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Abstract

Problems of minimizing makespan in scheduling batch processing machines are widely ex-
ploited by academic literature, mainly motivated by burn-in tests in the semiconductor industry.
The problem addressed in this work consists of grouping jobs into batches and scheduling them
in parallel machines. The jobs have non-identical size and processing times. The total size of
the batch cannot exceed the capacity of the machine. The processing time of each batch will be
equal to the longest processing time among all the jobs assigned to it. This paper proposes an
arc-flow based model for minimizing makespan on parallel processing machines Pm|sj , B|Cmax.
The mathematical model is solved using CPLEX, and computational results show that the
proposed models have a better performance than other models in the literature.

Keywords: Parallel batch processing machine; Scheduling; Makespan; Arc-flow

1 Introduction

Scheduling is a widely used decision-making process in resource allocation and allows optimization
in most production systems, information processing, transport, and distribution configurations, and
several other real-world environments. This paper focuses on scheduling problems in Batch Process-
ing Machines (BPM), that have been extensively explored in the literature, motivated by a large
number of applications in industries and also by the challenging solution of real world problems.
The main goal in these problems is to group jobs in batches and process them simultaneously in a
machine, to facilitate the tasks and to reduce the time spent in handling the material. Although
there are many variations of the problem involving BPM, the version addressed in this work are
more suitable to model the scheduling problems that arise in reliability tests in the semiconductor
industry, in operations called burn-in, presented in [22].

The burn-in operation is used to test electronic circuits and consists of designating them to
industrial ovens, submitting them to thermal stress for a long period. The test of each circuit is
considered here as a job and requires a minimum time inside the oven, which is referred to as the
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processing machine. The jobs need to be placed on a tray, respecting the capacity of the machine.
The burn-in tests are a bottleneck in final testing operations, and the efficient scheduling of these
operations aims to maximize productivity. The processing time to test an electronic circuit can reach
up to 120 hours in a constant temperature around 120◦C, as presented in [13]. On tests reported
in [19] and [7], a liquid crystal display usually takes 6 hours to complete the reliability test, which
reinforces the importance of an efficient scheduling.

The research on BPM is recent, compared to the history of the semiconductor manufacturing,
and consists of grouping the jobs into batches. The publication [18] reviews the research done
on scheduling models considering batch processing machines. A survey related to BPM problems
research found in [15], analyzing publications between 1986 and 2004 (part of 2004 only). Another
survey that focus on BPM problems published in [16] and reveals that p-batching is much more
important in semiconductor manufacturing comparing with s-batching.

This paper considers Pm|sj , B|Cmax problem. In the literature, the works that address it are
mostly extensions of the works published for the single machine version of the problem. In [3], the
simulated annealing meta-heuristic is applied, and an Mixed Integer Linear Programming (MILP)
formulation is presented for the problem. This work also proves the NP-hard complexity of the
problem, and shows results for instances with up to 50 jobs. In [11], a hybrid genetic algorithm is
used to compute solutions for instances with up to 100 jobs, considering 2 and 4 parallel machines.
In [8] a new application of the genetic algorithm is proposed, which solves instances with up to
100 jobs, also on 2 and 4 parallel machines. In [6] an approximation algorithm is presented for the
problem, with the approximation factor of 2. Finally, two other works that apply meta-heuristics
([5] and [10]), use the ant colony method and a meta-heuristic based on a max-min ant system for
this problem. In [5], results for instances with up to 500 jobs on 4 and 8 parallel machines are shown,
whereas, in [10], instances are solved with up to 100 jobs, on 2, 3, and 4 parallel machines. In [21]
and [20], the authors propose a new formulation focused on symmetry breaking constraints.

We propose an arc-flow formulation for problem Pm|sj , B|Cmax. The paper is organized as
follows: In Section 2, we introduce problem Pm|sj , B|Cmax and present two formulations from the
literature. In Section 3, we present an arc-flow based formulation for the problem. In Section 4,
we discuss our numerical experiments comparing the arc-flow formulation to formulations from the
literature. In Section 4, we present some concluding remarks and discuss future work.

2 Problem definition

The problem can be formally defined as follows. Given a set J := {1, . . . , nJ} of jobs, each job
j ∈ J has a processing time pj and a size sj . Each of them must be assigned to a batch k ∈ K :=
{1, . . . , nK}, not exceeding a given capacity limit B of the processing machine, i.e., the sum of the
sizes of the jobs assigned to a single batch cannot exceed B. We assume that sj ≤ B, for all j ∈ J .
The batches must be assigned to a specific machine M := {1, . . . , nM}. All machines are identical,
and each one has its own processing time, defined by the time of the last batch processed on the
machine. The processing time Pk of each batch k ∈ K is defined as longest processing time among
all jobs assigned to it, i.e., Pk := max{pj : j is assigned to k}. Jobs cannot be split between batches.
It is also not possible to add or remove jobs from the machine while the batches are being processed.
The goal is to design and schedule the batches so that the makespan (Cmax) is minimized, where
the design of a batch is defined as the set of jobs assigned to it, to schedule the batches means to
define the ordering in which they are processed in the machine, and the makespan is defined as the
time required to finish processing the last machine.

Consider the following decision variables, for all j ∈ J , k ∈ K, and m ∈M :

xjkm =

{
1, if job j is assigned to batch k processed in machine m;
0, otherwise.

(1)

Pkm : time to process batch k in machine m. (2)

Cmax : the makespan. (3)

In [3] the following MILP formulation is proposed for Pm|sj , B|Cmax:
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(MILP) min Cmax, (4)∑
k∈K

∑
m∈M

xjkm = 1, ∀j ∈ J, (5)∑
j∈J

∑
m∈M

sjxjkm ≤ B, ∀k ∈ K, (6)

Pkm ≥ pjxjkm, ∀j ∈ J, ∀k ∈ K, ∀m ∈M, (7)

Cmax ≥
∑
k∈K

Pkm, ∀m ∈M, (8)

xjkm ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K, ∀m ∈M. (9)

The objective function (4) minimizes the makespan. Constraints (5) and (6) ensure that each
job is assigned to a single batch and a single machine, respecting the capacity of the machine.
Constraints (7) determine the processing time of batch k in machine m. Constraints (8) determine
the makespan, which is given by the longest sum of the processing times of all batches, among
all machines. Note that formulation (MILP) takes into account that nK = nJ , and therefore, all
batches assigned to all machines on a given solution can be indexed by distinct indexes. Note that
constraints (6) take into account the fact that, although we have batches indexed by a given k,
corresponding to all machines, a job can only be assigned to one of them, because of constraints (5).
Therefore, a job j is only assigned to a unique pair (k,m).

(MILP) can be considered highly symmetrical concerning the order in which the batches are
scheduled in each one of the parallel machines. This is because the same solution can be represented
in different ways, just by changing the sequence order of the batches. In [21], and [20] the symmetry
mentioned above is considered and a symmetry breaking procedure is used. At first, the variables
xjkm are replaced by two binary variables xjk, which determine only the design of the batches,
and the binary variables ykm, which determine whether or not batch k is processed in machine m.
This replacement significantly reduces the number of binary variables. Furthermore, [21] presents a
new formulation for the problem, where symmetric solutions are eliminated from the feasible set of
(MILP), with the following approach. Firstly, the indexes of the jobs are defined by ordering them
by their processing times. More specifically, it is considered that p1 ≤ p2 ≤ . . . ≤ pnJ

. Secondly, it
is determined that batch k can only be used if job k is assigned to it, for all k ∈ K. Thirdly, it is
determined that job j can only be assigned to batch k if j ≤ k. Considering the above, the following
formulation for 1|sj , B|Cmax is proposed in [21]:

(MILP+) min Cmax, (10)∑
k∈K:k≥j

xjk = 1, ∀j ∈ J, (11)

∑
j∈J:j≤k

sjxjk ≤ Bxkk, ∀k ∈ K, (12)

xjk ≤ xkk, ∀j ∈ J, ∀k ∈ K, (13)

xkk ≤
∑
m∈M

ykm, ∀k ∈ K, (14)

Cm ≥
∑
k∈K

pkykm. ∀m ∈M, (15)

Cmax ≥ Cm ∀m ∈M, (16)

xjk ∈ {0, 1} ∀j ∈ J, ∀k ∈ K : j ≤ k. (17)

The objective function (10) minimizes the makespan given by the latest time to finish processing
all batches in all machines. Constraints (11) determine that each job j is assigned to a single batch
k, such that k ≥ j. Constraints (12) determine that the batches do not exceed the capacity of the
machine. They also ensure that each batch k is used if and only if job k is assigned to it. Constraints
(13) are redundant together with (12), but are included to strengthen the linear relaxation of the

https://doi.org/10.1007/978-3-030-53262-8_15
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model. Constraints (14) ensure that each used batch is assigned to a machine. Constraints (15) and
(16) determine the makespan.

3 Arc Flow approach

The arc flow approach has been used recently in classical optimization problems and allows modeling
with a pseudo-polynomial number of variables and constraints. For a cutting-stock problem, [23]
proposes a branch-and-price approach for an arc-flow formulation. Next, it was extended for the
bin-packing problem in [24]. An alternative arc-flow formulation for the cutting-stock problem is
proposed in [1] and [2], which uses a graph compression technique. These formulations were recently
tested and compared in [9] against several other models and problem-specific algorithms on one-
dimensional bin packing and cutting stock problems. The results show that the arc-flow formulation
outperforms all other models. In [14] the arc-flow model and the one-cut model are compared for the
one-dimensional cutting-stock problem, and reduction techniques for both approaches are presented.

For the scheduling area, we are only aware of two works that consider the arc-flow approach.
In [12] the problem of scheduling a set of jobs on a set of identical parallel machines, with the aim
of minimizing the total weighted completion time, P ||

∑
WjCj is considered. In [17] the makespan

minimization problem on identical parallel machines, P ||Cmax is considered. It is important to note
that these works do not consider more complex features in scheduling problems, such as batching
machines, non-identical job sizes, and machine capacity.

The idea in this section is to formulate problem Pm|sj , B|Cmax as a problem of determining
flows in graphs. With this goal, we initially define a directed graph G = (V,A), in which each
physical space of the batch with capacity B is represented by a node, i.e., V = {0, . . . , B}. The
set of directed arcs A is divided into three subsets: the set of job arcs AJ , the set of loss arcs AL,
and the set with a feedback arc AF . Therefore, A = AJ ∪ AL ∪ AF . Each arc (i, j) of the subset
AJ represents the existence of at least one job k of size sk, such that sk = j − i. The subset AJ

is more specifically defined as AJ := {(i, j) : ∃k ∈ J, sk = j − i ∧ i, j ∈ V ∧ i < j}. To compose
valid paths and represent all possible solutions, it is necessary to include the loss arcs in G, which
represent empty spaces at the end of a batch. The subset of arcs AL is more specifically defined as
AL := {(i, B) : i ∈ V ∧ 0 < i < B}. Finally, the feedback arc is used to connect the last node to the
first one, defined as AF := {(B, 0)}.

The graph G is then replicated for each different processing time of the problem in our modeling
approach. Each replicated graph will be referred to as an arc-flow structure for our problem. We
consider P := {P1, . . . , Pδ} as the set with all the different processing times among all jobs, and T :=
{1, . . . , δ} as the set of indexes corresponding to the arc-flow structures in the problem formulation.

A variable wt,m is created to determine the number of batches with processing time Pt that will
be allocated on the machine m. Considering NT`,t ( NT+

`,t) as the number of jobs of size S` and
processing time = Pt (≤ Pt), and NJt as the number of jobs with processing time Pt, our new
formulation is presented below.

fi,j,t : flow on job arc (i, j) ∈ AJ in arc-flow structure t. The variable indicates the quantity of
batches created with position i occupied by jobs with size j − i.

yi,j,t : flow on the loss arc (i, B) ∈ AL in arc-flow structure t.
vt : flow on the feedback arc in arc-flow structure t. The variable indicates the number of batches

required with processing time Pt.
zc,t : number of jobs with size c, not allocated in the batches with processing time smaller than

or equal to Pt. Theses jobs are allowed to be allocated in the batches with processing time Pt+1.
wt,m : number of batches with processing time Pt, allocated to machine m.

https://doi.org/10.1007/978-3-030-53262-8_15
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(FLOW2) min Cmax (18) ∑
(i,j)∈AJ

fi,j,t +
∑

(i,j)∈AL

yi,j,t

−
 ∑

(j,i)∈AJ

fj,i,t +
∑

(j,i)∈AL

yj,i,t

 =

 −vt if j = 0;
vt if j = B;
0 if 0 < j < B.

t ∈ T (19)

NTc,t −
∑

(i,j)∈AJ :
j−i=c

fi,j,t =

 zc,t if t = 1;
−zc,t−1 if t = δ;
zc,t − zc,t−1 if 1 < t < δ.

c ∈ {1..B} (20)

∑
m∈M

wt,m ≥ vt t ∈ T (21)∑
t∈T

Ptwt,m ≤ Cmax m ∈M (22)

fi,j,t ≤ min(NJt, NT
+
j−i,t), fi,j,t ∈ Z t ∈ T, (i, j) ∈ AJ (23)

vt ≤ NJt, vt ∈ Z t ∈ T (24)

yi,j,t ≤ NJt, yi,j,t ∈ Z t ∈ T, (i, j) ∈ AL (25)

zc,t ≤ NT+
c,t, zc,t ∈ Z t ∈ T : t < δ, c ∈ {1..B} (26)

wt,m ∈ Z t ∈ T,m ∈M (27)

The objective function (18) minimizes the makespan. The set of flow conservation constraints are
defined by constraints (19). Constraints (20) ensure that all jobs are assigned and also control the
number of jobs to be assigned to each arc-flow structure. Constraints (21) ensure that all batches
used are assigned to a machine. Constraints (22) determine the makespan as the time required
to finish processing the last batch on all machines. Constraints (23–27) define the domains of the
variables and their respective upper bounds. We emphasize that (21) and (22) are the constraints
that make it possible for the arc-flow model to handle batch allocation on parallel machines.

4 Computational results

The models presented in this chapter were compared through computational tests performed. The
set was created by the authors of [4], who kindly sent them to us, to use in our work. Wee use
the CPLEX version 12.7.1.0, configured to run in only one thread to not benefit from the processor
parallelism. We used a computer with a 2.70GHz Intel Quad-Core Xeon E5-2697 v2 processor
and 64GB of RAM. The computational time to solve each instance was limited in 1800 seconds.

The set of test instances for problem Pm|sj , B|Cmax is the same considered in [4] for the 1|sj , B|Cmax

problem. For each job j, an integer processing time pj and an integer job size sj were generated from
the respective uniform distribution depicted in Table 1. In total, 4200 instances were generated, 100
for each of the 42 different combinations of number and size of the jobs. We test each instance with
three different numbers of parallel machines.

Table 1: Parameter settings.

Number
of jobs (nJ)

Processing
time (pJ)

Jobs size
Machine

capacity (B)
Parallel

machines (nM )

10, 20, 50, 100 p1: [1, 10] s1: [1, 10] B = 10 2, 4, 8
200, 300, 500 p2: [1, 20] s2: [2, 4]

s3: [4, 8]

https://doi.org/10.1007/978-3-030-53262-8_15
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Table 2: Computational results for Pm|sj .B|Cmax - 2 parallel machines.

Instance (MILP) (MILP+) (FLOW)

Jobs Type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

2 parallel machines

10 p1s1 18.76 0.13 0.00 18.76 0.01 0.00 18.76 0.02 0.00
10 p1s2 11.03 0.05 0.00 11.03 0.02 0.00 11.03 0.02 0.00
10 p1s3 22.13 0.19 0.00 22.13 0.01 0.00 22.13 0.00 0.00
10 p2s1 34.50 0.12 0.00 34.50 0.01 0.00 34.50 0.03 0.00
10 p2s2 21.71 0.05 0.00 21.71 0.02 0.00 21.71 0.03 0.00
10 p2s3 40.87 0.17 0.00 40.87 0.01 0.00 40.87 0.01 0.00
20 p1s1 34.27 1308.41 5.54 34.27 0.03 0.00 34.27 0.04 0.00
20 p1s2 18.83 884.08 8.16 18.83 0.11 0.00 18.83 0.04 0.00
20 p1s3 42.13 1412.74 6.27 42.13 0.02 0.00 42.13 0.01 0.00
20 p2s1 66.79 1287.70 4.35 66.79 0.03 0.00 66.79 0.09 0.00
20 p2s2 36.87 651.70 7.05 36.87 0.15 0.00 36.87 0.09 0.00
20 p2s3 79.82 1395.83 5.60 79.82 0.02 0.00 79.82 0.01 0.00
50 p1s1 83.07 - 58.36 82.30 2.48 0.00 82.30 0.08 0.00
50 p1s2 46.56 - 59.68 43.94 529.33 0.52 43.94 0.07 0.00
50 p1s3 101.74 - 60.69 101.30 0.02 0.00 101.30 0.01 0.00
50 p2s1 159.08 - 61.30 157.52 5.12 0.00 157.52 0.33 0.00
50 p2s2 88.96 - 62.44 84.32 478.37 0.19 84.32 0.55 0.00
50 p2s3 192.95 - 64.02 192.34 0.03 0.00 192.34 0.02 0.00
100 p1s1 171.60 - 87.71 159.78 192.10 0.07 159.78 0.11 0.00
100 p1s2 98.19 - 86.49 85.56 1743.59 1.73 85.56 0.10 0.00
100 p1s3 206.66 - 86.52 198.75 0.15 0.00 198.75 0.01 0.00
100 p2s1 328.38 - 89.47 305.58 84.36 0.02 305.58 0.42 0.00
100 p2s2 188.69 - 88.60 163.39 1770.79 1.21 163.31 1.58 0.00
100 p2s3 398.94 - 89.28 383.73 0.20 0.00 383.73 0.03 0.00

200 p1s1

Unperformed

314.93 332.53 0.05 314.92 0.07 0.00
200 p1s2 167.44 - 1.58 166.97 0.15 0.00
200 p1s3 393.36 79.14 0.01 393.36 0.02 0.00
200 p2s1 599.00 495.03 0.05 598.96 0.67 0.00
200 p2s2 320.16 - 1.52 318.85 3.43 0.00
200 p2s3 752.78 42.39 0.00 752.78 0.05 0.00
300 p1s1 464.59 639.71 0.08 464.54 0.10 0.00
300 p1s2 250.62 - 1.89 248.06 0.14 0.00
300 p1s3 587.49 241.24 0.02 587.49 0.02 0.00
300 p2s1 897.09 764.46 0.05 897.00 0.57 0.00
300 p2s2 487.55 - 2.09 481.61 3.25 0.00
300 p2s3 1123.96 274.67 0.02 1123.96 0.09 0.00
500 p1s1 772.54 1084.33 0.11 772.38 0.11 0.00
500 p1s2 421.92 - 1.98 415.76 0.17 0.00
500 p1s3 975.15 382.95 0.02 975.15 0.01 0.00
500 p2s1 1483.02 1365.87 0.09 1482.58 0.59 0.00
500 p2s2 806.24 - 2.10 794.00 2.78 0.00
500 p2s3 1851.16 488.38 0.01 1851.16 0.06 0.00

We present in Table 2–4 comparison results among the arc flow formulation proposed in this
work and another two from the literature. All values presented are the average results computed
over the instances of the same configuration, as described in Table 1.

The comparative tests clearly show that formulation (FLOW) is superior to (MILP) and (MILP+),
especially when the number of jobs increases. Model (FLOW) did not prove the optimality of only
one instance from the set of test problems. For instances with 20 jobs or less, (MILP+) can solve
some instances in less computational time than (FLOW), but the difference between times is always
a fraction of a second. Additionally, the duality gaps shown for (MILP) reveal the difficulty in
obtaining good lower bounds.

Unlike what we have with models (MILP) and (MILP+), the number of variables in (FLOW)
does not grow when the number of jobs increases. Moreover, the flow graph does not change in this

https://doi.org/10.1007/978-3-030-53262-8_15
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Table 3: Computational results for Pm|sj .B|Cmax - 4 parallel machines.

Instance (MILP) (MILP+) (FLOW)

jobs type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

4 parallel machines

10 p1s1 10.87 0.16 0.00 10.87 0.02 0.00 10.87 0.02 0.00
10 p1s2 9.49 0.10 0.00 9.49 0.01 0.00 9.49 0.01 0.00
10 p1s3 12.18 0.25 0.00 12.18 0.02 0.00 12.18 0.01 0.00
10 p2s1 20.26 0.16 0.00 20.26 0.02 0.00 20.26 0.03 0.00
10 p2s2 18.68 0.11 0.00 18.68 0.01 0.00 18.68 0.02 0.00
10 p2s3 22.67 0.23 0.00 22.67 0.02 0.00 22.67 0.01 0.00
20 p1s1 17.47 1316.19 8.11 17.47 0.05 0.00 17.47 0.06 0.00
20 p1s2 10.43 56.14 0.49 10.43 0.32 0.00 10.43 0.05 0.00
20 p1s3 21.29 1629.93 11.78 21.29 0.03 0.00 21.29 0.01 0.00
20 p2s1 33.95 1122.49 5.29 33.95 0.07 0.00 33.95 0.14 0.00
20 p2s2 20.51 92.62 0.64 20.51 0.35 0.00 20.51 0.14 0.00
20 p2s3 40.21 1731.24 12.27 40.21 0.05 0.00 40.21 0.02 0.00
50 p1s1 42.69 - 70.03 41.43 2.54 0.00 41.43 0.11 0.00
50 p1s2 23.76 - 58.83 22.18 269.31 0.56 22.18 0.26 0.00
50 p1s3 51.85 - 71.91 50.90 0.05 0.00 50.90 0.01 0.00
50 p2s1 81.23 - 71.19 78.97 0.90 0.00 78.97 0.80 0.00
50 p2s2 45.55 - 57.37 42.38 283.70 0.19 42.38 1.41 0.00
50 p2s3 97.89 - 73.39 96.40 0.07 0.00 96.40 0.04 0.00
100 p1s1 93.06 - 93.44 80.09 82.33 0.05 80.09 0.18 0.00
100 p1s2 50.26 - 81.80 43.06 1409.33 1.67 43.04 0.26 0.00
100 p1s3 110.60 - 92.94 99.64 0.55 0.00 99.64 0.02 0.00
100 p2s1 177.17 - 93.54 153.03 51.98 0.02 153.03 1.83 0.00
100 p2s2 96.18 - 86.63 82.03 1679.11 1.32 81.88 3.12 0.00
100 p2s3 213.47 - 93.38 192.11 0.52 0.00 192.11 0.05 0.00

200 p1s1

Unperformed

157.71 209.19 0.06 157.70 0.16 0.00
200 p1s2 84.05 1788.54 1.69 83.67 0.53 0.00
200 p1s3 196.93 38.03 0.01 196.93 0.02 0.00
200 p2s1 299.78 396.85 0.06 299.75 21.23 0.00
200 p2s2 160.95 - 1.94 159.68 31.02 0.01
200 p2s3 376.64 59.36 0.01 376.64 0.07 0.00
300 p1s1 232.56 422.79 0.09 232.52 0.17 0.00
300 p1s2 126.22 - 2.40 124.28 0.33 0.00
300 p1s3 293.99 146.32 0.03 293.99 0.02 0.00
300 p2s1 448.84 568.62 0.06 448.79 1.19 0.00
300 p2s2 244.96 - 2.49 241.07 21.59 0.00
300 p2s3 562.24 230.89 0.02 562.24 0.11 0.00
500 p1s1 386.62 1009.64 0.15 386.47 0.17 0.00
500 p1s2 211.91 - 2.31 208.12 0.40 0.00
500 p1s3 487.84 266.44 0.03 487.84 0.02 0.00
500 p2s1 741.93 1306.98 0.12 741.56 1.91 0.00
500 p2s2 405.30 - 2.58 397.30 134.68 0.01
500 p2s3 925.84 345.92 0.02 925.84 0.07 0.00
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Table 4: Computational results for Pm|sj .B|Cmax - 8 parallel machines.

Instance (MILP) (MILP+) (FLOW)

jobs type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

8 parallel machines

10 p1s1 9.54 0.23 0.00 9.54 0.01 0.00 9.54 0.02 0.00
10 p1s2 9.49 0.25 0.00 9.49 0.01 0.00 9.49 0.02 0.00
10 p1s3 9.42 0.33 0.00 9.42 0.01 0.00 9.42 0.01 0.00
10 p2s1 18.55 0.21 0.00 18.55 0.01 0.00 18.55 0.02 0.00
10 p2s2 18.68 0.24 0.00 18.68 0.01 0.00 18.68 0.02 0.00
10 p2s3 18.27 0.34 0.00 18.27 0.01 0.00 18.27 0.01 0.00
20 p1s1 10.51 276.62 2.44 10.51 0.09 0.00 10.51 0.06 0.00
20 p1s2 9.81 2.76 0.00 9.81 0.07 0.00 9.81 0.03 0.00
20 p1s3 11.61 760.27 7.24 11.60 0.15 0.00 11.60 0.01 0.00
20 p2s1 20.76 328.01 3.34 20.76 0.13 0.00 20.76 0.18 0.00
20 p2s2 19.52 2.80 0.00 19.52 0.08 0.00 19.52 0.04 0.00
20 p2s3 22.31 958.29 8.28 22.30 0.26 0.00 22.30 0.04 0.00
50 p1s1 22.30 - 55.90 20.96 2.99 0.00 20.96 0.25 0.00
50 p1s2 12.83 1783.20 27.02 11.77 850.12 4.12 11.77 0.39 0.00
50 p1s3 26.78 - 62.67 25.71 0.10 0.00 25.71 0.02 0.00
50 p2s1 42.41 - 55.68 39.72 1.25 0.00 39.72 2.47 0.00
50 p2s2 24.41 1775.39 28.90 22.46 1198.77 3.91 22.45 11.60 0.00
50 p2s3 50.33 - 61.21 48.45 0.17 0.00 48.45 0.08 0.00
100 p1s1 59.57 - 96.84 40.34 51.78 0.05 40.34 0.19 0.00
100 p1s2 28.80 - 84.72 21.82 872.63 2.04 21.75 1.49 0.00
100 p1s3 69.72 - 98.03 50.07 0.22 0.00 50.07 0.03 0.00
100 p2s1 123.38 - 97.70 76.81 59.45 0.01 76.81 10.88 0.00
100 p2s2 57.82 - 94.95 41.34 1251.21 1.45 41.23 37.99 0.03
100 p2s3 139.99 - 98.19 96.34 0.81 0.00 96.34 0.11 0.00

200 p1s1

Unperformed

79.13 213.02 0.12 79.10 0.15 0.00
200 p1s2 42.41 1599.90 1.97 42.10 0.95 0.00
200 p1s3 98.74 2.72 0.00 98.74 0.02 0.00
200 p2s1 150.18 341.94 0.08 150.14 54.67 0.01
200 p2s2 81.27 1796.74 2.64 80.08 141.71 0.04
200 p2s3 188.53 21.83 0.01 188.53 0.14 0.00
300 p1s1 116.58 480.57 0.16 116.51 18.20 0.01
300 p1s2 63.40 1779.89 2.44 62.39 0.57 0.00
300 p1s3 147.25 94.40 0.03 147.25 0.02 0.00
300 p2s1 224.76 641.81 0.12 224.61 2.84 0.00
300 p2s2 123.61 - 3.20 120.78 358.94 0.13
300 p2s3 281.31 115.95 0.02 281.31 0.31 0.00
500 p1s1 193.74 1067.41 0.29 193.53 0.24 0.00
500 p1s2 106.63 1787.69 2.72 104.38 1.67 0.00
500 p1s3 244.11 134.96 0.03 244.11 0.04 0.00
500 p2s1 371.50 1136.26 0.20 371.03 2.08 0.00
500 p2s2 203.42 - 2.83 198.96 376.70 0.09
500 p2s3 463.16 189.74 0.02 463.16 0.24 0.00
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case. Only the bounds on the variables change. The flow graphs of two distinct instances will be
the same if the settings in the parameters Processing Time, Job Size and Machine Capacity are the
same. In fact, this is a very important characteristic of the flow approach. We finally note that the
computational time to construct the graphs for the flow formulation was not considered in these
times. However, the maximum time to construct a graph for any instance in our experiments was
0.008 second.

The results show that instances of configuration s2 require more computational time and are more
difficult compared to the other instances for all formulations. The reason for this is the small sizes
of the jobs when compared to the machine capacity, which allows more combinations of assignment
to a batch.

Conclusion

In this paper we propose a new arc-flow formulation for minimizing makespan on parallel batch ma-
chines, considering non-identical job sizes. The computational results reveal that this new approach
is much more efficient than those previously published in the literature. It is able to solve instances
up to 500 jobs, which have never been solved before, with low computational times. Even for the
most difficult instances, for which the model failed to prove optimality, the results are very close to
the optimal with gaps between 0.13-0.01%. One of the best advantages of the arc-flow model is that
the number of variables does not increase if the number of jobs of the instance increases.

As future work, it is interesting to investigate whether this approach can be applied to other
variants of scheduling problems, such as considering incompatible families or jobs with non-identical
release times.
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[21] R. S. Trindade, O. C. B. de Araújo, M. H. C. Fampa, and F. M. Müller. Modelling and
symmetry breaking in scheduling problems on batch processing machines. International Journal
of Production Research, 56(22):7031–7048, nov 2018.

[22] R. Uzsoy. Scheduling a single batch processing machine with non-identical job sizes. Interna-
tional Journal of Production Research, 32(7):1615–1635, jul 1994.
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