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Abstract—We present an all-in-one camera model that encom-
passes the architectures of most existing compressive-sensing
light-field cameras, equipped with a single lens and multiple
amplitude coded masks that can be placed at different positions
between the lens and the sensor. The proposed model, named
the equivalent multi-mask camera (EMMC) model, enables
the comparison between different camera designs, e.g using
monochrome or CFA-based sensors, single or multiple acqui-
sitions, or varying pixel sizes, via a simple adaptation of the
sampling operator. In particular, in the case of a camera equipped
with a CFA-based sensor and a coded mask, this model allows
us to jointly perform color demosaicing and light field spatio-
angular reconstruction. In the case of variable pixel size, it
allows to perform spatial super-resolution in addition to angular
reconstruction. While the EMMC model is generic and can be
used with any reconstruction algorithm, we validate the proposed
model with a dictionary-based reconstruction algorithm and a
regularization-based reconstruction algorithm using a 4D Total-
Variation-based regularizer for light field data. Experimental
results with different reconstruction algorithms show that the
proposed model can flexibly adapt to various sensing schemes.
They also show the advantage of using an in-built CFA sensor
with respect to monochrome sensors classically used in the
literature.

Index Terms—Light Field imaging, camera models, compressed
sensing, regularization, inverse problems

I. INTRODUCTION

Light field imaging is gaining in popularity for a number of
applications, going from photo-realistic image-based rendering
[1], [2], [3] to computational photography [4], [5], [6], [7],
glass-free 3D displays [8], [9], and computer vision applications
[10]. A light field is a sampled version of the 7D plenoptic
function that describes the intensity of the light rays interacting
with the scene as received by an observer at every point in space,
along any direction of gaze, for all times and every wavelength
[11]. In computer vision, light fields are commonly represented
as four-dimensional (4D) functions with two spatial and two
angular (or directional) dimensions [1], [2]. In this point-of-
view, they can be seen as collections of two-dimensional (2D)
images, which are called viewpoints or sub-aperture images
or angular images, taken from different vantage points. The
difference between viewpoints of the same scene enables not
only reconstruction of 3D objects but also photo rendering
with controlled depth-of-field.

Over the past decades, a number of acquisition devices
have been developed by both academic and industrial groups,
with the aim of efficiently capturing 4D light fields. Existing
devices can be classified into two categories: multi-view
imagers which directly acquire different viewpoints using
optical and mechanical setups, and multi-view coders which
encode angular information of 4D light fields onto 2D sensor
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images and then “compute” original viewpoints. The first
category includes imaging systems involving single cameras
mounted on mechanical gantries moving over a spherical or
planar surface [1], and multiple cameras arranged in an array
fashion (also called camera arrays) [12], [13]. While moving
camera gantries have major difficulties for capturing non-
static scenes, specially those with fast moving objects and
illumination changes, camera arrays suffer from low angular
resolution due to physical constraints. In addition, both of
these light field capturing systems are often quite bulky and
not suitable for popular consumer uses.

In comparison with these cumbersome setups, compact
devices have been designed by modifying the architecture of
conventional cameras in order to capture the light field passing
through the camera main lens. Early prototypes commonly
known as “plenoptic cameras” [14], [15] use micro-lens arrays
(MLA) placed on the optical path before the camera sensor to
separate incoming light rays by their incident angle. Thus, this
separation allows for acquiring multiple viewpoints of the scene.
Alternatively, several recent light-field camera designs consider
coded masks instead of an MLA to modulate 4D light fields
into 2D projections that are captured by the camera sensor,
and use a reconstruction algorithm to restore unmodulated
light fields from their projections [16], [17], [18]. Note that
most mask-based cameras are actually multi-view coders; in
contrast, MLA-based (plenoptic) cameras belong to the class
of multi-view imagers.

While an MLA-based camera can be modelled as a virtual
or equivalent camera array (ECA) [19], there is no published
work providing a similar equivalent system for mask-based
prototypes. We introduce, in this work, a unifying model that
represents any single-lens light-field camera with coded masks
as an equivalent multi-mask camera (EMMC). The EMMC
formalism enables the comparison of different camera designs
and acquisition settings, e.g. using monochrome or CFA-based
sensors, using single or multiple acquisitions, varying the pixel
size. In particular, the architecture combining an attenuation
mask and a CFA-equipped sensor can be seen as a dual-mask
model: one is the coded mask which multiplexes angular (or
directional) information and the other corresponds to the CFA
pattern which samples color information. Preliminary results
on joint demosaicing and light field reconstruction with CFA
sensors have been published in [20]. Also, please note that the
proposed camera model concerns only (amplitude) mask-based
cameras and does not include camera designs using phase
plates or micro-lens arrays.

Regarding light field reconstruction methods, the EMMC
model, in which the sampling operator modeling the coded
projection process of light fields can be flexibly computed
according to the camera design changes, can be used with any
reconstruction algorithm. While we first validate the model
with existing dictionary-based reconstruction algorithms, we
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(a) Original light field (b) Acquisition using (c) Full RGB acquisition (d) Acquisition using
CFA-sensor monochrome sensor

(e) Central view of (a) (f) Our result from (b) (g) Result of [18] from (c) Result of [21] from (d)
(PSNR = 40.83) (PSNR = 45.69) (PSNR = 38.26)

Fig. 1: Reconstruction of a color light field from a single 2D coded projection captured in various acquisition scenarios. The original light field (a) is
the “Tulip” scene (5× 5 views) from the Stanford Lytro Illum dataset [22]. The coded projection is computed with a RGBW mask as in [21], and it is captured
in three different ways: acquisition with CFA-sensor (b), full (RGB) color acquisition (c) and acquisition with monochrome sensor (d). Experimental results
show that the reconstruction with our variational method from CFA-based acquisition is comparable to the result obtained with a state-of-the-art dictionary-based
method [18] on full-color acquisition. In contrast, the combination of deep-learning-based algorithm [21] and monochrome acquisition produces a result with
incorrect-color reconstruction.

also develop a generic variational algorithm by extending the
total variation regularization for light field data. Experimental
results on both synthetic and real light field data, show that
our camera model can flexibly adapt to various acquisition
schemes. They also show the advantage of using an in-built
CFA sensor with respect to monochrome sensors classically
used in the literature. In fact, when using the CFA sensor
combined with a coded mask, the proposed model allows us
to perform a joint demosaicing and light field reconstruction.
Also, the model gives the flexibility of increasing the number
of shots, thus giving better results compared to reconstructions
from one-shot acquisitions.
In summary, the contributions of this paper are the following:
• The construction of an Equivalent Multi-Mask Camera

(EMMC) model which unifies most existing single-lens
mask-based light field cameras, and which allows flexible
configuration of a variety of sensing schemes related to the
number and the positions of coded masks, monochrome
and color filter array (CFA)-based sensors, and the pixel
size.

• The application of EMMC model in multi-shot light
field reconstruction, joint light field reconstruction and
demosaicing using a CFA-equipped sensor and coded
masks, and joint light field reconstruction and super-
resolution in the case of variable pixel size.

• The derivation of an image formation model using the
proposed EMMC model to describe various acquisition
schemes.

• The validation of the proposed model with various
acquisition schemes using dictionary-based reconstruction
methods as well as an approach combining a dictionary
based reconstruction with a K-order differential regular-
ization.

II. RELATED WORK

This section gives an overview of main computational light
field camera designs, with a focus on camera designs aiming
at capturing a whole light field with a single sensor, e.g.

micro-lens-based and mask-based cameras. A taxonomy of
computational light field cameras, according to the approach
used to project the 4D light field onto a 2D sensor, can be
found in [23].

MLA-based cameras
The first single-lens plenoptic camera has been introduced in

[14], using an array of pinholes in front of the sensor. Following
principles of integral imaging pioneered by Lippmann [24],
each pinhole acts as a camera that creates a micro-image of
the main lens aperture on a small area of the sensor. An array
of micro-lenses can be considered instead of the pinhole array
for better light efficiency. The authors of [14] also proposed an
elaborated design which places a field lens in front of the MLA
to reduce aberrations and place a relay lens right after the MLA
to separate it from the sensor. A decade later, by modifying
the original setup in [14], Ren Ng has developed the first
hand-held light field camera [15], [4] that slightly modifies the
original setup of [14]. A light transport framework for lenslet
light field cameras is proposed in [25] taking into account non
uniform angular pixel sensitivity to understand the limits of
lenslet-based light field cameras. The authors in [26] also take
into account lens aberrations in the light field camera design.

Mask-based cameras
Programmable aperture approaches have also been consid-

ered to sequentially capture subsets of light rays, hence time-
multiplexing 2D slices of the 4D light field on the sensor,
using a programmable non-refractive mask at the aperture [27],
and exploiting the fast multiple-exposure feature of digital
sensors. Shield fields are introduced in [28] to quantify the
4D attenuation of light rays due to occluders in mask-based
camera designs. A good overview of the above camera designs
can be found in [29].

Since the light field data is typically high dimensional and
compressible, its acquisition can be placed in a compressive
sensing framework, in which the sensing matrix is materialized
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by a coded physical mask. The application of the compressive
sensing framework to the problem of light field acquisition thus
led to novel camera architectures, referred to as compressive
coded aperture light field cameras. Thanks to the use of a
coded mask, instead of recording a spatial multiplex of 2D
slices of the light field, the photosensor records a set of linear
measurements from which a higher resolution light field can
be reconstructed.

This compressive sensing principle is applied in [6], [7]
where the 2D sensor captures optically coded projections using
two attenuation masks separately placed at the aperture plane
and in front of the sensor. Given the measurements recorded
on the sensor, the light field is then reconstructed using a
least square minimization with a total variation regularization
constraint. Similarly, the authors in [30] place a randomly coded
mask on the aperture plane to obtain incoherent measurements
of the light field. Multiple shots are captured as random linear
combinations of angular images by separately opening one
region of the aperture and blocking the light in the others.
The authors in [17] propose a camera architecture that records
optically coded projections on a single image sensor, while
the authors in [31] and [18] use respectively a random binary
mask or a moving colour coded mask affixed to the sensor to
extract incoherent measurements. In both cases, the light field
is then reconstructed using a compressive sensing framework,
assuming that the light field is sparse in a domain defined
by an overcomplete dictionary [17], [18] or an ensemble of
2D separable dictionaries [31]. Light field reconstruction from
a sparse set of measurements is an inverse problem that can
also be efficiently solved using deep learning techniques [32],
[33], [21], [34]. The authors in [32], [33], [21] assume a
pre-defined mask pattern and propose convolutional neural
network architectures to reconstruct the light field from the set
of measurements given the coded mask. In contrast, the authors
in [34] pose the coded aperture acquisition and light field
reconstruction as an auto-encoder and optimize the mask pattern
together with the parameters of the reconstruction algorithm
in an end-to-end auto-encoder learning. The higher resolutions
achieved thanks to compressive acquisition is shown in [35]
to be useful in light-field microscopy for 3D neural activity
recording. Although not related to acquisition, we would like to
mention that similar principles using masks or light-attenuating
layers have also been considered to realize compressive light
field displays [9].

Other single sensor camera designs
The authors in [36] also proposed a miniaturized and

integrated camera array where multiple cameras share the
same sensor, while in [37], the capture is done through a spray
of water droplets on an acrylic surface placed in front of the
camera [37]. Each drop of water produces a distorted view of
the scene. A camera architecture is proposed in [38] allowing
us to switch between a high resolution 2D image capture
and a light field capture. This camera uses angular sensitive
pixels (ASP) that allow for angular radiance information to
be captured without the need for additional microlenses or
light-blocking masks.

III. IMAGING MODEL: BACKGROUND

In this section, we recall basic concepts of light field
parameterization and imaging based on geometrical optics
for conventional cameras featuring a main lens placed on one
side and a photo-sensitive surface (also called “sensor”) on

Symbols Description

X,U ,x,u ∈ R2 Points on 2D planes

LZ(X,U , λ) Radiance of the light rays passing through
two points X and U located in two planes
of depths (Z,W ) = Z in the wavelength λ

Lzcam In-camera light field parameterized by the
sensor and the lens planes with zcam =
(zsensor, zlens)

M(ξ, λ) Value of the coded mask M at the position
ξ in the wavelength λ

Ĩλ Angular-compressed projection of the light
field in the wavelength λ

I Spectro-angular-compressed projection of the
light field (all color channels are merged)

k = (k1, k2) ∈ Z2 Discrete coordinates on the sensor.

I
(s)
k Intensity of the pixel of width 4p and center

ck with the discrete cordinates k on the
sensor, captured by the sth acquisition

Φ ∈ Rnsn×3νn Coded projection matrix of ν = νuνv angular
views, n = nxny being the number of
spatial samples and ns being the number of
acquisitions.

H ∈ Rnsrn×nsn Sampling matrix modeling the sampling oper-
ations at the sensor level, r = (4x4p )

2 being
the squared ratio between the spatial sampling
step and the pixel width

TABLE I: Notations and Symbols.

the opposite side. While the plane at which the camera lens
is located is called the “lens plane”, the plane containing the
photo-sensitive surface is often referred to as the “sensor plane”.
We then establish the link between the light field induced by a
world 3D scene and the image of this scene through the main
lens as a projection onto the sensor plane.

A. Light field parameterization

We adopt the two-plane parameterization, in which any light
field can be represented by a collection of light rays passing
through two points on a pair of parallel planes. Given two
constants Z and W , we denote by LZ(X,U , λ) the radiance
in the wavelength λ along a ray passing through the point
X = (X,Y ) on a plane of depth Z and the point U = (U, V )
on a plane of depth W , where Z = (Z,W ) is simply the depth
vector of the two parameterization planes (see Fig.2). The
couple (X,Y ) (resp. (U, V )) represents the spatial coordinates
(resp. angular coordinates) of the light field LZ . Here, the
first reference plane (i.e. the X-plane) is called the “focal
plane” and the second one (i.e. the U -plane) is called the
“aperture plane” (which is often assumed to coincide with
the “lens plane”). Common conventions often assume that the
region between these two planes is a free space (i.e. there is
no occlusion) to guarantee the preservation of radiance along
light rays traveling in this region. Given a scene and a fixed
camera position, the parameterization of the light fields can
be extended for any two parallel planes of arbitrary depths
(see Fig. 2 and [25], [39] for details). Hence different light
fields representing the same (static) scene can be obtained by
changing the depth position of the focal plane or the aperture
plane, or even both of them.
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Fig. 2: Lens imaging and light field parameterization. The light field
induced by the scene can be parameterized by any two parallel planes, e.g.
the pair of X- and U-plane (black and blue dashed lines respectively). The
camera lens transforms the “world light field” LZ (also called the “outside
light field”) into the “in-camera light field” Lz which is a distorted version
of LZ with LZ(X,U , λ) = Lz(x,u, λ). The x-plane (resp. u-plane) is
the conjugate plane of the X-plane (resp. U -plane) through the camera lens.
Note that the x-plane is not necessary coincide with the sensor plane of the
camera.

B. Image formation in a conventional camera
In this paper, we consider single-lens architectures and

without loss of generality, we assume that the main lens of the
camera is centered at origin (i.e. at the point O = (0, 0, 0)).
Let us consider a light ray starting from a point on an object of
the scene and passing through two points X and U located on
two planes of depth Z and W respectively. Due to refraction,
the light ray bends after traveling through the camera lens and
intersects the conjugate plane of the two reference planes at
positions x and u as follows:

x =
f

Z + f
X , z =

fZ

Z + f
,

u =
f

W + f
U , w =

fW

W + f
,

where z (resp. w) denotes the depth of the conjugate plane of
the X-plane (resp. U -plane), and where f denotes the camera
focal length. Or in other words, the camera lens transforms the
“world light field” LZ (also called the “outside light field”)
into the “in-camera light field” Lz which is a distorted version
of LZ with LZ(X,U , λ) = Lz(x,u, λ) (see Fig.2). When a
translucent screen is placed exactly on the x-plane (i.e. the
sensor plane coincides with the conjugate plane of the X-
plane), classical radiometry states that the irradiance in the
wavelength λ at a position x on the screen is equal to the
following integral [4]:

Iλ(x) =

∫
Θ

Lz(x,u, λ) du

=
f

W + f

∫
W+f
f Θ

LZ

(
Z + f

f
x,U , λ

)
dU , (1)

where Θ ⊂ R2 is the camera aperture domain. This equation
represents the photograph formation in a conventional single-
lens camera. It is nothing else than the projection of the 4D
light field onto a 2D image by summing all rays intersecting
the sensor plane at the same position.

IV. REVISITING ACQUISITION USING CODED MASKS

In this section, we study the image formation on a slightly
modified conventional camera architecture, in which one or
multiple (coded) masks can be inserted between the main lens
and the sensor (see Fig.3). In such an architecture, we denote
by Lzcam the in-camera light field parameterized by the sensor
plane and the lens plane (here zcam = (zsensor, zlens), where
zsensor and zlens is the depth of the sensor plane and the main

Fig. 3: Standard mask-based light field camera model. A coded mask is
placed between the sensor and the main lens. Incoming light rays are filtered
by the mask before they reach the sensor.

lens plane respectively). Also, let D = |zsensor − zlens| be
the distance between two parameterization planes. We assume
furthermore that Lzcam is simply zero beyond the physical
bounds of the camera sensor (denoted by Ω ∈ R2) and the
aperture Θ.

If the sensor is a translucent screen and a coded mask
M(ξ, λ) (with feature size 4M , i.e. the size of each element
or pixel of the mask) is placed at a distance d from the sensor
plane (0 ≤ d ≤ D) in a way that d

4M is sufficiently small with
respect to the visible spectrum (corresponding to wavelength in
the range between 0.4 and 0.8 µm); under these conditions, the
diffraction effect induced by the mask M can be ignored [40].
Then, the imaging equation can be rewritten as [17], [18]:

Ĩλ(x) =

∫
Θ

M(ξx,u,d, λ) Lzcam(x,u, λ) du , (2)

where ξx,u,d = u + D−d
D (x − u). Each image Ĩλ is called

“coded projection” of the original light field Lzcam in the color
channel λ and can be seen as an angular-compressed version
of the set of angular images {Lzcam(·,u, λ)}u∈Θ. Note that
Eqn. (1) is a particular case of Eqn. (2) when M = 1, i.e.
when the mask is fully transparent.

Let us replace the translucent screen in the camera archi-
tecture by a simple monochrome sensor array that receives
all incoming lights but does not distinguish the light colors.
Accordingly, the intensity of an idealized infinitesimal pixel
(i.e. the pixel size is considered as a point particle) located at
the position x on the sensor plane can be computed as follows:

I(x)=

∫
Λ

Ĩλ(x) dλ =

∫
Θ×Λ

M(ξx,u,d, λ)Lzcam(x,u, λ) du dλ ,

(3)
where Λ is the range of light wavelengths that can be captured
by the sensor. One can remark that if the mask M is not
mounted directly on the sensor (i.e. d 6= 0) as suggested in [21],
all color channels of {Ĩλ}λ∈Λ are merged to form the “gray-
scale” image I which contains only luminance information.
In this case, both directional (angular) and spectral (color)
information are compressed. Consequently, reconstructing the
light field Lzcam from its spectro-angular-compressed projection
I is more challenging since it requires not only the estimation
of the original viewpoints, but also the true color of each light
field ray.

Fortunately, there are several acquisition schemes which
permit avoiding the loss of all color information.

a) Multi-spectral sensing: It is possible to place color
filters on the camera optical path for capturing coded pro-
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jections in desired wavelengths. Each color channel can be
obtained separately by considering the corresponding color
filter. This enables multi-spectral imaging for arbitrary spectral
(color) bands by the means of multiple (sequential) acquisitions;
however, the total acquisition time increases proportionally
to the number of colors that we want to capture. Another
way to perform multi-spectral imaging without increasing
the acquisition time is to use a prism to split incoming
light beam into different color channels and use a large
sensor array (or several small sensor arrays) to record each
channel. Nevertheless, it requires major modifications of
the camera architecture both in terms of optical setup and
sensor implementation which are not convenient for popular
consumers.

b) Monochromatic multi-shot acquisition: As in [18], one
can also consider multiple shots, each of which is taken using
a different random colored pattern. The color-coded mask is
indeed changed to create a new random pattern for increasing
the incoherence. In order to retrieve color information, each
pattern is generated in the same (color) tint. More interestingly,
multi-spectral sensing can be seen as a particular case of
monochromatic multi-shot acquisition, in which the random
pattern used for each shot is actually a color component of the
given color-coded mask.

c) Using built-in CFA: An alternative solution for color
light field imaging is to use sensors with a built-in color
filter array (CFA) in order to sample the color information.
Accordingly, captured images are color mosaics, in which the
color of each pixel is defined by the color filter located at
the pixel position. Note that, in an equivalent setting with
monochrome sensors, it amounts to placing the corresponding
CFA pattern right in front of the (monochrome) sensor array.

V. EQUIVALENT MULTI-MASK CAMERA MODEL

In this section, we extend the conventional image formation
model for single-lens single-mask cameras to more general
situations, e.g. acquisition using multiple coded masks, multiple
shots, and varying pixel sizes. We then introduce the notion of
“Equivalent Multi-Mask Camera” that unifies various camera
architectures and acquisition configurations. Using this EMMC
formalism, we derive the imaging (sensing) matrix which maps
a light field to a set of projected sensor images corresponding to
a given situation. Also, we show the link between the proposed
image formation model and the acquisition process on existing
single-lens mask-based light field cameras.

A. Extended image formation model
The acquisition using a coded mask and a color sensor can

be abstracted by an acquisition model using two coded masks
and a monochrome sensor. In fact, the idea of using more than
one mask has been introduced in [6], [7] with a dual-mask
design: one mask is placed before the sensor and the other one
at the aperture.

1) Multiple masks at varying positions: By extending
this concept, we propose a camera model equipped with a
main lens, a monochrome sensor and a set of nm masks
M = {M1,M2, . . . ,Mnm}, in which each mask Ml is located
between the camera sensor and aperture, at an arbitrary distance
dl from the sensor plane. Accordingly, the coded projection
of the in-camera light field Lzcam , through the masks M and
captured by the sensor, reads:

I(x) =

∫
Θ×Λ

nm∏
l=1

Ml(ξx,u,dl , λ) Lzcam(x,u, λ) du dλ . (4)

The proposed multi-mask formalism does not only generalize
the light field camera prototype introduced in [21], but it also
represents an equivalent model for most existing mask-based
light field cameras. The readers are referred to section V-C
for a detailed comparison of different mask-based designs and
their equivalent multi-mask camera.

2) With varying pixel supports and multiple acquisitions:
In reality, although (digital) sensor pixels are relatively small
comparing to the main lens or the sensor itself, they have
a certain size that can not be reduced to an idealized point
particle. Each pixel therefore measures the quantity of incident
light over a bounded region called “pixel support” to form the
pixel value. Note that the pixel support may have various shapes
depending on the sensor design. For the sake of simplicity,
we only consider, in this work, regular rectangular sensors
with square pixels. Under this assumption, let 4p be the pixel
size and let k = (k1, k2) ∈ Z2 be the discrete coordinates
of a sensor pixel. The support of this pixel is defined as the
following rectangular domain:

Ck=

[
xk1 −

4p
2
, xk1 +

4p
2

[
×
[
yk2 −

4p
2
, yk2 +

4p
2

[
,

where (xk1 , yk2) = ck ∈ Ω denotes the pixel center. One can
further envisage multiple acquisitions (shots) of the same scene
and with the same camera position on the same sensor using
different configurations of coded masks (e.g. changing mask
position and pattern, inserting more masks or even removing
some of them). Let ns be the number of desired acquisitions,
then the s-th captured image can be expressed as:

I
(s)
k =

∫
Ck×Θ×Λ

n(s)
m∏
l=1

M
(s)
l (ξ

(s)
x,u,dl

, λ) Lzcam(x,u, λ) dx du dλ ,

(5)

where 1 ≤ s ≤ ns and M(s) = {M (s)
1 ,M

(s)
2 , . . . ,M

(s)

n
(s)
m

} is

the set of n(s)
m masks used for this acquisition. As each image

I(s) can be seen as a finite collection of sensor pixel values,
the imaging equation Eqn. (5) establishes the link between
the continuous light field Lzcam and the discrete form of its
coded projections measured by the sensor. In practice, light
field reconstruction algorithms tend to produce (from the set
of measurements {I(s)

k }s,k) an estimated discrete version of
Lzcam (up to a given spatio-angular resolution) instead of
its continuous counterpart. For this purpose, we introduce in
section V-B the imaging (sensing) matrix representing the
transformation of a discrete 4D color light field into captured
sensor images of its coded projection by taking into account
the spatial, angular, and spectral resolutions, as well as the
size of sensor pixels and the number of acquisitions to be
performed.

B. Discretized sensing matrix
Given two strictly positive constant 4x and 4u, we assume

that the in-camera light field Lzcam is sampled in red, green and
blue colors (which correspond to the wavelength λR, λG and
λB respectively) according to the grid of spatial and angular
coordinates:
X = {xi = x0 +4xi ∈ Ω for i = (i1, i2) ∈ N2} ,
U = {uj = u0 +4uj ∈ Θ for j = (j1, j2) ∈ N2} ,

where x0 = (x0, y0) and u0 = (u0, v0) are some reference
coordinates. Let n = nxny be the number of spatial samples
and ν = νuνv the number of angular samples (also known
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I(1)

I(2)

...
I(ns)


︸ ︷︷ ︸

I

=


H(1) 0 . . . 0

0 H(2) . . . 0
...

...
. . .

...
0 0 . . . H(ns)


︸ ︷︷ ︸

H


φ(1,R,1) . . . φ(ν,R,1) φ(1,G,1) . . . φ(ν,G,1) φ(1,B,1) . . . φ(ν,B,1)

φ(1,R,2) . . . φ(ν,R,2) φ(1,G,2) . . . φ(ν,G,2) φ(1,B,2) . . . φ(ν,B,2)

...
. . .

...
...

. . .
...

...
. . .

...
φ(1,R,ns) . . . φ(ν,R,ns) φ(1,G,ns) . . . φ(ν,G,ns) φ(1,B,ns) . . . φ(ν,B,ns)


︸ ︷︷ ︸

Φ



L(1,R)

...
L(ν,R)

L(1,G)

...
L(ν,G)

L(1,B)

...
L(ν,B)


︸ ︷︷ ︸

L

, (6)

as “number of views”). We then denote by L ∈ R3νn the
column vector which represents the sampled version of Lzcam
according to the sampling grid X × U defined as:

Lc
i,j = Lzcam(xi,uj , λc) ,

for every c ∈ C = {R,G,B}. By construction, the size of the
discrete light field L is nx×ny×νu×νv×3. We denote the
set of discrete spatial and angular coordinates by I and J
respectively as follows:

i ∈ I = {1, 2, . . . , nx} × {1, 2, . . . , ny} ⊂ N2 ,

j ∈ J = {1, 2, . . . , νu} × {1, 2, . . . , νv} ⊂ N2 .

To simplify our notation, we adopt the following arrangement
L = {L(j,c)}1≤j≤ν,c∈C , where j = j1 + νu(j2 − 1) and each
L(j,c) ∈ Rn denotes the vectorized version of the j-viewpoint
in the wavelength λc. Using this arrangement, the discrete
form of the multi-mask-based multi-shot acquisition scheme in
Eqn. (5) can be expressed as a matrix-vector multiplication, as
shown in Eqn. (6). Here, I ∈ Rnsrn denotes the collection of ns

acquired images, eachH(s) ∈ Rrn×n is the matrix representing
the integration (summation) of incident light rays on the same
sensor pixels for the s-th acquisition, r = (4x4p )2 is the squared
ratio between the spatial sampling step and the pixel width,
each φ(j,c,s) =

∏n(s)
m

l=1 M
(j,c,s)
l ∈ Rn×n is a sparse matrix

and each M (j,c,s)
l ∈ Rn×n is a diagonal matrix containing

the coefficients in the wavelength λc of the mask M
(s)
l on

its diagonal. Moreover, Φ ∈ Rnsn×3νn is called the “coded
projection matrix” containing the coefficients of implemented
coded masks {M(s)}1≤s≤ns , and H ∈ Rnsrn×nsn is called
the “sampling matrix” which models the sampling operations
at the sensor level. By construction, the transform that relates
the original (discrete) light field L to the sensor images I is
given by:

Ψ := HΦ ∈ Rnsrn×3νn . (7)
One can easily see that the imaging matrix Ψ is sparse, due to
the structure of H and Φ. Note that when r = 1, H becomes
an identity matrix, and thus implying Ψ = Φ, which represents
the conventional compressive sensing (CS) framework of light
fields as described in [16], [17], [18], [21]. Most early studies
have proposed to reconstruct light fields with the same spatial
resolution as of the captured sensor images. However, there is
no published work that addresses the reconstruction of higher-
spatial-resolution light fields from low-spatial-resolution coded
projections. Note that the spatial sub-sampling technique used
in [18] assumes that the spatial resolution of the light field
coincides with the sensor resolution.

In practice, for real camera systems using amplitude-coded
masks [30], [17], the imaging matrix of the whole system is
estimated using the so-called “whiteboard” scenes. Details of

such estimation procedure can be found in the supplement
material of [17]. The estimation of the imaging matrix Ψ is
also called as (PSF) “calibration”.

C. Link with existing single-lens mask-based cameras
Most of existing single-lens camera designs represent special

cases of Eqn. (5) by changing the number of masks nm, the
mask pattern Ml and the distance dl between the mask Ml

and the sensor plane. One trivial example is conventional
(photography) cameras (which do not possess any coded mask)
corresponding to nm = 1 and M1 = 1. Regarding mask
patterns, various classes of coded masks in the literature (such
as broadband, sum-of-sines, random, monochrome, color etc.)
can be easily modeled by using appropriate Ml functions.

a) Coded aperture cameras (Fig.4-a): Coded aperture
cameras (also known as pupil plane coding cameras) use one
mask located on the aperture plane of a traditional lens, i.e.
corresponding to nm = 1 and d1 = D. The mask pattern is
either a sum of cosine signals in spatial domain (corresponding
to a sum of Dirac delta functions in the Fourier domain) [5],
a random pattern [16], or a learned pattern [34].

b) Sensor-side mask-based cameras (Fig. 4-b): These
camera architectures (also known as sensor side coding
cameras) use a mask placed on the sensor plane or in front of
the sensor [17], [18], [21], hence usually setting nm = 1 and
assuming d1 � D. The mask patterns are in general random
monochrome masks with Gaussian weights [17] or random
color coded masks [18], [21]. When d1 = 0, the mask plane
coincides with the sensor plane. This setting allows modeling
specific implementations at the sensor level, e.g. color filter
arrays (such as the Bayer filter array) can be considered as
particular color coded masks to encode color information into
photo-sensitive sensors.

c) Dual-mask cameras: Previously, the two-mask camera
proposed in [6], [7] is special case of the generic model of
Eqn. (4), with nm = 2, d1 = D and 0 < d2 < D. In this
camera model, one mask is placed in the aperture plane while
the second mask is positioned in the optical path of the camera
(see Fig. 4c). Recently, the authors of [20] consider a camera
architecture combining a coded (attenuation) mask and a CFA-
based sensor which is often implemented in standard consumer
cameras. This architecture can be abstracted by an equivalent
two-mask model: one mask is placed before the sensor (d1 > 0)
and the other one is mounted directly on the monochrome
sensor (see Fig. 4d).

VI. RECONSTRUCTION ALGORITHMS

A. Dictionary-based reconstruction
The compressive sensing theory [42] relies on the assumption

that the signal is sparse (or compressible) in some transform
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(a) Coded aperture (b) Sensor side coding

(c) Dual-coded-mask design (d) Combination of one coded mask and CFA-based sensor

Fig. 4: Mask-based light field camera architectures from the literature. Coded aperture [41], [16]: (a) with nm = 1 and d1 = D. Sensor side coding
[17], [18]: (b) with nm = 1 and d1 � D. Designs with two masks (nm = 2): (c) [6], [7] model using sum-of-sinusoid masks, and (d) combination of one
coded mask and CFA-based sensor [20].

domain like wavelets, discrete cosine transform (DCT), or
dictionaries learned from large datasets. In the context of
compressed acquisition of light fields using coded masks,
original light fields can be restored by solving a basis pursuit
denoising (BPDN) problem [43], given an overcomplete
dictionary as described in [17], [18]. We adapt this BPDN-
based approach for the multi-mask-based multi-shot acquisition
(Eqn. (6)).

Let us denote by D =
[
D(1) D(2) . . . D(nd)

]
∈ R3νq×nd

a light field dictionary, where nd ≥ 3νq is the number of
dictionary atoms and each D(d) = {D(j,c,d)}1≤j≤ν,c∈C ∈ R3νq

is a (color 4D) light field atom of size qx × qy × νu × νv × 3
(with qxqy = q). Here, the first two dimensions are spatial
dimensions, the third and fourth dimensions are angular
dimensions and the last one is for the number of color channels.
In practice, due to the large size of light field data, one usually
trains dictionaries using small patches obtained by dividing
full-size light fields over the spatial domain while including all
angular and color dimensions to reduce the learning time of
dictionaries. Using spatially small patches instead of whole light
fields also allows increasing the number of training examples
(or training samples) for the learning stage. Given a pre-trained
dictionary, the reconstruction is first performed on light field
patches of the same size as the dictionary atoms, and afterward
reconstructed patches are aggregated to compute the light field
by averaging pixels on overlapped regions.

For the light field L ∈ R3νn, we consider a set of patches
L = {L(p)}1≤p≤np extracted from L, where np denotes the
number of patches and each L(p) ={L(j,c,p)}1≤j≤ν,c∈C∈R3νq

is a patch of size qx × qy × νu × νv × 3. We define the
corresponding extracted sensing matrix Ψ(p) and extracted
sensor image patches I(p) such that I(p) = Ψ(p)L(p), where

Ψ(p) ∈ Rnsrq×3νq and I(p) ∈ Rnsrq. Assuming that L(p)

has a sparse representation in D, there exists a sparse vector
β = (β1, β2, . . . , βnd

) ∈ Rnd such that Dβ =
∑nd

d=1 βdD(d)

approximates L(p) (i.e. Dβ ' L(p)). Therefore, the reconstruc-
tion of L(p) from I(p) given Ψ(p) and D amounts to minimizing
the following convex energy:

E
(p)
D (β) =

1

2
‖Ψ(p)Dβ − I(p)‖22 + η ‖β‖1 , (8)

which can be efficiently solved by many existing algorithms
(e.g. OMP [44], LARS [45], ISTA [46], etc.) as used in [17],
[18] with different sensing matrices. Note that the proposed
formalization is very generic and can be applied to various
mask-based cameras and acquisition schemes. It also allows
to flexibly use different BPDN solvers by considering the
appropriate sensing operator Ψ(p) for a given acquisition
scenario.

The computation complexity of dictionary-based reconstruc-
tion algorithms is dependent on the patch size, as well as
the overlapping patch distance (i.e. the pixel-wise corner-
to-corner distance between two neighboring patches that
overlap with each other). A larger patch size will lead to
a higher computational and storage complexity. Similarly, a
smaller value for patch distances increases the computational
complexity. On the other hand, both of these parameters affect
the reconstruction quality. The larger the patch size, the sparser
the representation, leading to a higher reconstruction quality.
The smaller the overlapping distance, the higher the number
of pixels to be reconstructed and averaged to get the final
pixel value, hence a higher image quality. As shown in [17],
[18], dictionary-based methods typically produce noise-like
artifact when using non-overlapping patches, specially around
the sharp edges between the foreground and background. In
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contrast, the use of overlapped patches is shown to be able to
improve significantly the reconstruction quality (with a gain of
several dB, see [18]); however it increases the computational
complexity by orders of magnitude. As a result, finding suitable
values for the patch size and overlapping distance that give an
optimal trade-off between complexity and performance is often
a tedious process. In the next section, we describe a differential-
based reconstruction algorithm that aims at reducing block and
noise-like artefacts resulting from inadequate patch size and
overlapping distance.

B. Differential-based reconstruction with patch-based con-
straint

Total variation (TV) [47] is one of the most well-known
regularizers in image processing. In light field processing, TV-
based regularization is commonly used to regularize angular
images and epipolar plane images (EPIs) for light field
denoising, impainting or depth estimation [48], [49]. We
introduce in this section a TV functional for 4D color light
fields by taking into account the two-plane parameterization
and the differential with arbitrary order.

Let us consider the following partial derivative operator
applied to the light field L at the (discrete) spatio-angular
coordinates (i, j) ∈ I × J given by:

(∂αL)c
i,j =

(
∂‖α‖1 L

∂xα1 ∂yα2 ∂uα3 ∂vα4

)c

i,j

=

(
∂α1

∂xα1

∂α2

∂yα2

∂α3

∂uα3

∂α4

∂vα4
L
)c

i,j

,

where α = (α1, α2, α3, α4) ∈ N4 is a non-negative integer
vector, ‖α‖1 =

∑4
i=1 αi is called the order of ∂α and ∂α

∂ dirα

denotes the α-order directional derivative with respect to the
direction dir ∈ O = {x, y, u, v}. To simplify notations, let
(∇KL)i,j = {(∂αL)c

i,j}c∈C,‖α‖1=K denote the vector that
gathers all K-order partial derivative of L at (i, j), we then
define the K-order-differential regularizer of L as follows:

DVK(L)=‖(∇KL)i,j‖1,2 :=
∑
i∈I

∑
j∈J

√ ∑
‖α‖1=K

∑
c∈C

[
(∂αL)c

i,j

]2
,

where ‖ · ‖1,2 denotes the “mixed l1 − l2 norm”. In particular,
when K = 1, (∇1L)i,j is called the “spatio-angular gradient”
computed at every position (i, j) of the light field L and
DV1(L) can be seen as the total variation of L with respect
to the spatio-angular gradient operator ∇1.

Considering the proposed regularizer, we aim at solving the
following minimization problem:

min
L∈R3νn

1

2
‖ΨL− I‖22 + µDVK(L) +

ρ

2
‖PL− L̂‖22 , (9)

where L̂ = {L̂
(p)
}1≤p≤n̂p

is a collection of pre-estimated light
field patches, P denotes the extraction operator applied to L
with respect to the patch location L̂, and µ, ρ ≥ 0 are some non-
negative parameters. While the first quadratic term ‖ΨL− I‖22
measures the fidelity between the captured sensor images I
and the projections of L according to the imaging matrix Ψ,
the second quadratic term ‖PL− L̂‖22 measures the similarity
between the extracted patches of L and the given estimates L̂.
Note that the users are free to use any convenient methods (e.g.,
dictionary-based or deep-learning-based methods) in order to
compute L̂. In practice, the latter can be obtained by gathering
the reconstruction results of different methods or of the same
method but with different parameters. For simplicity, we only

consider here patches of the same size reconstructed using
dictionary-based methods.

A possible choice to solve Eqn. (9) is the proximal gradient
method (also known as forward-backward splitting method [50],
[46]) that requires computing proxDVK (the proximity operator
of DVK ). It is however not easy to implement proxDVK in the
case of high dimensional light fields. In this work, we consider
instead the full-splitting approach [51] which allows us to
design an iterative algorithm using only “simple” operations
as follows:

Choose the parameters γ, τ > 0 and the initial estimates
L(0) ∈ R3νn, K(0) ∈ R3νn4K . Then iterate, for ` ≥ 0:

L̃
(`+1)

= Ψ∗(ΨL(`) − I) + ρP∗(PL(`) − L̂) , (10)

L(`+1) = L(`) − γ
[
L̃

(`+1)
+ (∇K)∗K(`)

]
, (11)

K̃
(`+1)

= ∇K
(
2L(`+1) − L(`)

)
, (12)

K(`+1) = proxτ(µ‖·‖1,2)∗
(
K(`) + τK̃

(`+1))
, (13)

in which L(`) converges to a solution of Eqn. (9) if the proximal
parameter condition is satisfied:

γ

(
1

2

∥∥Ψ∗Ψ∥∥+
ρ

2

∥∥P∗P
∥∥+ τ

∥∥(∇K)∗∇K
∥∥) < 1 .

Here, K(`) are dual variables (in the sense of
Fenchel–Rockafellar duality [52]) and K(0) is
usually initialized with 0. The functional (µ‖ · ‖1,2)∗

denotes the Fenchel–Rockafellar conjugate of
µ‖ · ‖1,2, which satisfies the Moreau identity as:
proxτ(µ‖·‖1,2)∗(K) = K− τprox(µ‖·‖1,2)/τ (K/τ).

Note that the proposed formulation can be applied not only
to regularly overlapped patches, but also to patches that are
non-overlapped, sparsely extracted or extracted in an irregular
manner. It provides thus a flexible way to incorporate different
patch-based estimators and improve the reconstruction quality.
Moreover, in comparison with dictionary-based approaches,
the proposed algorithm allows to obtain reconstructed results
with homogeneous regions while avoiding block artifacts and
noise-like artifacts that often happen when aggregating small
patches as observed in [17], [18] (see [20] for more details).

VII. EXPERIMENTAL RESULTS

A. Datasets and acquisition setups
We evaluate the proposed algorithms on both synthetic

and natural light fields. The synthetic light fields used in the
experiments are collected from the MIT Media Lab archive
[54] and have 5×5 views of 840×593 pixels. The natural light
fields come from the Stanford Lytro Light Field Archive [22]
and Kalantari’s dataset [55]. These natural datasets have been
captured using the Lytro Illum camera and have an angular
resolution of 14×14 viewpoints for the first dataset (resp.
8×8 viewpoints for the second). However, they suffer from
strong vignetting effects on peripheral views due to mechanical
and optical imperfections. For that reason, we only take into
account the 5 × 5 center angular images as reference (a.k.a
ground truth) in our experiments.

A comparison between different masks patterns has been
reported in [17], [18]. In the scope of this paper, we will
mainly focus on the comparison between different acquisition
scenarios using different light field reconstruction methods. To
have a homogeneous study on different light field reconstruction
approaches, we consider the camera architecture featuring one
main lens and one color (coded) attenuation mask inserted
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Coded projection

(i) Full color (RGB) acquisition (ii) CFA-based acquisition (iii) Monochrome acquisition
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(a) Original light field (b) (c) (d)
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sy

(e) Color interpolation of (c) using [53] (f) PSNR = 42.88 (g) PSNR = 52.51 (h) PSNR = 45.90

Fig. 5: Compressed acquisition of light field with three different scenario. The original light field is the “Dragon and bunnies” scene (5× 5 views)
from the MIT Archive [54]. The exposure time for each color channel of the RGB acquisition (scenario (i)) is 4t

3
For each shot of a three-shot acquisition

using monochrome sensor, the exposure time equals to 4t
3

, while it is 4t for a one-shot acquisition using CFA sensor. The total exposure time for each
acquisition scheme remains equal to 4t. The quality of captured images (in terms of brightness and signal-to-noise ratio) is indeed affected by the exposure
time. Note that the zooms are contrast-enhanced for better visualization, while the original image intensities keep unchanged.

between the main lens and the camera sensor which can be
either monochrome or CFA-based. Note that the combination of
color coded mask and CFA sensor have been recently reported
in [20]. It is nothing else than a particular case of our EMMC
model (see Fig. 4d) and can be straightforwardly modeled using
Eqn. (4). We assume that the implemented CFA is the well-
known Bayer pattern [56] in all our simulations. Nevertheless,
other CFA patterns such that those proposed in [57], [58] can
be also considered without modification of the reconstruction
algorithm.

Regarding the choice of coded masks, we use a random
RGBW (stands for red-green-blue-white) pattern as the atten-
uation mask which is placed before the sensor, representing
the same setup as described in [21], in order to provide a fair
comparison with it. This kind of RGBW mask is actually a
random color coded mask, similar to the one considered in
[18]; the two masks differ from each other by the distributions
used for generating the color patterns. Using the same RGBW
attenuation mask, we consider three acquisition scenarios:

(i) color-by-color (or multi-spectral) acquisition as in [30],
[17], [18], in which each coded projection is a (full color)
RGB image;

(ii) acquisition with a CFA-equipped sensor as in [20], in
which each coded projection is a color mosaic;

(iii) acquisition with a monochrome sensor (i.e. bare photo-
sensitive sensor without CFA) as in [21], in which each
coded projection is just a gray-scale image.

Examples of captured images on the sensor and reconstruction
results for the three scenarios are illustrated in Figs. 1, 5 and 6.
The readers are refereed to Section VII-B for further technical
details of the reconstruction algorithms.

As a side note, one may recall that the first scenario
corresponds to performing three acquisitions (i.e. three shots)
using an equivalent multi-mask camera equipped with red,
green and blue color filters as specific color masks in addition to
the used RGBW mask and monochrome sensors. In contrast, the
second scenario is equivalent to performing only one acquisition
using an EMMC composed of the RGBW attenuation mask

and a CFA mask mounted on the monochrome sensor. For
the two first acquisition scenarios, the number of masks in
the EMMC representation is nm = 2. The third one, which is
the simplest among the three acquisition scenarios, represents
the “minimal” configuration of the EMMC model featuring a
coded mask and a monochrome sensor array, in which each
captured image corresponds to a single-shot acquisition. For
the scenarios (ii) and (iii) which require only one shot per
captured coded projection, the light field reconstruction from
single and multiple shots are envisaged. Moreover, acquisitions
with different pixel sizes are also considered for all three
scenarios.

B. Light field reconstruction

In this section, we analyze the above acquisition scenarios,
encompassed by the proposed camera model, and compare
the proposed differential and dictionary-based light-field re-
construction approach with a dictionary-based approach. For
sake of simplicity, we consider here the first-order differential
regularization (i.e. the so-called “spatio-angular” total vari-
ation). Hereafter, we refer the reconstruction algorithm that
incorporates total variation and dictionary-based estimation
constraint (Section VI-B) as the “differential and dictionary
based algorithm” (abbreviated by “TV-Dict”). For comparison
purposes, we use the ADMM algorithm [59] for the sparse
decomposition task by adapting the sensing matrix in each
acquisition scenario and name this dictionary-based reconstruc-
tion method the “Dict-ADMM” method. Note that the authors
of [18] use the SL0 algorithm [60] to compute the sparse
decomposition, resulting to an other dictionary-based method
which is different to Dict-ADMM. For the latter, we consider
light field patches of spatial dimension 9×9 pixels with a stride
of 5 pixels. In our experiments, the TV-Dict algorithm uses Dict-
ADMM results for the patch-based constraint, however, results
obtained with any dictionary-based reconstruction algorithms
can be used instead. Also, for sake of reference, we provide
the performance achieved by the deep-learning-based method
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(a) Original (b) Reconstructed from Fig. 5(b) (c) Reconstructed from Fig. 5(c) (d) Reconstructed from Fig. 5(d)
(PSNR = 30.22) (PSNR = 27.98) (PSNR = 30.52)
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(e) Reconstructed from Fig. 5(e) (f) Reconstructed from Fig. 5(f) (g) Reconstructed from Fig. 5(g) (h) Reconstructed from Fig. 5(h)
(PSNR = 14.75) (PSNR = 28.40) (PSNR = 27.82) (PSNR = 26.68)

Fig. 6: Visual comparison between reconstructions of the three acquisition scenarios using the proposed TV-Dict algorithm. The top-left viewpoint
and corresponding zoom-in views are extracted from the 4D light fields for comparison All results are obtained with the parameters µ = 2−8 and ρ = 2−7.
The three scenarios produce visually similar results when the reconstruction is performed from noise-free coded projections. In this noiseless situation, the
three-shot acquisition with monochrome sensor gets the best PSNR score compared to one-shot RGB and CFA acquisitions. When there is sensor noise, the
reconstruction quality drops for all scenarios. However, the one-shot CFA acquisition scheme provides very close reconstruction results for the noise-free and
noisy cases.

(a) Original (b) Reconstructed from Fig. 5(g)

Fig. 7: EPI visualization of original and reconstructed light fields. The
reconstruction result is obtained from the CFA acquisition scenario using
the proposed TV-Dict algorithm. The reconstructed EPIs look similar to the
original counterparts.

[21] whose the developed network architecture can only deal
with single-shot acquisitions using monochrome sensors.

1) Results on synthetic data: In this section, we present
the reconstruction results obtained with the proposed TV-
Dict algorithm for the three acquisition scenarios on four test
light fields collected from [54]. In this experience, we used a
dictionary trained on randomly selected patches which were
extracted from the scenes of the same data set (excluding the
test set), using the K-SVD algorithm [61]1.

a) Exposure time impact analysis: We note that all the
acquisitions in this experiment are performed with the same

1The K-SVD toolbox is available at http://www.cs.technion.ac.il/~ronrubin/
software.html

amount of exposure time to conduct a fair comparison between
them. Here, we consider three-shot acquisitions when the
monochrome sensor is used, since only one monochrome
captured image does not allow to recover color information
as depicted in [62]. More precisely, given a total time 4t, the
acquisition time of each color channel of full RGB images
is 4t3 , the latter is also the time for each shot of a three-
shot acquisition using monochrome sensor, while the exposure
time for a single-shot acquisition using CFA sensor remains
equal to 4t. Acquired images in these above settings are
illustrated in Fig. 5 showing the effect of the exposure time on
the image quality in terms of brightness and signal-to-noise
ratio (SNR). The RGB acquisition (c.f. the second column
of Fig. 5) produces indeed very dark coded projections when
comparing to the two other scenarios (due to short exposure
time and color filtering). Consequently, its sensor image is much
more noisier (with PSNR = 42.88 dB – the lowest among the
three scenario). The PSNR is computed taking the noiseless
acquisition as a reference, it hence measures the quality of
the acquired measurements. Having the same exposure time,
the acquisition using monochrome sensor provides brighter
coded projections (c.f. the fourth column of 5), implying better
signal-to-noise ratio (PSNR = 45.90 dB) since the sensor can
integrate photons of all the light wavelengths. As expected,
the acquisition using CFA sensor (c.f. the third column of
Fig. 5), which benefits from longer exposure time, tends to
achieve the best PSNR score (over 50 dB) while maintaining
the same overall brightness level as obtained with monochrome
sensor (see its color-interpolated version shown in Fig. 5e for
better visual evaluation instead of using the original one). Note

http://www.cs.technion.ac.il/~ronrubin/software.html
http://www.cs.technion.ac.il/~ronrubin/software.html
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(a) RGBW (reconstructed from Fig. 5(g) (b) Binary (c) Uniform (d) Gaussian
with Dict-ADMM – PSNR = 27.43) (PSNR = 27.43) (PSNR = 26.95) (PSNR = 26.28)

Fig. 8: Reconstruction results obtained with different coded masks and a CFA-based sensor using the Dict-ADMM algorithm. From left to right: (a)
the RGBW pattern (as in [21]), (b) the random binary pattern (following a Bernoulli’s distribution of probability 0.5), (c) the “uniform color” pattern (each
color component of the mask follows a uniform law in [0, 1]) and (d) the “Gaussian color” pattern (each color component of the mask follows a Gaussian
distribution centered at 0.5 with the standard variation 0.2 and values greater than 1 or smaller than 0 are clipped).

that this interpolation is obtained with the classical gradient-
correction-based method [53]. Although it looks similar to the
captured image obtained by a full (RGB) color acquisition
scheme (see Fig. 5b), one can remark that the demosaicing
tends to oversmooth color transition and thus fails to recover
high frequency color information.

Corresponding reconstruction from the coded projections
of the three acquisition scenarios is shown in Fig. 6. All the
results are obtained with the proposed variational algorithm
(TV-Dict) using the parameters µ = 2−8 and ρ = 2−7. For the
comparison purposes, we present the results gathered from two
situations: with and without sensor noises. When no noise is
added, the three scenarios produce visually similar results (c.f.
the first row of Fig. 6) and they are very close to the original
light field (see Fig. 6a). In this situation, the reconstruction from
three coded projections acquired with monochrome sensor (see
Fig. 6d) is slightly better both in terms of visual and quantitative
evaluations when compared to those obtained from only one
coded projection in the case of CFA or RGB acquisition. It is
mainly due to the higher number of recorded measurements
(three-fold over one-shot CFA acquisition) and higher amount
of incident light (three-fold over one RGB captured image).

Among the three scenarios with the same total exposure time,
the one-shot CFA acquisition, which achieves the best SNR of
(noisy) sensor images while having the less recorded samples,
produces decent reconstruction results: slightly inferior PSNR
(27.82 compared to 28.40 obtained with one RGB acquisition)
and visually pleasant restoration of fine details (c.f. Fig 6g). In
contrast, the results obtained from the two other schemes look
much more noisy (see Figs. 6f and 6h) although the number
of recorded samples is three times higher. One can see that the
overall reconstruction quality depends strongly on how noisy
the acquired images are and how many images to be acquired.
In our opinion, considering the three acquisition scenarios,
the one using CFA sensor provides the best trade-off between
the SNR and the number of measurements. Moreover, it also

allows to retain some color information thanks to the CFA
pattern (compared to the lost of all color information in the
case of monochrome sensor).

As a side note, we may inform the readers that the
reconstruction from pre-demosaiced coded projection (i.e. the
color-interpolated version of the CFA acquisition, c.f. Fig 5e)
is depicted in Fig. 6e for illustration purposes. The obtained
result, which suffers from heavy noise-like artifacts, can be
seen as a reconstruction from very noisy RGB acquisitions.
Similar results with a different coded mask pattern are reported
in [20]. Also, in order to demonstrate the performance of
the TV-Dict algorithm in terms of parallax reconstruction, we
show in Fig. 7b the epipolar plane image (EPI) visualization of
the reconstruction result from CFA acquisition. Although the
reconstructed EPIs is slightly noisy compared to the original
one (see Fig. 7a), we can easily remark that most slopes have
been well restored.

b) Noise impact analysis: In order analyse the behavior
of our approach in presence of noise, the coded projections
are corrupted by random noises at the sensor level (i.e. the
digitization stage). For the sensor noise model, we consider a
mixed Poisson-Gaussian noise combined with a quantization
noise to cope with the quantum nature of the light as well as
the on-sensor electronic fluctuations and the analog-to-digital
conversion (ADC) procedure. Accordingly, the sensor image
can be expressed as:

Isensor = gADC

[
P(4tI) + nread

]
+ nquan , (14)

where nread ∼ N (0, σ2
read) is a Gaussian variable representing

the electronic read-out noise, nquan ∼ U([0, 1]) follows the
uniform distribution on the interval [0, 1] and models the
quantization at the ADC level, gADC > 0 denotes the ADC
gain (also called “camera gain”), 4t is the exposure time
and P(4tI) is the Poisson variable modeling the photon shot
noise with respect to the amount of incident light I and the
exposure time 4t. In the experiments reported below, the

(i) (ii) (iii)

Dict-ADMM TV-Dict Dict-ADMM TV-Dict Dict-ADMM TV-Dict

N
oi

se
-f

re
e Dragon 29.46 30.22 27.62 27.98 30.01 30.52

Dice 28.67 28.93 25.74 25.78 28.92 29.29
Fish 27.47 27.86 25.48 25.53 28.01 28.33
Messerschmitt 32.42 32.51 29.96 29.89 32.17 32.93

N
oi

sy

Dragon 28.00 28.40 27.43 27.82 26.35 26.68
Dice 26.75 27.02 25.42 25.54 25.05 25.33
Fish 27.07 27.47 25.07 25.20 26.18 26.42
Messerschmitt 29.98 30.67 29.64 29.75 28.46 29.21

TABLE II: PSNR obtained with the three acquisition schemes, (i) full color (RGB), (ii) CFA-based and (iii) monochrome acquisitions, and three
reconstruction methods, with both noise-free and noisy acquisitions. The light field used in the test is a synthetic light field from the MIT dataset [54].
The regularization parameter µ has been set to 0.01 and 0.05 in the noise-less and noisy cases respectively.
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camera gain is set as gADC = 0.8 (i.e. each generated photo-
electron corresponds to 0.8 digital unit of pixel intensity in the
output sensor image), the standard deviation of the read-out
noise σread = 2.5 (electrons RMS) and the total exposure time
4t = 1

20 second.
By considering this noise model, it is also possible to

replace the data fidelity term 1
2‖ΨL− I‖22 (which is adapted

to an additive Gaussian noise) in Eqn. (8) and (9) by a
Bayesian-based Poisson-Gaussian data term as suggested in
[63], [64], [65]. However, in the context of photography, when
the illumination and the exposure conditions are sufficient,
the photon shot noise involved in the imaging process can be
approximated by a Gaussian noise. For that reason, we propose
to simply substitute the noise-free coded projection I by its
noisy version Î = 1

4tgADC
Isensor in Eqn. (8) and (9) to scale

the captured image Isensor into the same intensity space of the
original light field L when performing the reconstruction from
noise-corrupted coded projections.

We provide in Table II the PSNR values obtained on four test
light fields, considering both noise-free and noisy acquisitions.
When sensor noise is taken into account, one can remark
that the reconstruction quality decreases drastically for all
the three scenarios, regardless the choice of reconstruction
algorithm (see Table II for more details). In this study,
we compare the TV-Dict method with the ADMM-based
implementation of the dictionary-based reconstruction (Dict-
ADMM) for all the three acquisition scenarios. Based on
reported results in Table II, the former method obtains higher
PNSR values in most cases, compared to the latter. In our
opinion, it is due to the fact that the differential regularization
which favors homogeneous reconstructed regions, and thus
reducing the noise and eventually block artifacts presented in
patch-based reconstruction (see [20]). This also demonstrates
the effectiveness of our regularization-based method on the
improvement of light field reconstruction quality in different
acquisition scenarios.

While there are several published works that already report
the comparison between different types of coded masks (see
[17] and [18]), none of them actually considers a realistic sensor
(e.g. CFA-equipped sensors) neither a realistic noise model
(which takes into account the non-stationary nature of the noise
in real life). Here, we illustrate in Fig. 8 the reconstruction
results obtained with various coded masks, using the Dict-
ADMM algorithm for the CFA-based acquisition scenario
(ii) in the presence of sensor noise as in Eqn. (14) with the
same parameters as above (i.e. σread = 2.5, gADC = 0.8 and
4t = 1

20 ). In this experiment, we consider the following
mask patterns: the RGBW pattern, the random binary pattern
(following a Bernoulli’s distribution of probability 0.5), the
“uniform color” pattern (i.e. each color component of the mask
follows a uniform law in [0, 1]) and the “Gaussian color” pattern
(where each color component of the mask follows a Gaussian
distribution centered at 0.5 with the standard variation 0.2
and values greater than 1 or smaller than 0 are clipped). We
can easily remark that all these masks have the same light
transmission rate which is approximately equal to 50%. The
results depicted in Fig. 8 show that best PSNR performances
are obtained using the RGBW mask and the binary mask (see
Fig. 8a and 8b), compared to the uniform and Gaussian masks
(see Fig. 8c and 8d), although these latter masks give better
randomness in terms of mask value variety. Based on this
observation, we may think that the level of sensor noise has
a significant impact on the choice of the implemented coded
mask to achieve a target quality for light field reconstruction.

Indeed, this can be an interesting subject for future studies.

2) Results on real light fields: In this section, we compare
the results obtained, with different reconstruction methods
for the three acquisition scenarios, on real light field data
captured using a Lytro Illum camera. Unlike the experiments
reported in Table II, no simulation noise has been added in
this experiment, since the tested light fields already contain
noise and therefore the characteristics of sensor noise cannot
be properly controlled when dealing with different acquisition
scenarios and exposure times. Instead of studying the impact
of noise on the reconstruction quality, we focus here on a
scenario-by-scenario analysis as follows:

(i) Multi-spectral (or color per color) acquisition: Table
III shows that scenario (i) gives a better reconstruction quality
with both the dictionary-based and TV-based approaches.
However, its compression ratio is three-time-lower (i.e. it
captures three times more samples) than the ones of scenarios
(ii) and (iii). In addition, this scenario (considered in [16], [17],
[33], [18]) is not appropriate for standard consumer cameras
due to major modifications of the camera architecture (e.g.
using prisms to separate light colors and using a monochrome
sensor to capture each color component).

(ii) With a CFA mask (sampled color acquisition): Table
III shows that this dual-mask design (using a coded mask and
a CFA mask) combined with the proposed joint demosaicing-
reconstruction approach, works well and gives decent results.
The above solution (the dual-mask design combined with the
TV-Dict algorithm) is compatible with existing sensors with
in-built CFAs and allows reconstruction from multiple shot
acquisitions, which is not the case of [21]. In fact, the neural
network developed in [21] only allows the reconstruction from
single coded projections and can not deal with multiple-shot
acquisitions without changing the network architecture and
retraining the modified network. In addition, it is sensitive to
the distribution of mask colors since it needs to be trained for
each specific mask pattern (or color distribution) in order to
achieve its best performance (see Appendix A of [21] for more
details). The TV-Dict approach, in contrast, does not possess
this restriction and can handle both single and multiple shots
as well as various coded mask patterns (including monochrome
and color masks).

(iii) Using a monochrome sensor with one or multiple
shots: This scenario, referred to as scenario (iii) in Table III,
with one shot, records the same number of measurements as
scenario (ii) but three times less than scenario (i). We can
observe that in scenario (iii), all tested algorithms, including
the deep learning approach (see Fig. 9f), often fail to correctly
reconstruct colors of the original light fields from one single-
shot acquisition (i.e. from only one coded projection) due
to the lack of color information. In fact, the reconstructed
colours (from one-shot acquisitions with the monochrome
sensor) are less vivid than in the original images. The color
can be better recovered by increasing the number of shots (see
Fig. 9e and 9f respectively), implying longer total exposure
times. Two acquisitions, i.e. two shots, are required when
using a monochrome sensor for a good recovery of both
colour and parallax. Table III (columns (iii)‡) shows the PSNR
values obtained with the different algorithms (Dict-ADMM
and TV-Dict) using two shots. The results demonstrate that the
combination of a global and local reconstruction integrating
a TV-based and a dictionary-based regularization (i.e. the TV-
Dict algorithm) improves the results for the three acquisition
scenarios.
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(a) Original view (b) (i) Dict-ADMM (c) (ii)† Dict-ADMM

(PNSR = 34.35) (PNSR = 27.30)

(d) (ii)‡ Dict-ADMM (e) (iii)† Dict-ADMM (f) (iii)‡ Dict-ADMM

(PNSR = 33.28) (PNSR = 25.91) (PNSR = 33.23)

(g) (i) TV-Dict (h) (ii)† TV-Dict (i) (ii)‡ TV-Dict

(PNSR = 34.47) (PNSR = 27.15) (PNSR = 33.23)

(j) (iii)† TV-Dict (k) (iii)‡ TV-Dict (l) (iii) Deep learning

(PNSR = 25.83) (PNSR = 33.30) (PNSR = 30.11)
Fig. 9: Comparative results between different reconstruction approaches in the three acquisition scenarios. We compare the results obtained on the
“Rock” light field with the Dict-ADMM, the proposed TV-Dict algorithm and the deep-learning-based algorithm described in [21]. One can observe that
single-shot acquisitions with monochrome sensor do not allow correct recovery of color information when comparing to single-shot acquisition with CFA sensor.
In our opinion, regardless of reconstruction methods, multiple-shot acquisition is necessary to correctly recover the colors when using monochrome sensor.

C. Joint light field reconstruction and spatial super-resolution

In this section, we further show that the EMMC model also
covers the case where the pixel size 4p varies. As explained in
Section V-B, in the proposed model of Eqn.(6), H(s) ∈ Rrn×n
is a matrix representing the integration (summation) of incident
light rays on the same sensor pixels for the s-th acquisition,
where r = (4x4p )2 is the squared ratio between the spatial
sampling step and the pixel width. In the experiments reported
in Table IV, the pixel size is doubled in both the horizontal and
vertical dimensions so that one pixel integrates the illumination

of four light rays (corresponding to r = 1
4 ). The problem in

this case becomes a joint problem of reconstruction and spatial
super-resolution. Table IV shows the PSNR obtained when
reconstructing the light field with a spatial magnification factor
of r−

1
2 = 2 in both the horizontal and vertical dimensions, with

the three acquisition scenarios. Note that one RGB (full color)
acquisition with r = 1

4 corresponds to a sampling rate equal
to 1

4ν (i.e. 1
100 in the tests reported below), while the sampling

rate of a one-shot acquisition using monochrome sensor as
in [21] is 1

3ν (i.e. 1
75 in the tests below). One can see in Fig.
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Dictionary-based Differential and Learning-based
Dict-ADMM dictionary-based (TV-Dict) [21]

(i) (ii)† (ii)‡ (ii)†‡ (iii)† (iii)‡ (iii)†‡ (i) (ii)† (ii)‡ (ii)†‡ (iii)† (iii)‡ (iii)†‡ (iii)†

Seahorse 34.57 29.88 33.67 34.79 28.98 33.62 35.36 35.05 29.92 33.16 35.26 29.12 34.08 36.05 32.36
Rock 34.35 27.30 33.28 34.58 25.91 33.23 35.38 34.47 27.15 33.23 34.69 25.83 33.30 35.62 30.11
Cars 33.02 27.21 31.94 33.24 25.78 31.63 33.74 33.16 27.12 31.98 33.37 25.78 31.75 33.96 29.88
Orchid 33.73 28.42 32.88 33.91 27.25 32.57 34.78 33.98 28.41 33.00 34.16 27.28 32.77 34.90 30.99
White Rose 34.36 28.31 33.24 34.54 27.41 33.15 35.25 34.54 28.23 33.29 34.71 27.42 33.29 35.54 31.84
Tulip* 42.40 39.81 41.74 42.58 36.95 41.70 42.94 44.52 40.83 43.03 44.47 37.71 43.91 45.61 38.26
Buttercup* 33.41 29.71 32.52 33.59 28.06 32.22 34.06 33.60 29.64 32.67 33.76 28.06 32.37 34.28 29.98

TABLE III: PSNR comparison between the differential-based algorithms and dictionary-based and learning-based methods with different acquisition scenarios.
(i) color-by-color acquisition corresponding to three shots using color filters with monochrome sensors; (ii) acquisition with CFA-built-in sensor and joint light
field reconstruction and demosaicing; and (iii) acquisition without CFA (one shot with monochrome sensors). †, ‡ and †‡ denote reconstruction results from
one-shot two-shot and three-shot acquisitions respectively. The two-shot acquisitions imply two times the number of samples compared with [21]. Light fields
indicated with a "*" come from the Stanford Lytro data set [22] while the others come from the data set of [55]

.

(i) Full RGB acquisition (ii) Acquisition using CFA-sensor (iii) Acquisition using monochrome sensor

ns = 3 ns = 6 ns = 9 ns = 12 ns = 1 ns = 2 ns = 3 ns = 4 ns = 1 ns = 2 ns = 3 ns = 4

D
ic

t-
A

D
M

M

Seahorse 29.14 32.73 34.51 35.62 26.41 29.17 30.67 31.70 26.00 29.11 30.79 31.94
Rock 26.38 31.98 34.21 35.53 23.19 26.91 29.23 30.81 22.88 26.73 29.30 30.93
Cars 26.29 30.91 33.02 34.26 23.07 26.27 28.14 29.37 22.43 26.33 28.31 29.76
Orchid 27.73 31.92 33.89 35.19 24.69 27.71 29.28 30.36 24.09 27.61 29.46 30.73
White Rose 27.67 32.29 34.44 35.70 24.48 28.01 29.85 31.17 24.20 27.85 30.01 31.37
Tulip* 39.42 41.58 42.64 43.24 36.39 37.53 38.23 38.69 31.47 37.75 39.36 40.21
Buttercup* 28.88 31.62 33.31 34.56 26.48 28.00 28.88 29.62 24.32 28.19 29.54 30.44

T
V

-D
ic

t

Seahorse 29.25 33.05 35.02 36.28 26.44 29.23 30.79 31.86 26.21 29.27 31.03 32.25
Rock 26.42 32.06 34.39 35.79 23.14 26.85 29.19 30.80 22.86 26.68 29.29 30.97
Cars 26.33 30.98 33.16 34.46 23.07 26.27 28.16 29.42 22.49 26.35 28.38 29.83
Orchid 27.78 32.04 34.09 35.48 24.70 27.72 29.32 30.43 24.22 27.66 29.34 30.84
White Rose 27.72 32.41 34.65 35.99 24.48 27.99 29.87 31.23 24.31 27.88 30.07 31.48
Tulip* 40.14 43.41 44.99 45.99 37.25 38.32 39.00 39.45 31.64 38.80 40.91 42.06
Buttercup* 28.94 31.71 33.46 34.75 26.44 28.00 28.90 29.66 24.29 28.22 29.61 30.53

TABLE IV: Super-resolution results with the Dict-ADMM method (top part of the table) and TV-Dict (bottom part of the table) based reconstruction
methods (with r = 1

4
). ns denotes the number of coded projections, e.g. ns = 3 in the full RGB acquisition scenario means one coded projection for each

color channel. Light fields indicated with a "*" come from the Stanford Lytro data set [22] while the others come from the data set of [55].

10 that, despite a higher compression factor, the model and
proposed method with the full color acquisition scenario allow
us to obtain a better color reconstruction quality compared
with the deep learning approach. The deep learning approach
of [21] assuming the use of monochrome sensors instead of
CFA-based sensors, as mentioned above, cannot accurately
reconstruct the image color, while the full colour acquisition
scenario, despite the lower number of measurements, allows us
to well recover color information. When using monochrome
sensor with r = 1

4 , the sampling rate of one-shot acquisitions
is even lower, i.e. 1

12ν (corresponds to 1
300 for color light

fields with 5 × 5 views). One can observe the PSNR values
significantly improve when increasing the number of shots. In
fact, for 4 low-resolution shots with monochrome sensor, the
reconstruction result reach a PSNR quality that is comparable
to the one of [21] (slightly inferior) with the same number
of measurements, but having better color reconstruction. In
our opinion, not only the number of samples but also the way
they are selected can have a huge impact on the reconstruction
quality.

Our algorithm is implemented and tested on Matlab R2018b
under Linux Ubuntu 18.04. All the experiments are done on
a Dell Latitude 7490 featuring Intel i7 CPU with 4 cores. In
terms of processing time, the reconstruction of a 9×9×5×5×3
light field patch for 10000 iterations takes 7.5 seconds using the
dictionary-based reconstruction algorithm (Dict-ADMM). The
use of the differential-based reconstruction step requires 4.5
extra seconds in addition to 7.5 seconds for the dictionary-based
reconstruction step.

VIII. CONCLUSION

We have presented a unifying camera model for compressed
acquisition of Light Fields using coded masks. The proposed

equivalent multi-mask camera model allows a flexible con-
figuration of a variety of acquisition schemes. Considering
the CFA pattern present in sensors as a particular mask of
the proposed model led us to introduce a joint demosaicing
and reconstruction method using a TV or a dictionary-based
regularization. Compared with a state of the art deep learning
approach, the proposed model and reconstruction method
offers the possibility of dealing with multiple-shot acquisitions
without changing the network architecture and retraining
the network. The EMMC model in addition supports the
possibility of further increasing the pixel size, thus increasing
the compression rate. The reconstruction algorithm in this
case jointly performs spatial super-resolution and parallax
reconstruction of original light fields. Future work will be
dedicated to extending the proposed model in order to take
into account the diffraction effect that can occur in real high-
resolution mask-based hardware imaging systems.
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