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ABSTRACT
In the context of breast cancer, the detection and segmentation of
cancerous lymph nodes in PET/CT imaging is of crucial importance,
in particular for staging issues. In order to guide such image analy-
sis procedures, some dedicated descriptors can be considered, espe-
cially region-based features. In this article, we focus on the issue of
choosing which features should be embedded for lymph node tumor
segmentation from PET/CT. This study is divided into two steps.
We first investigate the relevance of various features by considering
a Random Forest framework. In a second time, we validate the ex-
pected relevance of the best scored features by involving them in a
U-Net segmentation architecture. We handle the region-based defi-
nition of these features thanks to a hierarchical modeling of the PET
images. This analysis emphasizes a set of features that can signifi-
cantly improve / guide the segmentation of lymph nodes in PET/CT.

Index Terms— PET/CT, breast cancer, lymph nodes, tumor seg-
mentation, region-based features, feature analysis, Random Forest,
U-Net, component-tree

1. INTRODUCTION

Positron Emission Tomography (PET), generally coupled with X-ray
Computed Tomography (CT), is widely used for medical imaging
purpose. In particular, FDG (*®*F-Fluorodesoxyglucose) PET con-
stitute a relevant source of information for diagnosis and patient
follow-up in clinical applications related to cancer. As a conse-
quence, PET/CT image analysis is an increasingly considered re-
search topic. The issue of image analysis (detection, segmentation)
from PET/CT images is considered for more than fifteen years [1],
and the first automatic methods were pioneered ten years ago [2, 3].

Within the potential applications of computer-aided diagnosis
based on PET/CT, the case of breast cancer [4, 5] is of paramount
importance. Indeed, it is one of the most common diseases and
one of the principal causes of death in women. This type of can-
cer develops from breast tissue, and lymph nodes (LN) near these
regions are among the first structures to be affected. LN are then
usually involved in protocols dedicated to the staging of breast can-
cer. This justifies the relevance of segmenting LN from PET/CT im-
ages, which allows to assess both their morphological and functional
(possibly pathological) properties.

A limited literature concerning detection / segmentation of LN
tumors in PET/CT is available. One can cite [6] that performs LN
cluster segmentation in the thoracoabdominal area in 2D CT slices
using firstly holistically-nested neural networks and then enhancing
segmentation with optimization techniques. In [7] a method is pro-
posed for axillary LN segmentation in CT using a classification of
solid vs. non-solid LN depending on their tissue homogeneity.

In the context of medical imaging, Deep Learning (DL) has
emerged as a promising paradigm. Convolutional Neural Networks
(CNNps) initially developed in the fields of computer vision [8, 9]
have led to impressive progress in medical image analysis [10], with
dedicated architectures such as U-net [11] which is now a gold-
standard. In the context of PET/CT analysis, it was shown in [12]
that CNNss, already used for PET/CT co-segmentation [13], were a
potentially relevant paradigm. In particular, DL outperforms other
machine learning approaches for the task of LN segmentation [14].

Following that way, we recently proposed an LN segmentation
method based on a U-Net architecture [15]. It was designed to take
advantage from PET and CT information, but also from additional
information, under the form of feature maps precomputed from the
PET/CT images. Beyond the relevance of using DL-based methods,
our working hypothesis is that high-level region-based features [16]
computed from PET/CT images may be used for modeling knowl-
edge useful for guiding the segmentation process. (Indeed, such
high-level knowledge may not be directly infered by CNNs.)

Region-based features were previously investigated in the field
of image analysis via hierarchical models. In particular, for func-
tional imaging, a hierarchical model, the so-called component-tree
(C-Tree) [17] was successfully involved over the last years. It al-
lows to emphasize the regions of locally extremal values and is then
well-suited for analyzing images where the strength of the signal is
directly correlated to its relevance. C-Trees were considered for PET
image segmentation via optimal cut determination [18, 19], attribute
filtering [20, 21, 22] or machine learning approaches [23, 24].

Following the hypothesis that region-based features computed
from PET/CT constitute a precious source of information for LN
segmentation, our purpose in this article is (1) to describe a frame-
work that allows to assess the relevance of a set of features, so that
the best ones may be involved for segmentation guidance, and (2) to
show in which extent these chosen best features may be embedded
in a CNN segmentation framework for improving its performances.

With respect to (1) (Sec. 2), we build upon a method initially
proposed in [24], that carries out classification in FDG PET/CT from
region-based features. This first machine learning step relies on a
Random Forest (RF) [25] approach on the PET/CT attributes com-
puted from regions modeled in the C-Trees of PET images. In [24],
this paradigm was used for segmentation purpose. By contrast, in
our study, we take advantage of the ability of RFs to evaluate the rel-
ative impact of each feature on the quality of the classification, thus
enabling to discriminate the potentially good features.

With respect to (2) (Sec. 3), we enrich a U-Net segmentation
architecture initially described in [15], by embedding these poten-
tially good features as additional inputs. An accurate analysis of the
results (Sec. 4) then allows us to confirm / recuse the relevance of



these features identified in (1).

2. REGION-BASED FEATURE ANALYSIS

In this section, we describe a framework for investigating the rele-
vance of various region-based features for PET/CT image analysis.

2.1. Component-trees for hierarchical image modeling

In order to evaluate the relevance of region-based features, it is
mandatory to subdivide the considered images into regions with
appropriate homogeneity properties, so that the computed feature
values make sense. For various kinds of images, such subdivi-
sion may be performed by superpixel approaches. However, in the
more specific case of medical images, and a fortiori for functional
images, the decomposition of the data by hierarchical models has
demonstrated its relevance [26, 18].

In particular, we consider a decomposition of the PET images
by the means of C-Trees [17]. A C-Tree is a rooted tree where each
node corresponds to a connected component of a binary level-set of
the image. These nodes / connected components are organized with
respect to the inclusion relation C on sets. When considering the <
relation on grey-level values of the image, the root of the C-Tree is
the whole image support at the lowest value (here, 0). At the other
side of the C-Tree, i.e. at the extremities of its branches, the leaves
correspond to the flat zones of locally maximal values. In our case,
these distal parts are areas of high uptake of the radioactive tracer,
that correspond to high metabolism, induced e.g. by tumours.

The C-Tree can be used as an image processing tool, mainly
for segmentation or anti-extensive filtering [27]. Since it is an image
model, it can also be used to store, for each node, some feature values
(also called attributes [16]) describing the properties of these nodes.
This is the way we use C-Trees hereafter.

Practically, let I : 2 — V be a PET image defined on a 3D vol-
ume  C Z* and taking its values in a subset [0, V] C Z. For each
value v € V, let I,, C (2 be the binary level-set image corresponding
to the thresholding of I at value v, i.e. I, = {z € Q | v < I(x)}.
Let C[I,] be the set of all the connected components of I,,. Finally,
let © = |J, oy C[I»] be the set of all these connected components
for all the grey-level values. This set © corresponds to the set of the
nodes of the C-Tree, namely the regions that will be considered for
our feature analysis. The C-Tree is the tree structure (0, <) that cor-
responds to the Hasse diagram (i.e. the reflexive-transitive reduction)
of the partially ordered set (©, C). Note that the lossless property of
the C-Tree wrt to the image I is expressed by the following formula:

I=\/ 1y max{v|z€NeONCI} (1)
zEQ

where \/ is the pointwise supremum on functions and 1x is the in-
dicator function for the set X . (This formula will be involved in the
feature map construction process of Sec. 3.2.)

2.2. Feature computation

Let us now suppose that the C-Tree has been built for the PET image
I (this can be done in quasi-linear time [28]). We now focus on
the nodes © of the C-Tree, that correspond to the regions of the
image I for which we want to compute the region-based features to
be evaluated. By contrast with a usual partitioning, the regions of ©
given by a C-Tree form a cover of the image. In particular, some of
these regions overlap (more precisely, some of them are included in
others). This makes the region-based feature analysis richer.

For each region N (i.e. for each node of ©) defined from the
image, we compute several features. In this study, we chose to in-
vestigate 33 features that provide information on: (1) the geometry
of N; (2) the statistics on the intensity distribution within /V; and
(3) the statistics on the spatial distribution of the intensity in N. Re-
garding the features of families (2,3), we often studied PET and CT
signal, by considering that both carry useful information. This ar-
bitrary, yet large, set of features was chosen by assuming that the
induced information cannot be easily inferred by CNNs (compared
e.g. with spatial or contextual information). In other words, we
chose the features the most likely to enrich a CNN architecture.

More precisely, the computed region-based features are the fol-
lowing:

(1) shape features (11): eccentricity, elongation, sphericity, non-
compacity, flatness, aspect ratio, bounding box height, width
and depth, volume, inclusion in the convex hull of the lungs;

(2) spectral features (8): mean value and standard deviation
(PET, CT), kurtosis (PET), skewness (PET), mean gradient
border (PET), Shannon entropy (PET);

(3) texture features (mainly derived from the co-occurrence ma-
trix [29]) (14): sparseness (PET), inverse difference moment
(PET, CT), inertia (PET, CT), entropy (PET, CT), cluster
prominence (PET, CT), energy (PET, CT), cluster shade
(PET, CT) and relative integral volume [15] (PET).

From this analysis, for each region N, a feature vector Fy € R33
was computed. This process was then iterated for all the regions N
of the C-Trees corresponding to all the couples of PET/CT images
involved in the study (here 52 patients).

2.3. Relevance study based on Random Forests

Considering all the images involved in our study, and all the induced
nodes / regions, this leads us to a set of 28 143 feature vectors that
lie in the feature space R33. Some of the regions correspond to tu-
mor areas, whereas the others do not (and correspond e.g. to normal
metabolic activity or “background” in PET). To identify the nodes
belonging to each of these two classes, we rely on pre-defined clin-
ical expert segmentations of tumor regions. In particular, we have
1959 tumor vectors vs. 26 184 non-tumor vectors.

Our purpose is now to understand how these two families of
vectors could be discriminated within the feature space R33. More
precisely, we aim to determine which of these 33 features are the
more likely to allow such discrimination. To this end, we rely on
a RF classification [25]. Indeed, beyond its ability to learn how to
classify data based on various features, RFs also allow to quantify
the discriminative power of these features.

The RF framework consists of an ensemble of decision trees
trained in parallel, with each tree recursively partitioning the input
dataset, based on a splitting at each node in the tree according to
the value of one selected feature, until reaching purity in the leaves
(stopping criterion used in this work). More specifically, the differ-
ent individual trees in the RF are trained on various random subsets
of the original training dataset (bootstrapping) and consider random
subsets of features to compute each node split (feature bagging), in
order to obtain unique decorrelated trees and to reduce the overall
variance of the RF. The RF finally predicts the class (tumor vs. non-
tumor) of each vector by carrying out a majority vote among the
individual predictions of all the decision trees.

In our experiments, the RF hyper-parameters were optimized us-
ing a grid-search algorithm. Hence, our RF consists of 5000 deci-
sion trees and the optimal feature at each tree node is determined



according to the information gain (i.e. minimizing the Shannon en-
tropy). The SMOTE technique [30] was used in order to address the
imbalanced data problem.

A 52-fold cross validation was performed by leave-one-patient-
out to identify the most discriminative features, i.e. the most robust
and stable / consistent towards patients variability. Each of these
trainings produced a scoring of feature importance; these scorings
were averaged, leading to the final results in Fig. 1.

3. FEATURE-BASED U-NET IMPROVEMENT

We now embed the features that provide the best performances in the
RF framework into a CNN architecture. Doing so, we aim to validate
the hypothesis of their relevance and to improve the behaviour of the
CNN-based segmentation via input enrichment.

3.1. Features Description

The 4 features identified as the best by the RF analysis (Fig. 1) are
the mean gradient border (M G B), the inertia (Ine), the inverse dif-
ference moment (I D M) and the cluster prominence (C P):

MGB= L > IVI|(x) 2)
|B| z€B

Ine = Z Z(z — j)zpi,j 3

i g
IDM = S L — 4
22 TGy @
CP=>">(i+j—pa— 1) 'pis )

v g

where I is the PET image,C B the set of pixels on the border of
the region, ¢ and j are the coordinates of the co-occurence matrix
of I in the region, p; ; is the value of the matrix at (¢,7), pz =
i pigand py =375 37, pije

These 4 features (that represent 35% of the overall discrimina-
tive power of the RF, vs. 65% for the other 29 features) are obtained
from the PET image, and 3 of them are texture features derived from
the co-occurence matrix analysis (only MGB is a spectral feature,
computed however on a specific part of the regions).

3.2. Feature Map Computation

We aim to embed these 4 features F' as inputs of a CNN architecture,
in addition to the two input PET and CT images of a given patient.
To this end, these features F' have to be modeled the same way as
these images, i.e. as maps Mr : 2 — R.

The computation of these features was carried out region-wise,
with regions forming a cover of 2. Then, a point z € {2 may belong
to several regions. More precisely, « belongs to a node of the C-Tree
at level set I(z) and to all the other nodes of the branch of the tree
down to the root. As a consequence, for a given feature, many values
are associated to a same point.

This requires to find a way of “flattening” these information in
order to build feature maps that associate exactly one value to each
point. In other words, we aim to define a mapping:

Flatp(z) =op{F(N) |z € N e O} e R

associated to the feature F'. Based on the analysis of the seman-
tics of the features of Egs. (2-5), we define op as max for MG B,

mean gradient border in PET
inertia in PET

inverse difference moment in PET
cluster prominence in PET
entropy in PET

energy in PET

eccentricity in PET/CT

mean HU in CT

relative integral volume in PET
SUV's standard deviation in PET
Shannon entropy in PET

cluster prominence in CT

mean SUV in PET

energy in CT

bounding box height in PET/CT
elongation in PET/CT

cluster shade in PET

inverse difference moment in CT
inertia in CT

flatness in PET/CT

cluster shade in CT

sphericity in PET/CT

kurtosis in PET

entropy in CT

HU's sandard deviation in CT
skewness in PET

bounding box depth in PET/CT
compacity in PET/CT
sparseness in PET

bounding box width in PET/CT
aspect ratio in PET/CT

area in PET/CT

inclusion in lungs convex hull in CT
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Fig. 1. Relative importance of the 33 explored features (Sec. 2.2)
based on the RF study (Sec. 2.3). In blue: mean value and standard
deviation of the relative importance of the features (> = 1); red
line: mean relative importance value over the 33 features.

Fig. 2. Feature maps superimposed on a PET/CT image and viewed
as heat-maps (blue — white — red, from low to high tumor proba-
bility). From left to right: M GB, Ine, IDM and C'P. Tumor LN
ground-truth are depicted by black contours.

Ine, CP and as min for IDM. (These choices were confirmed
by experimental studies on the ability of the features to individually
discriminate tumor from non-tumor regions.) Following the image
reconstruction paradigm of Eq. (1), the definition of the feature maps
is then:

Mp = \/ 1{Z}Flatp($) = \/ 1{Z}Op{F(N) | r€eN € @}

€N zeQ

Fig. 2 exemplifies the obtained feature maps corresponding to the
features of Egs. (2-5).

3.3. Feature insertion into a 3D-UNet CNN

Finally, these feature maps are inserted into a CNN architecture as
supplementary channels, combined with the PET and CT images.
The CNN (fully described in [15]) is based on a U-Net architecture
with two encoders (one for the PET, the other for the CT) and one
decoder for image reconstruction that carries out PET image recon-
struction with the aid of skip connections deriving from the PET and
CT encoders. Each encoder processes in parallel the information
from PET and from CT respectively. The final output produces a
heat-map with the probability of tumor location that can be thresh-
olded for segmentation purpose.



Table 1. Segmentation results without and with region-based feature enrichment (see Sec. 4). Sensitivity (Sen), Positive Predictive Value
(PPV) and Dice scores are computed pixel-wise and region-wise (mean values and standard deviation).

Pixel-wise Region-wise
Inputs Sen PPV Dice Sen PPV Dice
PET/CT (baseline) ~ 0.887 £0.046  0.844 £0.103  0.865+0.080  0.926 £0.062  0.850£0.189  0.872 +0.131
PET/CT + MGB 0.856 = 0.055  0.862+£0.142 0.850£0.016 0.905+0.075 0.838+0.194  0.870 £0.143
PET/CT + Ine 0.879 £0.041 0.920+0.118 0.890+£0.019 0.952+0.026 0.882+0.116 0.916 +0.106
PET/CT + IDM 0.862+0.121  0.848£0.161 0.855£0.066  0.937+0.076  0.868 =0.120  0.901 £ 0.019
PET/CT + CP 0.870 +0.148  0.833+£0.121  0.851 £0.112 0.9374+0.013 0.808 +0.132  0.868 £0.145
PET/CT + 4 0.910 £0.018 0.885+£0.031 0.897+0.024 0.952+0.017 0.870£0.026  0.909 £ 0.033
PET/CT + 5 [15] 0.896 £0.014 0.8724+0.012 0.867+0.031 0.933+0.015 0.851+0.142 0.894 +£0.133

4. RESULTS AND DISCUSSION

In this section, we provide results of the CNN with various kinds of
inputs (data and feature maps):

e 2 inputs: PET and CT (i.e. without features): our baseline;

e 3 inputs: PET, CT plus one of the 4 features (M GB, Ine,
IDM or CP) for assessing their individual impact;

e 6 inputs: PET, CT plus the 4 features (M GB, Ine, IDM
and C'P) for assessing their collective impact;

e 7inputs: PET, CT plus 5 features empirically chosen in previ-
ous experiments [15], namely M G B, mean value (CT), stan-
dard deviation (CT), relative integral volume, inclusion in the
convex hull of the lungs (that are ranked at the 1st, 8th, 25th,
9th and 33th positions, respectively in our current analysis).

The considered quality metrics are Sensitivity (Sen), Positive Pre-
dictive Value (PPV) and Dice score, computed point-wise (i.e. for
segmentation) and region-wise (i.e. for detection), see Tab. 1. Seg-
mentation results are also illustrated in Fig. 3.

From these results, one can first observe that the addition of fea-
ture maps as inputs generally has a positive effect on the results.
However, only one additional feature map is often not enough. In-
deed, except for Ine that improves the results vs. the baseline when
added standalone, the other features marginally improve or slightly
degrade the results in that case. By contrast, using several feature
maps leads to improved (or in the worst cases to unchanged) results
compared to the baseline. In particular, it leads to better scores in
terms of true positives and false negatives compared to the case of
standalone features, leading to a better sensitivity, which is important
in a clinical context. Using various features also reduces the standard
deviation of the scores, which denotes a more stable behaviour.

In the context of using several features, the last two lines of
Tab. 1 seem to confirm that an accurate selection of these features
(e.g. as proposed by the RF analysis) generally leads to better re-
sults compared to empirical choices. This emphasizes the relevance
of the framework proposed in Secs. 2-3. However, we experimen-
tally observed that involving too many features does not necessarily
improve the CNN segmentation results. For instance, using the 5
best features (i.e. the 4 described ones plus entropy, ranked Sth) does
not lead to better results compared to using only the first 4 features.
This motivates the relevance of identifying the very best candidates
in order to involve a limited set of features (which also makes sense
wrt computational efficiency).

Finally, we observe that the RF ranking mainly follows the CNN
ranking for the features used standalone. The only exception is the
case of M G B, ranked first by RF whereas being less efficient than
some of the texture features. A possible cause of this phenomenon
could be the potential ability of a CNN to generate in its first layers

Fig. 3. Segmentation results (coronal slices of axillary regions, fused
PET/CT image samples). From left to right: PET/CT (baseline);
PET/CT + Ine; PET/CT + 4 features. Boundaries of predictions
(blue) and ground-truth (green).

the information carried by this (merely linear) feature, compared to
the more complex texture features, that may be infered only in much
deeper layers.

5. CONCLUSION

We proposed a RF-based framework for selecting the best features
that may be involved as input of U-Net architectures for segmenta-
tion of LN in PET/CT. This framework could, of course, be consid-
ered for other kinds of data and other CNN architectures.

Short-term perspectives will consist of carrying out more ex-
haustive experiments, with more data and other kinds of features
(e.g. statistical atlases of pathological and anatomical structures).

We will also investigate the “relevance” of the tested features.
Indeed, the purpose is to consider features that are likely to enrich a
CNN. In other words, we will aim at using features that cannot be
easily computed / approximated by CNNs in their first layers. This
will lead us to develop a framework for assessing the ability of a
CNN to infer different types of feature maps.
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