
HAL Id: hal-03104564
https://hal.science/hal-03104564

Submitted on 5 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wavelet Adaptive Proper Orthogonal Decomposition for
Large Scale Flow Data

Philipp Krah, Thomas Engels, Kai Schneider, Julius Reiss

To cite this version:
Philipp Krah, Thomas Engels, Kai Schneider, Julius Reiss. Wavelet Adaptive Proper Orthogonal
Decomposition for Large Scale Flow Data. Advances in Computational Mathematics, 2022, 48 (10),
�10.1007/s10444-021-09922-2�. �hal-03104564�

https://hal.science/hal-03104564
https://hal.archives-ouvertes.fr

https://doi.org/10.1007/s10444-021-09922-2

Wavelet adaptive proper orthogonal decomposition
for large-scale flow data

Philipp Krah1 ·Thomas Engels2 ·Kai Schneider3 · Julius Reiss4

Received: 10 November 2020 / Accepted: 22 December 2021 /
© The Author(s) 2022

Abstract
The proper orthogonal decomposition (POD) is a powerful classical tool in fluid
mechanics used, for instance, for model reduction and extraction of coherent flow
features. However, its applicability to high-resolution data, as produced by three-
dimensional direct numerical simulations, is limited owing to its computational
complexity. Here, we propose a wavelet-based adaptive version of the POD (the
wPOD), in order to overcome this limitation. The amount of data to be analyzed is
reduced by compressing them using biorthogonal wavelets, yielding a sparse repre-
sentation while conveniently providing control of the compression error. Numerical
analysis shows how the distinct error contributions of wavelet compression and POD
truncation can be balanced under certain assumptions, allowing us to efficiently
process high-resolution data from three-dimensional simulations of flow problems.
Using a synthetic academic test case, we compare our algorithm with the random-
ized singular value decomposition. Furthermore, we demonstrate the ability of our
method analyzing data of a two-dimensional wake flow and a three-dimensional flow
generated by a flapping insect computed with direct numerical simulation.

Keywords Proper orthogonal decomposition · Biorthogonal wavelets ·
Wavelet adaptive block-based grids · Fluid dynamics · Reduced order models

1 Introduction

The proper orthogonal decomposition (POD) [47] is one of the most important
methods in modern data analysis of fluid flows. For large-scale data, as typi-
cally produced by high-resolution direct numerical simulation or high-resolution

Communicated by: Yang Wang

� Philipp Krah
philipp.krah@tu-berlin.de

Extended author information available on the last page of the article.

Published online: 17 February 2022

Adv Comput Math (2022) 48: 10

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-021-09922-2&domain=pdf
http://orcid.org/0000-0001-8982-4230
http://orcid.org/0000-0002-9098-1054
http://orcid.org/0000-0003-1243-6621
http://orcid.org/0000-0003-3692-5390
mailto: philipp.krah@tu-berlin.de

imaging, the POD finds low-dimensional descriptions by approximating the snap-
shot data U = {u1, . . . ,uNs} in terms of a few orthogonal basis functions Ψ k , called
modes:

ũi =
r∑

k=1

akiΨ k with aki = 〈ui , Ψ k〉, r � Ns . (1)

This effectively reduces the high-dimensional data U to a set of Ns × r coefficients
aki . It is known that this choice of basis is optimal in minimizing the approximation
error

∑
i ‖ui − ũi‖ within a linear subspace (see, for example [55] or, in the context

of matrices, the Eckart Young theorem [16]). However, it is not optimal with respect
to memory efficiency and applicability, as for reconstructing any approximation on
U , the high-dimensional snapshots u and basis vectors Ψ k need to be stored and
processed. This often makes any nonlinear observable of U difficult to process on a
desktop computer. Therefore, in this article, we aim at reducing the amount of data
that is needed to calculate Ψ k , exploiting sparsity enabled by wavelet adaptation
techniques.

POD has been applied successfully in Model Order Reduction (MOR) (for a
review, see [7, 8] or the lecture notes of [55] for POD-MOR). In combination with
Galerkin projection methods, POD is used to obtain reduced models of discretized
partial differential equations (PDEs). It is the basis of many modern decompositions
in fluid dynamics, like the shifted POD [41] used for analysis of transport phenom-
ena or the spectral [46] and multiscale POD [38], which identify coherent structures
with specific energies. However, most of the applications mentioned above have
been only applied in one or two spatial dimensions, since the tremendous amount of
data in fluid dynamics in three dimensions makes the computation of POD modes
extremely expensive, if not unfeasible. Recent attempts to improve this are going in
two directions: adaptivity and randomization.

Randomized methods are inspired by randomized numerical linear algebra (see
the surveys of [27, 34]) using random projection matrices to approximate the column
space of a possible tall and skinny snapshot matrix build from U onto a smaller
surrogate matrix to solve the classical POD problem using snapshot POD [56] or
singular value decomposition (SVD) [3]. After the POD modes are identified for
the small system, they are projected back onto the original high-dimensional space.
Although these methods allow for rapidly solving the POD problem for large-scale
systems, they have two main drawbacks: the resulting modes are not sparse and the
algorithm does not converge if the singular values do not decay rapidly [27].

Adaptive methods benefit from the sparse representation of the data already in the
stage of production. For example, when generating the data numerically using finite
element solvers like FEniCS [4, 5] or wavelet adaptive solvers such as WABBIT [19,
48, 49]. In contrast to randomized methods, the representation of the data is seen from
an infinite-dimensional perspective, where each snapshot corresponds to a function
over an infinite dimensional Hilbert space. This fact has both advantages and draw-
backs: On the one hand, adaptation techniques allow direct relations to the “truth”,
i.e., the exact solution of the PDE or the underlying physical system. For example,
[1, 2] obtain approximations of the exact solution of the PDE within a given tolerance
by using dual wavelet expansions of the PDE systems’ continuous residual together

Adv Comput Math (2022) 48: 1010 Page 2 of 40

with greedy reduced basis methods. Furthermore, adaptation is advantageous over
equidistant grids because it distributes computational efforts to places where rele-
vant information is located. On the other hand, adaptive methods require specifically
tailored techniques for storing and processing the data. When ignoring gains in pre-
cision, adaptive methods are thus more complex and computationally demanding
compared to non-adaptive equivalents for the same amount of processed data. Trans-
ferred to the POD problem this implies that the POD basis cannot be formed by
means of a simple SVD or the direct method (as coined in [47]), since no snapshot
matrix or correlations between (a theoretically infinite number of) space points can
be computed. Alongside [20, 24, 25, 51], we therefore use the so-called method of
snapshots or strobes [47], which only relies on correlations between a finite num-
ber of snapshots, computed with a simple inner product. Nevertheless, snapshot and
direct methods are in principle equivalent in solving the POD problem [31, 54].

Although most authors use the method of snapshots to obtain POD modes, their
precise implementations differ. In early works, Ullmann et al. [51] used two differ-
ent approaches to compute the POD basis. In the first approach, they represent all
snapshots and the resulting POD basis on a common finite element (FE) grid/space,
which is somehow similar to the approach in [20]. This has the advantage that the
snapshots and modes can be interpreted as Euclidean vectors of the same size with
a single weighted inner product. In the second approach, the authors build common
FE-spaces for pairs of snapshots to compute the correlation matrix and define the
POD modes implicitly as a linear combination of the snapshots on their original FE-
space. A variation of the first approach has been used by [25] to build reduced order
models for the incompressible Navier-Stokes equations. Most recent advances [24]
go one step further to avoid any common finite element space. Therefore, the authors
of [24] reformulate the inner product between two snapshots in terms of the under-
lying finite element basis. Based on the work of [37], the authors in [24] are able to
compute inner products between arbitrary FE- grids, when including cut finite ele-
ments. Instead of lifting the grids to a common reference grid, the overlap between
different finite elements has to be calculated.

In [23] the POD is compared with orthogonal wavelets for extracting coherent
vortices out of turbulent flows considering direct numerical simulation data of 2D
drift-wave turbulence. Issues of computational complexity and memory requirements
for storing the POD modes were discussed.

The present paper approaches the method of snapshots from a wavelet point of
view as it entails various desirable conceptual features that are not shared by the
other adaptive methods outlined above. It shares some basic ideas with [9, 53],
although the results presented there are only in one space dimension. The approach
presented here is integrated as a post-processing routine into an open source soft-
ware called WABBIT ((W)avelet (A)daptive (B)lock (B)ased Solver for (I)nteractions
with (T)urbulence), which is freely available at [49]. The basic adaptation technique
grounds on the idea of [14] and the recent works [19, 48], in which a block-
structured grid is refined or coarsened using biorthogonal wavelets. The framework is
implemented using the MPI Library to exploit parallel computing architectures. The
novelty of the present approach lies in the combination of POD and wavelet adapta-
tion and the ability to balance wavelet compression and POD truncation errors. Here,

Adv Comput Math (2022) 48: 10 Page 3 of 40 10

the hierarchical nature of wavelets enables efficient refinement and coarsening due
to the scaling relations of wavelets.

Moreover, the underlying multiresolution analysis (MRA) [36] allows to approx-
imate any finite energy function with a given precision. Nonlinear approximation
[13] using thresholding of the wavelet coefficients yields then sparse and efficient
representations to reduce memory and CPU time requirements.

Furthermore, the locally uniform Cartesian grid structure of each block enables us
to apply the method to images or other 2D/3D equidistant fields in space. This allows
us to directly compare our results with randomized methods, which need several
passes over the data in case the singular values of the snapshot matrix decay slowly
[27]. Our results show indeed that we can avoid this by sparse adaptation of the
data. This serves as motivation to propose a strategy of how to balance a priori rank
truncation and wavelet compression error.

The present paper is organized as follows. In Section 2, we introduce the wavelet
adaptive framework with a detailed description of our implementation (Section 2.1)
and a brief summary of the applied wavelet adaptation scheme (Section 2.2). The
wavelet adaptive POD is outlined in Section 3.3, followed by an error estimation
in Section 3.4, where we provide a strategy for balancing adaptation and truncation
errors. Next, we examine and discuss the behavior of our algorithm with the help of
three different examples in Section 4. In the first example a 2D synthetic test case
is provided, where the influence of various parameters is studied and the results are
compared to the randomized SVD. Thereafter, Section 4.2 presents two data sets in
the context of computational fluid dynamics: data from a direct numerical simulation
of a 2D wake flow past a cylinder (Section 4.2.1) and a 3D block-based adaptive sim-
ulation of a bumblebee in forward flight (see Section 4.2.4). Finally, we summarize
our results and provide a short outlook for future research (Section 5).

2 Numerical methods and implementation

In the following, we describe the numerical methods used in the wPOD algorithm
and give detailed insight into its implementation, when handling multiple block-
based adaptive grids. The basic wavelet adaptation technique used for our algorithm
has been already discussed in [19, 48]. We hence limit the presentation here to
changes specific to our algorithm. In the interest of readability, we will assume
two-dimensional data, thus all quantities with a subscript α are indexed over α = 1, 2.

2.1 Block-structured grid and implementation

Multiresolution representations require a dedicated data structure. Here, spatial data
is divided into a set of nested blocks, which are organized in a tree. We use a collec-
tion of trees, which we call forest, in order to store multiple snapshots together with
their designated tree simultaneously.

Adv Comput Math (2022) 48: 1010 Page 4 of 40

Computational grid With each tree in the forest F , we associate a multiresolution
grid Ωi on a rectangular domain D := [0, L1]×[0, L2] ⊂ R

2+. As illustrated in Fig. 1
for the 2D case, the grid Ωi is composed of blocks

Bj
p = {x = xp +

(
k1Δx

j

1 , k2Δx
j

2

)
| k1 = 0, . . . , B1 − 1 , k2 = 0, . . . , B2 − 1} (2)

of equal size B1 × B2. The subdivision of the grid is controlled by the tree level
j = Jmin, Jmin+1, . . . , Jmax. With increasing tree level j → j +1 the lattice spacing
of the block is divided by two, i.e., Δx

j
α = 2−jLα/(Bα − 1). Here, Lα > 0 is the

size of the computational domain. Gradedness of the resulting grid is enforced by
allowing adjacent blocks to differ only by one tree level. The level and location of
a block are encoded in a unique tree code as indicated in Fig. 1. The computational
grid Ωi is the union of all blocks in the tree,

Ωi =
Jmax⋃

j=Jmin

⋃

p∈�
j
i

Bj
p, (3)

where �
j
i is the set of all block IDs at a given tree level j and tree i. The block IDs

p∈ �
j
i are called tree code. The synchronization between blocks is done by using

an overlapping layer covering g points (light gray area in Fig. 1). These additional
points are called ghost nodes and they form the ghost node layer. The size of the
ghost node layer is adjusted according to the spatial support of the chosen wavelet,
here g = 6 for CDF 4/4 wavelets. If neighboring blocks are not on the same tree
level, we interpolate or decimate the corresponding nodes when synchronizing the
ghost nodes. Redundant nodes on the boundary of adjacent blocks always belong to
the block with lower tree level, i.e., coarser lattice spacing. The definition of the grid
as well as the reasons for choosing this particular design are detailed in appendix B
of [19].

Fig. 1 A 2D grid consisting of seven blocks. A single block (dark gray) consists of an odd number of
interior and redundant grid nodes Bα = 5 in direction xα , where α = 1, 2. The block includes a ghost node
layer (light gray) which is synchronized with neighboring blocks. The size of this layer depends on the
support of the chosen wavelet. Ghost nodes are interpolated, if the levels of the neighboring blocks differ

Adv Comput Math (2022) 48: 10 Page 5 of 40 10

Forest composed of multiple trees For the administration of all blocks in the forest,
we use a multi-tree structure illustrated in Fig. 2. Here each tree Ti holds a collection
of blocks Bp and block values u(p)

Ti =
{
(Bp, u(p)(x)) | x ∈ Bp, p∈ �

j
i , j = Jmin, . . . , Jmax

}
, (4)

where a block is a leaf at the end of a branch, which can be uniquely identified by
a tree code p ∈ �

j
i and a tree ID i. The tree ID identifies the corresponding grid

Ωi and the tree code determines the topology, such as block position xp and lattice
spacing Δxi . In the following, the collection of trees is called forest

F = {Ti | i = 1, . . . , Ntree} . (5)

In Section 3.3 we will use the forest to hold multiple spatial fields as time or
parameter samples of the wPOD algorithm.

Fig. 2 A forest of two trees and their associated grids Ωi . Top part visualizes the tree structure for tree
i = 1, 2. Colored leafs at the end of a branch correspond to blocks on the grid as shown in bottom part.
The block color encodes the processor that holds the block. The blocks are distributed among processors
using space filling curves (dashed lines)

Adv Comput Math (2022) 48: 1010 Page 6 of 40

Light and heavy data storage To distinguish between administrative and physical
information, we separate our data structures into light and heavy data.

The light data (lgt n, lgt active, lgt block) is the minimal informa-
tion necessary to organize the topology of our grids. From the light data we can
determine neighbor relations between the blocks and keep track of the processors
holding the block. It is therefore synchronized among all processing units. Figure 19
in Appendix C illustrates an example of light data in the case of the tree struc-
ture shown in Fig. 2. All light data are stored in the lgt block array. Each row
holds the necessary information of one block, such as tree ID, grid refinement level,
tree code and refinement status/coarsening indicator (see Appendix A). The row
index is called light-ID (lgt id). It is ordered lexicographically in the process-ID:
lgt id = (iproc − 1)Nblocks + j , with j = 1, . . . , Nblocks. In this way, we relate the
position of the block with the process-ID iproc. During the execution of the algorithm,
blocks can be created or deleted. To avoid expensive memory allocation, we set the
block inactive by marking the rows in lgt block with −1. From lgt block we
compute active block lists (lgt active) for each tree. In this way, we are able to
manipulate blocks on different grids efficiently, by only looping over the active lists
of a given tree specified by its tree id (compare with Fig. 19).

Besides the light administrative structure, we have to store large data fields with
the physical information of the state vector quantity u(x) and all neighbor relations of
the blocks. These data are called heavy data and they are equally distributed among
the processors using the index of the space filling curve (Hilbert/Z-curve) [57]. The
index can be easily calculated from the tree code. In Fig. 2 the Hilbert-curve is visu-
alized with the dashed line passing through the lattice and the processors-IDs are
encoded with the color of the block.

Using space filling curves has two major advantages for our algorithm. Firstly, due
to locality properties of the space filling curve the communication between adjacent
blocks which do not share the same processors is kept at a minimum. Secondly, the
uniqueness of the curve ensures that trees with the same tree structure (i.e., same
grid Ωi) have identical processor distribution. This is advantageous when performing
pointwise operations between trees.

2.2 Block-based wavelet adaptation

Our adaptation algorithm is block-based, meaning that blocks are coarsened or
refined depending on the local regularity of the sampled function. Blocks can be
coarsened by leaving out every second point and merged with their four or eight
neighboring blocks in two and three space dimensions, respectively. Blocks can be
refined via interpolation at all dyadic points and subdividing them into four (2D) or
respectively eight (3D) new blocks. The procedure of recursive dyadic refinement
is known as interpolatory subdivision and was first introduced by Deslauriers and
Dubuc in [11, 12]. It was later shown by Donoho in [15] that the resulting interpola-
tion or scaling function can be used for constructing a multiresolution analysis. Our
approach is based on the discrete point value multiresolution framework of Harten
[28–30], which uses interpolating scaling functions of Deslauriers and Dubuc for

Adv Comput Math (2022) 48: 10 Page 7 of 40 10

discrete data representation. However, to obtain a better scale and frequency separa-
tion between the different scales we use lifted wavelets. Hence a low pass filter is
applied before downsampling the block. The filter coefficients of the coarsening and
refinement procedure (see Table 2) define the underlying wavelet scheme. The used
lifted Deslauriers-Dubuc wavelets correspond to biorthogonal Cohen-Daubechies-
Feauveau (CDF) wavelets [10]. We refer the reader to Appendix A for a detailed
explanation of the adaptation algorithm. In the following the adaptation algorithm
will be denoted by uε =adapt(u, ε, Jmin, Jmax). Here, the input and output func-
tions u, uε ∈ L2(D) are continuous and given in the block-based format outlined
above. The adaptation algorithm is limited to a minimal and maximal refinement
level Jmin, Jmax. Depending on the wavelet threshold ε blocks are coarsened, if the
absolute difference between a block sample and its interpolated values from a coarser
level is smaller than a level-dependent threshold that scales with ε (for details we
refer to Appendix A.3). The difference is referred to as a detail coefficient of the
wavelet basis. Therefore, the relative error between the input and output, i.e., the
wavelet compression, can be bounded by the wavelet threshold:

‖u − uε‖
‖u‖ ≤ ε. (6)

Here, the normalization of the wavelet basis determines the norm used in Eq. (6). For
this study we use biorthogonal wavelets, which are normalized in L2. In the following
we will denote all fields with an upper index ε, where details have been filtered with
the adaptation algorithm and can be thus expressed in a wavelet series with filtered
coefficients. Figure 3 shows an example of such a field. Here one snapshot of a
direct numerical simulation is block-decomposed and filtered for different threshold
values ε.

Fig. 3 Block-based adaptation of a flow past a cylinder for different thresholds ε. Shown is the vorticity
field ωε = ∂xvε

y − ∂yvε
x , which is computed after having applied the wavelet adaptation to the full state

vector uε = (vε
x , vε

y , pε). Each block represents B1 × B2 = 65 × 17 points. More details can be found in
Section 4.2.1

Adv Comput Math (2022) 48: 1010 Page 8 of 40

In Fig. 3 the block boundaries are visualized by a rectangular box. All blocks have
the same resolution B1 × B2 = 65 × 17. Smaller blocks correspond to higher tree
levels, i.e., smaller lattice spacing. With increasing ε the number of blocks decreases,
since less details are above the threshold.

3 Algorithm

In the following, we introduce the proper orthogonal decomposition (POD) as the
basis of our algorithm in Section 3.1. This section aims at providing a broad overview
on the state of the art techniques to compute PODs for large data sets in fluid
dynamics, namely the snapshot POD and the randomized singular value decompo-
sition (rSVD). For a more detailed explanation we refer the reader to [54] for the
POD and [27] for the rSVD. In Section 3.3 we generalize the snapshot POD using
wavelet adapted snapshot fields. We also propose a strategy for balancing wavelet
thresholding and POD truncation error in Section 3.4.

3.1 The snapshot POD and randomized SVD

Given are samples of a continuous vector-valued L2-function u(x, μ) ∈ R
K, K > 0,

x ∈ D sampled in some parameter interval {μi}Ns
i=1. The samples are called snap-

shots and are in the following indexed by ui = u(x, μi). Our algorithm solves the
following POD optimization problem

min{Ψ k}

Ns∑

i=1

‖ui −
r∑

k=1

〈ui , Ψ k〉Ψ k‖2, such that 〈Ψ k, Ψ l〉 = δkl , (7)

with the L2 inner product 〈·, ·〉 and associated norm ‖ · ‖ = √〈·, ·〉. We solve it with
the method of snapshots or strobes [47] since for data where the spatial resolution is
much larger than the number of snapshots Ns, Eq. (7) is reduced to a small eigenvalue
problem of size Ns × Ns ∼ O (100)

Cvk = λkvk for k = 1, . . . , r , (8)

for the correlation matrix

Cij = 1

NsV
〈ui , uj 〉 , (9)

together with the relation:

Ψ k = 1√
λkNs

Ns∑

i=1

(vk)iui k = 1, . . . , r . (10)

The method of snapshots is strongly connected to the singular value decomposi-
tion (SVD) [54], because left singular vectors correspond to the solution of Eq. (7)
and right singular vectors to vk , when assuming Euclidean space [54]. Respectively,
the eigenvalues λk = σ 2

k ≥ 0 are squares of the singular values. Furthermore, it is
known from the Eckart-Young-Mirsky theorem [16] that the resulting approximation

Adv Comput Math (2022) 48: 10 Page 9 of 40 10

error in the Frobenius norm, when truncating after the rth mode, is given by the sum∑Ns
k=r+1 σ 2

k of the remaining singular values.
However, caution must be taken when using this method instead of the SVD,

because the condition number κ(U) := σmax(U)/σmin(U) of the associated snapshot
matrix U is squared: κ(UT U) = κ(U)2. This can lead to inaccuracy of POD modes
with small singular values (see the famous example of Lächli [33]). Nevertheless,
one is often willing to accept this potential error in favor of a smaller problem size.

Another way of reducing the problem size, without squaring the condition number,
is using a randomized SVD algorithm, which is outlined in [27]. Here, an orthogo-
nal matrix Q ∈ R

M×q , q � Ns is formed which approximates the column space of
U ≈ QB. With its help, a singular value decomposition of the small q × Ns matrix
B = QT U is computed and the left singular vectors Ψ B

k are projected back onto the
full space via: Ψ k = QΨ B

k . Usually the orthogonal matrix is formed by a QR decom-
position taking q random samples of the column space of U. For a target number of
r modes one usually oversamples q = r + n by taking n = 5 or n = 10 additional
random samples [27]. However, if the singular values decay slowly, Q may not rep-
resent U well enough and costly tricks, like Power Iterations using additional passes
over the data, have to be applied [27]. Moreover, as pointed out in [27] for very
large matrices U the data cannot be loaded into fast memory and therefore the trans-
fer from the slow memory typically dominates the arithmetic. In contrast, the wPOD
algorithm presented in the next section seeks to avoid these problems by reducing the
relevant information of each single snapshot to fit it into the fast memory.

3.2 The weighted inner product and pointwise tree operations

In the wPOD algorithm, we follow the same approach as in the method of snapshots.
explained in the previous section (Section 3.1). However, we use the sparsity of our
wavelet block-based data representation to allow for an memory efficient compu-
tation of the POD basis. In contrast to the representation in terms of the snapshot
matrix, as used by the SVD, our data is represented in terms of a forest F or a col-
lection of trees (see Section 2.1). Here each snapshot ui (x) := u(x, μi) is associated
with a tree Ti on a hierarchical structured multiresolution grid Ωi , i = 1, . . . , Ns.
The leaves of the tree correspond to blocks, where each block p stores coefficients
{uj

p[k1, k2]}k1,k2 of the underlying basis {φj
k1,k2

}k1,k2 at tree level j . The interpolat-
ing basis allows to represent the data in a continuous form, when summing over all
blocks p ∈ �

j
i of each tree level j:

ui (x) =
Jmax∑

j=1

∑

p∈�
j
i

u(p)
i (x) for i = 1, . . . , Ns (11)

We can thus introduce the snapshot set:

U = {u(x, μ1), . . . ,u(x, μNs) | x ∈ D} , (12)

as the continuous counterpart of the snapshot matrix U. As mentioned earlier, our
algorithm is capable of handling 2D and 3D data fields on a rectangular domain

Adv Comput Math (2022) 48: 1010 Page 10 of 40

D ⊂ R
d , d ∈ {2, 3}. Note that with the new data representation in terms of functions

in the L2 Hilbert space, the inner product in the POD formulation has changed to

〈ui , uj 〉 :=
∫

D

uT
i (x)uj (x) dx . (13)

However, for inner products or any pointwise operation (+,-) between snapshots
ui , uj , represented on locally different grids Ωi, Ωj , it is required that both coeffi-
cient vectors ui , uj are of same length, i.e., expressed in the same basis. In contrast
to the discussed FEM methods [25, 51], this can be achieved very efficiently, because
the hierarchical grid definition allows to merge two grids by the union Ωij = Ωi∪Ωj

for the two snapshots involved. Figure 4 visualizes the grid merging procedure. In
Fig. 4a, the initial grids Ωi and Ωj are displayed together with their processor distri-
bution. In this example both trees have a fundamentally different tree structure and
processor distribution. In areas where Ωi has large details, Ωj does not and vice
versa. The aim of the union of both grids is to merge them, such that no detail of
both trees gets lost. This implies that merging both trees only involves refinement
operations, which are cheap when using wavelet up-sampling.

As explained in Section 2.1 trees with identical tree structure have identical pro-
cessor distribution because of our load balancing strategy by space filling curves. The
hvy-data, i.e., grid quantities of Ωi and Ωj are therefore on the same processor
(see Fig. 4b) after unification.

The unification enables us to calculate the inner product in Eq. (13) as a weighted
inner product

〈ui , uj 〉 = 〈ui , uj 〉M = uT
i Muj , (14)

where ui represent the vectorized entries of tree i and M is a positive definite and
symmetric matrix (explicitly given in Appendix A.4). In FEM literature this matrix
is often called mass matrix and has been used by [25, 51] in a similar approach.
With Eq. (14) we are able to calculate the inner product and the associated norm of

Fig. 4 Visualization of pointwise operations on multiresolution grids Ωi and Ωj . On the top row the
scalar fields ui and uj are shown, where blue colors represent 1 and white colors 0. Below each field the
corresponding processor distribution grid is displayed. Each color of the processing grid represents one
of the four processing units. Initial trees (Fig. 4a), unified tree structures (Fig. 4b) and the processed field
(Fig. 4c)

Adv Comput Math (2022) 48: 10 Page 11 of 40 10

our block-based multiresolution fields. Replacing the L2 inner products by weighted
inner products therefore generalizes the POD minimization problem in Eq. (7) to
multiresolution fields. With this intermediate result we are able to go one step further
to combine wavelet adaptation and POD truncation.

3.3 The wPOD algorithm

The wPOD algorithm proceeds in the following steps:

1. Read and Coarsen Data uε
i ← adapt(ui , ε, Jmin, Jmax)

In the first step of the algorithm we read all block-decomposed snapshots in U
and coarsen them for a given threshold ε using the wavelet adaptation scheme,
if the input fields are not already adapted. The adapted fields are denoted by uε .
This part of the algorithm is essential because it allows to keep only the most rel-
evant information (see Section 2.2) of the input data using wavelet compression
and therefore makes handling of large data feasible (see Section 4).

2. Computation of Correlation Matrix (C)εij = 1
NsV

〈uε
i , u

ε
j 〉

The main computational effort of the algorithm is the construction of all elements
of the correlation matrix Cε ∈ R

Ns×Ns , for which the inner product of locally
different resolved snapshots needs to be computed. For any pairwise operation
(+, −, 〈·, ·〉), we refine to a union of both grids as shown in Fig. 4. After the
operations (+,-) the resulting field is adapted again to the predefined threshold ε.

3. Solving the Eigenvalue Problem Cεvε
k = λε

kv
ε
k

After the correlation matrix Cε is constructed, we diagonalize it with Jacobi’s
method for real symmetric matrices DSYEV implemented in LAPACK [6]. As
described in [6] sec. 8, the chosen method computes all the eigenvalues and
eigenvectors close to machine precision. We therefore neglect errors made dur-
ing the diagonalization. In contrast to the construction of Cε , the computational
effort needed for diagonalization is relatively small.

4. Construction of POD Modes Ψ ε
k = 1√

λε
j Ns

∑Ns
i=1(v

ε
k)iu

ε
i

The elements of the correlation matrix are the inner products between two snap-
shots, i.e., the ith row/column contains the coefficients of ui represented by a
linear combination of all snapshots in U . Diagonalizing Cε means finding a basis
of coefficient vectors vε

k ∈ R
Ns which generate an optimal representation of U .

The representation in terms of orthonormal modes {Ψ ε
k} is computed according

to Eq. (10). The summation in Eq. (10) proceeds in multiple steps. In the first step
we copy Ψ ε

k ← (vε
k)1uε

1, after which we iteratively sum up Ψ ε
k ← Ψ ε

k + (vε
k)iu

ε
i

for i = 2, . . . , Ns in the second step and divide by the normalization factor.
5. Computation of POD Modes Coefficients aε

ki = 1
V

〈Ψ ε
k, u

ε
i 〉

The computation of the modes coefficients involves again a computation of the
inner product between the orthonormal modes Ψ ε

k and the snapshots uε
i . In most

cases, this step needs less evaluations of the scalar product since the number of
modes r should be small, r � Ns.

Adv Comput Math (2022) 48: 1010 Page 12 of 40

In summary, our algorithm generates sparse modes Ψ ε
k , k = 1, . . . , r , with

amplitudes aε
ki to approximate any of the snapshots ui ∈ U in terms of a linear

subspace

ui (x) ≈ ũε
i (x) =

r∑

k=1

aε
kiΨ

ε
k(x) for i = 1, . . . , Ns . (15)

In this notation, the upper index ε denotes the quantities, which are indirectly affected
by the wavelet threshold (e.g., aε

ki, C
ε
ij) or directly expressed as a truncated wavelet

series (e.g., ũε
i (x),Ψ

ε
k(x)). Furthermore, ũ denotes the truncation after the rth mode.

A comparison of the CPU time required in the individual steps of the wPOD
algorithm is shown in Fig. 20 (Appendix C).

3.4 Error estimation

Here, we discuss the dependency of the approximation error on the wavelet threshold
ε and the truncation rank r . Additionally, we explain how to choose both values in
order to obtain a given accuracy.

Therefore, we provide an error estimate of the approximation ũε
i in Eq. (15). The

approximation projects our data U = {u1, . . . ,uNs} onto a linear subspace spanned
by a set of r orthonormal modes {Ψ ε

k}k=1,...,r . The sparsity of the modes is determined
by the wavelet threshold ε (see Section 2.2) and the dimension of the subspace r shall
be much smaller than the number of snapshots: r � Ns. For given r, ε we define the
relative error of our approximation in the L2-norm,

EwPOD(r, ε) :=
∑Ns

i=1 ‖ui − ũε
i ‖2

∑Ns
i=1 ‖ui‖2

(16)

which can be split into two contributions, i.e., compression and truncation errors. We
thus have,

Ns∑

i=1

‖ui (x) − ũε
i (x)‖2 =

Ns∑

i=1

‖ui − uε
i + uε

i − ũε
i ‖2 (17)

≤
Ns∑

i=1

‖ui − uε
i ‖2

︸ ︷︷ ︸
compression error

+
Ns∑

i=1

‖uε
i − ũε

i ‖2

︸ ︷︷ ︸
POD truncation error

. (18)

Hereby, the relative error arising from thresholding details is defined by

Ewavelet(ε) := ‖ui − uε
i ‖

‖ui‖ (19)

and the relative error due to the truncation after the rth POD mode in Eq. (15) is:

EPOD(ε, r) :=
∑Ns

i=1 ‖uε
i − ũε

i ‖2

∑Ns
i=1 ‖uε

i ‖2
=
∑Ns

k=r+1 λε
k∑Ns

k=1 λε
k

(20)

Adv Comput Math (2022) 48: 10 Page 13 of 40 10

Further details can be found in Section 3.3. Using Eqs. (6) and (18)–(20), one obtains
for the total relative error of the wPOD (see Appendix B):

EwPOD(ε, r) ≤ EPOD(0, r) + Mr ε + ε2 ≈ EPOD(0, r) + ε2 , (21)

where Mr =
∑Ns

k=r+1 lk
∑Ns

k=1 λk

, (22)

when assuming perturbed eigenvalues λε
k = λk + lkε, with perturbation lk ∈ R.

An error bound for the perturbation of the eigenvalues is given for a simplified
correlation matrix in [9]. Mr is often small, in which case it can be neglected.

This is further discussed in the numerical example section. Note that in the limit
ε → 0 the wPOD error yields exactly the POD error. In the limit r → ∞ the POD
error vanishes and we are left with the wavelet compression error. These limits are
visualized for our numerical studies in Figs. 13 and 16.

In most of the applications the wavelet threshold ε will be chosen according to
the available memory of the hardware. If memory limitations are not an issue, it is
advantageous to balance the wavelet and POD truncation error for better efficiency.
Assuming that the approximation in Eq. (21) holds EPOD(ε, r) ≈ EPOD(0, r) (i.e.,
Mr ≤ ε), we can treat the two errors Ewavelet, EPOD independently. For a predefined
error E∗, we first fix the compression error choosing ε∗ ≤ √

E∗/2 and adjust the
truncation error by err= E∗ − (ε∗)2. The truncation rank r∗ is then chosen to com-
pensate the additional error introduced by the wavelet compression. In the case when
Mr is expected to be larger than ε, the errors cannot be balanced without having an
estimate of the POD eigenvalues. Eigenvalues λε

k , which are smaller than the com-
pression error, are not reliable. Therefore, we recommend the conservative setting,
choosing ε∗ < E∗, for a first estimate.

4 Numerical results

In this section, we test the wPOD algorithm, outlined in Section 3.3, on 2D and 3D
numerical data and assess its efficiency and precision. The algorithm is integrated
into the open source software package WABBIT [49] and can be called as a post-
processing routine.1

We provide two types of case studies: a synthetic test case (see Section 4.1) in 2D,
which is used to benchmark our code. We also compare it to the randomized singular
value decomposition (rSVD), outlined in Section 3.1, and case studies for 2D and 3D
data obtained by numerical simulation of the incompressible Navier-Stokes equations
in Section 4.2.

1The program has several options: wabbit-post --POD -- nmodes=<r> --error=<err>
--memory=<RAM> --adapt=<ε> --components=<K> --list=<ComponentList1>
· · ·-- list=<ComponentListK> in which the number of modes r or the truncation error err can
be specified. For the latter r is automatically chosen from the error criterion given in Section 3.3. The
algorithm requires specifying the number of components K together with K lists of files which stores the
snapshots of each component in a HDF5 format. Furthermore, the memory and adaptation level should be
chosen in accordance with given resources.

Adv Comput Math (2022) 48: 1010 Page 14 of 40

4.1 Synthetic test case

For the synthetic test case we define a combination of dyadic structures, inspired
by [38]:

u(x, y, t) =
R∑

k=1

ak(t)�k(x, y) ,

of R = 152 orthogonal modes �k : [0, 30]2 → R and temporal amplitudes ak :
[0, 2π] → R. The modes are smooth, two-dimensional bumps

�m+15n+1(x, y) = b(
√

(x − xm)2 + (y − yn)2) for n, m = 0, . . . , 14 . (23)

b(x) =
{

exp
(
− 1

1−x2

)
, x ∈ (−1, 1)

0, otherwise
(24)

placed at (xm, yn) = (1+2m, 1+2n) in a checkerboard pattern. Note that the modes
are orthogonal because of their non-overlapping support. Furthermore, we choose
oscillating amplitudes:

ak(t) = e−k/Δλ sin(πfkt) for k = 1, . . . , 152 (25)

with randomly shuffled frequencies fk ∈ {1, . . . , 152} and moderate decrease in
magnitude: Δλ = 3. We choose Ns = 27 equally spaced snapshots on a Nx ×
Ny = 1024 × 1024 initial grid. Before starting the algorithm the initial grid has to be
partitioned into blocks. This is done using a python routine available in the WABBIT
software package [17]. In our studies we block-decompose the initial grid in three
different configurations to compare the effect of different block sizes. The sizes of
the blocks are B = Nx/2Jmax + 1 = 17, 33, 65 with Jmax = 6, 5, 4, respectively.

4.1.1 Wavelet compression

First we examine the compression of the data with varying block size and thresholds
ε with 10−15 ≤ ε ≤ 10. Figure 5 shows the adaptation of a single snapshot for
ε = 1.0, 2.2×10−2, 1.0×10−5. For larger ε the number of blocks decreases, leading
to stronger compression of the data and increasing compression errors.

This behavior is quantified for varying block size B and ε in Fig. 6. Here we
plot the relative compression error Ewavelet and compression factor Cf ≤ 1, i.e., the

Fig. 5 Block-based adaptation of uε(x, y, t) at t = 42Δt for ε = 1.0, 2.2 × 10−2, 1.0 × 10−5 (from left
to right) and with B = 17

Adv Comput Math (2022) 48: 10 Page 15 of 40 10

Fig. 6 Compression error Ewavelet (left) defined in Eq. (19) and compression factor Cf (right) of the bump
test case using different block sizes B = Nx/2Jmax + 1, with maximal refinement levels Jmax = 4, 5, 6.
The compression factor is the fraction between the sparse and dense number of grid points / blocks

fraction between the number of blocks at a given threshold and the total number
of blocks available needed for the full grid. As can be seen from Fig. 6, a higher
maximal refinement level Jmax, i.e., smaller blocks, corresponds to smaller overall
compression factor, while the compression error Ewavelet is approximately the same.
This observation is expected, because smaller blocks enable better resolution of
local structures, however increasing the data handling effort. For all the compression
curves in the numerical examples in Figs. 6 and 11 we see the classical saddle shaped
error curve: with rapid error decay for small Cf � 0.05 (i.e., large ε � 10−2) until a
plateau is reached with a saddle point from which it begins to decay again. Regard-
less of the final error of our algorithm, it is recommended to set ε at the onset of the
plateau, since after the plateau is reached only little gain in precision is achieved.

Furthermore we emphasize that the compression error scales linear in ε, indepen-
dent from the chosen block size, which is an important property for the error control
of our algorithm. The sudden drop of the error for Jmax = 4 is due to the fact, that
after ε � 10−11 the blocks are refined to the maximal level.

4.1.2 POD truncation

Next we study the impact of the wavelet compression on the computed POD modes
and the overall approximation error. For ε = 10−5, Fig. 7 visualizes the first three
modes and the corresponding amplitudes obtained with the wPOD algorithm. Note
that the modes and amplitudes of the POD problem Eq. (7) are only unique up to
an orthogonal transformation. Hence the initial input structures �k, ak , defined in
Eqs. (23) and (25), are not exactly recovered by the wPOD. However, we see that the
magnitude of the amplitudes decreases and its frequency increases with increasing
mode number. Moreover one observes that the computational grid is nicely adapted
to the structure of the modes.

Additionally, we estimate the truncation error EPOD(ε, r) and the total error
EwPOD(ε, r) in the L2-norm, as defined in Eq. (16). We compare the errors for
10−5 ≤ ε ≤ 1.0, r ≤ 30 in Fig. 8. In these plots the impact of the wavelet adaptation,
corresponding to blue lines with ε > 0, is visualized and compared to the classical

Adv Comput Math (2022) 48: 1010 Page 16 of 40

Fig. 7 First three modes �ε
k and their amplitudes aε

k (ti), k = 1, 2, 3, for ε = 10−5. Blocks are of size
B = 17

snapshot POD procedure corresponding to ε = 0, which is drawn in black. The expo-
nential decay of the eigenvalue spectra, given by the magnitude of the input modes
|ak| ∼ exp(k/Δλ), is nicely recovered in the ε = 0 case up to values r � 60 below

Fig. 8 Relative errors EPOD (top, left) (see definition in Eq. (20)) and EwPOD (top, right) (see definition in
Eq. (16)) as a function of the truncation rank r and the wavelet threshold ε. Difference between classical
POD and wPOD compared to the compression error defined in Eq. (16) (bottom). The error bars indicate
the minimal and maximal value of ΔE(r, ε) = |EPOD(r, 0) − EwPOD(r, ε)| for all ranks 1 ≤ r ≤ 30 and
the markers the mean ΔE(ε) = 1/30

∑30
r=1 ΔE(r, ε). The colors vary from bright blue at ε = 1.0 to black

at ε = 0.0. Blocks are of size B = 17

Adv Comput Math (2022) 48: 10 Page 17 of 40 10

machine precision. For increasing ε we see that the eigenvalues become increas-
ingly distorted, as expected. However, the eigenvalue distortion does not influence
the overall approximation error if epsilon is chosen with care (see Section 3.4). In
fact the total approximation error converges approximately with ε2 to the exact val-
ues as the difference in Fig. 8 (bottom) shows. The presented results are independent
of the chosen block size B, although only B = 17 is used in the shown figures.

4.1.3 Comparison to randomized SVD

The overall purpose of our method is to be able to fit the snapshot data into the fast
memory by tuning ε, in order to compute the POD without having to address the slow
memory again, after the data has been compressed. This enables us to cope with large
data sets. Therefore, a comparison to other methods suited for large data like the ran-
domized SVD suggests itself. We follow the algorithm outlined in Section 3.1 taken
from [27]. For a fair comparison we refrain from power iterations, which would need
additional passes over the slow memory and we use n = 5 extra random samples as
suggested in [27]. Hence for a target rank of r∗ = 30 we take q = 35 random samples
of our snapshot matrix U ∈ R

M×Ns , M = 10242, Ns = 27 to compute an orthogonal
matrix Q ∈ R

M×q , which approximates the column rank of U. The computation of
Q however is only feasible if the random samples fit in the fast memory. Therefore,
the minimum amount of memory needed by the rSVD is given by SrSVD = Mq in
units of the floating-point arithmetic. In contrast the wPODs memory requirements
in units of the floating-point arithmetic: SwPOD = N tot

blocksB
2 depend on the total

number of blocks N tot
blocks in the snapshot set. Nevertheless, SwPOD is tunable with ε,

but increasing ε also increases the compression error. To compare both methods we
estimate EwPOD(r, ε) as before in a range from 10−5 ≤ ε ≤ 1 and r up to r∗ = 30
together with the relative error

E(r)SVD(r) = ‖U − �̃�̃Ṽ
T ‖F /‖U‖F (26)

of the truncated (r)SVD in the Frobenius norm. Here �̃ ∈ R
M×r , Ṽ ∈ R

Ns×r are
matrices, with columns composed of all spatial modes as orthonormal vectors Ψ k ∈
R

M and the corresponding temporal coefficients vk ∈ R
Ns and �̃ ∈ R

r×r contain
the POD eigenvalues λk as singular values σk = √

λk on the diagonals. A direct
comparison of the total approximation errors E(r)SVD, EwPOD defined in Eqs. (16) and
(26), respectively, is shown in the left of Fig. 9. In both figures the wPOD was set up
with ε = 3.6 × 10−5 and Jmax = 5, such that SwPOD ≈ SrSVD.

One important aspect of this comparison has to be highlighted first. The perfor-
mance of the rSVD and wPOD strongly depends on the data. The wPOD will always
benefit from data with localized smooth structures, but it will be less efficient than
the rSVD for cases which are distorted by random noise. In our studies the oscillating
bump structures are very localized; therefore, the wPOD has an advantage over the
rSVD. In fact wPOD needs less memory than the rSVD to achieve the same overall
error as shown in the studied parameter range, see Fig. 10.

Adv Comput Math (2022) 48: 1010 Page 18 of 40

Fig. 9 Comparison of the total approximation errors E(r)SVD,EwPOD for Δλ = 3 (left) and Δλ = 100
(right). As reference we plot the exact values exp(−k/3) and exp(−k/100) indicated by a black line. The
rSVD is computed with 35 random samples of U and the wPOD set up with ε = 6 × 10−3 and Jmax = 5,
to ensure approximately the same memory consumption. The inset shows a zoom

A very interesting case, that cannot be efficiently dealt with by the rSVD, is the
case of slowly decaying singular values. Here, random sampling can hardly cap-
ture the column rank of U, since all columns are nearly equally important. Note that
also the SVD algorithm implemented in python’s numpy package (using LAPACK,
the implicit zero-shift QR algorithm after reducing U to bidiagonal form) exhibits
numerical instabilities due to round-off errors. These errors occur, when the distance
between the singular values gets close to their absolute value, which is especially
visible for the case of slowly decaying singular values (see Fig. 9). This is not the
case for the wavelet POD, as shown in Fig. 9. However, small deviations from the
expected error decay ∼ exp(−k/100) are visible. For this case we have chosen all
parameters as before, except that the magnitude of the modes in Eq. (25) decays
much slower with Δλ = 100. This result demonstrates that our method can be used
in the combination with large model order reduction problems, which suffer under
slowly decaying eigenvalues or singular values. We would like to highlight that espe-
cially in large transport dominated systems, as they often occur in fluid dynamics,

Fig. 10 Memory consumption vs. deviation from the exact POD values. Comparison between rSVD and
wPOD. On the left we show the test case with Δλ = 3 and on the right Δλ = 100. The horizontal dashed
lines mark the difference between the rSVD and the SVD using q = 35 random samples

Adv Comput Math (2022) 48: 10 Page 19 of 40 10

MOR is negatively impacted by slowly decaying singular values as reported in [40].
Therefore, our method could be very useful in the treatment of such problems. We
will come back to this in Section 4.2.4, where we compute a POD of a bumblebee in
forward flight.

4.2 Application to 2D and 3D numerical flow data

In this section we compute a sparse POD basis of 2D and 3D flow data, computed
with WABBIT. In the first study, we use data from a numerical simulation with an
equidistant grid of a 2D flow past a cylinder. In the second application, we apply the
algorithm to highly resolved 3D data of a flapping flight simulation of a bumblebee
[19].

4.2.1 2D case— Von Kármán vortex street

In this first example, our dataset U results from a 2D simulation of an incompress-
ible flow past a cylinder using the artificial compressibility method computed with
WABBIT. Details about the software can be found in [19]. For this study the block
structured grid of WABBIT is fixed at the resolution Jmax = 6, with (B1, B2) =
(65, 17) and domain size D := [0, 64] × [0, 16]. This is equivalent to an equidis-
tant grid of 4096×1024 grid points. Each snapshot has three components u = (v, p),
where v denotes the velocity and p the pressure. For this case study we chose the vor-
tex street for a Reynolds number Re = 200, because it is known to have fast decaying
POD truncation errors. The Reynolds number Re = 2v∞R/ν is based on the cylin-
der radius R = 1, freestream velocity v∞ = 1 and kinematic viscosity ν = 0.01.
The simulation was run until a stable Kármán vortex shedding was achieved. From
this point onwards, we sample the solution in the time interval 500 ≤ t ≤ 612
with Δt = 0.5, resulting in Ns = 225 snapshots. The relevant parameters for our
algorithm are summarized in Table 1. For concise overview we only show the scalar-
valued vorticity ω = ∇ × v computed from the velocity components of the state
vector in Figs. 3 and 12 and the curl of the two velocity components of the POD basis
in Fig. 21 in Appendix C.

Table 1 Parameters of the numerical test cases. Here ε∞ is the wavelet threshold with CDF4,4 wavelets
being normalized in L∞

Von Kármán Vortex Street Bumblebee

Parameter Value Parameter Value

Number snapshots Ns 225 Number snapshots Ns 41

Resolution N1 × N2 4096×1024 Resolution (Jmax, Bα, ε∞) (7, 23, 0.01)

Domain size L1 × L2 64 ×16 Domain size L3 83

Reynolds number Re 200 Reynolds number Re 2000

Adv Comput Math (2022) 48: 1010 Page 20 of 40

Fig. 11 Compression error and compression factor Cf of the vortex street. Left: The compression error
in the L2-norm is bounded by ε, drawn with dashed line (). Right: Relative error in the L2-norm vs.
compression factor. For direct comparison the vertical axis limits of both figures are identical

4.2.2 Wavelet compression

As in the synthetic test case in Section 4.1, we first study the compression of the
flow data. To this end, we sample Ewavelet(ε) of one representative snapshot u at
t = 550 with different ε ∈ {10−8, 10−7, . . . , 1}. In Fig. 11 we plot the relative
compression error Ewavelet against the wavelet threshold ε (left) and against the com-
pression factor Cf (right). In contrast to the scalar field in the synthetic example,
the thresholded quantity is vector valued. Therefore, we normalize each state vec-
tor component before thresholding. All norms in the plots are vector norms. Note,
that for the threshold ε = 0.1 the grid is on the coarsest resolution (j = 1) with 4
blocks only (corresponding blocks are shown in Fig. 3). This explains why the com-
pression errors beyond ε = 0.1 do not differ. Similarly ε = 1 × 10−8 corresponds
to the finest resolution at grid level j = Jmax and the error in Fig. 11 drops to zero.
However, as mentioned earlier, for maximal performance the wavelet threshold ε

should be located at the onset of the plateau, which is reached at ∼ 1 × 10−2 (i.e.,
Cf ∼ 0.035). Comparing this observation with the block distribution in Fig. 3, one
observes that smaller values of ε produce denser grids, with only little gain in pre-
cision. It is remarkable that according to Fig. 11 less than 3.5% of the actual data is
needed to represent the full data with an L2-error less than 0.5�. At this compression
level we have compressed the full data with 225 snapshots from ∼ 24 to ∼ 0.84GB,
which makes it easily manageable for most laptops.

4.2.3 POD truncation

We will now study the error behavior of the wPOD numerically for fixed threshold
ε. To this end, we compute EPOD(ε, r), EwPOD(ε, r) for ε ∈ {10−8, 10−7, . . . , 1}.
Three calculated modes and their temporal coefficients are visualized with the cor-
responding block structure in Appendix C, Fig. 21. Furthermore, we compare the
reconstruction ũε in Fig. 12 for the dense case with ε = 0 (right column) and one
adaptive case ε = 10−2 (left column) using r = 2, 6, 10 modes. The comparison

Adv Comput Math (2022) 48: 10 Page 21 of 40 10

Fig. 12 Direct comparison between sparse reconstruction ũε with ε = 10−2 (left) and dense reconstruc-
tion with ε = 0.0 (right) using r = 2, 6, 10 modes (from top to bottom). In both columns we display the
vorticity ω̃ε = ∂x ṽε

y − ∂y ṽε
x of the reconstructed velocity components (ṽε

x , ṽε
y)

shows that with increasing number of modes the typical vortex structure is recovered.
No qualitative differences, except local changes in resolution, can be seen, when
comparing the adaptive and non-adaptive results.

For a quantitative analysis we have plotted the total L2-error and the truncation
error in Fig. 13. In both plots the impact of the wavelet adaption (corresponding to
ε > 0, blue lines) is visualized and compared to the results of the classical POD pro-
cedure (corresponding to ε = 0, black line). The numerical data show the behavior
stated in Section 3.4: With the wavelet adaption of the snapshots, errors are intro-
duced, which lead to distortion of the POD eigenvalue problem and compression
errors in the POD basis.

The perturbation lk of the eigenvalues is especially visible in EPOD (lower left plot
in Fig. 13) for the low energy modes (r > 30), corresponding to small eigenvalues. In
this regime the distorted eigenvalues λε

r = λr + lr ε fluctuate around the exact value
λr (black markers). For the smallest eigenvalues the relative fluctuation can lead to a
total failure of the algorithm, with even negative eigenvalues. This regime, however,
can be ignored, since the total error EwPOD will be dominated by the compression
effects for large r .

Figure 13 (upper left) shows that the error behavior of EwPOD is dominated by the
truncation error EPOD for small number of modes r . With increasing r the truncation
error decreases, while the error introduced by the compression remains constant. This
leads to a saturation of the total error, as soon as the truncation error is smaller than
the error due to compression. This saturation effect is not a special case of the chosen
wavelet compression scheme, as it also appears in finite element schemes as well, see
for instance [24, 51]. However, the wavelet basis has a major advantage over finite
element schemes in this setting, since the grids are hierarchically structured, which is
easier to handle and computationally efficient. In fact, no additional computations for
“(i) collision detection, (ii) mesh intersection (detect intersection interface) and (iii)

Adv Comput Math (2022) 48: 1010 Page 22 of 40

Fig. 13 Relative errors EwPOD for the vortex street without error control (upper left) and with con-
servative error control (upper right). In the lower left the relative errors of the POD (EPOD) and the
absolute difference between the POD results and the wPOD with conservative error control (lower right):
ΔE(r, ε) = |EPOD(r, 0) − EwPOD(r, ε)|. Note, that the difference remains below ε in the conservative error
setting. In all plots we vary the colors from bright blue at ε = 1 to black at ε = 0

integration of complex polyhedra” [24, p. 9] or special vertex bisection triangulation,
as discussed in [51], are needed.

If we choose the conservative error setting ε∗ < E∗, recommended in Section 3.4,
with for example ε∗ = 0.1E∗ and truncate all modes for which EPOD(ε∗, r) ≤ E∗
we obtain the results shown in the upper right of Fig. 13. This is essentially the
same figure as shown in the left, but all points are excluded which do not fulfill the
conservative error criterion. With the help of the conservative error setting, we are
able to control the errors introduced by the perturbation of the eigenvalues. Therefore,
the difference |EwPOD(ε, r) − EPOD(0, r)|, shown in the lower right of Fig. 13, stays
below ε.

4.2.4 3D case— insect flight

The data come from a three-dimensional, highly resolved block-based adaptive sim-
ulation of a bumblebee in forward flight using WABBIT [49]. A summary of relevant
parameters is given in Table 1. Additional details of the adaptive flight simulation
can be found in [19].

One representative snapshot is shown in Fig. 14a together with the reconstruction
of our algorithm using either 5 (Fig. 14b) or 15 modes (Fig. 14c). Additionally we
plot some selected modes in Fig. 15. The wPOD algorithm is applied to the vorticity

Adv Comput Math (2022) 48: 10 Page 23 of 40 10

Fig. 14 Comparison between a bumblebee snapshot at time ti , i = 13 a) and its POD reconstruction ũε
i

using 5 modes b) and 15 modes c) with ε = 0.01. Shown are two isosurfaces of the magnitude of vorticity,
i.e., ‖ curl(v)‖2 = 50 and 100. The rigid body of the bumblebee is displayed in gray. The grid structure
is indicated behind. Staircase effects at the wings are indicated in Fig. 14b. These artifacts appear when
POD is applied to sharp structures or discontinuities which move

vector w = curl(v), which is computed from the velocity v. Two isosurfaces of the
magnitude of the vorticity, 50 and 100, are shown in Figs. 14 and 15.

The moving wing geometry causes large gradients of the flow field at the inter-
faces of the object. This large gradients move with the flapping wing and cause major
problems to the POD, like staircase effects (see Fig. 14b) of the reconstructed field
with slowly decaying energy error (see Fig. 16). This drawback of the POD is known
for transport dominated fields with large gradients and is theoretically studied in [26,
40] with help of the Kolmogorov n-width. Although methods like [32] are available
for parametric moving discontinuities, we obviate from using them here, since it is
not within the scope of this work. However, wavelet adaptation reduces the amount
of computational resources needed in favor of additional accuracy, like increased
number of modes. In fact, for the data presented here (Jmax = 7, B = 23, ε∞ =
0.01, Nblocks ≤ 8000) the factor in memory savings in comparison to the dense grid

Adv Comput Math (2022) 48: 1010 Page 24 of 40

Fig. 15 Bumblebee modes Ψ ε
i , with i = 1, 9, 18, 27 and ε = 1 × 10−4 in row major order. The modes

are visualized as isosurfaces of the magnitude ‖Ψ ε
i ‖2 = 10, 20 with colors green and orange, respectively.

For reference, the rigid body of the insect is shown in gray. The adaptive grid is only indicated on the left
of each figure

(Nblocks = 23Jmax = 2097152) is larger than 260. This factor can be further increased,
when increasing ε. A full POD would be prohibitive because of its tremendous mem-
ory demand of approximately 31 TB (Nb = 23JmaxNs Blocks with 0.4 MB each). It
should be further noted that, to the best of our knowledge, all previous results in the
literature including [9, 20, 24, 25, 32, 51] have been only applied to 1D or 2D cases.

The statements about the error made in Section 3.4 also hold for the adaptive data:
Here the slowly decaying eigenvalues are rather large compared to their perturba-
tion. Hence, Mr is negligible and the total error behavior is mainly dominated by
EPOD(r, 0) and Ewavelet(ε) (see Fig. 16, left). For the case of ε = 1.0, it can be nicely
seen that the truncation error dominates the total error, after it falls below the com-
pression error plateau Ewavelet(ε)

2 at r ≥ 20. In Fig. 16 (right) the difference between
the total error EwPOD and the POD truncation error EPOD is shown. Note that for adap-
tive input data of the bumblebee EPOD(0, r) can be only assessed approximately, since

Adv Comput Math (2022) 48: 10 Page 25 of 40 10

Fig. 16 Total relative error, EwPOD, of the wPOD (left) and difference of the wPOD and POD error,
ΔE(r, ε) = |EPOD(r, 0) − EwPOD(r, ε)| (right). The error bars in the right figure indicate the minimal and
maximal value of ΔE for all ranks 1 ≤ r ≤ 30 and the markers the mean ΔE(ε) = 1/30

∑30
r=1 ΔE(r, ε)

wavelet details have been already discarded during the generation of the data. Hence
for the adaptive case EPOD(0, r) means that no additional compression errors were
introduced during the wPOD algorithm. The difference scales quadratically with the
compression error Ewavelet(ε)

2 ∼ ε2, drawn as dashed line in Fig. 16 (right).
From these results we thus can conclude that our algorithm is able to reproduce

the POD eigenvalue spectra of the original data, even for larger thresholds ε > 0.01
within a predefined precision given by the squared wavelet compression error. As
shown in our synthetic test case, this would be a challenge for the randomized SVD,
since the eigenvalues decay slowly.

5 Conclusion and outlook

In this paper we presented a novel method to calculate the proper orthogonal decom-
position for two or three-dimensional data, typically velocity or vorticity fields,
given either on equidistant or block-based adaptive grids, the later obtained with
wavelet adaptation. The so-called wPOD algorithm endows the method of snapshots,
proposed by Sirovich [47] with nonlinear approximation for computing the POD effi-
ciently. Our method makes use of a multiresolution framework called WABBIT to
spatially adapt vector fields and thus generating sparse POD modes using wavelet
compression on block-based grids.

The introduced compression errors of the POD basis are well controlled using
nonlinear approximation by means of wavelet thresholding. While the compression
error depends linearly on the chosen threshold ε, the total energy error of the wPOD
procedure scales with ε2. The wavelet compression and POD truncation errors can
thus be balanced, assuming that the perturbation of the eigenvalues remains suffi-
ciently small. In comparison to the classical POD, the compression results in overall
savings in memory and computational resources, while obtaining approximately the
same error. As a consequence, data from highly resolved 3D direct numerical simu-
lation computed on massively parallel platforms can be processed on much smaller
systems.

Adv Comput Math (2022) 48: 1010 Page 26 of 40

However, these savings in terms of computational effort are accompanied by addi-
tional overhead for handling the tree-like data structure. Hence, the wPOD cannot
yet compete with equivalent randomized techniques [27, 56] in terms of CPU time,
if the memory is not a limiting factor. Nevertheless, we were able to show that
our method can handle data efficiently, when the singular values decay slowly. In
this case, the proposed wPOD does indeed outperform the rSVD. Furthermore, our
method expresses the correlation matrix in terms of the underlying wavelet basis,
similar to what has been done in the context of finite elements in [24]. However,
using the scaling relations of wavelets allows to express the inner products (Eq. (13))
effectively and thus avoids many problems associated with finite element schemes,
cf. listed caveats in [24, p. 6].

The framework could be extended to non-periodic grids using boundary adapted
wavelets (see, e.g., [43] for applications to channel flows) as well as to other algo-
rithms like DMD [44], shifted POD [41] or multiscale POD [38]. Furthermore, our
framework provides interesting perspectives for reduced order models introducing
adaptive POD-Galerkin simulations of PDEs, a direction we envisage in future stud-
ies. It has the potential to become a practical tool for turbulence research when
combining it with wavelet denoising for coherent vortex structures [21, 22] as we are
able to split the flow into coherent structures and incoherent background noise before
computing a POD basis.

Finally, in combination with wavelet denoising, the proposed wPOD technique
could be likewise applied to highly resolved flow images obtained experimentally,
e.g., using particle image velocimetry or Schlieren imaging.

Appendix A. Block-based wavelet adaptation

A.1 Refinement and coarsening

For the wavelet adaptation scheme, here illustrated for the two-dimensional case,
we assume real valued and continuous L2-functions u(x, y), such as the pressure
or velocity component of a flow field. The function is sampled on a block-based
multiresolution grid as shown in Fig. 1, with maximum tree level Jmax, block size
B1 × B2 and a ghost node layer of size g, needed for synchronization. The sampled
values on a block Bj

p are denoted by:

x
j
p,k1

= xp + k1Δxj k1 = −g, . . . , B1 + g−1 (27)

y
j
p,k2

= yp + k2Δyj k2 = −g, . . . , B2 + g−1 (28)

uj [p, k1, k2] := u
(
x

j
p,k1

, y
j
p,k2

)
(29)

For a block refinement j → j +1 the lattice spacings are halved and dyadic points
are added to the block, as shown in Fig. 17.

Adv Comput Math (2022) 48: 10 Page 27 of 40 10

Fig. 17 Dyadic grid refinement and coarsening of a single block. Refinement: First the block Bj
p is refined

by midpoint insertion and then split into four new blocks (Bj

p0,B
j

p1,B
j

p2,B
j

p3). Coarsening: After a low
pass filter is applied all midpoints are removed and merged into one block

The values at the refined blocks can be obtained by the refinement relation:

ûj+1[p, l1, l2] =
B1+g−1∑

k1=−g

B2+g−1∑

k2=−g

hl1−2k1hl2−2k2 uj [p, k1, k2] (30)

where hk denotes the weights of the one-dimensional interpolation scheme:

ϕ(x) =
N∑

k=−N

hkϕ(2x − k). (31)

In the following, we will refer to Eq. (30) as the prediction operation P
j+1
j : uj �→

ûj+1 as it was introduced for point value multiresolution in [28]. Using Eq. (31) one
can show that Eq. (30) is equivalent to the continuous refinement relation:

û(p)(x, y) =
B1+g−1∑

k1=−g

B2+g−1∑

k2=−g

uj [p, k1, k2]ϕj
p,k1,k2

(x, y) , (32)

where ϕ
j
p,k1,k2

(x, y) = ϕ

⎛

⎝x − x
j
p,k1

Δxj

⎞

⎠ϕ

⎛

⎝y − y
j
p,k2

Δyj

⎞

⎠ (33)

is the two-dimensional tensor product of one-dimensional interpolating scaling
functions ϕ(x).

Adv Comput Math (2022) 48: 1010 Page 28 of 40

Table 2 Filter coefficients hk and dual filter coefficients h̃k of the Cohen-Daubechies-Feauveau (CDF
4,4) wavelets applied in the prediction/restriction operation

continuous k −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

ϕ̃ h̃k − 1
256 0 9

128 − 1
16 − 63

256
9
16

87
64

9
16 − 63

256 − 1
16

9
128 0 − 1

256

ϕ hk − 1
16 0 9

16 1 9
16 0 − 1

16

When a block is coarsened, the tree level is decimated by one: j + 1 → j and
every second grid point is removed. The values at the coarser level are obtained by
the coarsening relation:

uj−1[p, l1, l2] =
B1+g−1∑

k1=−g

B2+g−1∑

k2=−g

h̃2l1−k1 h̃2l2−k2 uj [p, k1, k2] (34)

In the notation of Harten [28] coarsening is called decimation and Eq. (34) is denoted
by D

j−1
j : uj → uj−1 in the following. After decimation the block will be merged

with its neighboring blocks, as shown in Fig. 17. Similar to the continuous refinement
relation Eq. (32) there is a continuous counterpart for coarsening: the dual scaling
function ϕ̃, which satisfies

ϕ̃(x) =
N∑

k=−N

h̃kϕ̃(2x − k). (35)

Instead of using Deslauriers-Dubuc (DD) wavelets, as in the framework of
Harten [28], we use lifted Deslauriers-Dubuc wavelets, i.e., biorthogonal Cohen-
Daubechies-Feauveau wavelets of fourth order (CDF 4,4) with filter coefficients hk

and dual filter coefficients h̃k listed in Table 2. The lifted DD wavelets allow a better
scale separation and can be easily implemented replacing the loose downsampling
filter by a low pass filter before coarsening the grid.

A.2 Computing wavelet coefficients and adaptation criterion

With the definition in Eqs. (30) and (34) we have introduced a biorthogonal mul-
tiresolution basis {ϕ̃j

p,k1,k2
, ϕ

j
p,k1,k2

}, which can approximate any continuous function

u ∈ L2(D) arbitrary close. This aspect is the main property of a multiresolution
analysis and can be used to relate and compare samples at different resolutions, i.e.,
different scales.

The difference between two consecutive approximations can be represented by a
wavelet with its corresponding coefficients

dj [p, k1, k2] =
[
uj − P

j

j−1D
j−1
j uj

]

p,k1,k2
= uj [p, k1, k2] − ûj [p, k1, k2] (36)

known as wavelet details.

Adv Comput Math (2022) 48: 10 Page 29 of 40 10

As shown in one space dimension by Unser in [52] for biorthogonal wavelets the
difference dj between two consecutive approximations is bounded for sufficiently
smooth L2 functions u. The bound depends on the local regularity of u and the order
N (here N = 4) of the scaling function:

‖dj‖ = ‖u − û‖ ≤ Cϕ,ϕ̃(Δxj)N‖u(N)‖ (37)

where Δxj ∼ 2j is the step size, Cϕ,ϕ̃ is a constant independent of u. This result
can be understood as an interpolation error, since the CDF4,4 filter can be viewed as
an interpolation of the averaged data D

j−1
j uj . From Eq. (37) we can thus conclude:

since the approximation error of the interpolation scheme depends on the smoothness
of the sampled function and the lattice spacing on the block, we can increase the local
lattice spacing of the block for blocks where the function is smooth and keep the
fine scales only for blocks where up is not smooth. This is achieved by coarsening
the block, as decreasing the tree level j increases the lattice spacing. For an intended

Adv Comput Math (2022) 48: 1010 Page 30 of 40

approximation error we therefore define the wavelet threshold ε together with the
coarsening indicator iε(Bj

p):

iε(Bj
p) :=

⎧
⎪⎨

⎪⎩

1 if max
k1=0,...,B1−1
k2=0,...,B2−1

| dj [p, k1, k2] |< ε

0 otherwise

(38)

which marks the block for coarsening. For vector-valued quantities u =
(u1, u2, . . . , uK), a block will be coarsened only if all components indicate coars-
ening. The pseudocode in Algorithm 1 outlines the wavelet adaptation algorithm for
vector-valued quantities. For the sake of completeness we will put this algorithm in
relation to the underlying wavelet representation.

A.3Wavelet representation in the continuous setting

For completeness of this manuscript we give a detailed description of the underlying
wavelet representation in a concise way. For the interested reader we recommend
Ref. [50] for a succinct introduction to biorthogonal wavelets and to Refs. [11, 12,
15, 35] for a more detailed description.

Assuming that we have sampled a continuous function u ∈ L2(D) inside a domain
D ⊂ R

2 on an equidistant grid corresponding to refinement level Jmax, we can block-
decompose it in terms of Eq. (29). By choosing j = Jmax in Eq. (32) and summing
over all blocks p, we can thus represent u in L2 using a basis of dilated and translated
scaling functions {ϕj

p,k1,k2
}:

u =
∑

p∈�Jmax

u(p) =
∑

λ∈�
Jmax

c
Jmax
λ ϕ

Jmax
λ . (39)

Here we have introduced a multi-index λ = (p, k1, k2) ∈ �
j := �j ×

{0, . . . , B1−1} × {0, . . . , B2−1} for ease of notation. With this notation we can
rewrite Eq. (39) in a wavelet series

u =
∑

λ∈�
Jmin

c
Jmin
λ ϕ

Jmin
λ +

Jmax−1∑

j=Jmin

∑

λ∈�
j

3∑

μ=1

d
j
μλψ

j
μ,λ, (40)

where the interpolating scaling basis {ϕJmin
λ }

λ∈�
Jmin approximates u at the coarsest

scale Jmin and the wavelet basis {ψj
μ,λ}μ=1,2,3,λ∈�

j≥Jmin contains all the additional

information necessary to construct u.
In the CDF4,4 setting we have biorthogonal scaling functions:

ϕ
j
λ(x, y) = ϕ

(
x−x

j
λ

Δx
j
p

)
ϕ

(
y−y

j
λ

Δy
j
p

)
, ϕ̃

j
λ(x, y) = ϕ̃

(
x−x

j
λ

Δx
j
p

)
ϕ̃

(
y−y

j
λ

Δy
j
p

)

with 〈ϕj
λ1

, ϕ̃
j
λ2

〉 = δλ1,λ2

Adv Comput Math (2022) 48: 10 Page 31 of 40 10

and the associated three biorthogonal wavelets (in the d-dimensional case we have
2d − 1 wavelets see [39, p. 42])

ψ
j

1,λ(x, y) = ψ

(
x−x

j
λ

Δx
j
p

)
ϕ

(
y−y

j
λ

Δy
j
p

)
, ψ̃

j

1,λ(x, y) = ψ̃

(
x−x

j
λ

Δx
j
p

)
ϕ̃

(
y−y

j
λ

Δy
j
p

)

ψ
j

2,λ(x, y) = ϕ

(
x−x

j
λ

Δx
j
p

)
ψ

(
y−y

j
λ

Δy
j
p

)
, ψ̃

j

1,λ(x, y) = ϕ̃

(
x−x

j
λ

Δx
j
p

)
ψ̃

(
y−y

j
λ

Δy
j
p

)

ψ
j

3,λ(x, y) = ψ

(
x−x

j
λ

Δx
j
p

)
ψ

(
y−y

j
λ

Δy
j
p

)
, ψ̃

j

1,λ(x, y) = ψ̃

(
x−x

j
λ

Δx
j
p

)
ψ̃

(
y−y

j
λ

Δy
j
p

)

with 〈ψj1
μ1,λ1

, ψ̃
j2
μ2,λ2

〉 = δμ1,μ2δλ1,λ2δj1,j2

for the horizontal (μ = 1), vertical (μ = 2) and diagonal (μ = 3) direction. The
wavelet and its dual are defined by the same scaling relations as ϕ and ϕ̃:

ψ(x) =
N∑

k=−N

gkψ(2x − k) and ψ̃(x) =
N∑

k=−N

g̃kψ̃(2x − k). (41)

The filter coefficients are given by gk = (−1)1−nh̃k and g̃k = (−1)1−nhk with
hk, h̃k listed in Table 2. The components of the scaling and wavelet coefficients (cj

λ

and d
j
λ) are determined via component-wise projection of Eq. (40) onto the dual basis

{ϕ̃j
λ, ψ̃

j
μλ}:

c
j
λ = 〈u, ϕ̃

j
λ〉, d

j
μλ = 〈u, ψ̃

j
μλ〉 where λ = (p, k1, k2) (42)

assuming that 〈ϕj
λ1

, ψ̃
j
λ2

〉 = 〈ψj
λ1

, ϕ̃
j
λ2

〉 = 0 are orthogonal. Note that 〈a, b〉 =∫
D

a(x)b(x)dx denotes the L2-inner product.
In most wavelet adaptation schemes, one truncates Eq. (40) such that only

detail coefficients are kept which carry significant information. According to [45]
“this can be expressed as a nonlinear filter”, which acts as a cutoff wavelet coeffi-
cients with small magnitude. The cutoff is given by the threshold parameter ε > 0.
However, in contrast to these schemes, our block-based adaptation groups the detail
coefficients in blocks, i.e., all details on the block are kept if at least one detail
carries important information. This seems to be inefficient at first sight, because
unnecessary information is kept, but grouping details in blocks is reasonable, since
the block-based adaptation is computationally efficient for MPI distributed architec-
tures. Moreover, groups of significant details are often nearest neighbors, rather than
a single significant detail in a block. Therefore, we define the set of blocks

I j
ε :=

⎧
⎪⎨

⎪⎩
p ∈ �j | max

k1=0,...,B1−1
k2=0,...,B2−1

∣∣∣dj [p, k1, k2]
∣∣∣ > ε

⎫
⎪⎬

⎪⎭
(43)

with significant details in the predefined tree level range Jmin ≤ j ≤ Jmax. In

the spirit of our previous notation we thus define: I
j

ε := I
j
ε × {0, . . . , B1−1}×

Adv Comput Math (2022) 48: 1010 Page 32 of 40

{0, . . . , B2−1} for the set of all significant detail indices. The filtered block-based
wavelet field in Eq. (40) can now be written as follows:

uε =
∑

λ∈�
Jmin

c
Jmin
λ ϕ

Jmin
λ +

Jmax−1∑

j=Jmin

∑

λ∈I
j
ε

3∑

μ=0

d
j
μ,λψ

j
μ,λ (44)

In the following we will denote all fields with an upper index ε, which have been
filtered with Algorithm 1 and can be thus expressed as Eq. (44).

For illustration we have computed the vorticity ωε = ∂xv
ε
y −∂yv

ε
x of a thresholded

vector field uε = (vε
x, v

ε
y, p

ε) in Fig. 3 for various ε (more details can be found in
Section 4.2.1). Here, ε > 0 and ε = 0 corresponds to a filtered and unfiltered field,
respectively. For increasing ε, less detail coefficients will be above the threshold and
therefore the number of blocks decreases.

Taking the difference between the thresholded Eq. (44) and the original field
Eq. (40) only details below the threshold are left. Hence the total error can be
estimated and yields:

‖u − uε‖ ≤
Jmax−1∑

j=Jmin

∑

λ∈I
j
ε

c

3∑

μ=0

∣∣∣dj
μ,λ

∣∣∣ ‖ψj
μ,λ‖ . (45)

Because ‖ψj
μ,λ‖∞ = 1 we finally get ‖u − uε‖∞ ≤ Cε for the total error in the

L∞-norm. Similarly one can normalize ψ
j
μ,λ in the L2-norm, which corresponds to

re-weighting the thresholding criterion
∣∣∣dj

μ,λ

∣∣∣ < ε with a level (j) and dimension (d)

dependent threshold:
∣∣∣dj

μ,λ

∣∣∣ < ε02−d(j−Jmax)/2ε [42]. The additional constant ε0 = 1

for d = 3 and ε0 = 0.1 for d = 2 tunes the offset of the compression error. It is
chosen such that the relative compression error Ewavelet is close to, but still below ε,
i.e., it fulfills Eq. (6) in the L2-norm.

A.4 L2 Inner products expressed in the wavelet basis

The L2 inner product is computed as a weighted sum of two fields u and v. For
this we first refine both fields onto a unified grid with identical tree codes �j , as
explained in Section 3.2. Then, we are able to compute Eq. (14) as a weighted sum
over all blocks:

〈u, v〉 =
Jmax∑

j=1

∑

p∈�j

〈u(p), v(p)〉 =
Jmax∑

j=1

∑

p∈�j

〈u(p), v(p)〉IK⊗W⊗WΔxpΔyp (46)

with weights: (W)lm = 〈ϕj
l , ϕ

j
m〉, (47)

Note that this quadrature rule is exact for ε = 0. We denote by IK ⊗ W ⊗ W the
Kronecker product between the weight matrix W and the identity matrix IK ∈ R

K,K .
The weight matrix is pre-computed by Eq. (47) and its non-vanishing values (W)ik =
wi−k are shown in Table 3. The listed matrix elements are the discrete values of the
autocorrelation function between two compactly supported scaling functions ϕ, see

Adv Comput Math (2022) 48: 10 Page 33 of 40 10

Table 3 Values of the autocorrelation function wk = ∫ ϕ(x − k)ϕ(x)dx of Deslauriers-Dubuc interpolat-
ing functions of order N = 2 and N = 4 in the interior of the block. The values for DD4 are rounded to
the 4th digit

|k| (Order) 0 1 2 3 4 5

wk (N = 2) 2/3 1/6

wk (N = 4) 0.8001, 0.1370, −0.0402, 0.0028, −7.5925 × 10−5, −1.4829 × 10−7

Fig. 18. Therefore, W is sparse, symmetric and circulant. Since W is also strictly
diagonal dominant and all diagonal entries are positive, W and the Kronecker product
of such matrices is also positive definite.

Appendix B. Derivation of the error estimation given in Eq. (23)

Using Eq. (18) the total error in Eq. (16) becomes

EwPOD ≤
∑Ns

i=1 ‖ui − uε
i ‖2

∑Ns
i=1 ‖ui‖2

+
∑Ns

i=1 ‖uε
i − ũε

i ‖2

∑Ns
i=1 ‖ui‖2

. (48)

Furthermore we can simplify the first term with Eq. (19) inserting ‖ui − uε
i ‖ ≤

ε‖ui‖ into the nominator:

∑Ns
i=1 ‖ui − uε

i ‖2

∑Ns
i=1 ‖ui‖2

=
∑Ns

i=1(ε‖ui‖)2

∑Ns
i=1 ‖ui‖2

= ε2 .

Fig. 18 Autocorrelation functions of Deslauriers interpolating scaling functions ϕ of order two (left) and
order four (right)

Adv Comput Math (2022) 48: 1010 Page 34 of 40

The second term in Eq. (48) can be expressed with the help of the eigenvalues of
the correlation matrix. We use the identities:

∑Ns
i=1 ‖uε

i − ũε
i ‖2 = ∑Ns

k=r+1 λε
k for

perturbed eigenvalues λε
k = λk + lkε and

∑Ns
i=1 ‖ui‖2 =∑Ns

k=1 λk , yielding
∑Ns

i=1 ‖uε
i − ũε

i ‖2

∑Ns
i=1 ‖ui‖2

=
∑Ns

k=r+1(λk + εlk)
∑Ns

k=1 λk

= EPOD(r, 0) + Mr ε. (49)

Here Mr = ∑Ns
k=r+1 lk/

∑Ns
k=1 λk is the perturbation coefficient of the total error.

Note that the perturbations lk are caused by the non-vanishing mixed terms 〈ϕj
λ〉ψj

μ,λ

(see also [9]), when computing the correlation matrix from thresholded snapshots
uε

i . Note that for orthogonal wavelets the first-order perturbations would vanish. For
slowly decaying eigenvalues λk the perturbation coefficient Mr is typically very
small, since the sum of perturbations lk is small compared to the total energy. In this
case it is reasonable to neglect the second term in Eq. (49):

EwPOD � EPOD(r, 0) + ε2 . (50)

However, in general Mr does not vanish and we only have linear convergence in ε:

EwPOD ≤ EPOD(r, 0) + Mr ε + O(ε2) . (51)

Note that Mr does not depend on ε, as all epsilon dependence has been removed.
So it is asymptotically a first-order scheme in ε only. For a certain range we can
observe second order, if Mr is sufficiently small. Eventually for ε sufficiently small
the first-order term will dominate.

Appendix C. Technical details and supplementary material

Fig. 19 Example of the light data structure in WABBIT, to be compared with Fig. 2. For each tree
lgt active stores a light-ID list of all active blocks. With the blocks light-ID (lgt id) all parameters
in the forest (tree code, tree ID, tree level, refinement status) can be accessed, from the corresponding row
in lgt block. Note that the order of the light-ID depends on the process rank

Adv Comput Math (2022) 48: 10 Page 35 of 40 10

Fig. 20 CPU time required for the individual steps of the wPOD algorithm described in Section 3.3. The
CPU time is shown for three different cases: 1.) the synthetic test case from Section 4.1 computed with
Jmax = 5 and ε = 1.3 × 10−4 on a Intel Core i5-7200U cpu (blue), 2.) the flow past a cylinder data
Section 4.2.1 computed with ε = 1.3 × 10−4 on Intel Xeon E5645 cpus (orange) and 3.) the bumblebee
data of Section 4.2.4 with ε = 1.3 × 10−4 using Intel Xeon Gold 6142 cpus (green). The comparison of
the individual cases should be done with care, since they have been computed on different hardware and
the data-structure (number of snaphots, blocks, block size, spatial dimension, etc.) is different. Therefore,
the computational costs of MPI communication overhead, block administration may vary. However, the
overall proportions between the individual steps of the algorithm are comparable among the test cases

Adv Comput Math (2022) 48: 1010 Page 36 of 40

Fig. 21 First three sparse modes Ψ ε
k (k = 1 upper left, k = 2 upper right, k = 3 bottom left) with

their corresponding amplitudes aε
k (ti) computed with ε = 1.3 × 10−2 and one dense (ε = 0) mode Ψ ε

3
for comparison (bottom, right). Each figure shows the modes “vorticity” (labeled by ∇ × v), computed
from the two velocity components of the modes, and the pressure component (labeled by p). Note that
the first mode represents the base flow, which is non oscillating, whereas the other modes always have
an oscillating structure, with a frequency increasing with the mode number. When comparing the dense
mode Ψ ε

3 of the non-adaptive case in the lower right of Fig. 21 with the adapted modes on the lower left,
no qualitative differences can be observed, except the local changes in the resolution

Acknowledgements The authors gratefully acknowledge the support of the Deutsche Forschungsgemein-
schaft (DFG) as part of GRK2433 DAEDALUS. The authors were granted access to the HPC resources of
IDRIS under the Allocation No. 2018-91664 attributed by GENCI (Grand Équipement National de Calcul
Intensif). Centre de Calcul Intensif d’Aix-Marseille Université is acknowledged for granting access to its
high performance computing resources.

Funding Open Access funding enabled and organized by Projekt DEAL.

Code and data availability Software can be found under [17, 49]. All scripts to reproduce the results are
available at [18].

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

Adv Comput Math (2022) 48: 10 Page 37 of 40 10

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ali, M., Steih, K., Urban, K.: Reduced basis methods with adaptive snapshot computations. Adv.
Comput. Math. 43(2), 257–294 (2017)

2. Ali, M., Urban, K.: Reduced Basis Exact Error Estimates with Wavelets. In: Numerical Mathematics
and Advanced Applications ENUMATH 2015, pp. 359–367. Springer (2016)

3. Alla, A., Kutz, J.N.: Randomized model order reduction. Adv. Comput. Math. 45(3), 1251–1271
(2019)

4. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes,
M.E., Wells, G.N.: The fenics project. https://fenicsproject.org/, Visited, 12, May (2020)

5. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes,
M.E., Wells, G.N.: The fenics project version 1.5 Archive of Numerical Software 3(100) (2015)

6. Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J., Hammarling,
S., Demmel, J., Bischof, C., Sorensen, D.: LAPACK: A portable linear algebra library for high-
performance computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing,
Supercomputing ’90, pp. 2–11. IEEE Computer Society Press, Los Alamitos, CA, USA (1990)

7. Benner, P., Cohen, A., Ohlberger, M., Willcox, K.: Model reduction and approximation: theory and
algorithms, vol. 15 SIAM (2017)

8. Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K.: Model reduction of parametrized systems
Springer (2017)

9. Castrillon-Candas, J.E., Amaratunga, K.: Fast estimation of continuous karhunen-loeve eigenfunc-
tions using wavelets. IEEE Trans. Signal Process. 50(1), 78–86 (2002)

10. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets.
Comm. Pure and Appl. Math. 45, 485–560 (1992)

11. Deslauriers, G., Dubuc, S.: Interpolation dyadique École polytechnique de Montréal (1987)
12. Deslauriers, G., Dubuc, S.A.: Saff DeVore Symmetric Iterative Interpolation Processes. In: Ronald,

E.B. (ed.) Constructive Approximation: Special Issue: Fractal Approximation, pp. 49-68. Springer
US, Boston, MA (1989)

13. DeVore, R.A.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)
14. Domingues, M., Gomes, S., Dı́az, L.: Adaptive wavelet representation and differentiation on block-

structured grids. Appl. Numer. Math. 47(3), 421–437 (2003)
15. Donoho, D.L.: Interpolating wavelet transforms. Department of Statistics, Stanford University (1992)
16. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika

1(3), 211–218 (1936)
17. Engels, T., Krah, P.: Python tools for the wavelet adaptive block-based solver for interactions in

turbulence. https://github.com/adaptive-cfd/python-tools, Visited 9 (2020)
18. Engels, T., Krah, P.: Scripts used for this publication. https://github.com/adaptive-cfd/

WABBIT-convergence-test.git. Visited 9 (2020)
19. Engels, T., Schneider, K., Reiss, J., Farge, M.: A wavelet-adaptive method for multiscale simulation

of turbulent flows in flying insects. Commun. Comput. Phys. 30(4), 1118–1149 (2021)
20. Fang, F., Pain, C., Navon, I., Piggott, M., Gorman, G., Allison, P., Goddard, A.: Reduced-order mod-

eling of an adaptive mesh ocean model. International journal for numerical methods in fluids 59(8),
827–851 (2009)

21. Farge, M., Pellegrino, G., Schneider, K.: Coherent vortex extraction in 3D turbulent flows using
orthogonal wavelets. Phys. Rev. Lett. 87(054), 501 (2001)

22. Farge, M., Schneider, K., Kevlahan, N.: Non-Gaussianity and coherent vortex simulation for two-
dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11(8), 2187–2201
(1999)

Adv Comput Math (2022) 48: 1010 Page 38 of 40

http://creativecommons.org/licenses/by/4.0/
https://fenicsproject.org/
https://github.com/adaptive-cfd/python-tools
https://github.com/adaptive-cfd/WABBIT-convergence-test.git
https://github.com/adaptive-cfd/WABBIT-convergence-test.git

23. Futatani, S., Bos, W., del Castillo-Negrete, D., Schneider, K., Benkadda, S., Farge, M.: Coherent vor-
ticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper
orthogonal decomposition. Comptes Rendus Physique 12(2), 123–131 (2011)

24. Gräßle, C., Hinze, M.: POD Reduced-order modeling for evolution equations utilizing arbitrary finite
element discretizations. Adv. Comput. Math. 44(6), 1941–1978 (2018)

25. Gräßle, C., Hinze, M., Lang, J., Ullmann, S.: POD Model order reduction with space-adapted
snapshots for incompressible flows. Adv. Comput. Math. 45(5-6), 2401–2428 (2019)

26. Greif, C., Urban, K.: Decay of the Kolmogorov n-width for wave problems. Appl. Math. Lett. 96,
216–222 (2019)

27. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

28. Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Applied Numerical Mathe-
matics 12(1), 153–192 (1993)

29. Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3),
1205–1256 (1996)

30. Harten, A.: Multiresolution Representation and Numerical Algorithms: a Brief Review, pp. 289–322.
Springer, Netherlands, Dordrecht (1997)

31. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, coherent structures, dynamical
systems and symmetry. Cambridge University Press (2012)

32. Karatzas, E.N., Ballarin, F., Rozza, G.: Projection-based reduced order models for a cut finite ele-
ment method in parametrized domains. Computers & Mathematics with Applications 79(3), 833–851
(2020)

33. Läuchli, P.: Jordan-Elimination und Ausgleichung nach kleinsten Quadraten. Numer. Math. 3(1), 226–
240 (1961)

34. Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends Mach. Learn. 3(2),
123–224 (2011)

35. Mallat, S.: A Wavelet Tour of Signal Processing, Third Edition Edn. Academic Press, Boston (2009)
36. Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of L2(R). Transactions

of the American Mathematical Society 315(1), 69–87 (1989)
37. Massing, A., Larson, M.G., Logg, A.: Efficient implementation of finite element methods on non-

matching and overlapping meshes in three dimensions. SIAM J. Sci. Comput. 35(1), C23–C47
(2013)

38. Mendez, M., Balabane, M., Buchlin, J.M.: Multi-scale proper orthogonal decomposition of complex
fluid flows. arXiv:1804.09646 (2018)

39. Nguyen van yen, R.: Wavelet-based study of dissipation in plasma and fluid flows. Ph.D. thesis
Université Paris-Sud XI (2010)

40. Ohlberger, M., Rave, S.: Reduced basis methods: Success, limitations and future challenges. Proceed-
ings of the Conference Algoritmy, pp 1–12 (2016)

41. Reiss, J., Schulze, P., Sesterhenn, J., Mehrmann, V.: The shifted proper orthogonal decomposition: a
mode decomposition for multiple transport phenomena. SIAM J. Sci. Comput. 40(3), A1322–A1344
(2018)

42. Roussel, O., Schneider, K.: Coherent vortex simulation of weakly compressible turbulent mixing
layers using adaptive multiresolution methods. J. Comput. Phys. 229(6), 2267–2286 (2010)

43. Sakurai, T., Yoshimatsu, K., Schneider, K., Farge, M., Morishita, K., Ishihara, T.: Coherent struc-
ture extraction in turbulent channel flow using boundary adapted wavelets. J. Turbul. 18(4), 352–372
(2017)

44. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656,
5–28 (2010)

45. Schneider, K., Vasilyev, O.V.: Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid
Mech. 42, 473–503 (2010)

46. Sieber, M., Paschereit, C.O., Oberleithner, K.: Spectral proper orthogonal decomposition. J. Fluid
Mech. 792, 798–828 (2016)

47. Sirovich, L.: Turbulence and the dynamics of coherent structures. part i-iii. Q. Appl. Math. 45(3),
561–571 (1987)

48. Sroka, M., Engels, T., Krah, P., Mutzel, S., Schneider, K., Reiss, J.: An Open and Parallel Multiresolu-
tion Framework Using Block-Based Adaptive Grids. In: Active Flow and Combustion Control 2018,
pp. 305–319. Springer (2019)

Adv Comput Math (2022) 48: 10 Page 39 of 40 10

http://arxiv.org/abs/1804.09646

49. Sroka, M., Engels, T., Mutzel, S., Krah, P., Reiss, J.: Wavelet adaptive block-based solver for
interactions in turbulence. https://github.com/adaptive-cfd/{WABBIT}. Visited 9 (2020)

50. Sweldens, W., Schröder, P.: Building your own wavelets at home Wavelets in Computer Graphics
(1997)

51. Ullmann, S., Rotkvic, M., Lang, J.: POD-Galerkin reduced-order modeling with adaptive finite
element snapshots. J. Comput. Phys. 325, 244–258 (2016)

52. Unser, M.: Approximation power of biorthogonal wavelet expansions. IEEE Trans. Signal Process.
44(3), 519–527 (1996)

53. Uytterhoeven, G., Roose, D.: Experiments with a wavelet-based approximate proper orthogonal
decomposition. Katholieke Universiteit Leuven Departement Computerwetenschappen (1997)

54. Volkwein, S.: Optimal control of a phase-field model using proper orthogonal decomposition.
ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik: 81(2), 83–97 (2001)

55. Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture Notes, Institute of
Mathematics and Scientific Computing. University of Graz. see http://www.uni-graz.at/imawww/
volkwein/POD.pdf, p 1025 (2011)

56. Yu, D., Chakravorty, S.: A Randomized Proper Orthogonal Decomposition Technique. In: 2015
American Control Conference (ACC), pp. 1137–1142 (2015)

57. Zumbusch, G.: Parallel multilevel methods: adaptive mesh refinement and loadbalancing Springer
Science & Business Media (2012)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Philipp Krah1 ·Thomas Engels2 ·Kai Schneider3 · Julius Reiss4

Thomas Engels
thomas.engels@uni-rostock.de

Kai Schneider
kai.schneider@univ-amu.fr

Julius Reiss
julius.reiss@tnt.tu-berlin.de

1 Technische Universität Berlin, Institute of Mathematics,
Straße des 17. Juni 136, 10623 Berlin, Germany

2 Department of Animal Physiology, Institute of Biological Sciences, University of Rostock,
Albert-Einstein-Str. 3, Rostock 18059, Germany

3 Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille (I2M),
39 rue Joliot-Curie, Marseille, 13453 Cedex 13, France

4 Institute of Fluid Mechanics and Engineering Acoustics, Technische Universität Berlin,
Müller-Breslau-Str. 15, 10623 Berlin, Germany

Adv Comput Math (2022) 48: 1010 Page 40 of 40

https://github.com/adaptive-cfd/{{WABBIT}}
http://www.uni-graz.at/imawww/volkwein/POD.pdf
http://www.uni-graz.at/imawww/volkwein/POD.pdf
http://orcid.org/0000-0001-8982-4230
http://orcid.org/0000-0002-9098-1054
http://orcid.org/0000-0003-1243-6621
http://orcid.org/0000-0003-3692-5390
mailto: thomas.engels@uni-rostock.de
mailto: kai.schneider@univ-amu.fr
mailto: julius.reiss@tnt.tu-berlin.de

	Wavelet Adaptive Proper Orthogonal Decomposition
	Abstract
	Introduction
	Numerical methods and implementation
	Block-structured grid and implementation
	Computational grid
	Forest composed of multiple trees
	Light and heavy data storage

	Block-based wavelet adaptation

	Algorithm
	The snapshot POD and randomized SVD
	The weighted inner product and pointwise tree operations
	The wPOD algorithm
	Error estimation

	Numerical results
	Synthetic test case
	Wavelet compression
	POD truncation
	Comparison to randomized SVD

	Application to 2D and 3D numerical flow data
	2D case — Von Kármán vortex street
	Wavelet compression
	POD truncation
	3D case — insect flight

	Conclusion and outlook
	Appendix A A. Block-based wavelet adaptation
	A.1 Refinement and coarsening
	A.2 Computing wavelet coefficients and adaptation criterion
	A.3 Wavelet representation in the continuous setting
	A.4 L2 Inner products expressed in the wavelet basis
	Appendix B B. Derivation of the error estimation given in Eq. (23)
	Appendix C C. Technical details and supplementary material
	References
	Affiliations

