FCl(S1, V ) satisfying r2 = Id, one can form a FCl(S1, V )−valued
skew-symmetric bilinear form

[., .]r =
1

2
([r(.), .] + [., r(.)]) .

In what follows, we concentrate on the cases r = ε(D) ◦ (.), r = s and also r = s′.
The corresponding brackets will be noted respectively by [., .]ε(D), [., .]s and [., .]s′ .

Let us define (A,B)s′ = res(A, s′(B)). By direct calculations, we find succes-
sively:

Lemma 1.22. (.; .)s′ is non degenerate and symmetric.

Theorem 1.23. On FCl(S1, V ) = FCl+(S1, V ) + FCl−(S1, V ), (.; .)s′ is a non
degenerate and symmetric bilinear from for which the Lie algebras FCl+(S1, V )
and FCl−(S1, V ) are isotropic.

Let us define (A,B)s = res(A, s(B)).

Lemma 1.24. (.; .)s is non degenerate and skew-symmetric but neither invariant
for [., .] nor for [., .]ε(D).

Theorem 1.25. On FCl(S1, V ) = FCl+(S1, V )+FCl−(S1, V ), (.; .)s is a non de-
generate and skew-symmetric bilinear from for which the Lie algebras FCl+(S1, V )
and FCl−(S1, V ) are isotropic.
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1.5.3. Two other Manin pairs. Let us consider the decomposition

FCl(S1, V ) = FClee(S1, V ) + FCleo(S1, V ),

that we equip with the classical Lie bracket [., .] or with [., .]ε(D). and with the
bilinear form (A,B) = res(AB).

Theorem 1.26. res(AB) is a bilinear, non degenerate, symmetric and invariant
form for both brackets, and FClee(S1, V ) as well as FCleo(S1, V ) are isotropic
vector spaces. Moreover,

• for [., .], FClee(S1, V ) is a Lie algebra
• for [., .]ε(D), FCleo(S1, V ) is a Lie algebra.

1.6. Polarized Lie bracket. The modified Yang–Baxter equation gives the con-
dition on r for making [., .]r a Lie bracket:

[rX, rY ]− r([rX,Y ] + [X, rY ]) = −[X,Y ].

By direct computations, we get the following:

Theorem 1.27. On the vector space FCl(S1, V ),

(1) [., .]ε(D) is a Lie bracket for which [FClee(S1, V ),FClee(S1, V )]ε(D) ⊂ FCleo(S1, V )

and [FCleo(S1, V ),FCleo(S1, V )]ε(D) ⊂ FCleo(S1, V ).
(2) [., .]s and [., .]s′ are not Lie brackets.

Remark 1.28. (Testing Rota-Baxter equations and Reynolds operators)
Testing by direct calculations the Rota-Baxter equations

R(u)R(v)−R(R(u)v)−R(uR(v)) = λR(uv)

for a weight λ ∈ C, one finds that R = ε(D) ◦ (.), R = s and R = s′ do not satisfy
the Rota-Baxter equations (i.e. don’t define new associative algebra operations)
The same calculations show that these are not Reynolds operators (i.e. they do not
satisfy the condition R(R(u)v) = R(u)R(v) for all u, v in the underlying associative
algebra).

1.7. Preliminaries on the KP hierarchy. Let R be an algebra of functions
equipped with a derivation ∂. For us, R = C∞(S1,K) with K = R,C and H, and
∂ = d

dx . In this context, where algebras of functionsR are Fréchet algebras, a natural
notion of differentiability occurs, making addition, multiplication and differentiation
smooth. By the way, considering addition and multiplication in ΨDO(S1,K), one
can say that addition and multiplication in ΨDO(S1,K) by understanding, under
this terminology, that, if A =

∑
n∈Z an∂

n and B =
∑
n∈Z bn∂

n, setting A + B =
C =

∑
n∈Z cn∂

n and AB = D =
∑
n∈Z dn∂

n the map

((an)n∈Z, (bn)n∈Z) 7→ ((cn)n∈Z, (dn)n∈Z)

is smooth in the relevant infinite product. We make these precisons in other to
circumvent the technical tools recently developed in [10, 25] where a fully rigorous
framework for smoothness on these objects is described and used. Let T = {tn}n∈N∗
be an infinite set of formal (time) variables and let us consider the algebra of formal
series ΨDO(S1,K)[[T ]] with infinite set of formal variables t1, t2, · with T−valuation
val defined by valT (tn) = n [28]. One can extend naturally on ΨDO(S1,K)[[T ]]
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the notion of smoothness from the same notion on ΨDO(S1,K), see [25] for a more
complete description. The Kadomtsev-Petviashvili (KP) hierarchy reads

(4)
dL

dtk
=
[
(Lk)D, L

]
, k ≥ 1 ,

with initial condition L(0) = L0 ∈ ∂+Ψ−1(R). The dependent variable L is chosen
to be of the form L = ∂ +

∑
α≤−1 uα∂

α ∈ Ψ1(S1,K)[[T ]] . A standard reference
on (4) is L.A. Dickey’s treatise [6], see also [19, 28, 29]. In order to solve the KP
hierarchy, we need the following groups (see e.g. [25] for a latest adaptation of
Mulase’s construction [28, 29]):

Ḡ = 1 + ΨDO−1(S1,K)[[T ]],

Ψ =

{
P =

∑
α∈Z

aα ∂
α ∈ Ψ(S1,K)[[T ]] : valT (aα) ≥ α and P |t=0 ∈ 1 + ΨDO−1(S1,K)

}
and

D =

{
P =

∑
α∈Z

aα ∂
α : P ∈ Ψ(At) and aα = 0 for α < 0

}
.

We have a matched pair Ψ = Ḡ ./ D which is smooth under the terminology we gave
before. The following result, from [25], gives a synthesied statement of main results
on the KP hierarchy (4) and states smooth dependence on the initial conditions in
the case where R is commutative (i.e. R = C∞(S1,R) or R = C∞(S1,C) in this
work).

Theorem 1.29. [25] Consider the KP hierarchy 4 with initial condition L(0) = L0.
Then,

(1) There exists a pair (S, Y ) ∈ Ḡ×D such that the unique solution to Equation
(4) with L|t=0 = L0 is L(t1, t2, · · · ) = Y L0 Y

−1 = SL0S
−1.

(2) The pair (S, Y ) is uniquely determined by the smooth decomposition problem

exp

(∑
k∈N

τkL
k
0

)
= S−1Y

and the solution L depends smoothly on the initial condition L0.
(3) The solution operator L is smoothly dependent on the initial value L0.

We now describe the case K = H = R+ iR+ jR+ kR. The algebra ΨDO(S1,H)
is constructed from the non commutative Fréchet algebra

C∞(S1,H) = C∞(S1,R)⊕ iC∞(S1,R)⊕ jC∞(S1,R)⊕ kC∞(S1,R).

All the constructions before remain valid following [20, 14], setting V = H as a
4-dimensional R−algebra, and the algebraic description of the solutions of the KP
hierarchy (4) with L0 ∈ ΨDO1(S1,H) and L ∈ Ψ1DO(S1,H)[[T ]] as before can be
completed by stating that the coefficients of the T−series of L depend smoothly on
the initial value L0 from [10].
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2. Injecting ΨDO into FCl.

2.1. Injecting ΨDO(S1,K) in FCl(S1,K).. We already mentionned the identifi-
cation of ΨDO(S1,K) with FClee(S1,K), present when K = R or C in [26]. We
claim here that this identification also applies straightway when K = H. We denote
by Φee this identification, that can be generalized to

Φee,λ :
∑
k∈Z

ak

(
d

dx

)k
∈ ΨDO(S1,K) 7→

∑
k∈Z

ak

(
λ
d

dx

)k
∈ FClee(S1,K).

Similar to this identification, we have other injections for λ ∈ R∗ :

Φε(D),λ :
∑
k∈Z

ak

(
d

dx

)k
∈ ΨDO(S1,K) 7→

∑
k∈Z

ak

(
λε(D)

d

dx

)k
∈ FCl(S1,K), and

Φλ,µ :
∑
k∈Z

ak

(
d

dx

)k
∈ ΨDO(S1,K) 7→

∑
k∈Z

ak

(
λk
(
d

dx

)k
+

+ µk
(
d

dx

)k
−

)
∈ FCl(S1,K)

for (λ, µ) ∈ C2\{(0; 0)}, with unusual convention 0k = 0 ∀k ∈ Z.

Remark 2.1. Φ1,1 = Φee and Φ1,−1 = Φε(D),1.

Remark 2.2. ImΦ1,0 = FCl+(S1,K) and Φ1,0 is a isomorphism of algebras
from ΨDO(S1,K) to FCl+(S1,K). The same way, Φ0,1 identifies the algebras
ΨDO(S1,K) and FCl−(S1,K).

Remark 2.3. Wa have also to say that the maps Φλ,µ are not algebra morphisms
unless (λ, µ) ∈ {(1; 0), (0; 1), (1; 1)}. For example, let λ ∈ C− {0; 1}. the map Φλ,0
pushes forward the multiplication on ΨDO(S1,K) to a deformed composition ∗k on
FCl+(S1,K) that reads as σ(A) ∗k σ(B) =

∑
α∈N

(−i)α
α!.kαD

α
xσ(A)Dα

ξ σ(B).

Let us now give some sample images:

A ∈ ΨDO(S1,C) 1 d
dx − d

dx = ∆
(
1 + d

dx

)−1

Φε(D),1(A) 1 ε(D) d
dx = i|D| ∆

(
1 + ε(D) d

dx

)−1

Φee,−1(A) 1 − d
dx ∆

(
1− d

dx

)−1

Φ1,0(A) 1+

(
d
dx

)
+

∆+

((
1 + d

dx

)−1
)

+

From our previous remarks, we get:

Theorem 2.4. The map

Φ1,0 × Φ0,1 : ΨDO(S1,K)2 → FCl+(S1,K)×FCl−(S1,K) = FCl(S1,K)

is an isomorphism of algebra.
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We also remark a new subalgebra of FCl(S1,K) :

Definition 2.5. Let FClε(S1,K) be the image of Φε(D),1 in FCl(S1,K).

We have the obvious identification FClε(S1,K) = C∞(S1,K)((i|D|−1)) as a
vector space.

2.2. Identification of FCl(S1,C) with ΨDO(S1,H).. Let

iε(D) =

(
d

dx

)
.|D|−1 = |D|−1.

(
d

dx

)
.

We define the operator J1 = iε(D) ◦ (.) on FCl(S1, V ).

Theorem 2.6. The operator J1 defines an integrable almost complex structure on
FCl(S1, V ).FCl(S1, V ) = ΨDO(S1, V )⊗C as a real algebra, identifying FClee(S1, V )
with ΨDO(S1, V ) (real part) and FCleo(S1, V ) with iΨDO(S1, V ) (imaginary part).

We now identify two other almost complex structures: J2 = is(.), J3 = is′ and
Clearly, ∀i ∈ {2; 3}, J2

i = −Id and we have also:

Proposition 2.7. J1 ◦ J2 = −J2 ◦ J1

Theorem 2.8. The operator J2 defines a non integrable almost complex structure
on FCl(S1, V ). Hence, gathering all these results, we get that the almost quater-
nionic structure(J1, J2) is non integrable.

Proposition 2.9. J1 ◦ J3 = −J3 ◦ J1

Proposition 2.10. J3 ◦ J2 = J2J3 6= −J2 ◦ J3

Theorem 2.11. The operator J3 defines a non integrable almost complex structure
on FCl(S1, V ). The almost quaternionic structure (J1, J3) is non integrable.

Let us now define J4 = J1J3.

Proposition 2.12. We have:
• J2

4 = −Id.
• J2J4 = −J4J2.
• J1J4 = −J4J1.

3. KP hierarchy with integer and complex order Lax operators in
FCl(S1,C) and ΨDO(S1,H).

3.1. Multiple classical KP hierarchies on FCl(S1,K). The (classical) KP hi-
erarchy on ΨDO(S1,K) can then push-forward on FCl-classes of operators by
various ways:

• via identifications of ΨDO(S1,K) with subalgebras or ideals of FCl(S1,K),
for K = R,C or H.

• by changing the standard multiplication of FCl(S1,K) for K = R,C or H,
by “twisting it” by the operator ε(D) or iε(D).

• via the almost quaternionic structures that we identified on FCl(S1,C) in
order to identify it with ΨDO(S1,H)

Let us describe in a detailed way these different approaches.
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Push-Forward via Φλ,µ maps. Let K = C or H. For each choice of (λ, µ) ∈
C2\{0; 0} identifies d

dx ∈ ΨDO(S1,K) with an operator in FCl(S1,K) with the
same algebraic properties.

Notation: ∂λ,µ = Φλ,µ
(
d
dx

)
and FClλ,µ(S1,K) = ImΦλ,µ.

Then we can develop the KP hierarchy on FClλ,µ(S1,K). We first remark that,
since each map Φλ,µ is a degree 0 morphism of filtered algebras, each push-forward
of the unique solotion L of the KP hierachy (4) generates a solution of the corre-
sponding equation in FCl(S1,K) which reads the same way:

dL

dtk
=
[
(Lk)D, L

]
, k ≥ 1 ,

where solutions operators now belong to FCl1(S1,K)[[T ]] and where each initial
value Φλ,µ(L0) ∈ ∂λ,µ+FCl−1

λ,µ(S1,K) with obvious extension of notations. There-
fore, for any initial value L0 ∈ ΨDO(S1,K), we get a family of operators

Lλ,µ ∈ FCl1λ,µ(S1,K)[[T ]] ⊂ FCl1(S1,K)[[T ]]

parametrized by the complex parameters λ and µ chosen as before, which satisfies
the KP hierarchy in FCl(S1,K) and with initial values Φλ,µ(L0).
Existence, uniqueness and well-posedness of the KP system in FCl(S1,K)..
We adapt here the r−matrix approach for the construction of the solutions, along
the lines of [10] with the following specific choices:

• The algebra of smooth coefficients for formal pseudo-differential operators
is R = C∞(S1,Mn(K)) ⊕ ε(D)C∞(S1,Mn(K)) with multiplication rules
inherited from Cl(S1,Kn).
• The differential operator is ∂ = d

dx .

Proposition 3.1. ΨDO(R) = FCl(S1,Kn) and there is an identification of the
Manin triples (ΨDO(R), DO(R), IO(R)) with (FCl(S1,Kn),FClD(S1,Kn),FClS(S1,Kn)).

Hence, applying the main result of [31] completed, for well-posedness, by [10,
Theorem 4.1] or by [25, Theorem 4.1] when R = C∞(S1,K) = M1(C∞(S1,K)) is
a commutative algebra, we can state the following:

Proposition 3.2. The Kadomtsev-Petviashvili (KP) hierarchy (4) on ΨDO(R)
(resp. FCl(S1,Kn)) with initial condition L(0) = L0 ∈ ∂ + ΨDO−1(R) (resp.
∈ ∂ + FCl−1(S1,Kn)) satisfies Theorem 1.29.

Remark 3.3. We have used here, intrinsically, the integrable almost complex struc-
ture J1. Indeed, R = C∞(S1,Mn(K)) + J1C

∞(S1,Mn(K)) is an algebra.

Remark 3.4. There exists another way to justify Proposition 3.2. One can use
alternatively the splitting

FCl(S1,Kn) = FCl+(S1,Kn)⊕FCl−(S1,Kn).

Then Equation (4) on FCl(S1,Kn) splits into two independent equations, similar
to Equation (4) on FCl±(S1,Kn). Through the identification maps Φ1,0 and Φ0,1 of
FCl±(S1,Kn) with ΨDO(S1,Kn), we get existence, uniqueness and well-posedness
for Equation (4) on FCl(S1,Kn) with initaial value L0 ∈ ∂ + FCl−1(S1,Kn).

From this last remark, we can generalize the identification procedure, changing
the maps Φee, Φ1,0 and Φ0,1 by the family of maps Φλ,µ.
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Theorem 3.5. Let (λ, µ) ∈ (C∗)2. Then the KP equation (4) in FCl(S1,Kn)
with initial value L0 ∈ ∂λ,µ + FCl−1(S1,Kn) has an unique solution L in ∂λ,µ +
FCl−1(S1,Kn)[[T ]] and the problem is well-posed: the solution L depends smoothly
on L0.

Twisted KP hierarchy. Let us now change the standard multiplication on FCl(S1,K)
by (A,B) 7→ εAB where ε = ε(D) or aε(D) for any a ∈ C∗. Since ε(D) commutes
with any element of FCl(S1,K) for the standard multiplication, this new multipli-
cation defines a new algebra structure on FCl(S1,K). When necessary we note by
◦ the standard multiplication, and by ◦ε the twisted one. Associated to this multi-
plication, we get the deformed Lie bracket [., .]ε. Then we get again and equation
similar to (4)

(5)
dL

dtk
=
[
εk−1(Lk)D, L

]
ε

= εk
[
(Lk)D, L

]
, k ≥ 1 ,

where powers in this equation are taken with respect to ◦.

Theorem 3.6. The Let L0 such that L0 ∈ ∂λ,µ + FCl−1(S1,Kn), with (λ, µ) ∈
(C∗)2. Then the ε−KP hierarchy (5) with initial value L0 has an unique solution.
Moreover, the problem is well-posed.

3.2. KP hierarchies with complex powers. We finally extend all the construc-
tions of the last section to complex powers, along the lines of [11]. Let K = C or
H. We consider an operator L0 of complex order α such that

(6) L0 ∈
(
d

dx

)α
+ FClα−1(S1,K)

or

(7) L0 ∈ |D|α + FClα−1(S1,K)

For each setting (6) and (7), we define the complex KP hierarchy on FClα(S1,K)
by

(8)
dL

dtk
=
[
(Lk/α)D, L

]
ε

= −
[
(Lk)S , L

]
, k ≥ 1 ,

where Lk/α = exp
(
k
α logL

)
and the solution L ∈ FClα(S1,K)[[T ]].

Theorem 3.7. The KP hierarchy (8) with initial value L0 defined along the lines
of (6) or (7) has an unique solution in FClα(S1,K)[[T ]]. Moreover, the prblem is
well-posed.

4. Hamiltonian approaches

Now we consider FCl(S1,Kn) and we define the regular dual space

FCl(S1,Kn)′ = {µ ∈ L(FCl(S1,Kn),K) : µ = 〈P, ·〉 for some P ∈ FCl(S1,Kn)} .
We can adapt standard results described in section 1.4 of Hamiltonian mechanics
as follows: let f : FCl(S1,Kn)′ → B be a polynomial function of the type

f(µ) =

n∑
k=0

akres+(P k) +

n∑
k=0

bkres−(P k) = res

(
n∑
k=0

akP
k
+ + bkP

k
−

)
with µ = 〈P, .〉 . In our picture, the decomposition FCl(S1,Kn) = FCl+(S1,Kn)⊕
FCl−(S1,Kn) that we use extensively all along this work carry a residue trace on
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each component of the decomposition. These are these two residues, res+ and res−,
that replace Res in the constructions of section 1.4. Under these assumptions, we de-
fine the same way the functional derivative and the pairing < .|. > of FCl(S1,Kn)′

with FCl(S1,Kn). The decompositionFCl(S1,Kn) = FClD(S1,Kn)⊕FClS(S1,Kn)
allows us to consider a new Lie bracket on the regular dual space FCl(S1,Kn)′ given
by [P,Q]0 = [PD, QD]− [PS , QS ] , This bracket determines a new Poisson structure
{ , }0 on FCl(S1,Kn)′, simply by replacing the original Lie product for [ , ]0. Using
again the non-degenerate pairing we get:

Lemma 4.1. Let H : FCl(S1,Kn)′ → K be a smooth function on FCl(S1,Kn)′

such that

(9)
〈
µ

∣∣∣∣ [δHδµ , ·
]〉

= 0 for all µ ∈ FCl(S1,Kn)′ .

Then, as equations on FCl(S1,Kn), the Hamiltonian equations of motion with
respect to the { , }0 Poisson structure of FCl(S1,Kn)′′ are

(10)
dP

d t
=

[(
δH

δµ

)
+

, P

]
.

We now use some specific functions H. Let us recall the following results (see
for example [6] or the more recent review [9]):

Proposition 4.2. We define the functions Hk(L) = Trace
(
(Lk)

)
, k = 1, 2, 3, · · · ,

for L ∈ FCl(S1,Kn). Then,
δHk

δL
= kLk−1. In particular, the functions Hk satisfy

(9).

Thus, we can apply Lemma 4.1. It yields:

Proposition 4.3. Let us equip the Lie algebra FCl(S1,Kn) with the non-degenerate
pairing (a, b) 7→ res(ab). Write FCl(S1,Kn) = FClD(S1,Kn)⊕FClS(S1,Kn) and
consider the Hamiltonian functions

(11) Hk(µ) =
1

k
resW

(
(Lk+1)

)
for µ = 〈L, .〉. The corresponding Hamiltonian equations of motion with respect to
the { , }0 Poisson structure of FCl(S1,Kn)′ are dL

dtk
=
[
(Lk)D, L

]
.

Following now [11] we get the Hamiltonian formulation of the KP hierarchy with
complex powers: For this, we need to generalize the Gelfand-Dickii stricture either
to

Lα =

(
d

dx

)α
+ FClα−1(S1,Kn)

or to

L′α =

∣∣∣∣ ddx
∣∣∣∣α + FClα−1(S1,Kn).

In both case, we specialize our computations to FClα+(S1,Kn), and with FClα−(S1,Kn)
respectively, which both identify with ΨDOα(S1,Kn). Under these identifications,
the computations described in [11, pp 55–57]:

Theorem 4.4. On Lα and on L′α, the Hzmiltonian vector field associated to Hk =
α
k resL

k/α is V =
[
L
k/α
D , L

]
.
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5. Appendix: Proofs

We collect in the Appendix all routine and technical prooofs which are often
nothing but a straightforward verification. The end of the Appendix contains also
technical proofs of some theorems about KP hierarhies which are very similar ide-
ologically of our ancient proofs from [11].

5.1. Proofs of section 1.

Lemma 1.22. Since res is non degenerate then (.; .)s′ is non degenerate. Moreover,
identifying FCl+(S1, V ) and FCl−(S1, V ) as two copies of ΨDO(S1, V ), writing
by Tr the Adler trace on the latter one, we have that

res(A, s′(B)) = Tr(A+B−)+Tr(A−B+) = Tr(B+A−)+Tr(B−A+) = res(B, s′(A))

which proves symmetry. �

Lemma 1.24. Since res is non degenerate then (.; .)s is non degenerate. Moreover,

res(A, s(B)) = res((Aee +Aeo) + (Bee −Beo))
= res(AeoBee)− res(AeeBeo)
= −res(B, s(A))

which proves skewsymmetry.

res(A, s([B,C])) = res((Aee +Aeo) + ([B,C]ee − [B,C]eo))

= res(AeoBeeCee) + res(AeoBeoCeo)− res(AeeBeeCeo)− res(AeeBeoCee)
−res(AeoCeeBee)− res(AeoCeoBeo) + res(AeeCeeBeo]) + res(AeeCeoBee])

while, with the same calculations,

res([A,C], s(B)) = res(AeoCeeBee) + res(AeeCeoBee)− res(AeeCeeBeo)− res(AeoCeoBeo)
−res(AeoBeeCee)− res(AeeBeeCeo) + res(AeeBeoCee) + res(AeoBeoCeo)

Let us investigate the same properties with [., .]ε(D) :

res(A, s([B,C]ε(D))) = res((Aee +Aeo)(−ε(D)[B,C]ee + ε(D)[B,C]eo))

= res(ε(D)AeoBeeCeo) + res(ε(D)AeoBeoCee)

−res(ε(D)AeeBeoCeo)− res(ε(D)AeeBeeCee)

−res(ε(D)AeoCeoBee)− res(ε(D)AeoCeeBeo)

+res(ε(D)AeeCeoBeo) + res(ε(D)AeeCeeBee)

while

res([A,C], s(B)) = res(ε(D)AeeCeeBee) + res(ε(D)AeoCeoBee)

−res(ε(D)AeoCeeBeo)− res(ε(D)AeeCeoBeo)

−res(ε(D)AeeBeeCee)− res(ε(D)AeoBeeCeo)

+res(ε(D)AeoBeoCee) + res(ε(D)AeeBeoCeo)

�

Theorem 1.26. First, FClee(S1, V ) is itself a subalgebra of FCl(S1, V ) hence (FClee(S1, V ), [., .])
is a Lie subalgebra of FClee(S1, V ) on which res(A,B) satisfies the same well-
known properties: bilinear and symmetric. Moreover, it is well-known that res is
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non-degenerate on FCl(S1, V ). From [16], one can deduce by considering only for-
mal operators that FClee(S1, V ) is isotropic for res. Secondly, since ε(D) commutes
with any element of FCl(S1, V ), we have that

∀A,B,C ∈ FCleo(S1, V ), [A, [B,C]ε(D)]ε(D) + [C, [A,B]ε(D)]ε(D) + [B, [C,A]ε(D)]ε(D)

= ε(D)2 ([A, [B,C]] + [C, [A,B]] + [B, [C,A]]) = 0,

which proves that (FCleo(S1, V ), [., .]ε(D)) is a Lie bracket. Moreover, A 7→ ε(D)A
is a vector space isomorphism from FCleo(S1, V ) to FClee(S1, V ), which implies,
with ε(D)2 = 1, that

∀(A,B) ∈ FCleo(S1, V ), res(AB) = res ((ε(D)A)(ε(D)B))

and shows that FCleo(S1, V ) is isotropic for res(AB). Let us finish the proof
with invariance on res. Invariance with respect to [., .] in FCl(S1, V ) is well-
known since res is tracial. Again since ε(D) commutates, we have that ∀(A,B) ∈
FCl(S1, V ), [A,B]ε(D) = [ε(D)A,B] = [A, ε(D)B] hence for (A,B,C) ∈ FCl(S1, V )3,

res([A,B]ε(D)C) = res([ε(D)A,B]C)

= res(B[C, ε(D)A])

= −res(B[A,C]ε(D)).

�

5.2. Proofs of section 2.2.

5.2.1. Proof of Theorem 2.6. The operator iε(D) commutes with any operator u ∈
FCl(S1, V ). By the way, we simplify the relation that can be found e.g. in [27] the
following way: [u, J1v] + [J1u, v] = 2J1[u, v] and

J1 [u, v]− J1 [J1u, J1v] = J1 [u, v]− J3
1 [u, v] = 2J1[u, v]

Hence

[u, J1(v)] + [J1(u), v] = J1 [u, v]− J1 [J1(u), J1(v)]

which proves integrability.

Lemma 5.1. We have J1(FClee(S1, V )) = FCleo(S1, V ) and J1(FCleo(S1, V )) =
FClee(S1, V )

Proof. Since J = iε(D)◦(.) it follows from the composition rules between even-even
and even-odd class already described. �

Identifying FCleo(S1, V ) with ε(D)FClee(S1, V ), we recall that

FCl(S1, V ) = FClee(S1, V )⊕ ε(D)FClee(S1, V ),

we get the complexification result.
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5.2.2. Other proofs.

Proposition 2.7. By straightforward computations, we check first that s(ε(D)) =
−ε(D). Then, since composition of symbols by ε(D) is only pointwise multiplication,
we get, for a ∈ FCl(S1, V ),

J2 ◦ J1(a)(x, ξ) = −s(ε(D) ◦ a)(x, ξ)

= −ε(D)(x,−ξ)

(∑
k∈Z

(−1)kak(x,−ξ)

)
(pointwise multiplication)

= ε(D)(x, ξ)s(a)(x, ξ) (pointwise multiplication)
= −iε(D) ◦ (is(a))(x, ξ)

= −J1 ◦ J2(a)(x, ξ)

�

Theorem 2.8.

[u, J2v] + [J2u, v] = i[u, vee]− i[u, veo] + i[uee, v]− i[ueo, v]

= i ([uee, vee] + [ueo, vee]− [uee, veo]− [ueo, veo]

+[uee, vee] + [uee, veo]− [ueo, vee]− [ueo, veo])

= 2i ([uee, vee]− [ueo, veo])

and

J2 [u, v]− J2 [J2u, J2v] = i ([uee, vee] + [ueo, veo])− i ([uee, veo] + [ueo, vee])

+i ([uee, vee] + [−ueo,−veo])− i ([uee,−veo] + [−ueo, vee])
= 2i ([uee, vee] + [ueo, veo])

As a counter-example, let X = f(x)∂ and let Y = g(x)∂ be two vector fields over
S1 such that [X,Y ] 6= 0. Let u = ε(D)X ∈ FCleo(S1,R) and let v = ε(D)Y ∈
FCleo(S1,R). Then J2 [u, v] − J2 [J2u, J2v] = 2i[X,Y ] while [u, J2v] + [J2u, v] =
−2i[X,Y ]. �

Proposition 2.9. By straightforward computations, we check first that s′(ε(D)) =
−ε(D). Then, since s′ is a morphism of algebra,

J3 ◦ J1(a) = −s′(ε(D) ◦ (a+, a−)) = −(−a−, a+)

= −ε(D) ◦ (−a−,−a+) = ε(D) ◦ s′(a+, a−) = −J1 ◦ J3(a)

�

Proposition 2.10. By straightforward computations, we check first that ss′ = s′s.
Then,J2J3 = J3J2. �

Theorem 2.11. [u, J3v]+[J3u, v] = i ([u+v−] + [u−v+], [u+v−] + [u−v+]) and J2 [u, v]−
J2 [J2u, J2v] = i ([u+, v+] + [u−, v−], [u+, v+] + [u−, v−]) As a counter-example, let
X = f(x)∂ and let Y = g(x)∂ be two vector fields over S1 such that [X,Y ] 6= 0.
Let u = X+ ∈ FCl+(S1,R) and let v = Y+ ∈ FCl+(S1,R). Then J3 [u, v] −
J2 [J3u, J3v] = i[X,Y ]+ while [u, J3v] + [J3u, v] = 0. �

Proposition 2.12. • J2
4 = J1J3J1J3 = −J3J1J1J3 = −Id

• J2J4 = J2J1J3 = −J1J2J3 = −J1J3J2 = −J4J2
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• J1J4 = J1J1J3 = −J1J3J1 = −J3J1

�

5.3. Proofs of section 3.

Proof of Proposition 3.1. From

FCl(S1,Kn) = FClee(S1,Kn)⊕FCleo(S1,Kn) = FClee(S1,Kn)⊕iε(D)FClee(S1,Kn)

we get, for A = Aee +Aeo ∈ FClee(S1,Kn)⊕FCleo(S1,Kn), and for k ∈ Z,

σkA = σk(Aee) + σk(Aeo) = ak,ee
d

dx

k

+ ak,eoiε(D)
d

dx

= (ak,ee + iε(D)ak,eo) ∂
k

(where (ak,ee, ak,eo) ∈ C∞(S1,Mn(K)))which ends the identification of FCl(S1,Kn)
with ΨDO(R). Since the order of partial symbols is conserved, we get the same
identifications between FClD(S1,Kn) and DO(R), and between FClS(S1,Kn) and
IO(R). �

Proof of Theorem 3.5. We analyze separately the equation on FCl+(S1,K) and
on FCl−(S1,K). Let us work on FCl+(S1,K). The map Φ1,0 pulls-back the KP
hierarchy on ΨDO(S1,K) with initial value L0 ∈ λ∂ + ΨDO(S1,K). When λ 6= 1,
the classical integration of the KP hierarchy is not achieved by the classical method.
However, we use here the scaling first defined to our knowledge in [23]. Let q = λ−1.

Let L̃0 = qL0. Then L̃0 ∈ λ∂ + ΨDO(S1,K), and there exists a Sato operator
S0 ∈ 1 + ΨDO−1(S1,K) such that L̃0 = S0∂S

−1
0 and the KP-system with initial

value L̃0 has a unique solution L̃. We define a λ−scaling in time: tk 7→ λktk.
Following [23],

L̃(t1, t2, ...) is solution of (4)⇔ L(t1, t2, ..) = λL̃(λt1, λ
2t2, ...) is solution of (4).

The initial value of the solution L is L0, which proves existence, uniqueness and
smooth dependence of L on L0. Then, we can push-forward the solution L of (4)on
ΨDO(S1,K) to the solution L+ = Φ1,0(L) on FCl+(S1,K). The same procedure
holds to get the solution L− on FCl+(S1,K), replacing the constant λ by the con-
stant µ. The operator L+ +L− furnishes the desired solution of (4) on FCl(S1,K),
which is unique and smoothly dependent on the initial value by construction. �

Proof of Theorem 3.6. Let us transform slightly Equation 5 for k ∈ N∗:
dL

dtk
= εk

[
(Lk)D, L

]
⇔ ε

dL

dtk
= εk+1

[
(Lk)D, L

]
⇔ d(εL)

dtk
=
[
((εL)k)D, (εL)

]
By the way,the field of operators εL, with initial value εL0 ∈ ∂aλ,−aµ+FCl−1(S1,Kn),
is the unique solution of the KP hierarchy (4). Moreover, the map L 7→ εL is
smooth, biunivoque, with smooth inverse, which ends the proof. �

Proof of Theorem 3.7. Let us first analyze case (6). Then

L
1/α
0 = exp

(
1

α
logL

)
∈ d

dx
+ FCl0(S1,K).

We can then adapt [31] and define the dressing operator

U = exp

(∑
k∈N∗

tk(L
1/α
0 )k

)
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that we decompose into U = U+ + U− where

U± = exp

(∑
k∈N∗

tk(L
1/α
0 )k±

)
.

Working independently on the two components FCl±(S1,K), Mulase factorization
holds, U± = S−1

± Y± and setting L± = Y±(L0)±Y
−1
± , which implies that ∀k ∈

N∗, L
k/α
± = Y±(L0)

k/α
± Y −1

± . We moreover have that ∀β ∈ C∗, Lβ0U = ULβ0
which implies that

L± = Y±(L0)±Y
−1
± = S±S

−1
± Y±(L0)±Y

−1
± S±S

−1
± = S±(L0)±S

−1
±

and similarily Lk/α± = Y±(L0)
k/α
± Y −1

± = S±(L0)
k/α
± S−1

± We can now differentiate U

dU±
dtk

= (L0)
k/α
± U± = −S−1

±
dS±
dtk

S−1
± Y± + S−1

±
dY±
dtk

which implies that

S±(L0)
k/α
± S−1

± = −dS±
dtk

S−1
± +

dY±
dtk

Y±.

By the way,
(
L
k/α
±

)
D

= dY±
dtk

Y± and hence

dL±
dtk

=
dY±(L0)±Y

−1
±

dtk
=
dY±
dtk

(L0)±Y
−1
± − Y±(L0)±Y

−1
±

dY±
dtk

Y −1
±

=
(
L
k/α
±

)
D
Y±(L0)±Y

−1
± − Y±(L0)±Y

−1
±

(
L
k/α
±

)
D

=
[(
L
k/α
±

)
D
, Y±(L0)±Y

−1
±

]
Gathering the ± parts, we get that L = L+ + L− is a solution of (8) with initial
condition (6). Let us now deal with initial condition (7). In that case,

L
1/α
0 ∈ |D|+FCl0(S1,K) = iε(D)

(
d

dx
+ FCl0(S1,K)

)
= iε(D)

d

dx
+FCl0(S1,K).

Let U be the dressing operator with respect to L0 along the lines of the previous
computations, that we decompose into the

U = U+ + U−

in the FCl+(S1,K) and FCl−(S1,K)−components. Then U+ and U− decompose
in the Mulase decomposition and we can re-construct two operators S and Y in
FCl(S1,K) from this decomposition. We set L = Y L0Y

−1 = SL0S
−1. Then, with

the same computation as before,

dL

dtk
=

dY L0Y
−1

dtk
=
dY

dtk
L0Y

−1 − Y L0Y
−1
±

dY

dtk
Y −1

=
(
Lk/α

)
D
Y L0Y

−1 − Y L0Y
−1
(
Lk/α

)
D

=
[(
Lk/α

)
D
, Y L0Y

−1
]

�
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