
HAL Id: hal-03104380
https://hal.science/hal-03104380

Submitted on 8 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model of Parallel Deterministic Real-Time
Computation

Matthieu Lemerre, Emmanuel Ohayon

To cite this version:
Matthieu Lemerre, Emmanuel Ohayon. A Model of Parallel Deterministic Real-Time Computation.
2012 IEEE 33rd Real-Time Systems Symposium, 2012, San Juan, Puerto Rico. �10.1109/rtss.2012.78�.
�hal-03104380�

https://hal.science/hal-03104380
https://hal.archives-ouvertes.fr


A Model of Parallel Deterministic Real-Time Computation

Matthieu Lemerre Emmanuel Ohayon
CEA, LIST, Embedded Real Time Systems Laboratory
PC 172 - F91191 Gif-sur-Yvette CEDEX, FRANCE

Email: firstname.lastname@cea.fr

Abstract—This paper presents a model of computation based
on real-time constraints and asynchronous message passing, and
proves a sufficient and necessary condition for this model to
be deterministic. The model is then extended with deterministic
error handling, meaning that the same error yields the same
consequences on the system. We consider two different error
occurrence models: at a specific time, or at a specific instruc-
tion, and conclude that the “error at a specific time” model
is more suitable for practical use. We proceed by presenting a
concrete implementation of this model in the PharOS real-time
system.

I. INTRODUCTION

A system is deterministic if its external behavior and output
are the same when given the same input1. Using a deter-
ministic system has many advantages; in particular, because
it allows reproducible computation and limits the number of
possible behaviors, it decreases the time needed for debugging
and certifying applications.

These arguments have convinced industrial embedded real-
time systems developers to use PharOS [1], a deterministic
toolchain for real-time systems development. The PharOS
model is original in that it combines highly flexible real-
time constraints with deterministic parallel computation. It is
based on the original OASIS model [2] for deterministic real-
time systems running safety-critical applications. While im-
plementing a new feature in PharOS that affected determinism,
that allows to shut down a group of tasks in case an error
occurs in one of them, it appeared necessary to generalize the
computation model of PharOS, in order to provide a formal
definition of determinism and prove that determinism could
still be achieved in case of errors. The paper presents the
results of this work.

The contributions of this paper are:
• an abstract model of computation for parallel real-time

tasks that communicate only using asynchronous mes-
sages, that generalizes PharOS;

• the precise definition of determinism in that model;
• a theorem that gives sufficient and necessary conditions

to enforce determinism in nominal (“no-error”) opera-
tion;

• sufficient and necessary conditions to enforce determin-
ism for two “error models”, that specify how errors occur;

1This property should not be confused with the bounded response time
property.

and a comparison between these error models;
• a description of the PharOS implementation with the “no

error” case and the “error on time” error model.
The paper is organized as follows. Section II presents

motivation for developing deterministic real-time systems.
Section III introduces the model of computation, and explains
how determinism is enforced in nominal operation, and when
errors occur. Section IV presents a possible implementation
of the model with examples from PharOS. Section V presents
the proof of the theorems explained in Section III. Section VI
presents related works, and Section VII concludes.

II. WHY DETERMINISTIC REAL-TIME SYSTEMS

Real-time systems are intrinsically parallel: they must per-
form multiple functions, possibly with several I/Os on differ-
ent hardware ports, thus requiring different timing constraints.
So it is natural to model the system as a set of parallel threads
with separate timing requirements. But this parallelism can
lead to nondeterministic behavior.

Several authors (e.g. [3],[4]) have argued against the use
of nondeterministic programming primitives in parallel pro-
grams. In a nutshell, the main arguments are reproducibility
and testability, increased debuggability, and general robustness
(see related works for more details). This also applies to
instrumentation & control real-time embedded systems, which
have evolved in size and complexity. Once, when systems were
developed on small micro-controllers with a limited number
of threads, it was conceivable for a small team to know and
understand (almost) all the interactions in a system. Besides,
should a rare nondeterministic bug occur, a simple reset watch-
dog was still the simplest way to handle the problem.

But as hardware performance improved, embedded systems
grew in size, exponentially increasing the likelihood for com-
plex race conditions to occur2 – and with it grew the duration
and cost of the debugging and integration steps. We believe
that we have reached the point where the potential savings in
development costs make it worth the shift to a development
methodology that guarantees determinism.

System determinism is of course helpful for integration
tests, when fixed input data allows reproducible tests. But

2Multi-core architectures especially tend to trigger these conditions with
a much higher probability than single-core chips. Indeed, with a single
CPU, a race can only happen when a preemption occurs at the “right”
time, a relatively rare event; with a multi-core processor, the same race
may potentially occur on every bus access.



determinism also helps even when regularly getting input
from the nondeterministic physical world. Indeed, it consid-
erably reduces the number of system behaviors3, even more
so when the system is time-triggered4. This means simplified
debugging (it is easier to reproduce an error, and decrease the
chance of rare race conditions), and simplified qualification
and certification (exhaustive checking of system behavior is
possible, and determinism provides isolation of behaviors
between unrelated tasks that allow composable certification).

Determinism also applies to fault tolerance. For instance
many systems detect hardware malfunctions using lockstep,
i.e. two processors synchronously executing and comparing
the results of the same instruction. With a deterministic sys-
tem, this redundant execution can be performed by software,
with a standard asynchronous multi-core processor. This also
applies to other safety configurations, like triple modular re-
dundancy.

How to deal with errors must be chosen according to these
applications of determinism. Like inputs, actual errors are
unpredictable; what is needed is a way to limit the num-
ber of new behaviors created by taking errors into account,
simplify reasoning about the consequences of errors, allow
reproducible tests and redundant execution. Our choice, in the
next section, to make the system deterministic according to the
“error on time” error model, fulfills all these requirements.

III. THE VISIBILITY PRINCIPLE

This section explains how determinism can be preserved in
a real-time system composed of parallel tasks that communi-
cate using asynchronous messages, by controlling when the
received messages are made accessible to the tasks.

A. Definitions
We assume that the system is composed of parallel tasks

(called agents), that execute instructions sequentially and
atomically. Each instruction must be executed between a re-
lease time and a deadline, in a time interval called the window
of execution (or window for short). In other words, the actual
instant when the instruction is executed is sometime inside its
window5.

We assume that release time and deadline constraints of
all instructions in the system are met6, i.e. that the execution
of the system is temporally correct. No assumption is made
on the scheduling policy, hence the global order in which
instructions are executed in the system is nondeterministic.
Note however, that release times and deadlines provide a
partial order.

3Because tasks typically have small internal states, the system behavior
corresponds to the combination of the control flow graphs of the tasks.

4For instance, the possibilities of phase difference between jobs in two
periodic tasks is finite, contrary to sporadic tasks.

5Actual implementations need not to explicitly specify the release time
and deadline for each machine instruction. In PharOS (see section IV)
each instruction has the same window than the previous one, and the
after/before instructions allow to extend or switch the window.

6Failure to comply with a deadline can be considered as an error, see
section III-C about error handling.

Agents can communicate using instructions to send or re-
ceive messages, that are handled by a communication layer.
When an agent A executes a receive instruction, the com-
munication layer can choose to hide a sent message: we say
that the message is invisible to this instruction. A receive
instruction succeeds if the message was sent and is visible, and
fails otherwise. A message can be received by several agents.

In our system, determinism is the property that for each
agent, the sequence of executed instructions is always the
same, i.e. is independent of the global order in which all
instructions are executed in the system (i.e. of the agents
schedule). The informal definition of determinism is that given
the same input, the system produces the same output. Here the
input is the initial state of the system, and the output is the
sequence of state and instructions executed by each agent.

We assume that for each agent, the outcome of the execution
of an instruction is deterministic, and depends only on its local
state, and on the messages received so far7 As messages are
the only mean of communication between agents, proving that
the whole system is deterministic is reduced to proving that
message reception is deterministic.

To summarize, given individual agents that execute de-
terministically, the paper gives the sufficient and necessary
conditions on message passing to ensure that the composi-
tion of these agents is deterministic. These conditions are all
variations of the same visibility principle: an agent A shall be
able to see a received message at time t only if the message
would have been received at t in every possible execution. In
other words, if there exists one temporally correct schedule of
the agents in which A could not receive the message, then the
message should never be visible to A, for any schedule.

The complete mathematical model, and proof of the results
of this section, is given in section V. In this section we focus
on the practical applications of these results.

B. The no-error case

When agents are live (i.e. there is no error and the agents
never stop executing), the visibility principle translates to:
when the window of the instruction that sends a message and
the window of an instruction that tries to receive it overlaps,
the message remains invisible, i.e. this receive instruction
always fails.

In this case, determinism is achieved if, and only if, this
principle is applied.

This theorem can be understood informally (see Figure 1).
When the windows do not overlap, success in reception of the
message is independent of the actual sending and receiving
times within the windows. So nondeterminism arise only
when the windows overlap. To preserve determinism in this
latter case, the receive instruction must always fail, i.e. the
communication layer must make the message invisible.

7Thus if an instruction reads an input from the outside world, the outcome
of this input instruction must not depend on the actual instant when the
instruction is executed within the window.



0 5 10

s
r

0 5 10

s
r

0 5 10

s
r

0 5 10

s
r

a) b)

c) d)

Figure 1. A send (s) and receive (r) instructions with their execution
windows in two concurrent agents. In the upper cases, the windows do not
overlap, and the message will be deterministically always received (upper
left) or never received (upper right). In the lower cases, these windows do
overlap, and reception nondeterministically depends on the actual instants
when the send and receive instructions are executed. The visibility
principle states that determinism is restored if, and only if, the message
is invisible when these windows overlap (e.g. the system does as if no
message was received in the lower left case).

Note that this is a sufficient and necessary condition: there is
no other way to ensure determinism when agents communicate
by asynchronous sending of messages.

C. Dealing with errors

This first result relied on the hypothesis that agents were
live (i.e. never stop executing). We now relax this hypothesis
to take into account errors scenarios that can terminate an
agent or a set of agents. Errors may affect determinism: if an
agent may be nondeterministically stopped before having sent
a message, this affects nondeterministically agents that try to
receive this message.

The definition of determinism states that given identical
inputs, the system should have the exact same behavior. As
we now consider errors as admissible inputs of the system, we
want to ensure that the system behaves identically when errors
occur in “identical conditions”.

However, there are several ways to define “identical” error
conditions. We consider two of them, which we believe are the
most suitable for practical use:
• either the error always occurs at a specific time (Error on

Time - EoT);
• or the error always occurs when executing a specific

instruction of an agent (Error on Instruction - EoI).
We show that with both of these error models, there is a way

to ensure determinism.
1) Determinism with the EoT model: In this first error

model we assume that an error occurs at a given time, that will
terminate some of the agents. This is a source of nondetermin-
ism, because the sending of a message depends on whether
the message could be sent before the error occurred, or not.
Therefore this issue raises only when the error occurs in the
middle of a send window. To restore deterministic execution
for the other agents, messages sent in such case must be made
invisible.

With this error model, the visibility principle states that
to achieve determinism, if the error occurs during a send

window, the corresponding message must be invisible. This is
a necessary condition. In addition, if the visibility principle of
section III-B is met, then the system is deterministic (sufficient
condition). Figure 2 illustrates this principle.

0 5 10

s
r

0 5 10

s
r

0 5 10

s
r

0 5 10

s
r

a) b)

c) d)

Figure 2. Sending and reception in two concurrent agents, in case there
is an error at time 4 that terminates the sending agent. In the upper cases,
the message will deterministically be either always sent (upper-left figure)
or never sent (upper-right). If the time of error is in the interval when
sending can happen (lower cases), then the sending of the message is
nondeterministic. Determinism is restored if, and only if, the message is
invisible when such crossing happens (e.g. the system does as if no message
was received in the lower left case).

2) Determinism with the EoI model: We now assume that
the error is caused by the failure of an agent A executing a
faulty instruction. The corresponding window is called “error
window” in the following. If A just stops executing, then the
system is still deterministic. However the system becomes
nondeterministic if A belongs to a “group” ([1]), and its failure
causes the termination of all other agents in the group. Indeed,
sending of a message by another agent A′ in the group would
then depend on the actual instants when the error happens in
A and the sending happens in A′.

As before, determinism for the other agents can be restored
if messages sent in such nondeterministic cases are always
made invisible. The new visibility principle states that the
system is deterministic if, and only if, when a send window
and an error window overlap, the message remains invisible.
In addition, the visibility principle of section III-B must be met.
Figure 3 illustrates this principle.

0 5 10

s
re

0 5 10

s
re

0 5 10

s
r e

0 5 10

s
re

a) b)

c) d)

Figure 3. Sending and reception in three concurrent agents, in case
there is an error in one agent that terminates the sender. In the upper
cases, the message will deterministically be either always sent (upper-left
figure) or never sent (upper-right). If the error window overlaps the send
window (lower cases), then reception of the message is nondeterministic.
Determinism for the receiving agent is restored if, and only if, the message
is ignored during the overlapping windows, meaning that the receive
instruction fails in both lower cases.



3) Practical comparison of error models: Errors do not
happen by accident: they are generally caused by a mistake
during the execution of an agent. This could lead to think
that the “Error on Instruction (EoI)” model is best suited. For
instance, if the programmer knowingly introduces an instruc-
tion that causes an error (e.g. for testing resilience to errors),
this error model describes exactly what happens, whereas the
“Error on Time (EoT)” does not, because we do not know the
exact instant when the error can happen.

But in practical use, it is impossible to predict which
instruction will cause an error and when (or else the error
could be corrected). Furthermore, the EoI model is ill-suited to
simulate errors other than software bugs, e.g. hardware errors.
What the model should provide is simplified reasoning about
the consequences of an error, by minimizing the number of
cases to consider.

Flaws of the “Error on Instruction (EoI)” model:
With this model, one has to consider that any instruction may
cause an error, a fact that is not known until the instruction
has been executed. An instruction can formally be considered
as executed only once its deadline has passed, so it is not
safe to make a message visible as long as the window of the
instruction that sends this message overlaps the window of any
instruction of any other agent belonging to the same group.

For instance in Figure 3.c, when r is executed the system
does not yet know if the e instruction will cause an error. Thus
in both the 3.c and 3.d cases, the system must do as if e would
cause an error (by making the message invisible), even if no
error happens.

Thus this error model leads to changes in the visibility rules,
even when there is no error. These new visibility rules cause
three main problems:

1) it is much more difficult for the programmer to foresee
whether a receive instruction will succeed, since that
depends on all the agents of the group;

2) the behavior of the system differs from the “error-free”
model when no error occurs;

3) it may increase the message sending latency. For in-
stance if an instruction in a group has a very long
window, no message can be received from that group
for the whole duration of the window.

These problems make the EoI model unsuitable for practical
use.

Practical use of the “Error on Time (EoT)” model: The
EoT model does not suffer from these problems. In practical
execution, the “instant of error” is just the current time when
an error is detected. Thus when an agent tries to receive a
message, it is easy to know if there was an error in the group of
the sending agent, and when (Section IV presents the concrete
implementation in PharOS). If there was no error, the message
will be visible (provided of course that the corresponding
send window has passed), which is compatible with the
“error-free” model.

The EoT model reduces the number of cases that must be
considered on error, as shows the example on Figure 4.

0 5 10

s1 s3
s2

s4
r

I1 I2 I3

Figure 4. Sending of three agents in the same group, and a receiving
agent in a different group, in the ”error at a specific time” model. Here
the agent on the lowest line sends two messages with the same window,
and the receiving agent tries to receive all four messages. There are only
three cases to consider for r, depending on the time interval in which the
error happens (I1: no message, I2: s1 and s3, I3: all four messages). By
comparison if the visibility principle was not applied, there would be 12
different combinations of messages that could be received by r, depending
on the execution order.

All the practical uses of determinism we listed in section
II are covered by the EoT model. We already said that it
reduces the number of behaviors. It allows easy exhaustive and
reproducible tests, for instance by setting up an agent to fail on
purpose in each interval of interest. It also allows duplication
of an error in case of redundant execution (by communicating
the recorded instant of error between the execution sites).

IV. IMPLEMENTATION OF DETERMINISM WITH
EXAMPLES FROM PHAROS

A. Introduction to PharOS

PharOS [1] is a framework to design, implement and exe-
cute safety-oriented embedded real-time applications. It relies
on the time-triggered paradigm [5], and implements a multi-
task model where each task may use a different, dynamically
varying time scale [6].

1) The ΨC language: PharOS applications are written in
ΨC, an extension of the C language that provides keywords
to define real-time agents, timing constraints, and inter-agents
communications. In ΨC, release times and deadlines are given
explicitly using the after and before statements, with the
following semantics:

• when an after(t) statement is encountered, execution
of the agent cannot continue until time t is reached;

• when a before(t) statement is encountered, the time t
must not have been reached yet – or it is a deadline error.

Both before and after statements are translated by
the ΨC compiler into system calls instructions that ask the
PharOS kernel to change the execution windows. The kernel
then schedules and monitors the agents based on the windows.

The execution flow of each agent is data-dependent: for
instance the next release time or deadline can be chosen
according to a condition on a hardware input. [6] gives more
details about timing constraints specification in PharOS.

We represent the execution trace of an agent on a timeline,
where after constraints are symbolized by , and before
constraints by .



2) Explicit visibility date: We call visibility date of a mes-
sage the minimum among the release times of all instructions
that could successfully receive the message. The visibility
principles requires that this visibility date is at least the dead-
line of the instruction that sends the message, but it can be
any later date. In PharOS, the visibility date of the messages
is explicit and independent of the timing constraints of the
sending and receiving agents; various mechanisms ensure that
the visibility date is always later than the deadline of the
sending agent. Explicit visibility dates provides a temporal
interface, that decouples the sending of a message from the
time it can be received.

0 5 10 0 5 10

Figure 5. Sending a message in the PharOS model. Here the message is
sent at time 2, with a deadline of 4 and a visibility date of 7. The message
is received only by receive instructions with a release time later or equal
to the visibility date.

On the timeline representation (Figure 5), a message is
represented by at the visibility date. We could represent
sending and receiving instructions at their actual instant of
execution (left figure), but these instants play no role in the
execution. Instead (right figure), one can view the execution
as formally sending the message at the deadline of the send
instruction, and formally receiving it at the first release time
encountered after the visibility date.

3) PharOS communication primitives: PharOS imple-
ments different variants of the general communication mecha-
nism described before. The message communication primi-
tive is a direct implementation of this mechanism: the visibility
date is given as an argument to the send instruction that sends
the message. The only difference is that the send instruction
also acts as a before, whose deadline is the visibility date:
this ensures that the message is always sent before the vis-
ibility date. This primitive is well suited to handle sporadic
communications.

The temporal variable communication primitive (Figure 6)
implements a periodic data flow: a new message is periodically
emitted by the producer of the temporal variable. By default,
if the sending agent does not explicitly modify the flow, the
same value is re-emitted.

0 5 10

x1 x3 x5 x7 x9 x11

Figure 6. A temporal variable (x2t+1)t∈N, of phase 1 and period 2. The
messages x1, x3 and x5 are identical and carry the value written by the
sender at time 1; the message x7 carries the value written at time 6; the
messages x9 and x11 carry the value written at time 9.

Although these communication primitives have fairly dif-

Agent a
application code

Agent a
communication layer

Agent b
application code

Agent b
communication layer

1

2

3

Figure 7. The three steps of message transit. The communication layer
can be seen as a protected library to the application code, while transfer
between the communication layers of two agents happens concurrently.

ferent implementations, their underlying principles remain the
same as those extensively described in section III. Therefore
for the rest of this paper we will only consider the sporadic
message mechanism used so far, as it is the most general.

B. Implementation of the communication mechanism

The implementation of PharOS communication primitives
are variations of the following generic algorithm:

1) The message is copied from application buffers to the
communication layer. The visibility date is either given
by the sender, or computed by the communication layer.
The communication layer ensures that the visibility date
of the message is always later than the current deadline
of the sending instruction, and stores the message and
its visibility date in a “sending area”.

2) The message is copied from the sending area to a “re-
ceiving area”, in the communication layer of the receiv-
ing agent. This copy occurs when the receiving agent is
awakened from a after(t) instruction (i.e. when time
t was reached). Only messages whose visibility date is
earlier than t are retrieved.
Note that steps 1) and 2) may imply concurrent accesses
to the sending area8.

3) The agent retrieves the message from its receiving area.

Special care has to be taken in case a recipient receives
messages from multiple senders. The order in which the
communication layer returns messages to the agent must be
deterministic, i.e. independent of the actual time when the
messages were sent. Nondeterminism would arise if, for in-
stance, a simple shared FIFO was used to store the messages.

In PharOS, the “message” communication primitive returns
messages according to the following lexical order:

• Messages with the earliest visibility date are shown first;
• Messages with equal visibility dates are sorted by IDs of

the sender agent;
• Messages with equal visibility dates sent by the same

agent are sorted with a “last in first out” policy, meaning
the last message sent is the first shown to the receiver.

There are many other total orders that would also provide
determinism.

8The various implementations of this mechanism in PharOS are all lock-
free, to avoid tampering with scheduling.



0 5 10 0 5 10

Figure 8. Comparison on the execution with the two choices. On the
left, all messages sent by instruction whose deadline is sooner than the
error date are visible. As a result, some surprising situations can happen:
for instance at time 5 the receiving agent tries to receive 2 messages with
the same visibility date, but only one is received. At time 7 it receives a
message from an agent, while it did not receive a previous message from
that same agent. On the right, only messages whose visibility is below the
error date of the group are visible, and these problems are avoided.

C. Taking errors into account

1) Messages made invisible by an error: We saw earlier
that PharOS allows the visibility dates of messages to be later
than the deadline of the corresponding send window. What
should happen when an agent sends a message visible at time
tv , with a deadline of td < tv , and there is an error at time te
with td < te < tv?

Both choices (the message is received, or the message is not
received) are deterministic. But we believe that not showing
the messages is the best solution for a variety of reasons:
• The visibility date provides a temporal interface between

several agents. If the visibility of a message depends on
the deadline of the sending agent, rather than the visibil-
ity date, it breaks this temporal interface, as it forces the
recipient to know temporal details of the sender.

• The implementation is simpler, because we already store
the visibility date of the messages.

• It is simpler to send messages “atomically”, where mes-
sages from several agents are either all received or none.
In the first case, the messages must be sent with the same
deadline, in the second they must be sent with the same
visibility date, and the latter is simpler to achieve.

• The behavior is simpler to understand. Figure 8 presents
various situations that can be surprising for the program-
mer. Not showing the messages fulfills the following
principle: if a receiver can receive a message of visibility
date d, then other messages with visibility earlier or equal
to d can also be received. This simplifies reasoning about
the consequences of errors.

Thus, in PharOS we chose to implement the second choice.
2) Implementation: The implementation requires only a

small modification to step 2 of the implementation of the
communication mechanisms. The algorithm is:
• Let ar be the receiving agent, tr its current release time
• For all agents as that can send messages to ar:

– If ar is in a group that was not terminated:
∗ Retrieve all messages with visibility tv such that

tv ≤ tr.
– Else:

∗ Let te be the error date of the group.
∗ Retrieve all messages with visibility tv such that

tv < te and tv ≤ tr.
In addition, if an agent is restarted after an error of date te,

all messages with visibility tv ≥ te must be removed from the
sending area before the agent can report that it is active again.
Else invalid messages could be retrieved after the agent has
restarted.

Note: for communication primitives such as the temporal
variable, that always provide a value periodically, “removing
a message”, or not retrieving it from the sending area, is im-
plemented by marking the temporal variable value as invalid;
thus a receiving agent can know that a temporal variable value
was produced while the sending agent was down.

D. Enforced determinism

To enforce determinism, providing deterministic commu-
nication mechanisms does not suffice; they must be the only
possible communication channels between agents. This is
achieved using memory protection.

In PharOS, every agent is protected using static generation
of hardware memory tables (depending on the target hardware,
this can be a MMU or MPU). These tables allow agent
applicative code to access only their private data, and a small
memory mapping shared with the communication layer of this
agent (this mapping is used to send and receive messages, i.e.
corresponds to steps 1 and 3 of the message transit).

In particular, agents do not have direct access to other agents
memory (even read-only), or to any system data that may
change during their execution. The only observable data that
changes during an agent execution is changed by the agent
itself; this enforces determinism.

Thus, even if the implementation of an agent has a bug
and reads random pointers, this error will be deterministic,
and thus reproducible. In particular, this avoids spending time
debugging errors that may be particularly hard to reproduce
(or impossible to reproduce when the debugger is active).

V. SUFFICIENT AND NECESSARY CONDITIONS ON
MESSAGE VISIBILITY FOR SYSTEM DETERMINISM

Defining determinism requires a model of computation that
represents the parallel execution of the agents in the system.
This model, presented first, is general enough to let agents
represent any sequential computation, and limits only the
nature of the interactions between agents. Then we proceed
with the full proof of determinism in the “no-error” case, and
sketch the proof (which is similar) when errors may occur.

A. Presentation of the computation model

1) Execution of a single agent: The model represents
concurrently executing agents. An agent has a current state,
and sequentially executes instructions that update that state.

There are three kinds of instruction:
• The update instruction changes the current state of the

agent s to a new state s′ = f(s), for some function f .



• The send(m) instruction sends a message m and updates
the state to f(s), for some function f ;

• The receive(m) instruction updates the state to
s′ = f(s, has received?(m)) conditionally, depending
on whether the message has been received, for some
function f . The has received? function returns true iff.
the message was previously sent (using a send(m) in-
struction with the same m) and is visible. We do not give
a definition for visible9, and instead give the minimum
conditions on visible for the system to be deterministic.

In each case, f is a deterministic function; hence the only
source of nondeterminism in the execution of an agent comes
from the reception of a message.

Given a state s, next(s) returns the next instruction to be
executed, and exec(next(s), s) computes the next state. The
execution trace of an agent is a sequence of states, whose
first element is the initial state s0, and each further element
represents one step in execution: sn+1 = exec(next(sn), sn).

2) System execution and determinism: The system exe-
cution trace represents the concurrent execution of several
agents. The instructions executed by each agent are inter-
leaved, but each instruction is executed atomically.

A system execution trace X is a sequence, whose elements
are vectors of state representing the current state of each agent.
X0 contains the initial state <sa1

0 , sa2
0 , ..., sak

0 > of the k agents
of the system, and the next element represent one step in the
execution of one agent: Xn+1 = Xn except for one agent a,
whose state san+1 is exec(next(san), san).

We denote by X0..n the n + 1 first elements of a system
execution trace X . X0..n is also a system execution trace.

If a is an agent, we denote by Xa the execution trace of the
agent a in the system execution trace X . Xa is extracted from
X by keeping only the elements in X for which the state of a
changes, and by having the elements in Xa contain only the
state of a instead of the vector of states of all agents.

3) Timing constraints: To each instruction i is associated a
release time and a deadline. Informally, this means that i must
be executed between its release time and deadline. But in fact,
there is no need to introduce a notion of real-time in the model.
The only needed rule is that if i and j are two instructions in
an execution trace X , (possibly executed by different agents),
if the deadline of i is earlier or equal to the release time of j,
then i must be executed before j in X .

This timing constraints rule provides a partial order for
the execution of instructions in a system execution trace, and
thus informally “introduces some determinism” to the system
(i.e. allows to guarantee that some instructions will always be
executed before some others).

It is easy to see that this rule implies that if i is executed
before j by an agent, and j has a deadline dj < di, then
any instruction k that must be executed after j will also be

9Indeed several definitions are suitable; for instance the visibility date
in Section IV-A, used to provide a temporal interface, makes messages
invisible for longer than is necessary for the system to be deterministic.
Another suitable definition for visible is to never make the messages visible.

executed after i. Thus the model would be identical if we
considered that i had for deadline dj . In general, the deadlines
of an agent can be put in increasing order without changing
the expressivity of the model10.

In the following, we only consider execution traces that
fulfill the timing constraint rule, and whose agents execute
instructions with increasing deadlines.

4) Determinism: We say that the system is deterministic
for an agent a, when for all execution trace X that have the
same initial system state X0, the execution trace for a Xa is
unique (it is independent of the execution trace X).

We says that the system is deterministic for a until n, when
given an initial system state X0, the first n + 1 elements of
every execution trace Y whose first element is X0 are a prefix
of a common execution trace for a Xa:

∀(X0, a), ∃Xa, ∀Y : Y0 = X0, (Y0..n)a v Xa

Intuitively this means that the beginning of all executions
are the same for a, but the number of executed instructions of
a vary (depending on the order of execution of the agents).

We say that the system is deterministic (resp. until n) when
it is deterministic (resp. until n) for all agents.

The proof that if a system is deterministic until n for all n,
then it is deterministic, is trivial.

B. Determinism when agents are live

In this section we assume that agents are live, i.e. for every
execution trace X and agent a, Xa is infinite.

In this case, determinism comes from the combination
of two separate properties, used to structure the proof.
Lemma 5.1 shows that timing constraints provide a partial
order, that guarantees deterministic reception in some cases.
Lemma 5.2 introduces conditions on visibility that remove the
remaining nondeterministic behaviors. Theorem 5.3 completes
the proof, by induction on the length of execution traces.

1) Deterministic subset:
For any time t, integer n and execution trace X , we define

by Before(t,X0..n) the set of instructions executed in the first
n + 1 steps of X whose deadlines are earlier than t.

Lemma 5.1: Let X be an execution trace, i an instruction in
X , n the index in X in which i is executed, and ti the release
time of i. We assume that the system is deterministic until
n. Then for all Y such that i has been executed in Y0..(n+1),
Before(t, Y0..n) is constant (i.e. independent of Y ) and equal
to Before(t,X0..n).

Proof: Let Y be an execution trace such that Y0..(n+1)

executes i, and a an agent. As the system is deterministic until
n, one of (X0..n)a and (Y0..n)a is a prefix of the other.

Either (X0..n)a v (Y0..n)a, and all instructions executed
by a in Before(t,X0..n) are in (Y0..n)a.

Or (Y0..n)a @ (X0..n)a. Let j be the first instruction in
(X0..n)a which is not in (Y0..n)a (i.e. it is the next instruction
to be executed by a in Y ).

10This is also true for the release times; see [6, Theorem 2].



Either j is never executed, but this is impossible because a
is live. As j is executed after i, following the timing constraint
rule (Section V-A3), the deadline of j is strictly later than ti.
As deadlines are increasing, any later instruction executed by
a in X will have a deadline later than ti. Thus, each instruction
executed in Xa whose deadline is earlier than ti has also been
executed in (Y0..n)a.

Thus: Before(t, (X0..n)a) ⊆ (Y0..n)a. As instructions of
deadline earlier than t in (X0..n)a have the same deadline in
(Y0..n)a, we have:

Before(t, (X0..n)a) ⊆ Before(t, (Y0..n)a).
Because of the symetric role of X and Y , we also

have Before(t, (Y0..n)a) ⊆ Before(t, (X0..n)a), and finally:
Before(t, (Y0..n)a) = Before(t, (X0..n)a).

As this is true for every agent a, this proves that:
Before(t, Y0..n) = Before(t,X0..n)

2) Visibility:
Lemma 5.2: We assume that the system is deterministic

until n for some n. Let X be an execution trace that executes
i, a receive(m) instruction, in the nth step.

If messages sent with a deadline later or equal to the release
time of i are not visible to i, then reception of m is independent
of the execution trace.

Proof: Let t be the release time of the i instruction. The
message is visible only if it has been sent in an instruction
with a deadline earlier than t, i.e. if it is in Before(t,X0..n).
But thanks to Lemma 5.1, we know that Before(t, Y0..n) is
constant for all execution traces Y that have executed i in
Y0..(n+1). Thus there are only two possible cases:
• Either there is a send(m) instruction in

Before(t,X0..n), and thus in all execution traces
Y that have executed i in Y0..(n+1), and the message will
always be received by i;

• Else there is no such instruction in Before(t,X0..n), and
the message will never be received by i.

In any case, the reception of m is independent of the
execution trace.

Note the role of visible in this proof, which is to
rule out send(m) instructions in X0..n that are not in
Before(t,X0..n), and thus are not present in all execution
traces.

3) Proof of determinism:
Theorem 5.3: If messages sent with a deadline later or

equal to the release time of a receiving instruction i are not
visible to i, then the system is deterministic.

Proof: The proof is by induction. The induction hypothe-
sis is that the system is deterministic until n.

For n = 0, this is true: the initial state X0, given as input, is
the same for all execution traces by hypothesis.

Now we suppose that the system is deterministic until n.
Let X be an execution trace, a the agent being executed on the
nth step, sa the current state of a and i = next(sa) the next
instruction to be executed.

It suffices to prove that the state of a after i executes, is
always the same. Indeed the induction hypothesis implies that
the system is deterministic until n for all agents. For all agents
a′ 6= a, (X0..n+1)a

′
will not change, and stay prefixes of a

common sequence. For a we know that (X0..n)a is a prefix of
a common sequence, as will be (X0..n+1)a

′
if the outcome of

executing i is always the same.
Now i is either an update , send or receive instruction.

If i is an update or send instruction, the next state only
depends on sa, the current state of a, which is unique by
the induction hypothesis, so it will also be unique. If i is a
receive instruction, its execution depends on sa and the fact
that a has received some message m. But this has been proved
independent of the execution trace in Lemma 5.2.

Thus in every case, the state resulting of i execution will
always be the same. Thus the system is deterministic until
n + 1.

4) Necessary condition for determinism: What we proved
so far was that the visibility rule was sufficient for the system
to be deterministic. Now we prove that this rule is necessary.

Theorem 5.4: Determinism implies that messages sent with
a deadline later or equal to the release time of a receiving
instruction i are not visible to i.

Proof: Let X be an execution trace for which an instruc-
tion ir successfully receives a message m, that has been sent
by an instruction is in another agent with deadline later than
the release time of ir.

Then it is easy to construct a new execution trace X ′ for
which is is after ir, and that still fulfill the timing constraints.
In that case the execution in X of the agent that executes ir
would diverge11 from its execution in X .

C. Determinism when there are errors

In this section we study an “error in a time interval” (EiTI)
model, where the actual time of error is constrained between a
release time and a deadline. The error is inserted in a system
execution trace as a regular instruction; in particular the timing
constraints rules of Section V-A3 apply.

We choose this model because it generalizes the “error on
time” model (that constrain the interval of errors to be a point).
It is also close, but less general, than the “error on instruction”
model (it can be seen as a special case where errors are caused
only by special agents with only one error instruction), while
avoiding some of the difficulties of that model12.

For brevity and readability sake, instead of writing the
complete proof in the case of EiTI errors, we will only explain
the difference with the case without errors.

11Actually this requires that the state after execution of ir depends on
the reception of the message, i.e. determinism is a necessary condition only
if the receive instructions actually “care” about the message. The model
and/or definition of determinism could be changed to require that.

12In the true “error on instruction” model the error instruction is
undistinguished from the others. Two main problems arise: first, the list of
errors is not known before the beginning of execution, which complexifies
the proof. Second, stopping an agent on error causes the execution of some
instructions to be nondeterministic, including error instructions.



1) Changes to the model: There is now a fourth special
instruction, error(A), which takes as a parameter a set of
agents. A new constraint on the system execution traces re-
quires that once an error(A) instruction has been executed,
the states of the agents in A cannot be updated.

Agents are no longer all live, but either live, or stopped by
an error instruction. We say that an agent a is known to be
live at time t when no error instruction of release time earlier
than t stops a.

The definition of determinism for an agent until n is still
the same, but the definition of determinism for an agent
must be changed, because we cannot avoid the fact that the
exact instruction where an agent is stopped may vary between
executions. The new definition states that for all agents, the
execution trace is a prefix of a common Xa:

∀(X0, a), ∃Xa, ∀Y : Y0 = X0, Y a v Xa

This new definition is thus weaker than the old definition
(where the execution trace was equal to Xa, and Xa was
unique), and closer to the definition of determinism for an
agent until n. The definition of system determinism as deter-
minism for all agents is still the same.

2) Changes to the visibility conditions and proof: The
visibility conditions change to also remove messages sent by
instruction overlapping an error, and the new theorem for
sufficient condition of determinism becomes:

Theorem 5.5: If for a receiving instruction i of release time
t, neither the messages sent with a deadline later or equal to t,
nor the instructions sent by agents not known to be live at t,
are visible to i, then the system is deterministic.

Proof: The proof structure is very similar to the case
when the agents are live.

The new version of Lemma 5.1 no longer states that
Before(t,X0..n) is constant; but instead that for all agents a
known to be live at t, that Before(t, (X0..n)a) is constant (and
the proof is similar);

The new version of Lemma 5.2 is similar, but is updated to
take into account the new visibility conditions (the proof is not
changed);

And the proof of Theorem 5.3 is also not changed.
Proving that these visibility conditions are also necessary

is also similar: starting from an execution trace that does not
meet the visibility conditions, reorder the instructions so that
the two executions of the receiving agent diverge.

VI. RELATED WORKS

The recent increase of the use of multicore hardware has
increased the interest in determinism and its benefits: testa-
bility, avoiding rare bugs[4], replay-based debugging [7][8],
fault-tolerance, security, and intrusion analysis [9][10].

Lee has proved[4] that the the usual shared-memory thread
model is harmful for determinism, as it actually implements an
intractable computation model. Subsequently, several authors
([4],[3]) promote the idea that deterministic models should be

the default approach for parallel programming, be it through
dedicated languages, software runtime, or hardware support.

The hardware-oriented DMP approach [11] aims at enforc-
ing determinism for any multi-threaded program by systemat-
ically serializing concurrent memory accesses, and authorize
parallelism only on communication-free instructions chunks.
The authors also propose a software implementation of their
mechanism, but the performance tradeoff makes this solution
unsuitable for low-power embedded systems. Other works
such as the Determinator OS [12], the dOS Linux extension
[13] or user-mode schedulers such as Kendo [14] and Tern
[15] implement general-purpose deterministic execution en-
vironments. These solutions provide more or less POSIX-
compliant APIs, and are well suited for adapting lock-based
legacy threaded programs; they do not offer however a high-
level framework to conceive and design a deterministic com-
municating real-time system.

Another approach is to abandon completely the legacy
shared-memory thread model in favor of a less expressive
but more formal one, showing “good” properties, such as
offline scheduling, and allowing to guarantee the absence of
deadlock. If CSP [16] or Petri Nets [17] are not deterministic,
Kahn Process Networks [18] and Lee’s Synchronous Data-
Flow model [19] are13. These models have been successfully
extended and implemented with dedicated languages such as
StreamIt [20] or ΣC [21]. However these models are designed
for data-intensive and not control-intensive applications, and
lack a notion of real-time.

The Time-Triggered Architecture (TTA) [5][22] is a com-
ponents framework for designing real-time dependable ap-
plications, that relies on the time-triggered paradigm like
PharOS. It includes however a complete hardware architecture
and a Network-on-Chip deterministic communication protocol
between components, whereas PharOS aims to be executed
on COTS (Components Off The Shelf). As it also aims to be
platform-independent, Giotto’s approach [23] is the closest to
PharOS. It is a specification language made to design real-time
applications composed of parallel periodic tasks, which may
be turned on and off dynamically (mode switching). Giotto
aims at separating concerns for reactivity and schedulability,
which is also the key idea of the PharOS ΨC language.
However, ΨC offers a higher temporal expressiveness [6], as it
allows to define tasks whose timing behaviour is not periodic.
Besides, Giotto implements only synchronous communication
between tasks, which brings it closer to fully-synchronous
reactive languages such as Esterel [24] or Lustre [25], whereas
in the PharOS model the communications are asynchronous.

VII. CONCLUSION

In this paper we have formalized the model of computation
implemented in PharOS, based on real-time constraints and
asynchronous messages, and proved that it is deterministic. We
have then extended this model of computation to allow errors

13The SDF model is a restriction of KPNs.



that can shut down some tasks in the system, and extended
the visibility conditions on messages to maintain determin-
ism in that case. We have compared two models of error,
“error on time” and “error on instruction”, and concluded
that the “error on time” model is best suited for practical
applications. Finally, we have presented a simple practical
implementation of these theoretical concepts inside PharOS,
yielding a deterministic real-time system that can handle faults
deterministically.

Let us stress that the concepts presented above are in-
dependent of the scheduling algorithm. Thus they can be
implemented on multicore systems. We would like to take ad-
vantage of this to implement software redundant fault-tolerant
execution on a standard multicore.

Shutting down agents may be desired on other conditions
than errors; for instance to implement “modes” of execution,
such as “take-off”, “cruise” and “landing” modes in an avion-
ics system. We would like to extend the use of deterministic
shut down of agents in PharOS to handle mode changing.

These concepts also work in distributed systems, the only
requirement being that nodes use a common time reference. It
would be interesting to have a distributed version of PharOS
that would handle failure of an agent in a node or a failure of
a complete node deterministically.

Finally, determinism ultimately depends on the correctness
of the system algorithms; in particular that they implement the
visibility conditions correctly, and are independent of the order
in which messages are sent. We have started a long-run work
to obtain a machine-checked proof of the correctness of these
algorithms, which are parallel lock-free system code, using the
TLA specification language.

REFERENCES

[1] M. Lemerre, E. Ohayon, D. Chabrol, M. Jan, and M. Jacques,
“Method and tools for mixed-criticality real-time applications
within PharOS,” in Proceedings of the 14th International
ISORCW Symposium (AMICS Workshop). IEEE, 2011, pp.
41–48.

[2] C. Aussaguès, C. Cordonnier, M. Aji, V. David, and J. Del-
coigne, “OASIS: a new way to design safety critical applica-
tions,” in 21st IFAC/IFIP Workshop on Real-Time Program-
ming (WRTP’96), Gramado, Brazil, 1996.

[3] R. Bocchino Jr, V. Adve, S. Adve, and M. Snir, “Parallel pro-
gramming must be deterministic by default,” in Proceedings
of the First USENIX conference on Hot topics in parallelism.
USENIX Association, 2009, pp. 4–4.

[4] E. Lee, “The problem with threads,” IEEE Transactions on
Computers, vol. 39, no. 5, pp. 33 – 42, 2006.

[5] H. Kopetz and G. Bauer, “The time-triggered architecture,”
IEEE Special Issue on Modeling and Design of Embedded
Software, January 2003.

[6] M. Lemerre, V. David, C. Aussaguès, and G. Vidal-Naquet,
“An introduction to time-constrained automata,” EPTCS: Pro-
ceedings of the 3rd Interaction and Concurrency Experience
Workshop (ICE’10), 2010.

[7] T. LeBlanc and J. Mellor-Crummey, “Debugging parallel pro-
grams with instant replay,” IEEE Transactions on Computers,
vol. 100, no. 4, pp. 471–482, 1987.

[8] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: Record-
ing and deterministically replaying shared-memory multipro-
cessor execution efficiently,” in Computer Architecture, 2008.
ISCA’08. 35th International Symposium on. IEEE, 2008, pp.
289–300.

[9] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen, “Ex-
ecution replay of multiprocessor virtual machines,” in Pro-
ceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments. ACM, 2008,
pp. 121–130.

[10] A. Joshi, S. King, G. Dunlap, and P. Chen, “Detecting past
and present intrusions through vulnerability-specific predi-
cates,” ACM SIGOPS Operating Systems Review, vol. 39,
no. 5, pp. 91–104, 2005.

[11] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: deter-
ministic shared memory multiprocessing,” in ACM Sigplan
Notices, vol. 44, no. 3, 2009, pp. 85–96.

[12] A. Aviram, S. Weng, S. Hu, and B. Ford, “Efficient system-
enforced deterministic parallelism,” in 9th OSDI. USENIX
Association, 2010, pp. 1–16.

[13] T. Bergan, N. Hunt, L. Ceze, and S. Gribble, “Deterministic
process groups in dOS,” 9th OSDI, 2010.

[14] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: ef-
ficient deterministic multithreading in software,” in ACM
Sigplan Notices, vol. 44, no. 3. ACM, 2009, pp. 97–108.

[15] H. Cui, J. Wu, C. Tsai, and J. Yang, “Stable deterministic
multithreading through schedule memoization,” 9th OSDI,
2010.

[16] C. Hoare, “Communicating sequential processes,” Communi-
cations of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[17] J. L. Peterson, Petri Net Theory and the Modeling of Systems.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1981.

[18] G. Kahn, “The semantics of a simple language for parallel
programming,” proceedings of IFIP Congress74, vol. 74, pp.
471–475, 1974.

[19] E. Lee and D. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[20] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A
language for streaming applications,” in Compiler Construc-
tion. Springer, 2002, pp. 49–84.

[21] T. Goubier, R. Sirdey, S. Louise, and V. David, “ΣC: A
programming model and language for embedded manycores.”
in ICA3PP (1), ser. Lecture Notes in Computer Science, vol.
7016. Springer, 2011, pp. 385–394.

[22] C. Paukovits and H. Kopetz, “Building encapsulated com-
munication channels in the time-triggered system-on-chip
architecture,” Research Report, vol. 8, 2009.

[23] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in Embed-
ded Software. Springer, 2001, pp. 166–184.

[24] G. Berry, “The foundations of Esterel,” Proof, Language and
Interaction: Essays in Honour of Robin Milner, pp. 425–454,
2000.

[25] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data flow programming language LUSTRE,”
Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.


	Introduction
	Why deterministic real-time systems
	The visibility principle
	Definitions
	The no-error case
	Dealing with errors
	Determinism with the EoT model
	Determinism with the EoI model
	Practical comparison of error models


	Implementation of determinism with examples from PharOS
	Introduction to PharOS
	The C language
	Explicit visibility date
	PharOS communication primitives

	Implementation of the communication mechanism
	Taking errors into account
	Messages made invisible by an error
	Implementation

	Enforced determinism

	Sufficient and necessary conditions on message visibility for system determinism
	Presentation of the computation model
	Execution of a single agent
	System execution and determinism
	Timing constraints
	Determinism

	Determinism when agents are live
	Deterministic subset
	Visibility
	Proof of determinism
	Necessary condition for determinism

	Determinism when there are errors
	Changes to the model
	Changes to the visibility conditions and proof


	Related works
	Conclusion
	References

