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Non-autonomous maximal regularity under Besov

regularity in time

Mahdi Achache
∗

Abstract

We consider the maximal regularity problem for the non-autonomous
Cauchy problems

u′(t) +A(t)u(t) = f(t) t-a.e., u(0) = u0. (0.1)

In this case, the time dependent operators A(t) are associated with
a family of sesquilinear forms. We prove maximal Lp-regularity re-
sults with p ≤ 2 under minimal regularity assumptions on the forms.
Our main assumption is that (A(t))t∈[0,τ ] are piecewise in the Besov

space B
1

2
,2

p with respect to the variable t. This regularity assumption
is optimal and our result is the most general one.

Keywords: Besov space, maximal regularity, mon-autonomous evo-
lution equations, sesquilinear forms.
Mathematics Subject Classification (2010): 35K90, 35K45, 47D06.

1 Introduction

The present paper deals with maximal Lp-regularity for non-autonomous
evolution equations in the setting of Hilbert spaces. Before explaining our
results, we introduce some notations and assumptions.
Let (H, (·, ·), ‖ · ‖) be a Hilbert space over R or C. We consider V, another
Hilbert space, which is densely and continuously embedded into H. We
denote by V ′ the (anti-) dual space of V, so that

V →֒d H →֒d V
′.

Let us called 〈, 〉 the duality V-V ′ and noting that 〈ψ, v〉 = (ψ, v) if ψ, v ∈ H.
We consider a family of sesquilinear forms

a : [0, τ ]× V × V → C

such that
∗Address: Universite de Bordeaux, Institut de Mathématiques (IMB), CNRS UMR

525, 351 Cours de la Libération 33405 Talence, France. Email: Mahdi.Achache@math.u-
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• [H1]: D(a(t)) = V (constant form domain),

• [H2]: |a(t, u, v)| ≤M‖u‖V‖v‖V (uniform boundedness),

• [H3]: Re a(t, u, u) + ν‖u‖2 ≥ δ‖u‖2V (∀u ∈ V) for some δ > 0.

To each form a(t) we can associate two operators A(t) and A(t) on H and
V ′, respectively. Recall that u ∈ H is in the domain D(A(t)) if there exists
h ∈ H such that for all v ∈ V: a(t, u, v) = (h, v). We then set A(t)u :=
h. The operator A(t) is a bounded operator from V into V ′ such that
A(t)u = a(t, u, ·). The operator A(t) is the part of A(t) on H. It is a
classical fact that −A(t) and −A(t) are both generators of holomorphic
semigroups (e−rA(t))r≥0 and (e−rA(t))r≥0 on H and V ′, respectively. The
semigroup e−rA(t) is the restriction of e−rA(t) to H. In addition, e−rA(t)

induces a holomorphic semigroup on V (see, e.g. Ouhabaz [26, Chapter 1]).
We consider the non-homogeneous Cauchy problem

u′(t) +A(t)u(t) = f(t) t-a.e., u(0) = u0. (P)

The notion of maximal Lp-regularity for the above problem is defined as
follows

Definition 1.1. We say that the Cauchy problem (P ) (or the family (A(t))t∈[0,τ ])
has maximal Lp-regularity in a Banach space E if for every f ∈ Lp(0, τ ;E),
there exists a unique u ∈W 1,p(0, τ ;E) with u(t) ∈ D(A(t)) for a.e. t ∈ [0, τ ]
and u is a solution of (P ) in the Lp-sense.

The maximal regularity of an evolution equation on a Banach space E
depends on the operators involved in the equation, the space E and the
initial data u0. The initial data has to be in appropriate space. In the au-
tonomous case, i.e. A(t) = A(0) for all t ∈ [0, τ ], maximal Lp-regularity is
well understood and its is also known that u0 has to be in the real interpo-
lation space (E,D(A(0)))1− 1

p
,p, see .

The maximal regularity is very useful for the study of quasilinear partial
differential equations as it allows the application of powerful linearization
techniques (see example).

A very famous and well-known result of J.L.Lions (see [?] (XVIII Chap-
ter 3, p. 513)) states that the non-autonomous Cauchy problem (P ) is well-
posed with maximal L2-regularity in V ′, i.e. for every f ∈ L2(0, τ ;V ′) and
u0 ∈ H, there exists a unique u ∈ H1(0, τ ;V ′) ∩ L2(0, τ ;V) →֒ C([0, τ ];H)
that solves (P ). In this result, only measurability of t → a(t, ., .) respected
to the time variable is required. Nevertheless, in applications to bound-
ary valued problems this is not sufficient. One is more interested in max-
imal Lp-regularity in H rather than in V ′, i.e. in solutions which belong
to W 1,p(0, τ ;H) rather than in W 1,p(0, τ ;V ′). Lions himself proved maxi-
mal L2-regularity in H if the form a(t, ., .) is symmetric for all t ∈ [0, τ ]
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and t → a(t, u, v) ∈ C1([0, τ ]) for all u, v ∈ V (see [?]). Using a differ-
ent approach, maximal Lp-regularity was established in [25], assuming that
t → a(t, u, v) ∈ Cα([0, τ ]) for all u, v ∈ V, for some α > 1

2 . This result was
further improved in [18], where the Hölder condition is replaced by a weaker
"Dini" condition for a(., ., .).
For maximal L2−regularity, this result was improved to the fractional Sobolev
regularity t→ A(t) ∈ H

1
2

+α([0, τ ];L(V,V ′)) for α > 1
2 (see [15]). The proof

is surprisingly elementary and based on the Lax-Milgram lemma. Further-
more, it is proved in [3] that maximal L2-regularity holds if t → A(t) ∈
H

1
2 ([0, τ ];L(V,V ′)) (with some integrability conditions). Fackler [16] on the

other hand was able to construct a symmetric non-autonomous form that
is α-Hölder continuous for every α ≤ 1

2 but does not have the maximal L2-
regularity in H. Fackler [?], generalized the result in [15] for any p ∈ (1,∞)
by assuming fractional Sobolev regularity. In fact, he proved that maximal
Lp-regularity is satisfied if

(i) A(.) ∈ Ḣ
1
2

+ǫ(0, τ ;L(V,V ′)) for p ≤ 2

(ii) A(.) ∈ Ẇ
1
2

+ǫ,p(0, τ ;L(V,V ′)) for p > 2.

For more details and progresses on maximal regularity, we refer to the recent
papers in [3] or [?].
The main purposes of the present paper is to extend the results in [?] for the
case p ≤ 2 by assuming less regularity as much possible. Our main result
shows that for forms satisfying the uniform Kato square root property and

if t → A(t) is piecewise in the Besov space B
γ

2
,2

p (0, τ ;L(V,V ′
γ)), γ ∈ [0, 1],

then maximal Lp-regularity in H is satisfied. Here, Vγ = [H,V]γ is the in-
terpolation space between H and V. The initial data u0 is arbitrary in the
interpolation space (H, D(A(0)))1− 1

p
,p.

The structure of paper is organized as follows: in the second Section we work
with the autonomous first order Cauchy problem and prove some prepara-
tory results. After that, we prove maximal Lp-regularity in Section 3 and
discuss the optimality in Section 4, while the section 5 is an appendix.
Notation. We denote by L(E,F ) (or L(E)) the space of bounded linear op-
erators from E to F (from E to E). The spaces Lp(a, b;E) and W 1,p(a, b;E)
denote respectively the Lebesgue and Sobolev spaces of function on (a, b)
with values in E. Recall that the norms of H and V are denoted by ‖ · ‖ and
‖ · ‖V . The scalar product of H is (·, ·).
Finally, we denote by C, C ′ or c... all inessential constants. Their values
may change from line to line.

2 Main results

In this section we state explicitly our main results. We start by recalling
the definition of vector-valued Besov spaces.
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Definition 2.1. Let X be a Banach space, let p, q ∈ [1,∞], and α ∈ (0, 1),
A Bochner measurable function f : [0, τ ]→ X, is in the homogeneous Besov
space Ḃα,p

q (0, τ ;X) if

‖f‖q
Ḃ

α,p
q (0,τ ;X)

=
∫ τ

0

1
lαq

(
∫ τ

l
‖f(t)− f(t− l)‖pX dt)

q

p
dl

l
<∞.

A function f ∈ Lp(0, τ ;X) is in the Besov space Bα,p
q (0, τ ;X) if

‖f‖q
B

α,p
q (0,τ ;X)

:= ‖f‖q
Lp(0,τ ;X) + ‖f‖q

Ḃ
α,p
q (0,τ ;X)

<∞.

We shall say that f is piecewise in Bα,p
q (0, τ ;X) is there exists 0 = t0 < t1 <

... < tn = τ such that the restriction of f to each sub-interval (ti, ti+1) is in
Bα,p

q (ti, ti+1;X).

We shall need the following property.

Given ε > 0, there exists τ0 = 0 < τ1 < ... < τn = τ such that

sup
t∈(τi−1,τi)

∫ τi

τi−1

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
ds < ε. (2.1)

Note that this assumption is satisfied in many cases. Suppose for exam-
ple that γ = 1, t 7→ a(t, u, v) is Cα for some α > 0 in the sense that

|a(t, u, v)− a(s, u, v)| ≤M |t− s|α‖u‖V‖v‖V (2.2)

for some positive constant M and all u, v ∈ V. Then clearly

‖A(t)−A(s)‖L(V,V ′) ≤M |t− s|
α

and this implies (2.1). More generally, if ωi denotes the modulus of conti-
nuity of A(.) on the interval (τi−1, τi) then (2.1) is satisfied if

∫ τi

τi−1

ωi(r)2

r
dr < ε. (2.3)

For the case γ < 1 the assumption (2.1) is satisfied if

|a(t, u, v)− a(s, u, v)| ≤ Kt,s‖u‖V‖v‖Vγ , u, v ∈ V,Kt,s > 0.

Note that if (2.1) holds with γ = 0 then

sup
t∈(τi−1,τi)

∫ τi

τi−1

‖A(t)−A(s)‖2L(V,H) ds < ε.

In particular this holds if

‖A(t)−A(s)‖L(V,H) ≤M0

for some positive constant M0 and all t, s ∈ [0, τ ]. In that case A(t)−A(s)
defines a bounded operator from V to H. This implies in particular that the
operators A(t) have the same domain D(A(t)) = D(A(0)).
The following is our main result.
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Theorem 2.2. Suppose that A is piecewise in B
γ

2
,2

p (0, τ ;L(V,V ′
γ)), (2.1)

and the uniform Kato square property (3.2) are satisfied. Then for all u0 ∈
(H,V)2(1− 1

p
),p = (H, D(A(0)))(1− 1

p
),p, with p < 2 and f ∈ Lp(0, τ ;H) there

exists a unique u ∈W 2,p(0, τ ;H)∩L
2p

2−p (0, τ ;V) be the solution to the Cauchy
problem

u′(t) +A(t)u(t) = f(t) t− a.e., u(0) = u0. (2.4)

Moreover, there exists a positive constant C independent of u0 and f such
that

‖A(.)u(.)‖Lp(0,τ ;H) + ‖u‖W 1,p(0,τ ;H) ≤ C

[

‖u0‖(H,V)
2(1−

1
p ),p

+ ‖f‖Lp(0,τ ;H)

]

.

(2.5)

Remark 2.3. - Applying the fixed point argument, one can easily ex-
tend this result to a more general equation

u′(t) +A(t)u(t) + P (t)u(t) = f(t) t− a.e., u(0) = u0,

here P (t) ∈ L(V,H) such that ‖P (t)‖L(V,H) ≤ C.

- We refer to the next section for the definition of the uniform Kato
square root property and for few more details on such property.

In the next result we prove continuity of the solution to (2.4) as a function
with values in (H,V)2(1− 1

p
),p, where we work with the same assumptions as

in Theorem 2.2.

Theorem 2.4. Assume that (3.2) and t 7→ A(t) ∈ C([0, τ ],L(V,V ′
β)) for

some β ∈ [0, 1[ or t 7→ A(t) ∈ Cε([0, τ ],L(V,V ′)), ε > 0. Then we have the
following embedding MR(p,H) →֒ C([0, τ ], (H,V)2(1− 1

p
),p).

Next we prove that maximal regularity holds without requiring any reg-
ularity in time for the operators (or the forms). More precisely we have

Proposition 2.5. Suppose [H1]-[H3]. Suppose that (3.2) and (2.1) holds for
γ = 0. Then (2.4) has maximal Lp-regularity in H for all u0 ∈ (H,V)2(1− 1

p
),p.

In addition, there exists a positive constant C independent of u0 and f such
that

‖A(.)u(.)‖Lp(0,τ ;H) + ‖u‖W 1,p(0,τ ;H) ≤ C

[

‖u0‖(H,V)
2(1−

1
p ),p

+ ‖f‖Lp(0,τ ;H)

]

.

(2.6)
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3 Preparatory lemmas

In this section we prove several estimates which will play an important role
in the proof of the main results. We emphasize that one of the important
points here is to prove estimates with constants which are independent of t.

Before we start let us point out that we may assume without loss of
generality that assumption [H3] is satisfied with ν = 0, that is the forms
are coercive with constant δ > 0 independent of t. The reason is that the
maximal regularity of (P ) is equivalent to the same property for

v′(t) + (A(t) + ν)v(t) = g(t), v(0) = u0. (3.1)

This can be seen by observing that for g(t) := f(t)e−νt, then v(t) = u(t)e−νt

and clearly v ∈W 1,p(0, τ ;H) if and only if u ∈W 1,p(0, τ ;H) (and obviously
f ∈ Lp(0, τ ;H) if and only if g ∈ Lp(0, τ ;H)).
When [H3] holds with ν = 0 then clearly the operators A(t) are invertible
on H.
The next lemma point out that the constants involved in the estimates of
the resolvents and the semigroups are uniform with respect to t.

Lemma 3.1. For any t ∈ [0, τ ], the operators −A(t) and −A(t) generate
strongly continuous analytic semigroups of angle γ = π

2 − arctan(M
δ

) on H
and V ′, respectively. In addition, there exist constants Cθ, Cβ,θ, Cα,β inde-
pendent of t, such that

1- ‖(λ + A(t))−1‖L(Y ) ≤
Cθ

1+|λ| for allλ ∈ Σπ−θ with fixed θ < γ. Here,

Y = H,V or V ′.

2- ‖(λ+A(t))−1‖L(H,[H,V]β) ≤
Cβ,θ

1+|λ|1−
β
2

, λ ∈ Σπ−θ, β ∈ [0, 1].

3- ‖(λ+A(t))−1‖L(V ′

β
,H) ≤

Cβ,θ

1+|λ|1−
β
2

, λ ∈ Σπ−θ, β ∈ [0, 1].

4- ‖A(t)αe−rA(t)x‖ ≤
Cα,β

r
β
2 +α
‖x‖V ′

β
, r ∈ (0,∞), α ∈ [0, 1].

5- ‖e−rA(t)x‖Vβ
≤

Cβ

r
β
2

‖x‖, r ∈ (0,∞), x ∈ H.

All of the previous estimates holds for the adjoint operator A(t)∗.

Following [3][Definition 3.4], we introduce the following definition

Definition 3.2. We say that (A(t))t∈[0,τ ] satisfies the uniform Kato square

root property if D(A(t)
1
2 ) = V for all t ∈ [0, τ ] and there are c1, c

1 > 0 such
that for all v ∈ V

c1‖v‖V ≤ ‖A(t)
1
2 v‖ ≤ c1‖v‖V . (3.2)
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The uniform Kato square root property is obviously satisfied for symmet-
ric forms. It is also satisfied for uniformly elliptic operators (not necessarily
symmetric)

A(t) = −
d

∑

k,l=1

∂k(akl(t, x)∂l)

on L2(Rd) since ‖∇u‖2 is equivalent to ‖A(t)
1
2u‖2 with constants depending

only on the dimension and the ellipticity constants, see [8].
In the next lemma we show that (3.2) implies that A(t)∗ 1

2 is an isomorphism
from V to H and A(t)

1
2 is an isomorphism from H to V ′.

Lemma 3.3. Assume that (3.2). Then for all t ∈ [0, τ ] we claim that

(1)- D(A(t)∗ 1
2 ) = V and

δ

c1
‖v‖V ≤ ‖A(t)∗ 1

2 v‖ ≤
M

c1
‖v‖V , v ∈ V.

(2)- D(A(t)
1
2 ) = D(A(t)∗ 1

2 ) = H and

δ

c1
‖v‖ ≤ ‖A(t)

1
2 v‖V ′ ≤

M

c1
‖v‖, v ∈ H,

c1‖v‖ ≤ ‖A(t)∗ 1
2 v‖V ′ ≤ c1‖v‖, v ∈ H.

Proof. Assume that (3.2) and let x ∈ D(A(t)∗), t ∈ [0, τ ]. Using (3.2) we get

‖x‖2V ≤
1
δ

Re (A(t)
1
2x,A(t)∗ 1

2x)

≤
1
δ
‖A(t)

1
2x‖‖A(t)∗ 1

2x‖

≤
c1

δ
‖x‖V‖A(t)∗ 1

2x‖.

The density of D(A(t)∗) in D(A(t)∗ 1
2 ) gives

‖x‖V ≤
c1

δ
‖A(t)∗ 1

2x‖

for all x ∈ D(A(t)∗ 1
2 ). Then D(A(t)∗ 1

2 ) →֒ V.
Now, since D(A(t)

1
2 ) →֒ V. It follows that A(t)− 1

2 ∈ L(H,V) and

‖A(t)− 1
2 ‖L(H,V) ≤

1
c1
.

Let x ∈ H and write A(t)
1
2x = A(t)A(t)− 1

2x. We obtain

‖A(t)
1
2x‖V ′ ≤ ‖A(t)‖L(V,V ′)‖A(t)− 1

2x‖V ≤M‖A(t)− 1
2 ‖L(H,V)‖x‖ ≤

M

c1
‖x‖.
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The boundedness of norm implies A(t)
1
2 ∈ L(H,V ′) and by duality we have

A(t)∗ 1
2 ∈ L(V,H). Then V ⊆ D(A(t)∗ 1

2 ) and we get for all x ∈ V

‖A(t)∗ 1
2x‖ ≤ ‖A(t)∗ 1

2 ‖L(V,H)‖x‖V

≤
M

c1
‖x‖V .

This shows (1) and by duality we have (2).

The following lemma shows that D(A(t)
1
p ) = [H,V] 2

p
for all t ∈ [0, τ ]

and p > 2 with equivalent norms.

Lemma 3.4. Assume that (3.2). For all t ∈ [0, τ ], p > 2 we get

c′
1‖x‖[H,V] 2

p

≤ ‖A(t)
1
px‖ ≤ c′1‖x‖[H,V] 2

p

,

where c′
1, c

′1 > 0 are independent of t.

Proof. Let t ∈ [0, τ ]. The reiteration theorem for the real method [29][1.10.3,
Theorem 2] or property of power of positive operator [22][Theorem 4.3.11]
shows that D(A(t)α) = [H, D(A(t)]α = [H, D(A(t)

1
2 )]2α, for all α ∈ [0, 1

2 ].

Since D(A(t)
1
2 ) = V,

D(A(t)
1
p ) = [H, D(A(t)

1
2 )] 2

p
= [H,V] 2

p
,

with constants of injection independent of t.

Lemma 3.5. Suppose that (3.2). Let p ≥ 2 and g ∈ L
p

p−1 (0,∞;H). We
have

‖A(t)∗ 1
p

∫ ∞

0
e−sA(t)∗

g(s) ds‖ ≤ C‖g‖
L

p
p−1 (0,∞;H)

.

Proof. Since D(A(t)
1
2 ) = V, then D(A(t)∗ 1

2 ) = V and

c′
1‖x‖[H,V] 2

p

≤ ‖A(t)∗ 1
px‖ ≤ c′1‖x‖[H,V] 2

p

.

Then if
∫ ∞

0 e−sA(t)∗

g(s) ds ∈ [H,V] 2
p
,

‖A(t)∗ 1
p

∫ ∞

0
e−sA(t)∗

g(s) ds‖ ≤ c′1‖

∫ ∞

0
e−sA(t)∗

g(s) ds‖[H,V] 2
p

.

Let us define the operator (Rg) :=
∫ ∞

0 e−sA(t)∗

g(s) ds. It easy to see that R ∈
L(L1(0,∞;H),H) and by [3][Lemma 4.1] we get that R ∈ L(L2(0,∞;H),V).

Since [L1(0,∞;H), L2(0,∞;H)]α = L
2

2−α (0,∞;H), for all α ∈ [0, 1], so for
α = 2

p
one has [L1(0,∞;H), L2(0,∞;H)]α = L

p

p−1 (0,∞;H).
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Now we use an interpolation argument to obtain thatR ∈ L(L
p

p−1 (0,∞;H), [H,V] 2
p
)).

Therefore

‖A(t)∗ 1
p

∫ ∞

0
e−sA(t)∗

g(s) ds‖ ≤ c‖
∫ ∞

0
e−sA(t)∗

g(s) ds‖[H,V] 2
p

≤ C‖g‖
L

p
p−1 (0,∞;H)

.

In the next proposition we show a Lp−estimate for A(t) with constant
independent of t. Here we assume the uniform Kato square root property.
Lp−estimates are an important tool in harmonic analysis and we will use
them at several places in the proofs of maximal regularity.

Proposition 3.6. For all x ∈ H, p ≥ 2 we have

∫ ∞

0
‖A(t)

1
p e−sA(t)x‖p ds ≤ C‖x‖p.

Here, C > 0 is independent of t.

Proof. We set f(s) = A(t)
1
p e−sA(t)x, where s ∈ (0,∞), x ∈ H and t ∈ [0, τ ].

Then for all g ∈ L
p

p−1 (0,∞;H),

|

∫ ∞

0
(f(s), g(s)) ds| = |

∫ ∞

0
(A(t)

1
p e−sA(t)x, g(s)) ds|

= |(x,A(t)∗ 1
p

∫ ∞

0
e−sA(t)∗

g(s) ds)|

≤ ‖A(t)∗ 1
p ‖L([H,V] 2

p
,H)‖x‖‖Rg‖[H,V] 2

p

≤ C‖x‖‖g‖
L

p
p−1 (0,∞;H)

.

Therefore f ∈ Lp(0,∞;H) and we claim the proof.

Lemma 3.7. Assume that (3.2). Let 0 ≤ s ≤ r ≤ τ and g ∈ L2(r, s;V ′).
We have

‖

∫ r

s
e−(t−s)A(s)∗

g(t) dt‖ ≤ C‖g‖L2(s,r;V ′).
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Proof. Let 0 ≤ r ≤ s ≤ τ and g ∈ L2(r, s;V ′), x ∈ H. We have

‖

∫ r

s
e−(t−s)A(s)∗

g(t) dt‖

= sup
x∈H,‖x‖=1

|(
∫ r

s
e−(t−s)A(s)∗

g(t) dt, x)|

= sup
x∈H,‖x‖=1

|

∫ r

s
(A(s)

1
2 e−(t−s)A(s)x,A(s)∗− 1

2 g(t)) dt|

≤ sup
x∈H,‖x‖=1

(

‖

∫ r

s
A(s)

1
2 e−(t−s)A(s)x‖2 dt

)

1
2

× ‖A(s)∗− 1
2 g‖L2(s,r;V ′)

≤ C‖A(s)∗− 1
2 ‖L(V ′,H)‖g‖L2(s,r;V ′)

≤ C ′‖g‖L2(s,r;V ′).

Where in the first inequality we have used the Cauchy-Schwarz inequality
and Lemma 3.3, Proposition 3.6 in the second one.

For 0 ≤ t ≤ τ, p ∈ (1, 2] define the operator

L1(f)(t) =
∫ t

0
e−(t−r)A(t)f(r) dr, f ∈ Lp(0, τ ;H).

Proposition 3.8. Let f ∈ Lp(0, τ ;H). Assume that (2.1) and (3.2). Then

L1 ∈ L(Lp(0, τ ;H);L
2p

2−p (0, τ ;V)) and L1(f)(t) ∈ (H,V)2(1− 1
p

),p for all t ∈

[0, τ ].

Proof. By [3] [Lemma 4.1] we get that L1 ∈ L(L2(0, τ ;H);L∞(0, τ ;V)).
Now we prove L1 ∈ L(L1(0, τ ;H);L2(0, τ ;V)). Indeed, let g ∈ L2(0, τ ;V ′)
we obtain

(L1(f), g)L2(0,τ ;V)×L2(0,τ ;V ′) =
∫ τ

0

∫ t

0
(e−(t−s)A(t)f(s), g(t)) ds dt

=
∫ τ

0
(f(s),

∫ τ

s
e−(t−s)A(t)∗

g(t) dt) ds.

Write
∫ τ

s
e−(t−s)A(t)∗

g(t) dt =
∫ τ

s

[

e−(t−s)A(t)∗

g(t)− e−(t−s)A(s)∗

g(t)
]

dt

+
∫ τ

s
e−(t−s)A(s)∗

g(t) dt := I1(s) + I2(s).

Choose a contour Γ in the positive half-plane and write by the holomorphic
functional calculus for the sectorial operators A∗(t),A∗(s)

e−tA∗(t)−e−tA∗(s) =
1

2πi

∫

Γ
e−tλ(λI−A∗(t))−1

(

A∗(t))−A∗(s)
)

(λI−A∗(s))−1 dλ.
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By taking the norm in H we have by Lemma 3.1

‖
[

e−tA∗(t) − e−tA∗(s)
]

g(t)‖

≤ C

∫ ∞

0
e−t| cos γ||λ|‖(λI −A∗(t))−1‖L(V ′.H)

× ‖(λI −A∗(s))−1‖L(V ′;Vγ) d|λ|‖A
∗(t))−A∗(s)‖L(Vγ ,V ′)‖g(t)‖V ′

≤ C1

∫ ∞

0
|λ|

γ

2
−1e−t| cos γ||λ| d|λ|‖A∗(t))−A∗(s)‖L(Vγ ,V ′)‖g(t)‖V ′ .

Since,
∫ ∞

0
|λ|

γ

2
−1e−t| cos γ||λ| d|λ| =

1

| cos γ|t
γ

2

,

we obtain

‖
[

e−(t−s)A(t)∗

− e−(t−s)A(s)∗]

g(t)‖ ≤ C
‖A∗(t)−A∗(s)‖L(Vγ ,V ′)

(t− s)
γ

2

‖g(t)‖V ′ .

The Cauchy-Schwarz inequality gives

‖I1(s)‖ ≤ C
(

∫ τ

s

‖A∗(t)−A∗(s)‖2L(Vγ ,V ′)

(t− s)γ dt
)

1
2
‖g‖L2(s,τ ;V ′). (3.3)

In light of Lemma 3.7 we get

‖I2(s)‖ ≤ C‖g‖L2(s,τ ;V ′). (3.4)

Combining (3.3) and (3.4) we have

‖

∫ τ

s
e−(t−s)A(t)∗

g(t) dt‖ ≤ C
((

∫ τ

s

‖A∗(t)−A∗(s)‖2L(Vγ ,V ′)

(t− s)γ dt
)

1
2 +1

)

‖g‖L2(s,τ ;V ′).

Therefore

|(L1(f), g)L2(0,τ ;V)×L2(0,τ ;V ′)| ≤ C( sup
s∈[0,τ ]

(

∫ τ

s

‖A(t)−A(s)‖2L(V,V ′
γ)

(t− s)γ dt
)

1
2 +1)

× ‖f‖L1(0,τ ;H)‖g‖L2(0,τ ;V ′).

Then L1 ∈ L(L1(0, τ ;H);L2(0, τ ;V)), and so by interpolation we obtain

L1 ∈ L([L1(0, τ ;H), L2(0, τ ;H)]α; [L2(0, τ ;V), L∞(0, τ ;V))]α)

with α ∈ [0, 1].
We know that

[L2(0, τ ;V), L∞(0, τ ;V)]α = L
2

1−α (0, τ ;V)

[L1(0, τ ;H), L2(0, τ ;H)]α = L
2

2−α (0, τ ;H),

11



see [12] [Theorem 2.2.6]. Therefore for α = 2[p−1
p

] we have

L1 ∈ L(Lp(0, τ ;H);L
2p

2−p (0, τ ;V)).

Note that from [3][Lemma 4.1] we get that for all t ∈ [0, τ ], L1(.)(t) ∈
L(L2(0, τ ;H);V). Now let f ∈ L1(0, τ ;H), t ∈ [0, τ ]. We have

‖L1(f)(t)‖ ≤
∫ t

0
‖e−(t−r)A(t)‖L(H)‖f(r)‖ dr

≤ C‖f‖L1(0,τ ;H).

Hence, L1(.)(t) ∈ L(L1(0, τ ;H);H) and so by interpolation one has L1(.)(t) ∈
L(Lp(0, τ ;H); (H,V)2(1− 1

p
),p). Therefore L1(f)(t) ∈ (H,V)2(1− 1

p
),p for all

t ∈ [0, τ ].

For f ∈ Lp(0, τ ;H), p ∈ (1,∞) and for almost every t ∈ [0, τ ] we define
the operator L by

L(f)(t) := A(t)
∫ t

0
e−(t−s)A(t)f(s) ds.

Note that in the autonomous case (i.e. A(t) = A(0), t ∈ [0, τ ]) L is called
the maximal regularity operator.
It is proved in [18] that L is bounded on Lp(0, τ ;H) for all p ∈ (1,∞)
provided t 7→ a(t, ., .) is Cǫ for some ǫ > 0 (or similarly, t 7→ A(t) is Cǫ

on [0, τ ] with values in L(V,V ′)). The proof for the case p = 2 is based on
vector-valued pseudo-differential operators.

Lemma 3.9. Assume that

• For p ≤ 2 the conditions (2.1) and (3.2) holds.

• For p > 2, t 7→ a(t, ., .) is Cǫ, ǫ > 0.

Then L is bounded on Lp(0, τ ;H).

Proof. For the case p ≤ 2 we refer to [3][Proposition 4.2], and in the case of
p > 2 the result follows by [18] [Lemma 2.6].

4 Key estimates

In this section we state and prove some other estimates we will need in the
proof of the main result.

Lemma 4.1. Let τ0 = 0 < τ1 < .... < τn = τ be a subdivision of [0, τ ] and

v ∈ L
2p

2−p (τi−1, τi;V), p < 2, i = 1, ...., n. We define the operator Q(τi−1,τi) by

(Q(τi−1,τi)v)(t) =
∫ t

τi−1

e−(t−s)A(t)(A(t)−A(s))v(s) ds,

12



where t ∈ [τi−1, τi]. Assume that A(.) satisfies the condition (2.1). Then

Q(τi−1,τi) ∈ L(L
2p

2−p (τi−1, τi;V)) and we have

‖Q(τi−1,τi)‖
L(L

2p
2−p (τi−1,τi;V))

≤ C sup
t∈[τi−1,τi]

[

∫ τi

τi−1

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
ds

]

1
2
, C > 0.

Moreover for ε small enough in the condition (2.1) we get

‖QC(τi−1,τi)
‖

L(L
2p

2−p (τi−1,τi;V))
< 1.

In addition,

(Q(τi−1,τi)v)(t) ∈ (H,V)2(1− 1
p

),p, t ∈ [τi−1, τi].

Proof. By [3] [Proposition 4.5] we have Q(τi−1,τi) ∈ L(L∞(τi−1, τi;V)) for
all i = 1, ...., n. Now we prove Q(τi−1,τi) ∈ L(L2(τi−1, τi;V)). Indeed, let
v ∈ L2(τi−1, τi;V), w ∈ L2(τi−1, τi;V ′). We obtain

|
(

Q(τi−1,τi)v, w
)

L2(τi−1,τi;V)×L2(τi−1,τi;V ′)
|

= |
∫ τi

τi−1

∫ t

τi−1

(

e−(t−s)A(t)(A(t)−A(s))v(s), w(t)
)

ds dt|

= |
∫ τi

τi−1

∫ t

τi−1

(e−
(t−s)

2
A(t)(A(t)−A(s))v(s), A(t)∗ 1

2 e−
(t−s)

2
A(t)∗

A(t)∗− 1
2w(t)

)

ds dt|

≤

∫ τi

τi−1

∫ t

τi−1

‖e−
(t−s)

2
A(t)‖L(V ′

γ ,H)‖A(t)−A(s)‖L(V,V ′
γ)

× ‖v(s)‖V‖A(t)∗ 1
2 e−

(t−s)
2

A(t)∗

A(t)∗− 1
2w(t)‖ ds dt

≤

∫ τi

τi−1

∫ t

τi−1

‖A(t)−A(s)‖L(V,V ′
γ)

(t− s)
γ

2

‖v(s)‖V

× ‖A(t)∗ 1
2 e−

(t−s)
2

A(t)∗

A(t)∗− 1
2w(t)‖ ds dt

≤
(

∫ τi

τi−1

∫ t

τi−1

‖A(t)−A(s)‖2L(V,V ′
γ)

(t− s)γ
‖v(s)‖2V ds dt

)

1
2

×
(

∫ τi

τi−1

∫ t

τi−1

‖A(t)∗ 1
2 e−

(t−s)
2

A(t)∗

A(t)∗− 1
2w(t)‖2ds dt

)

1
2

≤(i) K2 sup
t∈[τi−1,τi]

[

∫ τi

τi−1

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
ds

]

1
2
‖v‖L2(0,τ ;V)‖A(.)∗− 1

2w‖L2(0,τ ;H)

≤(ii) K2
c1

δ
sup

t∈[τi−1,τi]

[

∫ τi

τi−1

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
ds

]

1
2
‖v‖L2(0,τ ;V)‖w‖L2(0,τ ;V ′).

Where in (i) we have used Fubini’s theorem, Lemma 3.6 and Lemma 3.3 in
(ii).
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Therefore Q(τi−1,τi) ∈ L(L2(τi−1, τi;V)) and by interpolation Q(τi−1,τi) ∈

L([L2(τi−1, τi;V)), L∞(τi−1, τi;V)]α) for all α ∈ [0, 1]. Hence, for α = 2[p−1
p

]

we get Q(τi−1,τi) ∈ L(L
2p

2−p (τi−1, τi;V)), with

‖Q(τi−1,τi)‖
L(L

2p
2−p (τi−1,τi;V))

≤ C sup
t∈[τi−1,τi]

[

∫ τi

τi−1

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
ds

]

1
2
, C > 0.

Next we prove

(Q(τi−1,τi)v)(t) ∈ (H,V)2(1− 1
p

),p, t ∈ [τi−1, τi], v ∈ L
2p

2−p (τi−1, τi;V).

Indeed, for v ∈ L∞(τi−1, τi;V) one has by [3][(4.11)] that (Q(τi−1,τi)v)(t) ∈ V
and

‖(Q(τi−1,τi)v)(t)‖V ≤ C
[

∫ t

τi−1

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
ds

]

1
2
‖v‖L∞(τi−1,τi;V),

t ∈ [τi−1, τi], C > 0.
Similarly we have for v ∈ L2(τi−1, τi;V) that (Q(τi−1,τi)v)(t) ∈ H and
so by interpolation (Q(τi−1,τi)v)(t) ∈ (H,V)2(1− 1

p
),p, t ∈ [0, τ ] for all v ∈

L
2p

2−p (τi−1, τi;V). Moreover, we have for t ∈ [τi−1, τi]

‖(Q(τi−1,τi)v)(t)‖(H,V)
2(1−

1
p ),p
≤ C

[

∫ t

τi−1

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
ds

]

1
2
‖v‖

L
2p

2−p (τi−1,τi;V)
.

(4.1)

Lemma 4.2. Assume that (2.1). Then for all u0 ∈ (H,V)2(1− 1
p

),p with p < 2

we have
T ∈ L((H,V)2(1− 1

p
),p;L

2p

2−p (0, τ ;V)),

where (Tu0)(t) = e−tA(t)u0 for t ∈ [0, τ ].

Remark 4.3. If r ∈ (0, τ) and (Tu0)(t) = e−(t−r)A(t)u0 for t ∈ [r, τ ], we get

Tu0 ∈ L
2p

2−p (r, τ ;V).

Proof. Noting that, since the semigroup (e−rA(t))r≥0 is uniformly bounded
in V we get that T ∈ L(V;L∞(0, τ ;V)). We write

(Tu0)(t) = [e−tA(t) − e−tA(0)]u0 + e−tA(0)u0 := (T1u0)(t) + (T2u0)(t).

Let now u0 ∈ H. We get by Lemma 3.6

‖T2u0‖
2
L2(0,τ ;V) =

∫ τ

0
‖e−tA(0)u0‖

2
V dt

≤
1
c1

∫ τ

0
‖A(0)

1
2 e−tA(0)u0‖

2 dt

≤
K2

c1
‖u0‖

2.
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This gives that T2 ∈ L(H;L2(0, τ ;V)). Write by the holomorphic functional
calculus for the sectorial operators A(t), A(0)

e−tA(t)−e−tA(0) =
1

2πi

∫

Γ
e−tλ(λI−A(t))−1

(

A(t))−A(s)
)

(λI−A(0))−1 dλ.

By taking the norm in V we have by Lemma 3.1

‖
[

e−tA(t) − e−tA(0)
]

u0‖V

≤ C

∫ ∞

0
e−t| cos γ||λ|‖(λI −A(t))−1‖L(V ′

γ .V)

× ‖(λI −A(0))−1‖L(H;V) d|λ|‖A(t))−A(s)‖L(V,V ′
γ)‖u0‖

≤ C1

∫ ∞

0
|λ|

γ

2
−1e−t| cos γ||λ| d|λ|‖A(t))−A(s)‖L(V,V ′

γ)‖u0‖.

Since,
∫ ∞

0
|λ|

γ

2
−1e−t| cos γ||λ| d|λ| =

1

| cos γ|t
γ

2

,

we obtain

‖[e−tA(t) − e−tA(0)]u0‖V ≤ C
‖A(t))−A(s)‖L(V,V ′

γ)

(t− s)
γ

2

‖u0‖.

Hence, T1 ∈ L(H;L2(0, τ ;V)) and

‖T1u0‖
2
L2(0,τ ;V) ≤ C

∫ τ

0

‖A(t))−A(s)‖2L(V,V ′
γ)

(t− s)γ ds‖u0‖
2.

Therefore, T ∈ L(H;L2(0, τ ;V)) and so by interpolation one has

T ∈ L((H,V)2(1− 1
p

),p;L
2p

2−p (0, τ ;V)).

This finishes the proof.

We now prove the uniqueness of solution.

Proposition 4.4. Assume that t 7→ a(t) is measurable and let [a, b] ⊆
[0, τ ], p ∈ (1,∞) and f ∈ Lp(a, b;V ′), ua ∈ V

′. If u ∈ W 1,p(a, b;V ′) ∩
Lp(a, b;V) solve

u′(t) +A(t)u(t) = f(t) (t ∈ (a, b)), u(a) = ua, (4.2)

then this solution is unique.
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Proof. Let [a, b] ⊆ [0, τ ], p ∈ (1,∞) and f ∈ Lp(a, b;V ′), ua ∈ V
′. Assume

that there exists two solution u1, u2 to (4.16). Set w = u1 − u2. Obviously,
w satisfies

w′(t) +A(t)w(t) = 0 (t ∈ (a, b)), w(a) = 0, (4.3)

and by Lions’ theorem we have w = 0. This gives u1 = u2. Hence, u is
unique.

The next proposition shows that in many cases it is sufficient to show
maximal Lp−regularity for initial value zero. This is well-known in the
autonomous case.

Proposition 4.5. Assume that the Cauchy problem

w′(t) +A(t)w(t) = f(t) (t ∈ [0, τ ]), w(0) = 0. (4.4)

has maximal Lp−regularity for p ∈ (1,∞) and arbitrary τ > 0. Then for all
u0 ∈ (H, D(A(0)))1− 1

p
,p the Cauchy problem

u′(t) +A(t)u(t) = f(t) (t ∈ [0, τ ]), u(0) = u0. (4.5)

has maximal Lp−regularity. Moreover, u(t) ∈ (H, D(A(t)))1− 1
p

,p for all

t ∈ [0, τ ] and there exists a positive constant C such that

‖u‖W 1,p(0,τ ;H) + ‖A(.)u‖Lp(0,τ ;H) + sup
t∈[0,τ ]

‖u(t)‖(H,D(A(t)))
1−

1
p ,p

≤ C
[

‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

]

.

Proof. Assume that (4.4) has maximal Lp−regularity. We set B(t) = A(0)
for t ∈ [0, τ ] and B(t) = A(t−τ) for t ∈ [τ, 2τ ] and g(t) = v′(t)+A(0)v(t), t ∈
[0, τ ], g(t) = f(t − τ) for t ∈ [τ, 2τ ], where v(t) = φ(t)e−(τ−t)A(0)u0, φ(0) =
0, φ(τ) = 1 such that φ ∈ C1([0, τ ]) (we can take φ(t) = t

τ
). By the char-

acterization of real interpolation spaces via the trace method we obtain
v ∈W 1,p(0, τ ;H) ∩ Lp(0, τ ;D(A(0))) and

‖v′ +A(0)v‖Lp(0,τ ;H) ≤ C‖u0‖(H,D(A(0)))
1−

1
p ,p
.

Remark that v(τ) = u0, v(0) = 0 and g ∈ Lp(0, 2τ ;H). Let z ∈W 1,p(0, 2τ ;H)
be the unique solution to

z′(t) + B(t)z(t) = g(t) (t ∈ [0, 2τ ]), z(0) = 0. (4.6)

The uniqueness of solutions in the autonomous case imply z = v on [0, τ ]
and so z(τ) = u0. Now we set u(t) = z(t + τ), t ∈ [0, τ ]. Therefore u is the
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unique solution to (4.5) and we obtain

‖u‖W 1,p(0,τ ;H) + ‖A(.)u‖Lp(0,τ ;H)

≤ ‖z‖W 1,p(0,2τ ;H) + ‖B(.)z‖Lp(0,2τ ;H)

≤ C‖g‖Lp(0,2τ ;H)

≤ C
[

‖f‖Lp(0,τ ;H) + ‖v′ +A(0)v‖Lp(0,τ ;H)

]

≤ C
[

‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

]

.

Now let t ∈ [0, τ ] and set g(s) = u′(s) +A(s)u(s), s ∈ [0, t] and g(s) = 0, s ∈
[t, 2τ ]. We put C(s) = A(s), t ∈ [0, t] and C(s) = A(t), s ∈ [t, 2τ ]. Let z be
the solution to

z′(s) + C(s)z(s) = g(s) (s ∈ [0, 2τ ]), z(0) = u0. (4.7)

By the uniqueness of solution we get that z(s) = u(s) on [0, t]. Hence,
z(t) = u(t). Since z ∈ W 1,p(t, 2τ ;H) ∩ Lp(t, 2τ ;D(A(t))) we have by [4]
[Theorem III 4.10.2] that z ∈ C([t, τ ]; (H, D(A(t)))1− 1

p
,p). Therefore, z(t) =

u(t) ∈ (H, D(A(t)))1− 1
p

,p. Moreover,

‖u(t)‖(H,D(A(t)))
1−

1
p ,p
≤ C

[

‖z‖W 1,p(0,2τ ;H) + ‖C(.)z‖Lp(0,2τ ;H)

]

≤ C
[

‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))
1−

1
p ,p

]

.

This finishes the proof.

Proposition 4.6. Let f ∈ Lp(0, τ ;H), p ∈ (1, 2] and assume that the as-
sumptions (3.2), (2.1) holds. Then there exists a unique u be the solu-

tion of the Cauchy problem (2.4) such that u ∈ L
2p

2−p (0, τ ;V). Moreover,
u(t) ∈ (H,V)2(1− 1

p
),p for all t ∈ [0, τ ].

Proof. Let 0 ≤ s ≤ t ≤ τ1 ≤ τ and u1 be the solution to (2.4) in [0, τ1]. Set
v(s) = e−(t−s)A(t)u1(s). We remark that v(t) = u1(t), v(0) = e−tA(t)u(0) = 0
and

v′(s) = e−(t−s)A(t)(A(t)−A(s))u1(s) + e−(t−s)A(t)f(s).

Since v(t) = v(0) +
∫ t

0 v
′(s) ds, we have

u1(t) =
∫ t

0
e−(t−s)A(t)(A(t)−A(s))u1(s) ds+

∫ t

0
e−(t−s)A(t)f(s) ds

= (Q(0,τ1)u1)(t) + L1(f)(t). (4.8)

Due to Lemma 4.2 and Proposition 3.8 we get that L1(f) is bounded in

L
2p

2−p (0, τ ;V). Moreover L1(f)(t) ∈ (H,V)2(1− 1
p

),p for all t ∈ [0, τ ]. In order
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to continue we wish to take the inverse I − Q(0,τ1). It follows from Lemma

4.1 that Q(0,τ1) is bounded in L
2p

2−p (0, τ1;V) and

‖Q(0,τ1)‖
L(L

2p
2−p (0,τ1;V))

≤ C sup
s∈[0,τ1]

[

∫ τ1

0

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
dt

]

1
2
.

Using (2.1), let ε > 0 and choose τ1 such that

C sup
s∈[0,τ1]

[

∫ τ1

0

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
dt

]

1
2
< ε < 1.

Hence, ‖Q(0,τ1)‖
L(L

2p
2−p (0,τ1;V)

≤ ε < 1 and so I − Q(0,τ1) is invertible in

L
2p

2−p (0, τ1;V). Therefore, u1 = (I − Q(0,τ1))−1(L1)(f) and we obtain that

u1 ∈ L
2p

2−p (0, τ1;V) and

‖u1‖
L

2p
2−p (0,τ1;V)

≤ C‖f‖Lp(0,τ1;H). (4.9)

Moreover, from (4.8) we have for t ∈ [0, τ1]

‖u1(t)‖(H,V)
2(1−

1
p ),p
≤ ‖(Q(0,τ1)u1)(t)‖(H,V)

2(1−
1
p ),p

+ ‖(L1)(f)(t)‖(H,V)
2(1−

1
p ),p

≤ C
[

‖u1‖
L

2p
2−p (0,τ1;V)

+ ‖f‖Lp(0,τ1;H)

]

≤ C ′‖f‖Lp(0,τ1;H). (4.10)

Where in the second inequality we used Proposition 3.8, Lemma 4.1 and
(4.9) in the last one. Let τ1 ≤ τ2 ≤ τ and u2 be the solution of

u′
2(t) +A(t)u2(t) = f(t) (t ∈ (τ1, τ2)), u2(τ1) = u1(τ1). (4.11)

For τ1 ≤ s ≤ t ≤ τ2, we set v(s) = e−(t−s)A(t)u2(s). We remark that v(t) =
u2(t), v(τ1) = e−(t−τ1)A(t)u(τ1) and

v′(s) = e−(t−s)A(t)(A(t)−A(s))u2(s) + e−(t−s)A(t)f(s).

Since v(t) = v(τ1) +
∫ t

τ1
v′(s) ds, we have

u2(t) = e−(t−τ1)A(t)u(τ1) +
∫ t

τ1

e−(t−s)A(t)(A(t)−A(s))u2(s) ds+
∫ t

τ1

e−(t−s)A(t)f(s) ds

= (Tu(τ1))(t) + (Q(τ1,τ2)u2)(t) + L1(I(τ1,τ2)f)(t). (4.12)

Thanks to Lemma 4.2 and Proposition 3.8, we obtain that Tu(τ1), L1(f)

are bounded in L
2p

2−p (τ1, τ ;V). Now repeat the same strategy. We choose τ2

such that

‖Q(τ1,τ2)‖
L(L

2p
2−p (τ1,τ2;V))

≤ C sup
s∈[τ1,τ2]

[

∫ τ2

τ1

‖A(t)−A(s)‖2L(V,V ′
γ)

|t− s|γ
dt

]

1
2
< 1.

18



Hence, I − Q(τ1,τ2) is invertible in L
2p

2−p (τ1, τ2;V). Therefore, u2(t) = (I −

Q(τ1,τ2))−1(Tu(τ1) + L1(f))(t) and we obtain that u2 ∈ L
2p

2−p (τ1, τ2;V). In
addition,

‖u2‖
L

2p
2−p (τ1,τ2;V)

≤ C
(

‖Tu(τ1)‖
L

2p
2−p (τ1,τ2;V)

+ ‖L1(f)‖
L

2p
2−p (τ1,τ2;V)

)

≤ C ′
(

‖u(τ1)‖(H,V)
2(1−

1
p ),p

+ ‖f‖Lp(τ1,τ2;H)

)

. (4.13)

Combining (4.10) and (4.13) we get

‖u2‖
L

2p
2−p (τ1,τ2;V)

≤ C‖f‖Lp(0,τ2;H). (4.14)

Moreover, from (4.12), (4.13) and Proposition 3.8, Lemma 4.1 we have for
all t ∈ [τ1, τ2]

‖u2(t)‖(H,V)
2(1−

1
p ),p

≤ ‖(Tu(τ1))(t)‖(H,V)
2(1−

1
p ),p

+ ‖(Q(τ1,τ2)u2)(t)‖(H,V)
2(1−

1
p ),p

+ ‖(L1)(f)(t)‖(H,V)
2(1−

1
p ),p

≤ C
[

‖u(τ1)‖(H,V)
2(1−

1
p ),p

+ ‖u2‖
L

2p
2−p (τ1,τ2;V)

+ ‖f‖Lp(τ1,τ2;H)

]

≤ C‖f‖Lp(0,τ2;H). (4.15)

Now repeat the same strategy. We use (2.1) and we work on [τi−1, τi] we
search ui be solution to

u′
i(t) +A(t)ui(t) = f(t) (t ∈ (τi−1, τi)), ui(τi−1) = ui−1(τi−1). (4.16)

and argue exactly as before. We obtain (4.14) and (4.15) on each sub-
intervals [τi−1, τi]. Now we set u = ui in [τi−1, τi]. Hence by using Proposition
4.4, u is the unique solution to (2.4). This implies (4.14) and (4.15) on [0, τ ]
for arbitrary τ > 0 and finishes the proof.

5 Proof of the main results

After the auxiliary results of the last two sections we are now ready to give
the proofs of the main results of this paper. Note that we may assume
without loss of generality hat [H3] holds with = 0, see the beginning of
Section 3.

Proof of Theorem 2.2. First we consider the case u0 = 0. Indeed, let f ∈
Lp(0, τ ;H) and t ∈ (0, τ). Then by Proposition 4.6 there exists a unique
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u ∈ L
2p

2−p (0, τ ;V) be the solution to (2.4). We have from (4.12)

A(t)u(t) = A(t)
∫ t

0
e−(t−s)A(t)(A(t)−A(s))u(s) ds

+A(t)
∫ t

0
e−(t−s)A(t)f(s) ds

:= (Su)(t) + (Lf)(t). (5.1)

Due to Lemma 3.9 we obtain that L ∈ L(Lp(0, τ ;H)).

Next we prove that S ∈ L(L
2p

2−p (0, τ ;V), Lp(0, τ ;H)). Indeed, take g ∈
Lp′

(0, τ ;H) where p′ = p
p−1 is the conjugate of p. Then

sup
‖g‖

Lp′
(0,τ ;H)

=1
|〈Su, g〉Lp(0,τ ;H)×Lp′

(0,τ ;H)|

= sup
‖g‖

Lp′
(0,τ ;H)

=1
|

∫ τ

0

∫ t

0
((A(t)

1
p e−

(t−s)
2

A(t)A(t)−A(s))u(s), A(t)
1
p′ ∗
e−

(t−s)
2

A(t)∗

g(t)) ds dt|

≤ sup
‖g‖

Lp′
(0,τ ;H)

=1

∫ τ

0

∫ t

0
‖A(t)−A(s)‖L(V,V ′

γ)‖u(s)‖V‖A(t)
1
p e−

(t−s)
2

A(t)‖L(V ′
γ ,H)

× ‖A(t)∗ 1
p′ e−

(t−s)
2

A(t)∗

g(t)‖ ds dt

≤ C1 sup
‖g‖

Lp′
(0,τ ;H)

=1

∫ τ

0

∫ t

0

‖A(t)−A(s)‖L(V,V ′
γ)

|t− s|
γ

2
+ 1

p

‖u(s)‖V

× ‖A(t)∗ 1
p′ e−

(t−s)
2

A(t)∗

g(t)‖ ds dt

≤ C1 sup
‖g‖

Lp′
(0,τ ;H)

=1

(

∫ τ

0

∫ t

0

‖A(t)−A(s)‖pL(V,V ′
γ)

|t− s|
pγ

2
+1

‖u(s)‖pV ds dt
)

1
p

×
(

∫ τ

0

∫ t

0
‖A(t)∗ 1

p′ e−(t−s)A(t)∗

g(t)‖p
′

ds dt
)

1
p′

≤ C2

(

∫ τ

0

1

l
pγ

2
+1

∫ τ

l
‖A(t)−A(t− l)‖pL(V,V ′

γ)‖u(t− l)‖pV dt dl
)

1
p

× sup
‖g‖

Lp′
(0,τ ;H)

=1
‖g‖Lp′

(0,τ ;H)

≤ C
(

∫ τ

0

1

l
pγ

2

(
∫ τ

l
‖A(t)−A(t− l)‖2L(V,V ′

γ) dt)
p

2
dl

l

)

1
p
‖u‖

L
2p

2−p (0,τ ;V)

= C‖A(.)‖
Ḃ

γ
2 ,2

p (0,τ ;L(V,V ′
γ))
‖u‖

L
2p

2−p (0,τ ;V)
.
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This gives that S ∈ L(L
2p

2−p (0, τ ;V), Lp(0, τ ;H)). Then from (5.1) we have

‖A(.)u‖Lp(0,τ ;H) ≤ ‖Su‖Lp(0,τ ;H) + ‖Lf‖Lp(0,τ ;H)

≤ C
[

‖u‖
L

2p
2−p (0,τ ;V)

+ ‖f‖Lp(0,τ ;H)

]

≤ C ′‖f‖Lp(0,τ ;H).

Since u′ = f −A(.)u we get that u ∈W 1,p(0, τ ;H).

Proof of Theorem 2.4. Let u ∈ MR(p,H) and set f = u′ + A(.)u. One has

f ∈ Lp(0, τ ;H) and by Proposition 4.6 we get that u ∈ L
2p

2−p (0, τ ;V), u(t) ∈
(H,V)2(1− 1

p
),p for all t ∈ [0, τ ]. For 0 ≤ s ≤ l ≤ t ≤ τ we set

v(l) = e−(t−l)A(t)u(l).

We remark that v(t) = u(t), v(s) = e−(t−s)A(t)u(s), v′(l) = e−(t−l)A(t)(A(t)−
A(l))u(l) + e−(t−l)A(t)f(l). Since v(t) = v(s) +

∫ t
s v

′(l) dl we get

u(t)− u(s) =
[

e−(t−s)A(t)u(s)− u(s)
]

+
∫ t

s
e−(t−l)A(t)[A(t)−A(l)]u(l) dl

+
∫ t

s
e−(t−l)A(t)f(l) dl

:= W (t, s) + (Q(t,s)u)(t) + (L1(1(s,t)f))(t).

We see easily that

W (t, s) =
[

e−(t−s)A(t)u(s)− e−(t−s)A(s)u(s)
]

+ [e−(t−s)A(s)u(s)− u(s)].

Choose a contour Γ in the positive half-plane and write by the holomorphic
functional calculus for the sectorial operators A(t), A(s)

e−(t−s)A(t)−e−(t−s)A(s) =
1

2πi

∫

Γ
e−(t−s)λ(λI−A(t))−1

(

A(t))−A(s)
)

(λI−A(s))−1 dλ.

By taking the norm in (H,V)2(1− 1
p

),p we have

‖
[

e−(t−s)A(t) − e−(t−s)A(s)
]

u(s)‖(H,V)
2(1−

1
p ),p

≤ C

∫ ∞

0
e−(t−s)| cos γ||λ|‖(λI −A(t))−1‖L(V ′

β
.(H,V)

2(1−
1
p ),p

)

× ‖(λI −A(s))−1‖L((H,V)
2(1−

1
p ),p

;V) d|λ|‖A(t))−A(s)‖L(V,V ′

β
)‖u(s)‖(H,V)

2(1−
1
p ),p

≤(i) C1

∫ ∞

0
(1 + |λ|)− 3

2
+ β

2 e−(t−s)| cos γ||λ| d|λ|‖A(t)−A(s)‖L(V,V ′

β
)‖u(s)‖(H,V)

2(1−
1
p ),p

.
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Where in (i) we used

‖(λI −A(s))−1‖L((H,V)
2(1−

1
p ),p

;V) ≤
C

(1 + |λ|)
3
2

− 1
p

,

‖(λI −A(t))−1‖L(V ′
β .(H,V)2(1− 1

p
),p) ≤

C

(1 + |λ|)
1
p

− β

2

.

Therefore for β < 1 we have

‖
[

e−(t−s)A(t)−e−(t−s)A(s)
]

u(s)‖(H,V)
2(1−

1
p ),p
≤ C‖A(t)−A(s)‖L(V,V ′

β
)‖u(s)‖(H,V)

2(1−
1
p ),p

.

(5.2)
For β = 1 we obtain

‖
[

e−(t−s)A(t) − e−(t−s)A(s)
]

u(s)‖(H,V)
2(1−

1
p ),p

≤ Cε

‖A(t)−A(s)‖L(V,V ′)

(t− s)ε
‖u(s)‖(H,V)

2(1−
1
p ),p

, ε > 0. (5.3)

By (5.2) we obtain

‖(Q(t,s)u)(t)‖(H,V)
2(1−

1
p ),p
≤ C

[

∫ t

s

‖A(t)−A(s)‖2L(V,V ′

β
)

|t− s|β
ds

]

1
2
‖u‖

L
2p

2−p (s,t;V)
.

(5.4)
In light of Lemma 3.8 we have

‖(L1(1(s,t)f))(t)‖(H,V)
2(1−

1
p ),p
≤ C

[(

∫ t

s

‖A(t)−A(s)‖2L(V,V ′

β
)

|t− s|β
ds

)

1
2 +1

]

‖f‖Lp(s,t;H).

(5.5)
Combining (5.2), (5.3) and (5.4), (5.5) we have

‖u(t)− u(s)‖(H,V)
2(1−

1
p ),p
≤ C

[

‖A(.)‖Cαβ ([s,t];L(V,V ′

β
)) + 1

]∥

∥

∥f‖Lp(s,t;H)

+ ‖A(.)‖Cαβ ([s,t];L(V,V ′

β
))

[

‖u(s)‖(H,V)
2(1−

1
p ),p

+ ‖u‖
L

2p
2−p (s,t;V)

]

+ ‖e−(t−s)A(s)u(s)− u(s)‖(H,V)
2(1−

1
p ),p

.

Here, αβ = 0 for β < 1 and α1 = ε, ε > 0.
Observe that e−(t−s)A(s) is strongly continuous on (H,V)2(1− 1

p
),p. There-

fore ‖u(t) − u(s)‖(H,V)
2(1−

1
p ),p
→ 0 as t → s (u is right continuous in

(H,V)2(1− 1
p

),p).

Now for 0 ≤ t ≤ l ≤ s ≤ τ, we set v(l) = e−(l−t)A(t)u(l). We remark that
v(t) = u(t), v(s) = e−(s−t)A(t)u(s) and

v′(l) = −e−(l−t)A(t)[A(t)−A(l)]u(l) + e−(l−t)A(t)[f(l)− 2A(l)u(l)].
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Hence,

u(t)− u(s) = [e−(s−t)A(t)u(s)− e−(s−t)A(s)u(s)]

+ [e−(s−t)A(s)u(s)− u(s)]

+
∫ s

t
e−(l−t)A(t)[A(t)−A(l)]u(l) dl

−

∫ s

t
e−(l−t)A(t)[f(l)− 2A(l)u(l)] dl. (5.6)

We use the same argument and we proceed similarly as the proof of the
right continuous to get ‖u(t) − u(s)‖(H,V)

2(1−
1
p ),p
→ 0 as s → t (u is left

continuous in (H,V)2(1− 1
p

),p).

The following proposition gives a characterization of the trace space
Tr(p,H).

Proposition 5.1. Assume the same hypothesis of Theorem 2.4 we get

Tr(p,H) = (H,V)2(1− 1
p

),p, with equivalent norms.

Proof. First we prove the injection (H,V)2(1− 1
p

),p →֒ Tr(p,H). Indeed, let

u0 ∈ (H,V)2(1− 1
p

),p then by Theorem 2.4 there exists u ∈ MR(p,H) be the

unique solution to u′ +A(.)u = 0 such that u(0) = u0. Hence, u0 ∈ Tr(p,H)
and by (2.5) we get

‖u0‖T r(p,H) ≤ ‖u‖MR(p,H) ≤ C‖u0‖(H,V)
2(1−

1
p ),p

and so the first injection holds.
For the second injection "←֓" let us take u0 ∈ Tr(p,H). Then there exists
u ∈MR(p,H) such that u(0) = u0. Since by Theorem 2.4

u ∈ C([0, τ ]; (H,V)2(1− 1
p

),p),

we have u(0) = u0 ∈ (H,V)2(1− 1
p

),p. One has

‖u0‖(H,V)
2(1−

1
p ),p
≤ inf{‖u‖C([0,τ ];(H,V)

2(1−
1
p ),p

) : u ∈MR(p,H), u(0) = u0}

≤ C inf{‖u‖MR(p,H) : u ∈MR(p,H), u(0) = u0}

= ‖u0‖T r(p,H).

Therefore Tr(p,H) →֒ (H,V)2(1− 1
p

),p.
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6 Applications

This section is devoted to some applications of the results given in the pre-
vious sections. We give examples illustrating the theory without seeking for
generality. Here we study the maximal Lp-regularity for p ≤ 2.
– Elliptic operators on R

n.

Let H = L2(Rn) and V = H1(Rn) and define the sesquilinear forms

a(t, u, v) =
n

∑

k,l=1

∫

Rn
ckl(t, x)∂ku∂lv dx, u, v ∈ V.

We define the operator P (t) ∈ L(V,H) by P (t)u =
∑n

j=1 bj(t)∂ju, where
u ∈ V and t ∈ [0, τ ].
We assume that the matrix C(t, x) = (ckl(t, x))1≤k,l≤n satisfies the usual

ellipticity condition. Next we assume that C ∈ B
1
2

,2
p (0, τ ;L∞(Cn2

)) and
bj ∈ L

p(0, τ ;L∞(Rn)) where j ∈ {1, ..., n}. We note that

‖A(t)−A(s)‖L(V,V ′) ≤M
′‖C(t, .)− C(s, .)‖

L∞(Cn2
)

for some constant M ′. This implies that A ∈ B
1
2

,2
p (0, τ ;L(V,V ′)).

We are now allowed to apply Theorem 2.2. We obtain maximal Lp-regularity
and apriori estimate for the parabolic problem

{

u′(t) +A(t)u(t) + P (t)u(t) = f(t)
u(0) = 0.

That is, for every f ∈ Lp(0, τ ;L2(Rn)) there is a unique solution

u ∈W 1,p(0, τ ;L2(Rn)) ∩ Lp(0, τ ;H1(Rn)).

– Schrödinger operators with time-dependent potentials.

Let 0 ≤ m0 ∈ L
1
loc(Rn) and m : [0, τ ] × R

n → R be a measurable function
for which there exist positive constants α1, α2 and M such that for a.e. x
and all t ∈ [0, τ ]

α1m0(x) ≤ m(t, x) ≤ α2m0(x).

We define the form

a(t, u, v) =
∫

Rn
∇u∇vdx+

∫

Rn
m(t, x)uv dx,

with domain

V = {u ∈ H1(Rn) :
∫

Rn
m0(x)|u|2 dx <∞}.
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It is clear that V is a Hilbert space for the norm ‖u‖V given by

‖u‖2V =
∫

Rn
|∇u|2 dx+

∫

Rn
m0(x)|u|2 dx.

In addition, a is V-bounded and coercive. Its associated operator on L2(Rn)
is formally given by

A(t) = −∆ +m(t, .)

with domain

D(A(t)) = {u ∈ V s.t −∆u+m(t, .)u ∈ L2(Rn)}.

Next we assume that t→ m(t, .)m0(.)−1 ∈ B
1
2

,2
p (0, τ ;L∞(Rn)), with p ≤ 2.

We have

‖A(t)−A(s)‖L(V,V ′)

= sup
‖u‖V =1,‖v‖V =1

|a(t, u, v)− a(s, u, v)|

≤ sup
‖u‖V =1,‖v‖V =1

∫

Rn
|m(t, x)−m(s, x)||u||v|dx

≤ ‖(m(t, .)−m(s, .))m−1
0 (.)‖L∞(Rn) sup

‖u‖V =1,‖v‖V =1

∫

Rn
m0(x)|u||v|dx

≤ ‖(m(t, .)−m(s, .))m−1
0 (.)‖L∞(Rn).

Then we get A ∈ B
1
2

,2
p (0, τ ;L(V,V ′)).

Given f ∈ Lp(0, τ ;L2(Rn)), we apply Theorem 2.2 and obtain a unique
solution u ∈W 1,p(0, τ ;L2(Rn)) ∩ Lp(0, τ ;V) of the evolution equation

{

u′(t)−∆u(t) +m(t, .)u(t) = f(t) a.e.
u(0) = 0.

– Robin boundary conditions.

Let Ω be a bounded domain of Rd with Lipschitz boundary ∂Ω. We denote
by Tr the classical trace operator. Let β : [0, τ ]× ∂Ω→ [0,∞) be bounded
and such that

∫ τ

0

1
lαp

(
∫ τ

l
‖β(t, .)− β(t− l, .)‖2L∞(∂Ω) dt)

p

2
dl

l
<∞ (6.1)

for some α > 1
4 . In particular, β(., x) ∈ Ḃα,2

p .
We define the forms

a(t, u, v) :=
∫

Ω
∇u.∇v dx+

∫

∂Ω
β(t, .)Tr(u)Tr(v) dσ,
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for all u, v ∈ V := H1(Ω).
Formally, the associated operator A(t) is (minus) the Laplacian with the
time dependent Robin boundary condition given by

∂u
∂n

+ β(t, .)u = 0 on ∂Ω.

Here ∂u
∂n

denotes the normal derivative.
Note that for any ε > 0

|a(t;u, v)− a(s;u, v)|

= |
∫

∂Ω
[β(t, .)− β(s, .)]Tr(u)Tr(v) dσ|

≤ ‖β(t, .)− β(s, .)‖L∞(∂Ω)‖u‖
H

1
2 +ε(Ω)

‖v‖
H

1
2 +ε(Ω)

,

where we used the fat that the trace operator is bounded from H
1
2

+ε(Ω)
into L2(∂Ω). The forms considered here are symmetric and therefore the
uniform Kato square root property can be checked easily. Now assumption
(6.1) allows us to apply Theorem 2.2 with γ = 2α = 1

2 + ε and obtain
maximal Lp-regularity for the corresponding evolution equation with initial

data u0 ∈ (L2(Ω), H1(Ω))2(1− 1
p

),p = B
2(1− 1

p
),2

p (Ω). The forms considered

here are symmetric and therefore the uniform Kato square root property
can be checked easily.
Maximal Lp-regularity for time dependent Robin boundary condition with
β(., x) ∈ Cα for some α > 1

4 was previously proved in [6] and [24]. In the
latter reference maximal Lp-regularity for all p ∈ (1,∞) is proved.

References

[1] M. Achache, Maximal regularity for the damped wave equations. J El-
liptic Parabol Equ (2020). https://doi.org/10.1007/s41808-020-00084-
8.

[2] M. Achache, E.M. Ouhabaz, Non-autonomous right and left multiplica-
tive perturbations and maximal regularity. Studia Math. 242 (1) (2018),
1-30.

[3] M. Achache, E.M. Ouhabaz, Lions’ maximal regularity problem with
H

1
2 -regularity in time. J. Differential Equations, 266 (2019) 3654-3678.

[4] H. Amann, Linear and quasilinear parabolic problems, Volume I, Ab-
stract Linear Theory Birkhäuser, Basel, 1995.

[5] W. Arendt, D. Dier, H. Laasri and E.M. Ouhabaz, Maximal regular-
ity for evolution equations governed by non-autonomous forms, Adv.
Differential Equations 19 (2014), no. 11-12, 1043-1066.

26



[6] W. Arendt and S. Monniaux, Maximal regularity for non-autonomous
Robin boundary conditions, to appear in Math. Nach. Available at:
http://arxiv.org/abs/1410.3063.

[7] B. Augner, B. Jacob and H. Laasri, On the right multiplicative pertur-
bation of non-autonomous Lp-maximal regularity, J. Operator Theory
74 (2015), no. 2, 391-415.

[8] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian,
The solution of the Kato square root problem for second order elliptic
operators on R

n. Ann. of Math. (2) 156 (2002), no. 2, 633-654.

[9] P. Auscher and M. Egert, On non-autonomous maximal regular-
ity for elliptic operators in divergence form, preprint available at:
http://arxiv.org/pdf/1602.08306.pdf

[10] C. Bardos, A regularity theorem for parabolic equations, J. Functional
Analysis 7 (1971) 311-322.

[11] Joran Bergh and Jorgen Lofstrom. Interpolation spaces. An intro-
duction. Grundlehren der Mathematischen Wissenschaften, No. 223.
Springer-Verlag, Berlin, 1976, pp. x+207.

[12] T.P. HytÃ¶nen, J.M.A.M. van Neerven, M.C. Veraar, L.W. Weis Anal-
ysis in Banach Spaces,Volume I: Martingales and Littlewood-Paley The-
ory

[13] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators
with a bounded H∞ functional calculus, J. Austral. Math. Soc. Ser. A
60 (1996), no. 1, 51-89.

[14] Dominik Dier, Non-Autonomous Cauchy Problems Governed by Forms,
PhD Thesis, Universität Ulm, 2014.

[15] D. Dier and R. Zacher, Non-autonomous maximal regularity in Hilbert
spaces. Preprint 2016 available http://arxiv.org/pdf/1601.05213.pdf.

[16] , S. Fackler, J.-L. Lions’ problem concerning maximal regularity of equa-
tions governed by non-autonomous forms. Preprint 2016 available at
http://arxiv.org/pdf/1601.08012.pdf.

[17] Stephan Fackler. Non-Autonomous Maximal Regularity for Forms
Given by Elliptic Operators of Bounded Variation.

[18] B. Haak and E.M. Ouhabaz, Maximal regularity for non-autonomous
evolution equations, Math. Ann. 363 (2015), no. 3-4, 1117-1145.

[19] Tosio Kato. Fractional powers of dissipative operators. J. Math. Soc.
Japan 13, (1961), 246â274.

27



[20] Jacques-Louis Lions, Équations Différentielles Opérationnelles et
Problèmes aux Limites, Die Grundlehren der mathematischen Wis-
senschaften, Bd. 111, Springer-Verlag, Berlin, 1961.

[21] J. L. Lions, E. Magenes ; Non-Homogeneous Boundary Value Problems
and Applications: Vol. 1.

[22] Interpolation theory. Second. Appunti. Scuola Normale Superiore di
Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa
(New Series)]. Edizioni della Normale, Pisa, 2009, pp. xiv+191.

[23] S. Monniaux and E.M. Ouhabaz, The incompressible Navier-Stokes sys-
tem with time-dependent Robin-type boundary conditions, J. Math.
Fluid Mech. 17 (2015), no. 4, 707-722.

[24] E.M. Ouhabaz, Maximal regularity for non-autonomous evolution equa-
tions governed by forms having less regularity, Arch. Math. (Basel) 105
(2015), no. 1, 79-91.

[25] E.M. Ouhabaz and C. Spina, Maximal regularity for non-autonomous
Schrödinger type equations, J. Differential Equations 248 (2010), no. 7,
1668-1683.

[26] E.M. Ouhabaz, Analysis of Heat Equations on Domains, London Math-
ematical Society Monographs Series, 31. Princeton University Press,
Princeton, NJ, 2005. xiv+284 pp. ISBN: 0-691-12016-1.

[27] J.L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund
theory for operator-valued kernels, Adv. Math. 62 (1986), 7-48.

[28] Jacques Simon. Sobolev, Besov and Nikolskii fractional spaces: imbed-
dings and comparisons for vector valued spaces on an interval. Ann.
Mat. Pura Appl. (4) 157, (1990),

[29] H. Triebel, Interpolation Theory, Function Spaces, Differential Opera-
tors (second ed.), Johann Ambrosius Barth, Heidelberg, 1995.

28


