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Decomposition and Shortest Path Problem Formulation for

solving the Hydro Unit Commitment and Scheduling in a Hydro

Valley

Wim van Ackooij Claudia D’Ambrosio Dimitri Thomopulos
Renan Spencer Trindade

1 Introduction

Managing an electrical system on a day to day basis involves a detailed modelling of the system as a
whole. Traditionally, this management is achieved through unit-commitment, e.g., [1, 2]. In energy
systems involving both thermal units and cascading systems, the latter do add quite some complexity to
the overall resolution process. We refer to [3] for a detailed overview of cascading reservoir management.
Centrally managing these resources is still vital today as carefully explained in [2]. It is however also
naturally part of strategic planning, such as one would encounter, for instance investigating the efficient
operation of the system 30 or more years from now. The European H2020-funded project plan4res
explicitly builds these various layers of complexity of operation: investment, seasonal storage, unit-
commitment operation.

Efficiently solving these unit-commitment models is thus important for practice. The specific nature of
managing cascading systems immediately steps forth. First of all, the system naturally connects a variety
of units, whether turbines or pumps, together through the overall cascading nature of the entire system.
The natural connection is through the linear flow equations involving the release rates of each turbine (and
pumping rates). The issue is however that the flow rate of a turbine is not necessarily nicely connected to
the amount of power output. These so-called hydro-production functions are typically non-concave and
a vast literature of approximations is available. We refer to [4, 5, 6, 7, 8, 9] and the references therein for
more information. In some situations it may be convenient to actually discretize the hydro-production
function, so as to consider the set of feasible flow rates to be completely discrete. There are some added
advantages to this way of proceeding, and evidently some disadvantages. The main disadvantages are
of course that the discrete variables naturally render the whole problem more rigid, especially if overall
the flow equations and reservoir bounds are “tight”. Moreover, it may well also be that a significant
number of discrete variables is required to have a reasonably precise model. In terms of advantages,
first of all the non-concave nature of the hydro-production function (possibly depending on the water
head), is nicely linearized. Furthermore, it becomes possible to integrate with ease the amount of energy
generated for “spinning reserve” requirements. This latter feature would otherwise require accounting
for differences in the hydro-production function, not at all easy to model and handle. One can make this
fact intuitively understandable already if the hydro production function is concave. Then representing
the amount of energy generated by “spinning reserves” implies handling a difference of concave functions
(at different points). Such a setting leads to a difference-of-convex constraint, of more difficult nature
than the original constraint (e.g., [10]). In this paper, we have however opted for a full discretization of
the hydro-production function.

Consequently, even with linearized “non-concave” functions, the model remains challenging to solve. This
is especially true for the larger cascading systems. Moreover, we may add to this the necessity of solving
the model quickly. The last requirement originates from two typical uses. First of all, unit-commitment
itself is inserted in an operational process and typically not much time can be allocated to the optimization
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itself. This may be, especially for complicated or large scale systems, a reason to move to decomposition
based approaches. As a result, optimizing a given cascaded system is inserted into an iterative algorithm,
and consequently performed several times. Note that the decomposition strategy also allows to exploit
parallel computing of solutions of the different subproblems, speeding up the solution process. Second,
when cascading reservoir management is considered to be part of strategic planning, the overall model is
so large that decomposition must be employed, and once more optimization of the elementary building
blocks must be extremely fast.

In this paper, we are thus concerned with optimization of a cascaded reservoir system facing a price signal
(or Lagrange multiplier vector). The starting point is that either the monolithic model cannot be solved
efficiently with state of the art commercial solvers, e.g., CPLEX, GUROBI, or that such solvers are not
available for some reason. The second case can clearly be imagined if solving the cascading system is
part of a local energy management system scheduler, or is deployed in some other solution wherein the
savings do not outweigh the licensing costs. Our approach is based on three ingredients:

• The efficient resolution of a single reservoir, “single-unit” situation by casting the turbining /
pumping constraints into a graph structure and using a constrained shortest path methodology, as
introduced for the first time in this context by [11]

• The use of Lagrangian decomposition to uncouple the cascading structure

• The use of a bundle method to efficiently compute lower bounds and feasible schedules.

The paper is outlined as follows: in Section 2 we formally introduce the hydro unit commitment problem
on hydro valleys. A formulation as shortest path problem and a solution method for the single-reservoir
case is presented in Section 3. Then, the decomposition scheme and bundle method for solving the
multiple reservoir case are introduced in Section 4. Finally, in Section 5 computational results show the
effectiveness of the proposed approach.

2 The hydro unit commitment problem on hydro valleys

In this section, we formally introduce the deterministic Hydro Unit Commitment Problem (HUCP) on
hydro valleys. We also call this problem Multiple Reservoir HUCP. We assume that the head-effect
can be neglected (the produced power does not depend on the height from which the water falls from
the reservoir to the downhill hydroplant) and, as mentioned in the previous section, we consider the
operational points set as finite (discrete operational points). It is important to say that these operational
points are used in practice by the management team. Therefore, this discretization reflects real practice,
where the system is planned to operate with these previously defined points. Note that hydro plants
might be composed of several turbine/pump units. Some of these turbines might be reversible and so
evidently the turbining and pumping mode cannot be used simultaneously. Moreover, we also assume
that there is an order in which the turbines have to be activated, e.g., in order to reduce cavitation and/or
improve efficiency. In other words, the second unit is not turned on unless the first unit is functioning at
full capacity, the third unit is not turned on unless the second unit is functioning at full capacity, and so
on. Altogether, we order the different units in such a way, that they can be aggregated in a unique unit.
The fully discretized nature of the problem makes this possible.

We start by introducing some notation (sets, parameters, variables), then a mathematical formulation.

We define the following sets:

• R: set of reservoirs. For ease of notation, we assume that, for each reservoir i, we are given a
downhill hydro plant, thus R could also denote the set of hydro plants

• Ji = {1, . . . , ̄i}: set of operational points for hydro plant i, for all i ∈ R. In the rest of the paper,
we assume that ̄i is the same for all i ∈ R to simplify the notation. However, our approach can
deal with different ̄i for all i ∈ R
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• R−i : set of downstream reservoir for reservoir i, for all i ∈ R
• R+

i : set of upstream reservoir for reservoir i, for all i ∈ R.

Note that Ji (i ∈ R) includes operational points both in turbine mode and in pump mode.

We use the following parameters:

• T : number of times steps in the considered time horizon

• ∆T : time step length

• πt: price for power at time step t, for all t ∈ {1, . . . , T}
• Iit: water inflow in reservoir i at time step t, for all i ∈ R and t ∈ {1, . . . , T}
• Qij : water flow corresponding to operational point j of hydro plant i, for all i ∈ R and j ∈ Ji
• Pij : produced power corresponding to operational point j of hydro plant i, for all i ∈ R and j ∈ Ji
• Φi,Φi: maximum water flow ramp-down/ramp-up between two consecutive time steps for hydro

plant i, for all i ∈ R
• V i, V i: lower and upper bound on the water volume for reservoir i, for all i ∈ R
• V 0

i ∈ [V i, V i]: initial water volume of reservoir i, for all i ∈ R
• V Ti ∈ [V i, V i]: final target volume for reservoir i, for all i ∈ R.

Note that when Qij > 0 (resp. Qij < 0) then Pij > 0 (resp. Pij < 0), for i ∈ R and j ∈ Ji. Moreover, if
Qij = 0, then Pij = 0 for i ∈ R and j ∈ Ji. We assume, without loss of generality, that, for any i ∈ R,
Qi1 < Qi2 < · · · < Qi(̄−1) < Qi̄ and Pi1 < Pi2 < · · · < Pi(̄−1) < Pi̄. Let us also define j0

i ∈ Ji, the
index j ∈ Ji for which Qij = Pij = 0, for all i ∈ R.

Variables and simple bounds:

• qit ∈ [Qi1, Qi̄]: water flow for hydro plant i at time step t for all i ∈ R and t ∈ {1, . . . , T}
• zijt ∈ {0, 1}: equal to 1 if operational point j is active for hydro plant i at time step t for all
t ∈ {1, . . . , T}, i ∈ R, j ∈ Ji

• vit ∈ [V i, V i]: water volume at reservoir i at time step t for all i ∈ R and t ∈ {1, . . . , T}
• pit ∈ [Pi1, Pi̄]: produced (or consumed if negative) power for hydro plant i at time step t for all
i ∈ R and t ∈ {1, . . . , T}.

The constraints related to our problem are as follows:

qit =
∑

j∈Ji

Qijzijt ∀i ∈ R, t = 1, . . . , T (1)

pit =
∑

j∈Ji

Pijzijt ∀i ∈ R, t = 1, . . . , T (2)

∑

j∈Ji

zijt = 1 ∀i ∈ R, t = 1, . . . , T (3)

vit = vi(t−1) + ∆T Iit + ∆T
∑

j∈R+
i

qjt −∆T
∑

j∈R−
i

qjt ∀i ∈ R, t = 1, . . . , T (4)

−Φi ≤ qit − qi(t−1) ≤ Φi ∀i ∈ R, t = 1, . . . , T (5)

viT ≥ V Ti ∀i ∈ R. (6)
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Variables vi0 are fixed to V 0
i and qi0 is the water flow at hydro plant i at the beginning of the considered

time horizon. Constraints (1) and (2) ensure that q and p are chosen in the discrete operational points
set Ji and constraints (3) ensures that exactly one operational point for each hydro plant i ∈ R and time
step t = 1, . . . , T is active. Constraints (4) at each reservoir i and time step t represents the water volume
conservation. Ramp-up/down bounds on the water flow of two consecutive time steps are considered in
constraints (5), while, for each reservoir i, constraints (6) guarantee a minimum water volume V Ti at the
end of the time horizon.

Note that in (4) we assume, for ease of notation, that the turbining/pumping in the upstream/downstream
reservoirs affects the reservoir itself instantaneously. However, the model and the following approach can
be adapted to the more general case of problems involving flow delays.

Finally, a widely used objective function is to maximize the revenue given by selling the produced power
pit at market price πt (i ∈ R, t ∈ {1, . . . , T}) minus the cost of the bought power (when pit is negative)
and the startup cost is paid each time a turbine or pump is switched on.

It was shown in [12, 13] that problem (1)-(6) can be very challenging. In the sequel, we propose a
method based on a decomposition framework combined with a shortest path based formulation. The
latter approach is presented in the next section for the single reservoir case.

3 The shortest path problem formulation for the single reservoir
case

Problem (1)-(6) might be impractical, especially for large or detailed instances. Therefore we propose
a decomposition method, splitting the hydro valley problem into subproblems formulated as the Single
Reservoir Hydro Unit Commitment Problem (HUCP-SR), one for each reservoir, where the volume of
water depends also on the flow of the upstream reservoirs when present.

As a consequence, for every couple (a, b) of upstream reservoir a and downstream reservoir b of the
original problem, we solve a HUCP-SR. As assumed, every turbine/pump has a unique uphill and downhill
reservoir. This does not exclude however the possibility that several turbines connect various upstream
reservoirs to any given reservoir. In terms of graph-language, each reservoir can have several ancestor
reservoirs, but only one child reservoir. The way that the decomposition scheme will operate will ensure
that, in every subproblem, the information about the downstream reservoir b is ignored. This follows
from our decomposition scheme, since this reservoir is already part of the corresponding subproblem when
reservoir b is considered an upstream reservoir itself.

It has already been shown in [11] how discrete HUCP-SR can be solved efficiently by formulating it as
a graph problem. More precisely the problem is reduced to a (Resource) Constrained Shortest Path
Problem ((R)CSPP) and solved through a labelling algorithm. Unlike the standard RCSPP, wherein
resources are typically only increasing/decreasing over “time”, the additional difficulty in our case is the
immediate result of having to handle bilateral inequalities for each reservoir. Indeed, the volumes are to
remain restricted within two bounds. This implies, in particular, that setting up appropriate dominance
rules is not immediate. We now provide further details about this algorithm and its particularities.

3.1 Graph modelling

For each reservoir i ∈ R, we construct a graph Gi = (Ni, Ai) (see, e.g., Figure 1), considering all
the possible operational points at each time step t (for t = 0, 1, 2, . . . , T, T + 1), where Ni is the set
of operational points at each time step and Ai is the set of possible arcs between nodes of Ni, which
are only forward, and T + 1 is an additional fictional time step introduced in order to obtain a single
destination. For ease of notation, in the following we do not consider the index of reservoirs in our
formulation. As we assumed in Section 2, ̄ operational points are available at each time step. Therefore,
the number of nodes is |N | = ̄T + 2, i.e., ̄ nodes for each time step and 2 artificial nodes, source s and
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Figure 1: G = (N,A)

correspond to the operational points at time t, for t ∈ {1, . . . , T}, then N can40

be define as {s}∪⋃Tt=1Nt∪{d}, where {s} = {0} and {d} = {T z̄+ 1}. Instead,

arc (i, j) ∈ A is defined as the arc between nodes i and j, if i ∈ Nt, j ∈ Nt+1,

and if it is possible to move from the operational point corresponding to node

i to the operational point corresponding to j without violating the physical

constraints of the problem Ref to the constraint described in Section Section45

2.. All the constraints described in Section 2 referring to single reservoirs are

consider in the feasibility of the arcs, except the bounds on the water volume at

each time step. Finally, the arcs are weighted with costs equal to the difference

between the turbine/pump unit startup costs and the power selling profit.

Forthcoming figure.50

Thus, the deterministic HUCP-SR, under the assumptions previously men-

tioned, reduces to a Shortest Path Problem (SPP) from s to d with extra bound-

ing constraints on water volume of the reservoir, i.e., a (Resource) Constrained

Shortest Path Problem ((R)CSPP), which minimize the cost of the arcs and

where the resources are the cost and the water volume. The extra constraints

can be formulated with integer linear programming introducing variable xij
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Figure 1: G = (N,A)

destination d, that represent time steps 0 and T + 1, respectively. They represent the initial and final
node of the path corresponding to the operational profile of the unit. Graph Gi is a weighted single-source
single-destination Directed Acyclic Graph (DAG).

Assuming Nt = {(t − 1)̄ + 1, (t − 1)̄ + 2, . . . , t̄}, the set of nodes that correspond to the operational

points at time t, for t ∈ {1, . . . , T}, then N can be defined as {s} ∪⋃Tt=1Nt ∪ {d}, where {s} = {0} and
{d} = {T ̄+ 1}. The arc (i, j) ∈ A between nodes i and j exists if i ∈ Nt, j ∈ Nt+1, and if it is possible
to move from the operational point corresponding to node i to the operational point corresponding to j
without violating the physical constraints of the problem as ramp-up/down constraints (5).

In this fashion, all the constraints described in Section 2 referring to single reservoirs are considered in
the feasibility of the arcs, except for the bounds on the water volume at each time step. Finally, the
arcs are weighted with costs equal to the difference between the turbine/pump unit startup costs and the
power selling revenue.

Thus, the deterministic HUCP-SR, under the assumptions previously mentioned, reduces to a Shortest
Path Problem from s to d with extra bounding constraints on water volume of the reservoir, i.e., a
(Resource) Constrained Shortest Path Problem. The objective of this problem is to minimize the cost
coded in the arcs, all while ensuring feasible use of the resources, i.e., having valid water volumes for the
reservoir. The problem can also be cast as an integer linear program, upon introducing binary variables
xij (∀(i, j) ∈ A ) representing

xij =

{
1 if arc (i, j) is part of the selected path
0 otherwise.

The volumetric constraints (resource constraints), then become:

V ≤ V 0 + ∆T
t∑

k=1


Ik −

∑

j∈Nk

∑

i:(i,j)∈A

Qjxij


 ≤ V ∀t ∈ {1, . . . , T}, (7)

V 0 + ∆T
T∑

k=1


Ik −

∑

j∈Nk

∑

i:(i,j)∈A

Qjxij


 ≥ V T . (8)

3.2 Monotone reformulation for labelling algorithm

As already mentioned, we propose a labelling algorithm in order to solve the HUCP-SR, which is one
of the most applied state-of-the-art methods for solving the ((R)CSPP). The general labelling algorithm
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consists in exploring all possible partial paths and storing in a pool for every node some labels containing
information on the current resource values, depending on the previous chosen paths. For generating
the new labels, all the labels in the previous nodes are considered, therefore the size of the pool might
increase exponentially. It is evident that a crucial element of the algorithm is the reduction of all the
possible labels, which is performed through a dominance step. Assuming that the resource functions are
monotonically decreasing, a label l1 is dominated by another label l2 if each resource of l1 is less than or
equal to the value of the resource of l2. When a label is dominated, it becomes unnecessary (it cannot
be part of any optimal path) and it can be removed from the pool of available labels. The algorithm is
therefore subject to strong assumptions of monotonicity of the resources. In case the monotonicity is not
guaranteed, the dominance step in not applicable, making the algorithm inefficient. Indeed, the profile of
the volume resource in HUCP-SR is not monotone, as the simultaneous presence of pump and turbines
might produce a fluctuating behavior. During the time step where the chosen operational point belong to
turbining mode, the volume is decreasing, while during the time step where the operational points belong
to pumping mode, the volume is increasing. Therefore, it is necessary to apply some reformulations in
order to set up a valid and useful dominance rule (see [11]).

We can show that constraints (7)-(8) can be rewritten as follows:

∆T
t∑

k=1

∑

j∈Nk

∑

(i,j)∈A

∆Qjxij ≤ V 0 + ∆T

(
t∑

k=1

Ik − t Q0

)
+ V̂t ∀t ∈ T (9)

∆T
t∑

k=1

∑

j∈Nk

∑

(i,j)∈A

∆Qjxij ≥ V 0 + ∆T

(
t∑

k=1

Ik − t Q0

)
− V t ∀t ∈ T (10)

with

V̂t = min

(
−V T + ∆T

(
T∑

k=t+1

Ik − (T − t)Q0

)
,− max

τ∈T :τ≤t
(V τ )

)
∀t ∈ T

V̂ T = min
(
−V T ,−V t

)
,

where T = {1, . . . , T}, T = {1, . . . , T − 1}, and ∆Qj = Qj −Q0.

Assuming that at least one operational point of pumping mode exists, Q0 ≤ 0. If there is no such point,
no reformulation is required.

The new fictional volume resource, modelled by constraints (9)-(10), is monotone additive and increasing.
In addition also its bounds are monotonically increasing, as the target volume V T is by definition greater
than or equal to the original lower bound V . Therefore, the dominance rule selects labels with the smallest
quantity of resources used, i.e., cost and fictional volume. Because the right hand sides of constraints
(10) are monotonically increasing, we can therefore propose a variant of the classical labelling algorithm
(see Algorithm 1), where for every time step t, the dominance rule can be applied only if the following
additional conditions are satisfied

V 0 + ∆T
t∑

k=1


Ik −

∑

j∈Nk

∑

i:(i,j)∈A

Qjxij


− (T − t)Q0 ≤ V ∀t ∈ T , (11)

where, selecting always Q0 in all remaining periods, the lower bound on the volume is satisfied.

In Algorithm 1, U is the set of partial paths to explore, while P is the set of partial paths already explored.
l , l′, and l∗ are partial paths with attached labels storing the values of resources. We also introduce
some notation in order to let the algorithm be more understandable. Assuming a to be a generic arc, v
a generic node, and l a generic partial path, (∼, v) is every path ending in node v and (l, v) is a partial
path ending in node v. The function EXTEND(l, a) extends a partial path, given the path l and the
arc a to add, modifying accordingly the resources of the labels. The function FEASIBLE(w), given an
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ending node w, verifies the feasibility of the arc, i.e., verifying the satisfaction of constraints (9)-(10).
Finally, the function REMOV E −DOMINATED(U,P ) is the aforementioned dominance step, which
removes all dominated labels from the pools U and P .

In addition, the labels in the pool are ordered applying a quick sort algorithm.

Algorithm 1: Labelling algorithm variant

Input : directed graph G = (N,A) with
start node s ∈ N and end node d ∈ N
resource windows for all nodes
resource vectors for all arcs

Output: pareto-optimal s-d path l∗ with minimal cost
1 U ← (ε, s) and P ← ∅
2 forall v ∈ N\{d} do
3 while ∃l = (∼, v) ∈ U do
4 U ← U\{l}
5 forall a = (v, w) ∈ A do
6 l′ = (l, w)← EXTEND (l, a)
7 if l′ ∈ FEASIBLE(w) then
8 U ← U ∪ l′
9 else

10 discard l′

11 end

12 end
13 P ← P ∪ l
14 if Conditions (11) are satisfied then
15 U,P ← REMOVE-DOMINATED (U,P )
16 end

17 end

18 end
19 l∗ ∈ P | cost(l∗) == min(cost(l = (∼, d) ∈ P ))

4 Lagrangian approaches for the multiple reservoir hydro unit
commitment

We now consider the case of two interconnected reservoirs and propose a method to decompose the
problem, while having in mind the graph formulation presented in the previous section. Although this
case serves as the base example, the suggested methodology can be applied to the general case, as shown
in Section 5.

4.1 Decoupling the cascading structure through Lagrangian decomposition

Aiming to model a system with two reservoirs, we consider two different graphs: G1 = (N1, A1) and
G2 = (N2, A2). Each graph represents a single reservoir structure consisting of several units that can
function either as turbines or as pumps, as explained in Section 3. Variable q1

t represents the water flow
leaving reservoir 1 and entering reservoir 2 in period t, and is the unique variable appearing in constraints
for both reservoirs 1 and 2.
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The resulting formulation is thus as follows:

(P2) min
∑

(i,j)∈A1

C1
ijx

1
ij +

∑

(i,j)∈A2

C2
ijx

2
ij (12a)

∑

(j,i)∈A1

x1
ji −

∑

(i,j)∈A1

x1
ij =




−1 if i = 1;
1 if i = n1;
0 if 1 < i < n1.

(12b)

∑

(j,i)∈A2

x2
ji −

∑

(i,j)∈A2

x2
ij =




−1 if i = 1;
1 if i = n2;
0 if 1 < i < n2.

(12c)

q1
t =

∑

j∈N1
t

∑

i:(i,j)∈A1

Q1
jx

1
ij ∀t ∈ T (12d)

q2
t =

∑

j∈N2
t

∑

i:(i,j)∈A2

Q2
jx

2
ij ∀t ∈ T (12e)

v1
t = v1

t−1 + ∆t(I
1
t − q1

t ) ∀t ∈ T (12f)

v2
t = v2

t−1 + ∆t(I
2
t − q2

t + q1
t ) ∀t ∈ T (12g)

v1
t ≥ V T1 (12h)

v2
t ≥ V T2 (12i)

V 1 ≤ v1
t ≤ V

1 ∀t ∈ T (12j)

V 2 ≤ v2
t ≤ V

2 ∀t ∈ T . (12k)

The objective function (12a) minimizes the cost of power generated or consumed in both reservoirs.
Constraints (12b)-(12c) ensure the flow conservation in the graphs G1 and G2. Constraints (12d) model
the water flow leaving (or entering) reservoir 1 and entering (or leaving) reservoir 2 in period t. Constraints
(12e) model the water flow leaving reservoir 2 in period t. Constraints (12f)-(12g) model the water volume
in the reservoir 1 and 2 in period t. Constraints (12h) and (12i) concern the final target volume for each of
the reservoirs. Constraints (12j)-(12k) model the bounds on the water volume and ensure the minimum
target water volume to be reached at the end of the time horizon.

If we consider each of the reservoirs separately, we can model the two problems as explained in Section
3. However, constraints (12g) link the two problems, which should be considered together.

Our idea is to decompose the problem into two subproblems, one related to each of the reservoirs, by
relaxing the linking constraints.

To do so, we follow an age-old two step procedure: variable duplication and decomposition. The dupli-
cation step is particular in our case however. Indeed, we generate two copies of variables v2

t . The first
copy, denoted v̄2

t , considers the accumulated water flow value from reservoir 1 to reservoir 2 at time t.
The second, denoted v̂2

t , considers the volume of water in reservoir 2, excluding water flow from reservoir
1. It is important to mention that the initial water volumes of the new variables v̄2

0 and v̂2
0 are set to be

equal to V 1
0 and V 2

0 , respectively. The constraints of the problem are essentially unaltered:

(12b)− (12f)

v̄2
t = v̄2

t−1 + ∆tq
1
t ∀t ∈ T (13a)

v̂2
t = v̂2

t−1 + ∆t(I
2
t − q2

t ) ∀t ∈ T (13b)

V 2 ≤ v̄2
t + v̂2

t − V 1
0 ≤ V

2 ∀t ∈ T (13c)

v̄2
0 = V 1

0 (13d)

v̂2
0 = V 2

0 (13e)

(12h)− (12j).
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The constraints (12g) and (12k) are replaced by the constraint (13c). The next step is to relax the new
complicating constraint (13c) by dualizing it, i.e., by moving to the Lagrangian dual. The Lagrangian
dual function attributes to the Lagrangian multipliers (λmint , λmaxt ) the (optimal) value of the following
problem:

(RL(λ)) min
∑

(i,j)∈A1

C1
ijx

1
ij +

∑

(i,j)∈A2

C2
ijx

2
ij+

∑

t∈T
λmint (V 2 − v̄2

t − v̂2
t + V 2

0 )+

∑

t∈T
λmaxt (−V 2

+ v̄2
t + v̂2

t − V 2
0 ) (14a)

(12b)− (13d).

It is an elementary observation that problem (14a) has a block structure: a first block considers only
variables and constraints related to reservoir 1, whereas the second block has only variables and constraints
related to reservoir 2. Solving problem (14a), thus amounts to solving two independent (sub)problems.
For the sake of completeness, we provide the full formulation of these two subproblems. The first problem
is

(SP1(λ)) min
∑

(i,j)∈A1

C1
ijx

1
ij +

∑

t∈T
v̄2
t (λmaxt − λmint ) (15a)

∑

(j,i)∈A1

x1
ji −

∑

(i,j)∈A1

x1
ij =




−1 if i = 1;
1 if i = n1;
0 if 1 < i < n1.

(15b)

q1
t =

∑

j∈N1
t

∑

i:(i,j)∈A1

Q1
jx

1
ij ∀t ∈ T (15c)

v1
t = v1

t−1 + ∆t(I
1
t − q1

t ) ∀t ∈ T (15d)

v̄2
t = v̄2

t−1 + ∆tq
1
t ∀t ∈ T (15e)

v̄2
0 = V 1

0 (15f)

V 1 ≤ v1
t ≤ V

1 ∀t ∈ T (15g)

and is equivalent to the HUCP-SR. We can solve this problem by using Algorithm 1 described in the
previous section. It suffices to modify the objective function, which needs to consider the contribution of
the relaxed constraint. The algorithm needs to calculate the v̄2

t values for each iteration, which is difficult
as long as the nodes that belong to each labeled solution are stored.

The second problem is

(SP2(λ)) min
∑

(i,j)∈A2

C2
ijx

2
ij +

∑

t∈T
v̂2
t (λmaxt − λmint ) (16a)

∑

(j,i)∈A2

x2
ji −

∑

(i,j)∈A2

x2
ij =




−1 if i = 1;
1 if i = n2;
0 if 1 < i < n2.

(16b)

q2
t =

∑

j∈N2
t

∑

i:(i,j)∈A2

Q2
jx

2
ij ∀t ∈ T (16c)

v̂2
t = v̂2

t−1 + ∆t(I
2
t − q2

t ) ∀t ∈ T (16d)

v̂2
0 = V 2

0 (16e)
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and, in this case, we do not have the volume constraints, which were relaxed. This problem is a Shortest
Path Problem (SPP), since we can rewrite the model to remove the variable v̂2

t and the constraints
(16c)-(16e), and use the objective function (17).

min
∑

(i,j)∈A2

(
C2
ij −∆t

∑

t∈T :j∈N2
t

T∑

k=t

(λmaxt − λmint )Q2
j

)
x2
ij +

∑

t∈T
(λmaxt − λmint )

(
V 2

0 + ∆t

t∑

k=1

I2
k

)
(17)

In both subproblems, the algorithms need to return the optimal objective function value and optimal
path.

The Lagrangian dual problem consists of maximizing the Lagrangian dual function over all multiplier
pairs (λmint , λmaxt ) ≥ 0. It is as follows:

(DP ) sup (SP1(λ)) + (SP2(λ))+ (18a)
∑

t∈T
λmint (V 2 + V 2

0 )+ (18b)

∑

t∈T
−λmaxt (V

2
+ V 2

0 ) (18c)

λmint ≥ 0 t ∈ T (18d)

λmaxt ≥ 0 t ∈ T . (18e)

As is well known in Lagrangian decomposition, e.g., [14, 15], one should not expect the corresponding
solutions obtained while solving (18a)-(18e) to be feasible. This is not necessarily an issue however,
since in many cases a good primal recovery scheme can be set up, see Section 4.3. Such schemes are
particularly well developed in unit-commitment, e.g., [16] and in part strongly rely on re-using the
information generated while solving (18a)-(18e).

4.2 Maximizing the Lagrangian dual

Maximizing the Lagrangian dual, is achieved by using a proximal bundle method ([17, 18, 19, 20, 21, 22]).

Bundle methods are state of the art for maximizing the Lagrangian dual (18a)-(18e), e.g., [23]. For
technical details, we refer the interested reader to [21, 24]. We have opted for an aggregate bundle method,
i.e., one that considers a single cutting plane model for the dual function. As a stopping condition, we
have opted for a condition involving control both over the size of the aggregate linearization error and
the norm of the aggregate subgradient. Indeed when both terms (or alternatively the predicted decrease)
are sufficiently small (in fact zero), the optimal dual solution is reached. The advantage of a separate
condition is that the aggregate linearization error naturally compares to the value of the objective function
(in our case a monetary one), whereas the aggregate subgradient relates to the volume constraints. The
stopping tolerances can thus naturally be related to what is to be considered small in both situations.
The proximal parameter is updated according to the “poorman’s Newton” formula, e.g., [25].

4.3 Primal recovery

Bundle methods use the solutions to the subproblems SP1(λ) and SP2(λ) to generate complete solutions
in each iteration. There is no guarantee that this solution is even feasible, since the constraints to the
downstream reservoir have been relaxed. Therefore, a heuristic to create a primal recovery is implemented
in order to find a good quality solution with low computational effort. At the end of each iteration of
the bundle methods, a list of activated arcs for each subproblem is created. After the bundle method
converges, the heuristic creates a simplified MILP from P2 model, with activated arcs only, i.e., with
the arcs that were part of the optimal solution of a subproblem at some iteration of the bundle method.
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Thus, the primal recovery solution combines all the decisions found by the subproblems. We expect the
number of active arcs to be much lower than in the original problem.

Note that we cannot guarantee that this heuristic finds a feasible solution for any instance of the problem.
However, as the numerical experiments of Section 5 show, in practice we were always able to find a feasible
solution for our instances. A mechanism to discard arcs could be implemented in larger instances, but it
was not necessary in our tests, since the time needed to run the primal recovery was relatively short.

5 Computational Results

We now present the computational results comparing IBM Ilog CPLEX v. 12.9 on the MILP formulation
and the bundle method. At each iteration of the bundle method, each (R)CSPP and SPP are solved
exactly. It would have been possible to solve the problem approximately by discretizing the label space.
However, we decided to pick an exact variant. As we see in the detailed tables, the bundle method
is in general faster than CPLEX. We generated instances thanks to the Hydro unit commitment In-
stances Generator (HIG) which can be found here http://www.lix.polytechnique.fr/Labo/Dimitri.

Thomopulos/libraries/HIG.html. We considered three classes of instances:

• Two reservoirs instances: they serve mainly as proof-of-concept of our approach.

• Three reservoirs instances, with a downhill reservoir and two uphill reservoirs, both of linked to
the downhill reservoir. We call this class of instances Y-shaped because of the shape the graph
representing the hydro valley. Together with the two reservoirs instances, they represent the main
bricks for more realistic instances.

• Six reservoirs instances: inspired by a real-world valley of EDF, this class presents two Y-shaped
blocks linked together to two reservoirs blocks.

The considered month for generating inflows and prices is of April 2006, as in [26]. All the generated
instances are available in the web page mentioned above. We set a time limit of 600 seconds. All the tests
were performed on an Interl(R) Core i7-7700HQ CPU 2.8GHz and 16GB of RAM running on Windows
64bits.

In Tables 1, 2, and 3 we present, from the first to the last columns: the number of operational points
considered, the number of time periods considered, the numbers of arcs in G, and, for each method,
i.e., CPLEX and bundle based approach, the CPU time needed, the relative deviation from the best
solution found for the upper bound (UBd), and for the lower bound (LBd). These values are calculated
by UBd = 100(UB − UB∗)/UB∗ and LBd = 100(LB∗ − LB)/LB∗, where LB∗ and UP ∗ is the best
known value for the lower bound and the upper bound, respectively. We also report the gap at the time
limit and for the bundle method the number of iterations needed to converge.

We start with results for the 2 reservoirs case. In Table 1 we can clearly see that CPLEX is very effective
when the number of operational points is limited, i.e., ̄ ≤ 7. In these instances, the bundle approach
is extremely fast. The approach finds the optimal solution in 3 cases out of 4. CPLEX also finds the
optimal solution in these cases, but with more computational effort. In the fourth case, CPLEX can find
a better solution than the bundle approach, but without closing the gap within the timelimit. As the
number of operational points grows, the MILP becomes less tractable for CPLEX, which hits the time
limit for all cases. CPLEX is strong in finding the best solution (UB) and the bundle approach finds the
same solution for 4 instances out of 8. The latter approach never hits the limit, converging in 0.19 to 306
seconds, and finds the best LB for nearly all instances.

In Table 2, we present the results for the 3 reservoirs case. In the bundle approach, when the linking
constraint is relaxed, we end up with a subproblems per reservoir: the ones corresponding to the two
uphill reservoir are (R)CSPP problem, which can be solved in parallel, while the one corresponding to the
downhill reservoir is a simple shortest path problem, solvable in polynomial time. For a fair comparison,
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instances CPLEX Bundle
̄ T Arcs time UBd LBd gap time UBd LBd gap it #
5 24 1170 55.92 0.000 0.000 0.000 0.190 0.000 0.549 0.549 8
5 48 2370 7.39 0.000 0.000 0.000 0.98 0.000 0.018 0.018 11
7 24 2282 600.00 0.000 0.000 0.115 0.40 0.189 0.236 0.542 11
7 48 4634 5.52 0.000 0.000 0.000 2.01 0.000 0.018 0.018 12

12 24 6672 600.00 0.000 0.155 0.344 5.23 0.022 0.000 0.211 10
12 48 13584 600.00 0.000 0.125 0.150 50.32 0.000 0.000 0.025 7
17 24 13362 600.00 0.000 0.226 0.302 4.34 0.001 0.000 0.076 9
17 48 27234 600.00 0.000 0.020 0.041 33.69 0.000 0.000 0.021 10
22 24 22352 600.00 0.000 0.353 0.409 21.39 1.095 0.000 1.164 8
22 48 45584 600.00 0.000 0.000 0.050 305.99 0.000 0.003 0.053 11
27 24 33642 600.00 0.000 0.138 0.184 11.63 0.867 0.000 0.920 9
27 48 68634 600.00 0.000 0.188 0.275 150.98 0.000 0.000 0.087 18

Table 1: Computational results for 2 reservoirs.

instances CPLEX Bundle
̄ T Arcs time UBd LBd gap time UBd LBd gap it #

5 24 1755 262.33 0.000 0.000 0.000 0.220 0.000 0.005 0.005 10
5 48 3555 600.00 0.000 0.042 0.214 0.78 0.000 0.000 0.172 9
7 24 3423 600.00 0.000 1.246 1.368 0.29 0.000 0.000 0.120 8
7 48 6951 600.00 0.000 0.061 0.222 2.18 0.000 0.000 0.161 13

12 24 10008 600.00 0.000 0.299 0.479 5.67 0.112 0.000 0.292 9
12 48 20376 600.00 0.0000001 0.178 0.243 71.95 0.000 0.000 0.065 10
17 24 20043 600.00 0.000 0.276 0.302 4.55 0.094 0.000 0.120 8
17 48 40851 600.00 0.008 0.066 0.080 39.26 0.000 0.000 0.006 10
22 24 33528 600.00 0.000 0.460 0.484 30.61 0.108 0.000 0.132 10
22 48 68376 600.00 0.000 0.000 0.014 328.26 0.025 0.006 0.045 11
27 24 50463 600.00 0.225 0.196 0.488 15.00 0.000 0.000 0.065 10
27 48 102951 600.00 0.000 0.000 0.030 135.15 0.012 0.003 0.045 14

Table 2: Computational results for 3 reservoirs.

we run CPLEX with 2 threads as well. For the small Y-shaped instances, i.e., for ̄ ≤ 7, CPLEX and the
bundle approach find the same UBs. However, in this case, CPLEX could close the gap for the smallest
instance only in 262.33 seconds. For the other 3 small instances, the bundle approach finds the best
LB within less than 3 seconds. As for the larger instances, i.e., ̄ ≥ 12, CPLEX finds the best UB for
5 out of 8 instances, while the bundle approach does so for 3 out of 8. However, the bundle approach
provides the best LB for 6 instances out of 8, and CPLEX for the other 2, almost closing the gap within
the timelimit of 600 seconds. The CPU time of the bundle approach varies between 4.55 to 329 seconds.
CPLEX always hits the time limit, except for the smallest instance

In all the instances from both Tables 1 and 2, the bundle approach could find a feasible solution before
applying the primal recovery. However, the primal recovery improved the solution found by the bundle
approach twice on the 2 reservoirs instances and 5 times on the 3 reservoirs instances. The great advantage
of the primal recovery is that its CPU time never exceeds 0.15 seconds in the first class of instances, 1.74
seconds in the second class.

Table 3 concerns the more realistic set of instances.

The decomposition creates 6 subproblems, two (R)CSPP and four SPP. We solved the (R)CSPP in
parallel, while solving the SPPs is immediate. For a fair comparison, we run CPLEX with two threads.
For this set of instances, CPLEX always hits the time limit, while the bundle approach takes from 2.23
seconds for the smallest instance and hits the limit for 4 instances out of 12. The bundle approach is
superior to CPLEX for LB quality as well: it provides the best LB for 10 out of 12 instances. Comparing
with the previous tables, it is clear that the bundle approach becomes more competitive concerning the
LB as the number of reservoirs grows. This confirms the viability of the decomposition on realistic
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instances CPLEX Bundle
̄ T Arcs time UBd LBd gap time UBd LBd gap it #
5 24 3510 600.00 0.689 0.876 2.086 2.230 0.000 0.000 0.502 98
5 48 7110 600.02 0.000 0.037 0.294 66.16 0.011 0.000 0.268 579
7 24 6846 600.02 0.909 0.685 2.166 3.39 0.000 0.000 0.548 88
7 48 13902 600.03 0.000 0.015 0.199 19.39 0.010 0.000 0.195 98

12 24 20016 600.04 0.000 0.220 0.386 142.33 - 0.000 - 166
12 48 40752 600.05 0.000 0.077 0.394 600.00 - 0.000 - 55
17 24 40086 600.06 0.000 0.185 0.355 137.82 - 0.000 - 201
17 48 81702 600.09 0.000 0.034 0.094 400.31 - 0.000 - 80
22 24 67056 600.08 0.000 0.271 0.447 600.98 - 0.000 - 126
22 48 136752 600.15 0.000 0.000 0.051 600.00 - 0.774 - 14
27 24 100926 600.07 0.000 0.126 0.335 309.76 0.088 0.000 0.297 157
27 48 205902 600.26 0.000 0.000 0.139 600.00 - 0.000 - 56

Table 3: Computational results for 6 reservoirs.

instances.

However, the UB is more difficult to find with the primal recovery heuristic. It could find a feasible
solution only for 5 out of 12 instances and only in two of these cases is the UB better than the one found
by CPLEX. The number of arcs considered in the heuristic is between 1% and 15% of the total number
of arcs. Thus, the heuristic is very fast but, for more challenging instances, it can not always find a
feasible solution. In this particular set of instances, the problematic subproblems are likely to be the ones
corresponding to downhill reservoirs. To confirm our intuition, we run two variants of the heuristics, each
of which considering the full set of arcs for the subproblems corresponding to a reservoir in a low level
of the valley. Adding the two heuristics to the bundle approach allowed us to find feasible solutions for
all the instances, a better UB than CPLEX in 5 times out of 12. Clearly, the heuristic variants are not
as efficient as the primal recovery: the CPU time goes from 0.95 seconds to 100 (the time limit we set
in this case). This shows that the selection of the arcs to be considered is crucial for establishing a good
trade off between efficiency and feasibility.

Conclusion

In this work, the hydro unit commitment problem on hydro valleys is addressed, and a general definition
for Multiple Reservoir HUCP is presented. The approach proposed in this paper uses Lagrangian decom-
position to uncouple the cascading structure from the model into two different subproblems. The first is
(R)CSPP, and is solved by the procedure proposed in [11], and the second is a common SPP problem. A
bundle method was used to find lower bounds and enriched with a primal recovery procedure to produce
feasible solutions for the problem. The computational tests consider small instances with two and three
cascading reservoir instances, and also six cascading reservoirs, which presents a more realistic reproduc-
tion of a valley. The results show that CPLEX presents good results using the complete model, without
the decomposition, mainly to find feasible solutions. However, our approach can find lower bounds of
better quality in most cases, and the primal recovery procedure can often find better (feasible) solutions
than CPLEX. As a future direction, we think that the development of a sophisticated method to select
the most promising arcs to be considered by the primal recovery would highly improve the produced
upper bounds, i.e., feasible solutions.
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University of Paris-Saclay, France, 2016.
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[18] C. Lemaréchal. An extension of davidon methods to nondifferentiable problems. Mathematical
programming study, 3:95–109, 1975.

[19] A. Frangioni. About Lagrangian Methods in Integer Optimization. Annals of Operations Research,
139(1):163–193, 2005.

[20] A. Frangioni. Standard Bundle Methods: Untrusted Models and Duality. Preprint, pages 1–51,
2018.
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