
HAL Id: hal-03104364
https://hal.science/hal-03104364

Submitted on 20 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and symmetry breaking in scheduling
problems on batch processing machines

Renan Spencer Trindade, Olinto César Bassi de Araújo, Marcia Helena Costa
Fampa, Felipe Martins Müller

To cite this version:
Renan Spencer Trindade, Olinto César Bassi de Araújo, Marcia Helena Costa Fampa, Fe-
lipe Martins Müller. Modelling and symmetry breaking in scheduling problems on batch pro-
cessing machines. International Journal of Production Research, 2018, 56 (22), pp.7031-7048.
�10.1080/00207543.2018.1424371�. �hal-03104364�

https://hal.science/hal-03104364
https://hal.archives-ouvertes.fr

Symmetry breaking constraints and An arc-flow formulation

for scheduling problems on batch processing machines

Renan Spencer Trindade∗1, Olinto C. B. de Araújo1, Marcia Fampa2, and Felipe
Martins Müller3

1Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil

2Colégio Técnico Industrial de Santa Maria, Universidade Federal de Santa Maria, Brazil
3Departamento de Eletrônica e Computação, Universidade Federal de Santa Maria,

Santa Maria, RS, Brazil

Abstract

Problems of scheduling batch-processing machines to minimize the makespan are widely ex-
ploited in the literature, mainly motivated by real-world applications, such as burn-in tests in
the semiconductor industry. These problems consist of grouping jobs in batches and scheduling
them on machines. We consider problems where jobs have non-identical sizes and processing
times, and the total size of each batch cannot exceed the machine capacity. The processing
time of a batch is defined as the longest processing time among all jobs assigned to it. Jobs can
also have non-identical release times, and in this case, a batch can only be processed when all
jobs assigned to it are available. This paper discusses four different versions of batch scheduling
problems, considering a single processing machine or parallel processing machines, and consider-
ing jobs with or without release times. New mixed integer linear programming formulations are
proposed as enhancements of formulations proposed in the literature, and symmetry breaking
constraints are investigated to reduce the size of the feasible sets. Computational results show
that the proposed formulations have a better performance than other models in the literature,
being able to solve to optimality instances only considered before to be solved by heuristic
procedures.

Keywords: Batch processing machine; BPM; Symmetry; Makespan; Mixed integer linear pro-
gram

1 Introduction

Scheduling problems in batch processing machines have been extensively explored in the literature,
motivated by a large number of applications in industries and also by the challenging solution of
real world problems. The main goal in these problems is to group jobs in batches and process them
simultaneously in a machine, to facilitate the tasks and to reduce the time spent in handling the
material. Although there are many variations of the problem involving batch processing machines,

∗Corresponding author. Email: trindade@cos.ufrj.br

This is an Accepted Manuscript version of the following article, accepted for publication in International Journal of
Production Research. Trindade, R. S., de Araújo, O. C. B., Fampa, M. H. C., & Müller, F. M. (2018). Modelling
and symmetry breaking in scheduling problems on batch processing machines. International Journal of Production
Research, 56(22), 7031–7048. DOI: 10.1080/00207543.2018.1424371. It is deposited under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is
properly cited, and is not altered, transformed, or built upon in any way.

1

https://doi.org/10.1080/00207543.2018.1424371
http://creativecommons.org/licenses/by-nc-nd/4.0/

DOI: 10.1080/00207543.2018.1424371 2

the versions addressed in this work are more suitable to model the scheduling problems that arise
in reliability tests in the semiconductor industry, in operations called burn-in, presented in [22].

The burn-in operation is used to test electronic circuits and consists of designating them to
industrial ovens, submitting them to thermal stress for a long period. The test of each circuit
is considered here as a job and requires a minimum time inside the oven, which is referred to as
the processing machine. The jobs cannot be processed directly on the machine, they need to be
placed on a tray, respecting the capacity of the machine. Each group of jobs assigned to a tray is
considered a batch. The minimum time of the circuit inside the oven is set a priori, based on the
supplier requirements. It is possible to keep the circuit in the oven longer than necessary, with no
prejudice, but it cannot be removed before its required processing time is fulfilled. Therefore, the
processing time of a batch is determined by the longest processing time among all jobs assigned
to it. The burn-in tests are a bottleneck in final testing operations, and the efficient scheduling of
these operations aims to maximize productivity and reduce flow time in the stock, which is a major
concern for management.

For the problems addressed in this paper, we are given a set of jobs. Each job j has a size sj ,
a minimum processing time pj , and must be assigned to a batch. The sum of the sizes of the jobs
assigned to a batch cannot exceed the capacity limit B of the processing machine. The batches
must be scheduled on a machine, which can process only one batch at a time. The goal is to design
and schedule the batches on the machines so that the completion time of the last job processed,
called makespan and denoted by Cmax, is minimized. Finally, it is also possible that each job j has
a different release time rj , which is when the job becomes available to be processed. In this case, a
batch can only be processed when all the jobs assigned to it are available.

We address four different versions of this scheduling problem. On the two first, denoted by
1|sj , B|Cmax and Pm|sj , B|Cmax, we do not consider different release times for the jobs. On problem
1|sj , B|Cmax, only a single processing machine is used, and on Pm|sj , B|Cmax, m parallel identical
machines are used. The two other problems, denoted by 1|rj , sj , B|Cmax and Pm|rj , sj , B|Cmax, are
defined equivalently to the two first ones, but with non-identical release times considered for the
jobs.

In this paper, we first present mixed integer linear programming (MILP) formulations for the four
problems addressed, which were proposed in Melouk, Damodaran and Chang [19], [2], [24] and [23].
We point out that all the four formulations present a large number of symmetric solutions in their
feasible sets. Two types of symmetries are considered in our analysis. On the first one, two solutions
are said to be symmetric if the designs of the batches are equal on both solutions and the batches
assigned to a machine are processed in the same order. On the second, two solutions are said to be
symmetric if the designs of the batches are still equal in both solutions, but the batches assigned
to at least one machine are processed in a different order. Nevertheless, the modification in the
order in which the batches are processed does not affect the makespan, and therefore also generates
equivalent solutions. The existence of symmetric solutions in the feasible set of the problems leads
to a very inefficient application of branch-and-bound (B&B) algorithms. Treatment of symmetry in
integer programs is an intense area of research, where different strategies are suggested to mitigate
the effect of symmetric solutions during the B&B execution (see, for example, [18]). The impact of
symmetry breaking constraints on a particular software engineering application is also investigated
in [16]. In this work, several sets of symmetric solutions for the problem addressed are pointed out,
as well as symmetry breaking constraints to deal with them. These constraints motivated the study
of symmetry breaking for the scheduling problems addressed in this paper. Furthermore, we take
into account specific properties of the problems and their optimal solutions to propose new stronger
formulations for them and avoid undesirable symmetric solutions in their feasible sets. We show the
correctness of our models and explain how our different indexing choices for each problem allow a
more efficient modeling. Applying our models we are able to prove optimality of instances with sizes
considered for the first time in the literature to be solved by exact methods.

The remainder of this paper is organized as follows. In Section 2, we give an overview of the
main results that we found in the literature, on the problems addressed. In Section 3, we present
the MILP formulations from the literature. In Section 4, we analyze symmetric solutions to these
formulations and propose symmetry breaking constraints and new formulations for the problems.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 3

In Section 5, we present computational results comparing the different formulations. In Section 6,
we present some concluding remarks.

2 Literature Review

Problem 1|sj , B|Cmax was addressed for the first time in [22], where this NP-hard complexity is
proved and a heuristic approach to solve it is proposed. Heuristics are also proposed for this problem
in [12], where instances with up to 100 jobs are considered. Two approximation algorithms are
presented in [25] with approximation ratios of 3/2 and 7/4 of the optimal solution, in the worst case.
In [19], the simulated annealing meta-heuristic was applied to 1|sj , B|Cmax and an MILP formulation
was presented for the problem. This work also proposes configurations for test instances that were
widely used in later works. Computational results are shown for instances with up to 100 jobs,
comparing the heuristic solutions to the solutions obtained with the MILP formulation. Other
meta-heuristics are also applied to problem 1|sj , B|Cmax in the literature, namely, genetic algorithm
([9] and [14]), tabu search ([20]), and GRASP ([8]). These four papers consider instances with up
to 100 jobs as well. In addition, the bee colony meta-heuristic is also applied to the problem in [1],
where results for instances with up to 200 jobs are shown. In [3], a heuristic based on a special case of
the clustering problem is proposed, and test instances with up to 500 jobs are considered. In [17], two
heuristics are proposed based on a decomposition of the original problem, where relaxations of the
problem are solved. Instances with up to 100 jobs are considered in this work. An exact approach is
used in [21], where a formulation for problem 1|sj , B|Cmax is presented, using a partition problem in
the context of Dantzig-Wolfe decomposition. In this work, the branch-and-price method is applied to
solve the problem to optimality. Instances with up to 500 jobs are considered in the computational
experiments.

Concerning problem Pm|sj , B|Cmax, the papers that address it, are mostly extensions of the works
published for problem 1|sj , B|Cmax. In [2], the simulated annealing meta-heuristic is applied, and
an MILP formulation is presented for the problem. This work also proves the NP-hard complexity of
the problem, and show results for instances with up to 50 jobs. In [15], a hybrid genetic algorithm is
used to compute solutions for instances with up to 100 jobs, considering 2 and 4 parallel machines.
In [10] a new application of the genetic algorithm is proposed, which solves instances with up to
100 tasks, also on 2 and 4 parallel machines. In [4] an approximation algorithm is presented for the
problem, with the approximation factor of 2. Finally, two other works that apply meta-heuristics
([5] and [13]), use the ant colony method and a meta-heuristic based on a max-min ant system for
this problem. In [5], results for instances with up to 500 jobs on 4 and 8 parallel machines are shown,
whereas, in [13], instances are solved with up to 100 jobs, on 2, 3, and 4 parallel machines.

There are only a few papers investigating problem 1|rj , sj , B|Cmax in the literature. To our
knowledge, only three papers have been published. Solution approaches based on meta-heuristics
are presented in [6] and [24], which apply hybrid genetic algorithms and the ant colony meta-
heuristic, respectively. In both works, test instances with up to 100 jobs are considered. In [26],
three heuristics are proposed for this problem and computational results for instances with up to
300 jobs are shown. In [24], we can also find an MILP formulation for the problem.

Problem Pm|rj , sj , B|Cmax was firstly addressed in [7]. In this paper, the authors propose an
MILP formulation to solve the problem to optimality and three heuristics to handle instances with
7 and 15 jobs. In [23], the problem is proved to be NP-hard, and is addressed with the use of
an MILP formulation and also with five heuristics and with the application of two meta-heuristics,
simulated annealing, and GRASP. It is also proposed a column generation method, which generates
lower bounds to the optimal solution of the problem by solving its continuous relaxation. Numerical
experiments with instances with up to 50 jobs, and with 3 and 5 parallel machines, are presented.
The results of this work are also published in [11].

We can conclude from our literature review on the problems addressed in this work, that most
of the effort made by researchers to solve them, concentrated in heuristic procedures. The MILP
formulations presented for them were mostly used as a baseline to give a formal definition of the
problems, and provide some evaluation for the heuristic solutions on small instances. As mentioned

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 4

before, B&B algorithms become very inefficient when applied to these formulations due to the
presence of symmetric solutions in their feasible sets.

3 Description of the problems addressed

3.1 Problem 1|sj, B|Cmax

Problem 1|sj , B|Cmax is the simplest job scheduling problem addressed in this paper. It can be
formally defined as follows. Given a set J := {1, . . . , nJ} of jobs, each job j ∈ J has a processing
time pj and a size sj . Each of them must be assigned to a batch k ∈ K := {1, . . . , nK}, not exceeding
a given capacity limit B of the processing machine, i.e., the sum of the sizes of the jobs assigned to
a single batch cannot exceed B. We assume that sj ≤ B, for all j ∈ J . The batches must be all
processed in a single machine, one at a time, and all the jobs assigned to a single batch are processed
simultaneously. The processing time Pk of each batch k ∈ K is defined as longest processing time
among all jobs assigned to it, i.e., Pk := max{pj : j is assigned to k}. Jobs cannot be split between
batches. It’s also not possible to add or remove jobs from the machine while the batches are being
processed. The goal is to design and schedule the batches so that the makespan (Cmax) is minimized,
where the design of a batch is defined as the set of jobs assigned to it, to schedule the batches means
to define the ordering in which they are processed in the machine, and the makespan is defined as
the time required to finish processing the last batch. The number of batches used on the solution
is not fixed and should be optimized. It will depend on the number of jobs, their sizes, and the
machine capacity. In the worst case, the number of batches will be equal to the number of jobs.
Therefore, to assure the correctness of the formulations presented in this section, it is assumed that
nK = nJ .

Let’s consider then the following decision variables for all j ∈ J , k ∈ K:

xjk =

{
1, if job j is assigned to batch k;
0, otherwise.

(1)

yk =

{
1, if batch k is used;
0, otherwise.

(2)

Pk : processing time of batch k. (3)

In [19] the following MILP formulation is proposed for problem 1|sj , B|Cmax. Other very similar
formulations and sometimes this exactly same one, are used in other papers as a comparative basis
in computational experiments.

(MILP1) min
∑
k∈K

Pk, (4)∑
k∈K

xjk = 1, ∀j ∈ J, (5)∑
j∈J

sjxjk ≤ Byk, ∀k ∈ K, (6)

Pk ≥ pjxjk, ∀j ∈ J, ∀k ∈ K, (7)

xjk ≤ yk, ∀j ∈ J, ∀k ∈ K, (8)

Pk ≥ 0, ∀k ∈ K, (9)

yk ∈ {0, 1}, ∀k ∈ K, (10)

xjk ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K. (11)

The objective function (4) minimizes the makespan, given by the sum of the processing times
of all batches. Constraints (5) determine that each job is assigned to a single batch. Constraints
(6) determine that each batch if used does not exceed the capacity of the machine. Constraints (7)
determine the processing times of the batches. Note that constraints (8) are redundant together
with (6), but are added to strengthen the linear relaxation of the formulation.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 5

3.2 Problem Pm|sj, B|Cmax

Problem Pm|sj , B|Cmax is very similar to problem 1|sj , B|Cmax. The only difference is the possibility
of using more than one machine to process the batches. When defining problem Pm|sj , B|Cmax,
besides considering all aspect presented to 1|sj , B|Cmax, we also assume that the batches should be
assigned to a specific machine m ∈M := {1, . . . , nM}. All machines are identical and the objective
is again to minimize the makespan (Cmax), which is now defined as the time required to finish
processing the last batch in all machines.

Consider the following decision variables, for all j ∈ J , k ∈ K, and m ∈M :

xjkm =

{
1, if job j is assigned to batch k processed in machine m;
0, otherwise.

(12)

Pkm : time to process batch k in machine m. (13)

In [2] the following MILP formulation is proposed for Pm|sj , B|Cmax:

(MILP2) min Cmax, (14)∑
k∈K

∑
m∈M

xjkm = 1, ∀j ∈ J, (15)∑
j∈J

∑
m∈M

sjxjkm ≤ B, ∀k ∈ K, (16)

Pkm ≥ pjxjkm, ∀j ∈ J, ∀k ∈ K,∀m ∈M, (17)

Cmax ≥
∑
k∈K

Pkm, ∀m ∈M, (18)

Pkm ≥ 0, ∀k ∈ K,∀m ∈M, (19)

Cmax ≥ 0, (20)

xjkm ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K,∀m ∈M. (21)

The objective function (14) minimizes the makespan. Constraints (15) and (16) ensure that
each job is assigned to a single batch and a single machine, respecting the capacity of the machine.
Constraints (17) determine the processing time of batch k in machine m. Constraints (18) determine
the makespan, which is given by the longest sum of the processing times of all batches, among all
machines.

Note that formulation (MILP2) takes into account that nK = nJ , and therefore, all batches
assigned to all machines on a given solution can be indexed by distinct indexes.

3.3 Problem 1|rj, sj, B|Cmax

Problem 1|rj , sj , B|Cmax is also very similar to problem 1|sj , B|Cmax. The only difference now is that
jobs have non-identical release times. All other aspects are similar to the ones presented for problem
1|sj , B|Cmax. In 1|rj , sj , B|Cmax, we admit that each job j ∈ J has a release time rj and can only be
processed after released. Accordingly, each batch can only be processed when all jobs assigned to it
have been released. The release time of batch k is then defined as Rk := max{rj : j is assigned to k}.

Let’s consider now the decision variables (1), (3), and also the variables:

Sk : time when batch k starts to be processed, (22)

for all k ∈ K.
In [24] the following MILP formulation is proposed for 1|rj , sj , B|Cmax. We emphasize the

modifications made to formulation (MILP1), which was previously presented for 1|sj , B|Cmax.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 6

(MILP3) min SnK
+ PnK

, (23)∑
j∈J

sjxjk ≤ B, ∀k ∈ K, (24)

Sk ≥ rjxjk, ∀j ∈ J, ∀k ∈ K, (25)

Sk ≥ Sk−1 + Pk−1, ∀k ∈ K : k > 1, (26)

Sk ≥ 0, ∀k ∈ K, (27)

(5), (7), (9), (11). (28)

The objective function (23) minimizes the makespan, given by the starting time of the last batch
processed added to its processing time. Constraints (24) ensure that each batch respects the capacity
of the machine. Constraints (25)-(27) determine the time when each batch starts to be processed.
The other constraints were taken from (MILP1). Note that the binary variables yk, defined in (2),
and previously used to strengthen the linear relaxation of problem 1|sj , B|Cmax, are not used in this
formulation.

3.4 Problem Pm|rj, sj, B|Cmax

Problem Pm|rj , sj , B|Cmax is very similar to Pm|sj , B|Cmax. Once more, the only difference is that
jobs now have non-identical release times. All other aspects are similar to the ones presented for
problem Pm|sj , B|Cmax. As in 1|rj , sj , B|Cmax, the jobs can only be processed after released in
problem Pm|rj , sj , B|Cmax. The objective is again to minimize the makespan (Cmax), defined as the
time required to finish processing the last batch in all machines.

Let’s consider now the decision variables (12), and also the variables:

Skm : time when batch k starts to be processed in machine m, (29)

for all k ∈ K, and m ∈M .
In [23] the following MILP formulation is proposed for Pm|rj , sj , B|Cmax. We emphasize the

modifications made to formulation (MILP2) previously presented for Pm|sj , B|Cmax.

(MILP4) min Cmax, (30)∑
j∈J

sjxjkm ≤ B, ∀k ∈ K,∀m ∈M (31)

Skm ≥ rjxjkm, ∀j ∈ J, ∀k ∈ K,∀m ∈M, (32)

Skm ≥ S(k−1)m + pjxj(k−1)m, ∀j ∈ J, ∀k ∈ K : k > 1,∀m ∈M, (33)

Skm ≥ 0, ∀k ∈ K,∀m ∈M, (34)

Cmax ≥ SnKm + pjxjnKm, ∀m ∈M, (35)

(15), (20), (21). (36)

The objective function (30) minimizes the makespan. Constraints (31) ensure that each batch
respects the capacity of the machine. Constraints (32)-(34) determine the time when each batch k
starts to be processed in each machine m. Constraints (35) determine the makespan. The other
constraints are taken from (MILP2).

4 Symmetry breaking

The four formulations presented in the previous section allow a large number of symmetric solutions
in the feasible sets of the problems. We distinguish two types of symmetry that may occur in all
formulations. On the first, solutions where the batches are all equally designed, are identically
assigned to machines, and are also processed in the machines in the same order, may be represented
as different solutions and coexist in the feasible set. This happens whenever the number of batches
actually used or processed in a given machine is smaller than the number of jobs nJ . Clearly, this

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 7

Figure 1: Symmetric solutions in which batches are represented by different indexes.

allows the solutions to be represented by different indexing of the batches, as illustrated in Figure 1,
where three symmetric solutions for a problem with five jobs, equally grouped in three batches, are
depicted. Note that the only difference between the solutions is the indexing of the batch represented
as B. Its index could be k2, k3, or k4. The four formulations presented in the previous section allow
this type of symmetry.

The second symmetry analyzed occurs when changing the processing order of the batches assigned
to a machine, does no affect the makespan. Surely, this always happens on problems where all jobs
have identical release times. In this case, the processing time of a machine is given by the sum of
the processing times of the batches assigned to it, the machine is never idle during their processing,
and any permutation in the order in which those batches are processed lead to equivalent solutions,
with the same makespan. This situation is exemplified in Figure 2, which depicts two equivalent
solutions, (a) and (b), for an instance of the problem with 10 jobs. On both solutions all batches
are equally designed, having the same jobs assigned to them. The makespan is consequently also
the same for both solutions. The only difference between them is the sequence in which the batches
are processed in the machine. Note that any other permutation would lead to another equivalent
solution.

It is important to note, however, that when non-identical release times are considered for the
jobs, it is not assured anymore that permutations in the processing order of the batches will still
lead to equivalent solutions, as it may affect the idle time of the machine, and consequently change
the makespan. Therefore, when eliminating different ordering possibilities from the feasible set, we
should make sure the optimal ordering is not cut off. This point will be better explored below.

Our goal in this section is to present new formulations for the problems addressed, where these two
types of symmetry are eliminated from the feasible set of all problems. We deal with the symmetries
in two different ways, which take into account whether or not the jobs have non-identical release
times. In either case, we propose an indexing for the given set of jobs that, together with some
analysis of properties of the optimal solutions, allows a significant improvement on the formulations
presented in Section 3.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 8

Figure 2: Symmetric solutions for problem 1|sj , B|Cmax.

4.1 Case where jobs have identical release-times

Although problem 1|sj , B|Cmax admit only one processing machine, it can already be considered
highly symmetric. Besides symmetries of the first type described above, all permutations in the
processing order of the batches scheduled in the single machine, also lead to equivalent solutions.
In model (MILP1) all these solutions are considered distinct from each other, generating a large
feasible set with many equivalent solutions.

We deal with the symmetry of problem 1|sj , B|Cmax with a threefold procedure. Firstly, we set
the indexes of the jobs, ordering them by their processing time. More specifically, we consider:

p1 ≤ p2 ≤ . . . ≤ pnJ
. (37)

Secondly, we set nK := nJ and determine that batch k can only be used if job k is assigned to it,
for all k ∈ K. Thirdly, we determine that job j can only be assigned to batch k if j ≤ k.

Note that with the assumptions made, we may only define variables xjk in (1), for j ≤ k, reducing
the number of binary variables form n2

J to nJ(nJ +1)/2. More importantly, the assumptions lead to
solutions where the processing time of batch k, if used, is equal to pk, as job k is certainly assigned
to it, and is also the job with longest processing time assigned to the batch. Consequently, there is
no need of defining the variables Pk (3), for all k ∈ K, in order to represent the processing times of
the batches, neither of imposing constraints (7) to determine them.

Besides reducing the number of variables, when compared to (MILP1), the strategy described
leaves only one possible processing ordering for the batches in a given solution, where the batches are
ordered by non-decreasing processing time. Furthermore, there is only one possible way of idexing
the batches on a given solution, where the index of the batch is equal to the largest index among
the jobs assigned to it. Several equivalent solutions are therefore, eliminated from the feasible set of
(MILP1).

Considering the above, we propose next a new formulation for 1|sj , B|Cmax:

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 9

(MILP+
1) min

∑
k∈K

pkxkk, (38)∑
k∈K:k≥j

xjk = 1, ∀j ∈ J, (39)

∑
j∈J:j≤k

sjxjk ≤ Bxkk, ∀k ∈ K, (40)

xjk ≤ xkk, ∀j ∈ J, ∀k ∈ K : j ≤ k, (41)

xjk ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K : j ≤ k. (42)

The objective function (38) minimizes the makespan, given by the sum of the processing times
of the batches used. Constraints (39) determine that each job j is assigned to a single batch k, such
that k ≥ j. Constraints (40) determine that the batches do not exceed the capacity of the machine.
They also ensure that each batch k is used if and only if job k is assigned to it. Constraints (41) are
redundant together with (40), but are included to strengthen the linear relaxation of the model.

It is straightforward to verify that the minimum makespan of (MILP1) and (MILP+
1) are the

same. The following proposition formalizes this result.

Proposition 1. The optimal makespan of problems (MILP1) and (MILP+
1) are the same.

Proof. Let us consider w.l.o.g. that the indexes of jobs in J satisfy (37). Clearly, any feasible
solution of (MILP+

1) is also a feasible solution to (MILP1) with the same objective function value.
Therefore, it suffices to show that given any feasible solution to (MILP1), with objective function
value C̄max, there is a feasible solution to (MILP+

1) also with objective function value C̄max. For
that, let us first reset, if necessary, the indexes of the batches on the given solution of (MILP1),
determining them as the largest index among the ones of all jobs assigned to it. The solution is
now a feasible to solution to (MILP+

1), with the batches designed as in the given feasible solution
to (MILP1), but possibly processed in a different order. As this reordering of the batches does not
affect the makespan in this problem, both solutions have the same objective function value.

Considering now problem Pm|sj , B|Cmax, we note that the same symmetry mentioned above for
problem 1|sj , B|Cmax is also present in this problem, and we can use a similar symmetry breaking
procedure to the one described above. For modeling problem Pm|sj , B|Cmax, we initially note that
variables xjkm in (12) determine the design of the batches and also assign them to a specific machine.
We propose the replacement of these variables with the binary variables xjk, which determine only
the design of the batches, as defined in (1), and the binary variables ykm, which determine whether
or not batch k is processed in machine m, for all j and m. This replacement significantly reduces the
number of binary variables. In (MILP4), the number of variables xjkm is equal to (n2

J)(nM). In our
proposed model, we will have nJ(nJ + 1)/2 variables xjk, as in (MILP+

1), plus nJnM variables ykm.
Furthermore, using the same procedure described for 1|sj , B|Cmax to eliminate equivalent solutions
from the feasible set of the Pm|sj , B|Cmax, we next propose a new formulation for this problem.

(MILP+
2) min Cmax, (43)

(39), (40), (41), (42), (44)

xkk ≤
∑
m∈M

ykm, ∀k ∈ K, (45)

Cmax ≥
∑
k∈K

pkykm. ∀m ∈M, (46)

Cmax ≥ 0. (47)

The objective function (43) minimizes the makespan given by the latest time to finish processing
all batches in all machines. Constraints (45) ensure that each used batch is assigned to a machine.
Constraints (46) and (47) determine the makespan. The other constraints are taken from (MILP+

1).

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 10

4.2 Case where jobs have non-identical release-times

Unlike the previous case where jobs have identical release times, when the jobs have different release
times, the order in which the batches are processed in a machine may modify the resulting makespan.
The reason for this is the possible modification on the amount of time in which the machine stays
idle, when permutations on the processing order are made.

Figures 3 depict two different solutions for a problem, where a permutation on the processing
order of the batches leads to a different makespan. In the example, batches k1 and k2 shown in
Figure 3(a) switch places in the processing order. The modification, shown in Figure 3(b), increases
the idle time of the processing machine leading to an increase on the makespan.

Nevertheless, although a modification in the processing order of the batches leads in general, to
nonequivalent solutions, symmetric solutions may still occur. Two cases are illustrated in Figure
4. In Case 1, two consecutive batches k and k′ have the same release time. Thus, switching their
indexes clearly does not affect the value of the makespan. In Case 2, batch k is released before k′,
but the machine is not idle at this time, due to the processing of the previously scheduled batch k′′.
In this configuration, switching k and k′ does not affect the value of the makespan as well.

To deal with the symmetry of problem 1|rj , sj , B|Cmax, we use a similar approach to the one
proposed for problems where jobs have identical release times. However, now the jobs must be
ordered by non-decreasing release times, and not by non-decreasing processing times as before.
More specifically, we consider that the jobs are indexed satisfying:

r1 ≤ r2 ≤ . . . ≤ rnJ
. (48)

As done for problems 1|sj , B|Cmax and Pm|sj , B|Cmax, the symmetry of problem 1|rj , sj , B|Cmax

can be addressed by considering the variables xjk in (1), only for j ≤ k, together with the constraints
(39)-(41), that assure that each job j is assigned to a single batch k, such that j ≤ k. Once more,
if batch k is used, we enforce job k to be the job with the highest index assigned to it. In this
case, however, job k determines the release time of batch k, given by rk, and not the processing
time. Thus, the solutions presented by the formulation proposed, also present a specific ordering
for the batches scheduled in the processing machine. The batches that are used, are processed in
a non-decreasing order of their release times. Clearly, for a given set of designed batches, no other
processing order for them would lead to a smaller makespan. Finally, for a given solution, the
procedure allows only one possible way of indexing the batches, where the index of each batch is
again given by the largest index among the jobs assigned to it.

We propose the following formulation for 1|rj , sj , B|Cmax:

(MILP+
3) min SnK

+ PnK
, (49)

(39), (40), (41), (42), (50)

Pk ≥ pjxjk, ∀j ∈ J, ∀k ∈ K : j ≤ k, (51)

Pk ≥ 0, ∀k ∈ K, (52)

Sk ≥ rkxkk, ∀k ∈ K, (53)

Sk ≥ Sk−1 + Pk−1, ∀k ∈ K : k > 1, (54)

Sk ≥ 0, ∀k ∈ K. (55)

The objective function (49) minimizes the makespan, given by the time required to finish process-
ing the last batch. Constraints (51)-(52) determine the processing time of the batches. Constraints
(53)-(55) determine when each batch starts to be processed. Constraints (39), (40), (41), and (42)
are taken from (MILP+

1).
The following proposition certifies that our formulation is equivalent to formulation (MILP3),

concerning the optimal solution value.

Proposition 2. The optimal makespan of problems (MILP3) and (MILP+
3) are the same.

Proof. Let us consider w.l.o.g. that the indexes of jobs in J satisfy (48). Clearly, any feasible
solution of (MILP+

3) is also a feasible solution to (MILP3) with the same objective function value.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 11

(a) Solution for 1|rj , sj , B|Cmax with batch k1 processed
before k2.

(b) Solution for 1|rj , sj , B|Cmax with batch k2 processed before
k1.

Figure 3: An example of solution for 1|rj , sj , B|Cmax.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 12

Figure 4: Cases where switching batches in the processing order does not modify the makespan.

Therefore, it suffices to show that given an optimal solution to (MILP3), with objective function
value C̄max, there is a feasible solution to (MILP+

3) also with objective function value C̄max. For
that, let us first reset, if necessary, the indexes of the batches on the given solution of (MILP3),
determining them as the largest index among the ones of all jobs assigned to it. The solution is
now a feasible to solution to (MILP+

3), with the batches designed as in the given feasible solution to
(MILP3), but possibly processed in a different order. Note that as the batches are now ordered by
non-decreasing release times, the reordering cannot increase the idle time of the machine, and thus,
cannot increase the makespan. Therefore the feasible solution to (MILP+

3) also have the minimum
makespan Cmax, as the objective function value.

As we did for problem Pm|sj , B|Cmax, we will now replace the variable xjkm in (MILP4) with
the binary variables xjk e ykm. By doing so, we can apply to Pm|rj , sj , B|Cmax, the same symmetry
breaking strategy used for 1|rj , sj , B|Cmax. Considering that the indexes of the jobs satisfy the
relation (48), we propose the following formulation for Pm|rj , sj , B|Cmax.

(MILP+
4) min Cmax, (56)

(39), (40), (41), (42), (57)

xkk ≤
∑
m∈M

ykm, ∀k ∈ K,∀m ∈M, (58)

Pkm ≥ pj(xjk + ykm − 1), ∀j ∈ J, ∀k ∈ K : j ≤ k,∀m ∈M, (59)

Pkm ≥ 0, ∀k ∈ K,∀m ∈M, (60)

Skm ≥ rkykm, ∀k ∈ K,∀m ∈M, (61)

Skm ≥ S(k−1)m + P(k−1)m, ∀k ∈ K : k > 1,∀m ∈M, (62)

Skm ≥ 0, ∀k ∈ K,∀m ∈M, (63)

Cmax ≥ SnKm + PnKm, ∀m ∈M, (64)

Cmax ≥ 0. (65)

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 13

The objective function (56) minimizes the makespan. Constraints (58) ensure that all batches
used are assigned to a machine. Constraints (59)-(60) determine the processing time of each batch
in each machine. Constraints (61)-(63) determine when each batch starts to be processed on the
machine to which it is assigned. Constraints (64)-(65) determine the makespan as the time required
to finish processing the last batch on all machines. Constraints (39), (40), (41), and (42) are taken
from (MILP+

1).

5 Computational results

In order to compare our formulations to the formulations proposed in the literature for the problems
addressed in this paper, and also to evaluate the strength of the symmetry treatment that we propose,
we performed an extensive numerical experiment, solving several instances of the problems with the
MILP solver CPLEX, version 12.5. In all tests, CPLEX was configured to run in only one thread, to
not benefit from the processor parallelism. The experiments with models (MILP1) and (MILP+

1) of
problem 1|sj , B|Cmax were performed on a computer with a Intel Core 2 2GHz processor, and 2GB
of RAM. For all the other three problems, we used a computer with a 2.83 GHz Intel Quad-Core

Xeon X3360 processor, and 8GB of RAM. The computational time to solve each instance of all
problems was limited in 1800 seconds. The set of test instances for problem 1|sj , B|Cmax is the same
one considered in [3], made available by the authors. For the other problems, the test instances were
randomly generated following directions given in the literature, as specified next. The following
statistics were considered in our analysis for all problems: the makespan corresponding to the best
solution obtained by CPLEX (Cmax), the computational time of CPLEX in seconds (T (s)) (when CPLEX

reaches the time limit of 1800 seconds on all instances of a given configuration, we represent the
time by the symbol “-“ in our tables), the time required by CPLEX to obtain the best solution, in
seconds (Tb(s)), and the duality gap of CPLEX at the end of its execution (Gap).

All values presented in the tables are the average results computed over all instances of the same
configuration, which is specifically explained in the remaining subsections. Therefore, note that it
is possible to have the computational times of CPLEX for solving problems of a given configuration
less than 1800 seconds while the gaps are non-zero. This happens when some of the instances in the
group could be solved to optimality in 1800 seconds, and others could not.

In Table 1 we present all instance parameters utilized in this work. Each problem has own
parameter settings, based on the literature review.

Table 1: Instance parameters for problems.

1|sj , B|Cmax Pm|sj , B|Cmax 1|rj , sj , B|Cmax Pm|rj , sj , B|Cmax

Number of jobs: nJ : 10, 20, 50, 100, nJ : 10, 20, 50, 100 nJ : 10, 20, 50, 100, nJ : 10, 20, 50, 100
200, 300, 500 200, 300, 500

Number of parallel machines: - nM : 2, 4, 8 - nM : 2, 4, 8
Machine capacity: 10 10 40 40
Range for job processing time: p1: [1, 10] p1: [1, 10] p1: [8, 48] p1: [8,48]

p2: [1, 20] p2: [1, 20]
Range for job size: s1:[1, 10] s1:[1, 10] s1: [1, 15] s1: [1, 15]

s2:[2, 4] s2:[2, 4] s2: [15, 35] s2: [15, 35]
s3:[4, 8] s3:[4, 8]

Range for job release time: - - r1: [0, C] r1: [0, C]

In Table 2, we illustrate the impact of our reformulations, presenting the number of variables
and constraints for each model considered in our work, for an instance with 100 jobs.

5.1 Problem 1|sj, B|Cmax

The test instances for problem 1|sj , B|Cmax were the same ones considered in [3], and were generated
as suggested in [19]. To generate the instances, seven different number of jobs (nJ) were considered,
as well as two different ranges for the processing times (p1 and p2) and three different ranges for the

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 14

Table 2: Impact on number of variables and constraints when nJ = 100 and nM = 4.

1|sj , B|Cmax Pm|sj , B|Cmax 1|rj , sj , B|Cmax Pm|rj , sj , B|Cmax

MILP1 MILP+
1 MILP2 MILP+

2 MILP3 MILP+
3 MILP4 MILP+

4

Binary variables 10100 5050 40000 5450 10000 5050 40000 5450
Continuous variables 100 0 401 1 200 200 401 801
Constraints 20200 5250 40204 5354 20399 10499 80104 36254

sizes of the jobs (s1, s2 and s3), in which they were randomly selected. Considering the parameters
shown in Table 1, instances of 42(7× 2× 3) configurations were tested. For each configuration, 100
instances were generated, totalizing 4200 instances.

Tables 3-4 show average computational results for each group of 100 instances with each config-
uration, determined by the number of jobs, and by the ranges used to select the processing times
and the sizes of the jobs. The first column shows the configuration of the instances, according to
Table 1. The other columns show statistics analyzed for both models (MILP1) and (MILP+

1).

Table 3: Computational results for 1|sj , B|Cmax.

Instance (MILP1) (MILP+
1)

jobs type Cmax T (s) Tb(s) Gap Cmax T (s) Tb(s) Gap

10 p1s1 36.86 0.12 0.10 0.00 36.86 0.01 0.01 0.00
10 p1s2 20.38 0.06 0.06 0.00 20.38 0.02 0.02 0.00
10 p1s3 43.79 0.18 0.12 0.00 43.79 0.00 0.00 0.00
10 p2s1 67.62 0.11 0.10 0.00 67.62 0.01 0.01 0.00
10 p2s2 40.22 0.06 0.06 0.00 40.22 0.02 0.02 0.00
10 p2s3 81.05 0.15 0.12 0.00 81.05 0.00 0.00 0.00

20 p1s1 68.07 588.79 1.77 1.15 68.07 0.03 0.03 0.00
20 p1s2 37.13 1297.88 18.67 19.76 37.13 0.18 0.18 0.00
20 p1s3 83.69 478.03 1.99 0.93 83.69 0.01 0.01 0.00
20 p2s1 133.09 633.27 2.19 0.85 133.09 0.03 0.03 0.00
20 p2s2 72.88 1459.43 31.31 21.87 72.88 0.21 0.19 0.00
20 p2s3 159.11 741.51 2.48 1.56 159.11 0.01 0.01 0.00

50 p1s1 164.43 - 341.79 51.84 164.08 1.03 0.21 0.00
50 p1s2 88.37 - 472.65 69.35 87.39 415.40 3.88 0.23
50 p1s3 202.09 - 352.51 61.64 202.03 0.04 0.10 0.00
50 p2s1 315.43 - 362.54 55.00 314.57 0.61 0.27 0.00
50 p2s2 170.22 - 371.67 70.02 168.11 265.89 17.42 0.08
50 p2s3 384.40 - 397.58 66.59 384.13 0.04 0.10 0.00

100 p1s1 346.95 - 283.16 89.77 318.99 82.41 1.50 0.02
100 p1s2 208.96 - 292.26 88.39 170.59 1630.65 96.89 1.26
100 p1s3 414.51 - 315.37 91.13 396.96 0.10 0.10 0.00
100 p2s1 670.27 - 314.30 90.40 610.64 51.01 9.16 0.01
100 p2s2 417.73 - 351.37 90.20 326.26 1659.79 235.46 0.97
100 p2s3 805.43 - 270.74 91.92 766.91 0.11 0.11 0.00

The comparative tests clearly show that formulation (MILP+
1) is superior to (MILP1). For

instances with 50 jobs or more, formulation (MILP1) does not prove optimality for any instance,
while (MILP+

1) shows better results in less computational time. Additionally, the duality gaps shown
for (MILP1) reveal the difficulty in obtaining good lower bounds. This difficulty is mitigated by the
use of (MILP+

1), which obtains better lower bounds even when optimality is not proven.
Through the computational times shown for both formulations, we conclude that instances with

configuration s2 are in general, more time consuming, and may be considered more difficult than
instances with configuration s1 for both formulations. The reason for this is the small sizes of
the jobs when compared to the machine capacity, which allows more combinations of jobs that are
assigned to a batch. Consequently, the feasible set of instances with this configuration tend to be
larger than for instances with configuration s1, leading to more time needed for the solver to prove
optimality. For these instances the solver usually find the best solution much faster than it proves
optimality.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 15

Table 4: Computational results for 1|sj , B|Cmax - 200-500 jobs

Instance (MILP+
1)

jobs type Cmax T (s) Tb(s) Gap

200 p1s1 629.43 191.47 14.97 0.02
200 p1s2 333.76 1634.52 280.11 0.96
200 p1s3 786.19 21.40 0.43 0.00
200 p2s1 1197.48 262.14 33.48 0.02
200 p2s2 638.63 1635.79 377.39 0.95
200 p2s3 1505.11 0.58 0.47 0.00

300 p1s1 928.68 557.85 65.79 0.06
300 p1s2 497.01 1499.80 427.03 0.58
300 p1s3 1174.46 36.50 1.48 0.00
300 p2s1 1793.54 530.28 119.89 0.03
300 p2s2 966.69 1532.10 418.01 0.83
300 p2s3 2247.39 24.44 1.66 0.00

500 p1s1 1544.36 1171.28 247.34 0.10
500 p1s2 835.00 1637.21 223.91 0.68
500 p1s3 1949.76 64.22 6.11 0.00
500 p2s1 2964.93 1277.59 337.54 0.09
500 p2s2 1599.44 1750.57 284.53 1.12
500 p2s3 3701.79 67.96 5.94 0.00

5.2 Problem Pm|sj, B|Cmax

The test instances for problem Pm|sj , B|Cmax were randomly generated following the procedure
described in [2], but considering different numbers of jobs. As it was done for 1|sj , B|Cmax two
different ranges for the processing times and three different ranges for the sizes are set for the jobs,
and their values are randomly selected from the ranges. The 72(4 × 3 × 2 × 3) configurations of
the instances generated are shown in Table 1. For each configuration, we generated 100 random
instances, summing up to 7200 test instances.

Table 5 show average computational results for each group of 100 instances with each configu-
ration tested. The first and second columns present the configuration of the instances, according to
Table 1. The other columns show the statistics analyzed for both models (MILP2) and (MILP+

2).

Table 5: Computational results for Pm|sj , B|Cmax - 2-8 parallel machines.

Instance (MILP2) (MILP+
2)

jobs type Cmax T (s) Tb(s) Gap Cmax T (s) Tb(s) Gap

2 parallel machines

10 p1s1 18.76 0.13 0.12 0.00 18.76 0.01 0.01 0.00
10 p1s2 11.03 0.05 0.05 0.00 11.03 0.02 0.02 0.00
10 p1s3 22.13 0.19 0.15 0.00 22.13 0.01 0.01 0.00
10 p2s1 34.50 0.12 0.11 0.00 34.50 0.01 0.01 0.00
10 p2s2 21.71 0.05 0.05 0.00 21.71 0.02 0.02 0.00
10 p2s3 40.87 0.17 0.14 0.00 40.87 0.01 0.01 0.00
20 p1s1 34.27 1308.41 45.82 5.54 34.27 0.03 0.03 0.00
20 p1s2 18.83 884.08 21.46 8.16 18.83 0.11 0.11 0.00
20 p1s3 42.13 1412.74 27.48 6.27 42.13 0.02 0.02 0.00
20 p2s1 66.79 1287.70 27.99 4.35 66.79 0.03 0.03 0.00
20 p2s2 36.87 651.70 24.56 7.05 36.87 0.15 0.15 0.00
20 p2s3 79.82 1395.83 46.57 5.60 79.82 0.02 0.02 0.00
50 p1s1 83.07 - 859.53 58.36 82.30 2.48 0.24 0.00
50 p1s2 46.56 - 1665.10 59.68 43.94 529.33 5.26 0.52
50 p1s3 101.74 - 700.81 60.69 101.30 0.02 0.02 0.00
50 p2s1 159.08 - 1069.49 61.30 157.52 5.12 0.33 0.00
50 p2s2 88.96 - 1733.41 62.44 84.32 478.37 15.40 0.19
50 p2s3 192.95 - 985.71 64.02 192.34 0.03 0.03 0.00

Continued on next page

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 16

Table 5 – Continued from previous page

Instance (MILP2) (MILP+
2)

jobs type Cmax T (s) Tb(s) Gap Cmax T (s) Tb(s) Gap

100 p1s1 171.60 - 1515.19 87.71 159.78 192.10 2.47 0.07
100 p1s2 98.19 - 1550.56 86.49 85.56 1743.59 47.26 1.73
100 p1s3 206.66 - 1475.05 86.52 198.75 0.15 0.09 0.00
100 p2s1 328.38 - 1630.23 89.47 305.58 84.36 5.71 0.02
100 p2s2 188.69 - 1562.67 88.60 163.39 1770.79 280.17 1.21
100 p2s3 398.94 - 1514.87 89.28 383.73 0.20 0.11 0.00

4 parallel machines

10 p1s1 10.87 0.16 0.14 0.00 10.87 0.02 0.02 0.00
10 p1s2 9.49 0.10 0.09 0.00 9.49 0.01 0.01 0.00
10 p1s3 12.18 0.25 0.22 0.00 12.18 0.02 0.02 0.00
10 p2s1 20.26 0.16 0.12 0.00 20.26 0.02 0.02 0.00
10 p2s2 18.68 0.11 0.10 0.00 18.68 0.01 0.01 0.00
10 p2s3 22.67 0.23 0.21 0.00 22.67 0.02 0.02 0.00
20 p1s1 17.47 1316.19 87.17 8.11 17.47 0.05 0.05 0.00
20 p1s2 10.43 56.14 1.59 0.49 10.43 0.32 0.32 0.00
20 p1s3 21.29 1629.93 95.67 11.78 21.29 0.03 0.03 0.00
20 p2s1 33.95 1122.49 73.44 5.29 33.95 0.07 0.07 0.00
20 p2s2 20.51 92.62 7.26 0.64 20.51 0.35 0.35 0.00
20 p2s3 40.21 1731.24 145.29 12.27 40.21 0.05 0.05 0.00
50 p1s1 42.69 - 1077.53 70.03 41.43 2.54 0.17 0.00
50 p1s2 23.76 - 1674.71 58.83 22.18 269.31 7.31 0.56
50 p1s3 51.85 - 995.45 71.91 50.90 0.05 0.05 0.00
50 p2s1 81.23 - 1214.43 71.19 78.97 0.90 0.62 0.00
50 p2s2 45.55 - 1715.65 57.37 42.38 283.70 26.62 0.19
50 p2s3 97.89 - 1234.96 73.39 96.40 0.07 0.07 0.00
100 p1s1 93.06 - 1642.24 93.44 80.09 82.33 2.28 0.05
100 p1s2 50.26 - 1339.98 81.80 43.06 1409.33 52.28 1.67
100 p1s3 110.60 - 1614.86 92.94 99.64 0.55 0.17 0.00
100 p2s1 177.17 - 1707.58 93.54 153.03 51.98 6.25 0.02
100 p2s2 96.18 - 1450.97 86.63 82.03 1679.11 279.71 1.32
100 p2s3 213.47 - 1685.64 93.38 192.11 0.52 0.50 0.00

8 parallel machines

10 p1s1 9.54 0.23 0.10 0.00 9.54 0.01 0.01 0.00
10 p1s2 9.49 0.25 0.10 0.00 9.49 0.01 0.01 0.00
10 p1s3 9.42 0.33 0.13 0.00 9.42 0.01 0.01 0.00
10 p2s1 18.55 0.21 0.09 0.00 18.55 0.01 0.01 0.00
10 p2s2 18.68 0.24 0.10 0.00 18.68 0.01 0.01 0.00
10 p2s3 18.27 0.34 0.12 0.00 18.27 0.01 0.01 0.00
20 p1s1 10.51 276.62 15.22 2.44 10.51 0.09 0.09 0.00
20 p1s2 9.81 2.76 0.23 0.00 9.81 0.07 0.07 0.00
20 p1s3 11.61 760.27 28.35 7.24 11.60 0.15 0.15 0.00
20 p2s1 20.76 328.01 14.35 3.34 20.76 0.13 0.13 0.00
20 p2s2 19.52 2.80 0.23 0.00 19.52 0.08 0.08 0.00
20 p2s3 22.31 958.29 37.31 8.28 22.30 0.26 0.26 0.00
50 p1s1 22.30 - 1219.28 55.90 20.96 2.99 0.24 0.00
50 p1s2 12.83 1783.20 1505.90 27.02 11.77 850.12 6.42 4.12
50 p1s3 26.78 - 1417.79 62.67 25.71 0.10 0.10 0.00
50 p2s1 42.41 - 1495.51 55.68 39.72 1.25 1.19 0.00
50 p2s2 24.41 1775.39 1617.85 28.90 22.46 1198.77 75.59 3.91
50 p2s3 50.33 - 1546.21 61.21 48.45 0.17 0.17 0.00
100 p1s1 59.57 - 1304.89 96.84 40.34 51.78 3.32 0.05
100 p1s2 28.80 - 1171.47 84.72 21.82 872.63 62.93 2.04
100 p1s3 69.72 - 1164.84 98.03 50.07 0.22 0.22 0.00
100 p2s1 123.38 - 1285.47 97.70 76.81 59.45 18.86 0.01
100 p2s2 57.82 - 1293.37 94.95 41.34 1251.21 230.46 1.45
100 p2s3 139.99 - 1051.10 98.19 96.34 0.81 0.81 0.00

The comparative tests show that formulation (MILP+
2) obtain in general solutions that are better

or at least equivalent to the solutions obtained by (MILP2). It also runs in less computational time
for all instances considered. We note that both formulations run in small computational times for

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 17

instances with 10 jobs, and optimality is proven with both formulations for all instances in this group.
On the other side, for instances with 20 jobs, (MILP+

2) overcomes (MILP2), proving optimality for
these instances in reduced computational time. Formulation (MILP2) reveals difficulty in solving
instances with 20 jobs. Even being able to prove optimality for most of them, the computational
times and the duality gap for some instances are large, particularly when less parallel machines are
used. It is possible to see that (MILP2) does not prove optimality for all instances with 20 jobs,
with configurations p1s3 and p2s3.

Instances of type s2 tend to consume more computational effort than instances of type s1, and can
be considered more difficult. This behavior can also be observed in the computational experiments
of the previous section. This difference can be explained by the small size of the jobs, which increases
the number possible combinations of jobs assigned to each batch, generating a larger feasible set for
the problem. It is also observed that the increase in the number of parallel machines results
in a decrease of the computational times.

5.3 Problem 1|rj, sj, B|Cmax

The set of instances considered for problem 1|rj , sj , B|Cmax was the same used in [24], and was
generated according to the methodology proposed in [6]. For each job j, a processing time pj , a
release time rj , and a size sj are randomly selected as described in Table 1. In total, 280 instances
were generated, 20 for each of the 14 combinations of number and size of jobs.

The following steps were considered to generate the release times of the jobs:

1. For each instance, the size and processing time of each job, are randomly selected in the
intervals presented in Table 1.

2. A lower bound C on the optimal makespan for each instance is computed. This bound does not
consider the release times of the jobs, which have not been defined yet. For this computation,
a simple batch-first-fit heuristic, proposed in [22], is applied generating a feasible solution for
the problem with no release times.

3. Finally, the job release times for each instance, are randomly generated in the interval [0, C],
where C is the value of the lower bound found in the previous step.

Table 6 presents the average computational results for the 20 instances tested with each con-
figuration. The two first columns show the instances configuration, now specified by the pair of
parameters nJ , si, for i = 1, 2, according to Table 1. The other columns show the statistics analyzed
for both formulations (MILP3) and (MILP+

3).

Table 6: Computational results for 1|rj , sj , B|Cmax.

Instance (MILP3) (MILP+
3)

jobs type Cmax T (s) Tb(s) Gap Cmax T (s) Tb(s) Gap

10 s1 117.80 0.16 0.09 0.00 117.80 0.02 0.02 0.00
10 s2 316.95 0.57 0.20 0.00 316.95 0.01 0.00 0.00
20 s1 193.80 192.34 27.78 0.03 193.80 0.33 0.32 0.00
20 s2 560.70 270.13 7.97 0.44 560.70 0.01 0.01 0.00
50 s1 396.50 - 1674.20 40.64 389.45 456.99 129.53 0.63
50 s2 1351.80 - 1725.32 75.01 1298.55 0.06 0.06 0.00
100 s1 920.05 - 1744.30 94.50 760.45 1744.24 327.94 5.51
100 s2 3368.70 - 1640.57 94.90 2578.35 0.39 0.36 0.00
200 s1 2884.10 - 177.67 98.33 1576.75 - 1761.36 15.38
200 s2 9257.15 - 82.61 99.40 5049.35 1.19 1.17 0.00
300 s1 4355.70 - 1785.86 99.94 2526.05 - 1388.04 21.49
300 s2 13707.75 - 1754.98 99.86 7483.25 1.99 1.93 0.00
500 s1 7152.60 - - 100.00 5805.50 - 1179.36 43.76
500 s2 23320.85 - - 100.00 12589.80 3.50 3.43 0.00

Both formulations (MILP3) and (MILP+
3) are efficient for solving instances of reduced size and

have proved optimality for all instances with 10 jobs. However, the remaining results show that

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 18

(MILP+
3) overcomes (MILP3), both in computational time and in the quality of the solutions ob-

tained. Formulation (MILP3) cannot prove optimality of any instance with more than 20 jobs, while
(MILP+

3) proves optimality for all instances with 10 and 20 jobs in no more than 0.32 seconds.
Considering instances with 50 and 100 jobs, (MILP+

3) continues to outperform (MILP3) in every
respect.

Table 6 also shows that instances of type s1 are more difficult than than instances of type s2 for
both formulations, which was already verified in previous computational experiments. As before,
the reduced size of the jobs generates a larger number of combinations in the batch configuration.
Formulation (MILP+

3) finds all optimal solutions for instances of type s2, with average computational
time less than 3.5 seconds. For instances of type s1, with more than 50 jobs, (MILP+

3) cannot prove
optimality for all instances, but obtains much better solutions and lower bounds than (MILP3).

5.4 Problem Pm|rj, sj, B|Cmax

For the computational experiments on problem Pm|rj , sj , B|Cmax, we used the same set of instances
used for problem 1|rj , sj , B|Cmax. In addition, three new categories were included corresponding
to the numbers of parallel machines: 2, 4 and 8 machines, and each instance was tested for the
three different numbers of parallel machines. The sizes, processing times and release times of the
jobs were randomly selected in the ranges shown in Table 1. According to the table, 8 instance
configurations were generated, defined by the combination of four different number of jobs, and two
ranges for the job sizes. For each configuration, 20 instances were generated, summing up to 160
instances. Each instance was tested for the three numbers of parallel machine, leading to 480 tests
performed.

The release times generation following the same procedure described in the last section 5.3, for
the problem 1|rj , sj , B|Cmax.

Table 7 show average computational results for each group of 100 instances with each configura-
tion. The two first columns show the configuration of the instance, according to Table 1. The other
columns show the statistics analyzed for both formulations (MILP4) and (MILP+

4).
The results shown in this subsection show that, in general, (MILP+

4) obtain better solutions than
(MILP4) in less computational time. (MILP+

4) proves optimality for all instances with up to 50 jobs,
while (MILP4) can only prove optimality for all instances with up to 20 jobs. Furthermore, even for
these instances, it takes more time to run than (MILP+

4).
For instances with 50 jobs, the superiority of (MILP+

4) over (MILP4) is even clearer. It can
prove optimality for all instances in reduced times, while (MILP4) has difficulty and does not prove
optimality for the majority of the instances. The computational times and the duality gaps for
(MILP4) are big, especially when compared to (MILP+

4), which solve the instances in less than 6.46
seconds on average. Following the pattern of the previous tests, instances of type s2 consume more
computational effort and are more difficult than those of type s1.

6 Conclusions

In this paper, we address four different versions of batch scheduling problems, which have been
identified in the literature as suited models for problems that appear in reliability tests in the
semiconductor industry. The economic importance of the problems have motivated the investigation
of good solution approaches for them, and their NP-hardness have led the majority of this research
to focus on heuristic approaches. We show in this paper that applying good MILP formulations
for these scheduling problems we can go a step further in the exact resolution of applied problems,
having presented optimal solutions for test instances with sizes never considered in the literature by
exact methods. Even for instances which we could not solve to optimality in our time limit of 1800
seconds, we were able to present much better average results with the formulations proposed than
the ones obtained with formulations previously presented in the literature.

The enhancement in the models was mainly based on the idea of eliminating symmetric solutions
from the feasible sets of the problems. The development of symmetry breaking cuts is widely pursued

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 19

Table 7: Computational results for Pm|rj , sj , B|Cmax - 2-8 parallel machines.

Instance (MILP4) (MILP+
4)

jobs type Cmax T (s) Tb(s) Gap Cmax T (s) Tb(s) Gap

2 parallel machines

10 s1 106.80 0.03 0.03 0.00 106.80 0.03 0.03 0.00
10 s2 281.15 0.06 0.04 0.00 281.15 0.01 0.01 0.00
20 s1 177.05 1.28 0.48 0.00 177.05 0.13 0.11 0.00
20 s2 521.25 10.28 1.09 0.00 521.25 0.02 0.02 0.00
50 s1 362.15 706.72 47.89 0.74 362.15 2.29 2.01 0.00
50 s2 1254.05 1653.55 182.58 40.69 1253.40 0.06 0.06 0.00
100 s1 707.40 - 1659.15 94.79 691.00 53.53 28.30 0.00
100 s2 2666.95 - 1558.00 90.79 2501.45 0.18 0.18 0.00

4 parallel machines

10 s1 106.60 0.02 0.02 0.00 106.60 0.03 0.03 0.00
10 s2 278.10 0.03 0.03 0.00 278.10 0.01 0.01 0.00
20 s1 176.70 0.67 0.15 0.00 176.70 0.28 0.13 0.00
20 s2 518.35 0.89 0.23 0.00 518.35 0.03 0.03 0.00
50 s1 361.55 367.34 10.23 0.00 361.55 2.54 1.11 0.00
50 s2 1251.40 1624.65 12.46 8.23 1251.40 0.19 0.13 0.00
100 s1 690.05 - 451.21 73.25 690.05 28.76 9.31 0.00
100 s2 2498.55 1636.68 599.11 74.42 2498.55 1.32 0.66 0.00

8 parallel machines

10 s1 106.60 0.09 0.08 0.00 106.60 0.07 0.06 0.00
10 s2 278.10 0.04 0.03 0.00 278.10 0.02 0.02 0.00
20 s1 176.70 0.47 0.13 0.00 176.70 1.39 0.23 0.00
20 s2 518.35 0.99 0.13 0.00 518.35 0.04 0.04 0.00
50 s1 361.55 336.81 7.95 0.01 361.55 6.46 1.92 0.00
50 s2 1251.40 950.79 7.75 1.45 1251.40 0.47 0.25 0.00
100 s1 690.05 1653.79 108.07 30.62 690.05 45.43 12.39 0.00
100 s2 2498.55 1657.19 322.27 83.48 2498.55 4.13 1.46 0.00

in the MILP literature and some general approaches can certainly be applied to scheduling problems.
Nevertheless, using some well-known properties of the optimal solutions of the problems addressed,
we propose a specific indexing of the jobs to be processed, for each version of the problem. The
indexing not only allows the reduction the feasible sets by eliminating symmetric solutions but also
significantly reduces the number of variables and constraints in the models, when compared to the
ones in the literature, leading to simplified and stronger formulations. Finally, the referred properties
of optimal solutions are the backbone to the proof of correctness of the models presented in this
paper.

As future research, we would like to investigate if the good performance of the models presented
can be replicated when symmetry breaking constraints are applied to other problems in the vast area
of scheduling applications as, for example, the problem of scheduling a batch processing machine with
incompatible job families. It would be also interesting to investigate the use of symmetry breaking
constraints in a branch-and-price algorithm applied to the problems addressed in this work.

Acknowledgments

Renan Spencer Trindade was supported by a Ph.D. scholarship from the The Brazilian National
Council for Scientific and Technological Development (CNPq) [grant number 142205/2014-1]; Marcia
Helena Costa Fampa was partially supported by CNPq [grant number 303898/2016-0].

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 20

References

[1] Al-Salamah, M. 2015. ”Constrained binary artificial bee colony to minimize the makespan
for single machine batch processing with non-identical job sizes.” Applied Soft Computing 29:
379—385.

[2] Chang, P.-Y. and Damodaran *, P. and Melouk, S. 2004. ”Minimizing makespan on parallel
batch processing machines.” International Journal of Production Research 42(19): 4211–4220.

[3] Chen, H., Du, B., and Huang, G. Q. 2011. ”Scheduling a batch processing machine with non-
identical job sizes: a clustering perspective.” International Journal of Production Research
49(19), 5755–5778.

[4] Cheng, B., Yang, S., Hu, X., and Chen, B. 2012. ”Minimizing makespan and total completion
time for parallel batch processing machines with non-identical job sizes.” Applied Mathematical
Modelling 36(7): 3161-–3167.

[5] Cheng, B., Wang, Q., Yang, S., and Hu, X. 2013. ”An improved ant colony optimization for
scheduling identical parallel batching machines with arbitrary job sizes.” Applied Soft Comput-
ing 13(2): 765-–772.

[6] Chou, F.-D., Chang, P.-C., and Wang, H.-M. 2005. ”A hybrid genetic algorithm to minimize
makespan for the single batch machine dynamic scheduling problem.” The International Journal
of Advanced Manufacturing Technology 31(3–4): 350-–359.

[7] Chung, S. H., Tai, Y. T., and Pearn, W. L. 2009. ”Minimising makespan on parallel batch pro-
cessing machines with non-identical ready time and arbitrary job sizes.” International Journal
of Production Research 47(18): 5109—5128.

[8] Damodaran, P., Ghrayeb, O., and Guttikonda, M. C. 2013. ”GRASP to minimize makespan for
a capacitated batch-processing machine.” The International Journal of Advanced Manufacturing
Technology 68(1–4): 407—414.

[9] Damodaran, P., Kumar Manjeshwar, P., and Srihari, K. 2006. ”Minimizing makespan on a
batch-processing machine with non-identical job sizes using genetic algorithms.” International
Journal of Production Economics 103(2): 882-–891.

[10] Damodaran, P. , N. S. Hirani , and M. C. Velez-Gallego. 2009. ”Scheduling Identical Paral-
lel Batch Processing Machines to Minimise Makespan Using Genetic Algorithms.” European
Journal of Industrial Engineering 3(2): 187–206.

[11] Damodaran, P., Velez-Gallego, M. C., and Maya, J. 2009. ”A GRASP approach for makespan
minimization on parallel batch processing machines. Journal of Intelligent Manufacturing.”
Journal of Intelligent Manufacturing 22(5): 767—777.

[12] Ghazvini, F. J., and Dupont, L. 1998. ”Minimizing mean flow times criteria on a single batch
processing machine with non-identical jobs sizes.” International Journal of Production Eco-
nomics 55: 273-–280.

[13] Jia, Z., and Leung, J. Y.-T. 2015. ”A meta-heuristic to minimize makespan for parallel batch
machines with arbitrary job sizes.” European Journal of Operational Research 240(3): 649—665.

[14] Kashan, a. H., Karimi, B., and Jolai, F. 2006. ”Effective hybrid genetic algorithm for minimizing
makespan on a single-batch-processing machine with non-identical job sizes.” International
Journal of Production Research 44(12): 2337-–2360.

[15] Kashan, A. H., Karimi, B., and Jenabi, M. 2008. ”A hybrid genetic heuristic for scheduling
parallel batch processing machines with arbitrary job sizes.” Computers & Operations Research
35(4): 1084—1098.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

DOI: 10.1080/00207543.2018.1424371 21

[16] Köhler, V., Fampa, M., and Araújo, O. 2012. ”Mixed-Integer Linear Programming Formulations
for the Software Clustering Problem.” Computational Optimization and Applications, 55(1):
113-–135.

[17] Lee, Y. H., and Lee, Y. H. 2013. ”Minimising makespan heuristics for scheduling a single batch
machine processing machine with non-identical job sizes.” International Journal of Production
Research 51(12): 3488-–3500.

[18] Margot, F. 2010. ”Symmetry in Integer Linear Programming” 50 Years of Integer Programming
1958–2008, 1—40, edited by M. Jünger, Th. M. Liebling, D. Naddef, G. L. Nemhauser, W. R.
Pulleyblank, G. Reinelt, G. Rinaldi and L. A. Wolsey. Berlin, Heidelberg: Springer.

[19] Melouk, S., Damodaran, P., and Chang, P.-Y. 2004. ”Minimizing makespan for single machine
batch processing with non-identical job sizes using simulated annealing.” International Journal
of Production Economics 87(2): 141-–147.

[20] Meng, Y., and Tang, L. 2010. ”A tabu search heuristic to solve the scheduling problem for
a batch-processing machine with non-identical job sizes.” 2010 International Conference on
Logistics Systems and Intelligent Management (ICLSIM) Vol. 3, 1703-–1707.

[21] Rafiee Parsa, N., Karimi, B., and Kashan, A. H. 2010 ”A branch and price algorithm to minimize
makespan on a single batch processing machine with non-identical job sizes.” Computers &
Operations Research 37(10): 1720-–1730.

[22] Uzsoy, R. 1994. “Scheduling a single batch processing machine with non-identical job sizes.“
International Journal of Production Research 32(7): 1615—1635.

[23] Vélez-Gallego, M. C. 2009. ”Algorithms for scheduling parallel batch processing machines with
non-identical job ready times.” Ph.D. thesis, Florida International University, Florida, United
States.

[24] Xu, R., Chen, H., and Li, X. 2012. ”Makespan minimization on single batch-processing machine
via ant colony optimization.” Computers & Operations Research 39(3): 582-–593.

[25] Zhang, G., Cai, X., Lee, C.-Y., and Wong, C. 2001. ”Minimizing makespan on a single batch
processing machine with nonidentical job sizes.” Naval Research Logistics 48(3): 226-–240.

[26] Zhou, S., Chen, H., Xu, R., and Li, X. 2014. ”Minimising makespan on a single batch process-
ing machine with dynamic job arrivals and non-identical job sizes.” International Journal of
Production Research 52(8): 2258-–2274.

©This manuscript version is made available under the CC BY-NC-ND 4.0 license.

https://doi.org/10.1080/00207543.2018.1424371
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

	Introduction
	Literature Review
	Description of the problems addressed
	Problem 1|sj,B|Cmax
	 Problem Pm|sj,B|Cmax
	Problem 1|rj,sj,B|Cmax
	Problem Pm|rj,sj,B|Cmax

	Symmetry breaking
	Case where jobs have identical release-times
	Case where jobs have non-identical release-times

	Computational results
	Problem 1|sj,B|Cmax
	Problem Pm | sj, B | C max
	Problem 1|rj,sj,B|Cmax
	Problem Pm | rj, sj, B | C max

	Conclusions

