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Mapping leaf metal content 
over industrial brownfields using 
airborne hyperspectral imaging 
and optimized vegetation indices
Guillaume Lassalle1,2,3, Sophie Fabre1, Anthony Credoz2, Rémy Hédacq2, 
Dominique Dubucq4 & Arnaud Elger3*

Monitoring plant metal uptake is essential for assessing the ecological risks of contaminated sites. 
While traditional techniques used to achieve this are destructive, Visible Near-Infrared (VNIR) 
reflectance spectroscopy represents a good alternative to monitor pollution remotely. Based on 
previous work, this study proposes a methodology for mapping the content of several metals in leaves 
(Cr, Cu, Ni and Zn) under realistic field conditions and from airborne imaging. For this purpose, the 
reflectance of Rubus fruticosus L., a pioneer species of industrial brownfields, was linked to leaf metal 
contents using optimized normalized vegetation indices. High correlations were found between the 
vegetation indices exploiting pigment-related wavelengths and leaf metal contents (r ≤ − 0.76 for 
Cr, Cu and Ni, and r ≥ 0.87 for Zn). This allowed predicting the metal contents with good accuracy 
in the field and on the image, especially Cu and Zn (r ≥ 0.84 and RPD ≥ 2.06). The same indices were 
applied over the entire study site to map the metal contents at very high spatial resolution. This 
study demonstrates the potential of remote sensing for assessing metal uptake by plants, opening 
perspectives of application in risk assessment and phytoextraction monitoring in the context of trace 
metal pollution.

The assessment of ecological risks deriving from soil pollution has become an essential step in the post-cessation 
management of industrial activities (mining, oil and gas, etc.). Abandoned industrial lands with high persis-
tent pollution—often termed “brownfields”1—are of serious environmental and human health  concerns2–7. The 
presence of organic and inorganic pollutants in brownfield soils causes harmful effects on organisms, leading 
to ecosystem degradation, and imposes selective growing conditions to vegetation, limiting site re-colonization 
and reshaping existing plant  communities8–11. Hence, an important effort is required to assess the ecological risks 
deriving from these sites and to propose relevant methods of remediation during the post-cessation manage-
ment  process2,12,13.

Along with organic contaminants, heavy metals (HM, also termed Trace Metal Elements) are the main com-
pounds found in vegetated brownfield  soils13–15. They transfer easily to plant tissues (roots, shoots and leaves), 
causing oxidative stress and affecting plant photosynthetic capacity, water status, and  reproduction5,16–18. HM are 
a serious limitation to the establishment of wild plant species on industrial  brownfields9. Conversely, several spe-
cies cope with HM pollution thanks to tolerance, avoidance, and detoxification  mechanisms7,19,20. Those species 
capable of accumulating and sequestering HM are usually exploited in phytoextraction  trials2,13. One common 
need in assessing HM toxicity and removal by phytoextraction is the estimation of metal uptake by plants. This is 
traditionally achieved by performing destructive chemical analyses on plant parts. Recently, Visible Near-Infrared 
(VNIR) spectroscopy proved a reliable, non-destructive tool for monitoring soil pollution in vegetated  areas21–25. 
Promising approaches based on tracking alterations in the reflectance of crops and wild plant species have been 
 proposed15,26–31. To date, their application remains limited to detecting and quantifying HM concentration solely 
in soils, which is insufficient in the scenario of brownfield rehabilitation and phytoextraction.

VNIR spectroscopy does not penetrate the ground and is therefore unsuited for estimating HM accumula-
tion in plant roots. Conversely, according to a few recent  studies32–35, their translocation in plant leaves might be 
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assessed with spectroscopy. The direct detection of HM from leaf reflectance remains very challenging, due to 
their weak absorption features in the VNIR  domain36. However, because of their effects on plant biophysical and 
biochemical properties, HM may be detected indirectly using, for example, pigment-related  wavelengths28,30,32. 
Pigments are affected by many other environmental factors, which makes their influence difficult to distinguish 
from that of HM. In this respect, few attempts succeeded in estimating leaf HM using proximal reflectance 
measurements in the  field32,33,37,38. To our knowledge, no study has upscaled this approach to airborne or space-
borne optical imaging, in order to map HM uptake in leaves. This might be helpful for assessing the ecological 
risk deriving from industrial brownfields and for a non-destructive monitoring of phytoextraction, at large 
scale. To this end, airborne hyperspectral imaging, which provides reflectance data over narrow and contiguous 
wavelengths, already proved suitable for developing custom vegetation indices (i.e. reflectance ratios) related to 
specific plant traits for various applications.

This study aims at estimating the content of several HM in plant leaves using hyperspectral reflectance data, 
from the field level to airborne imaging. The proposed methodology relies on developing optimized vegetation 
indices for each metal at the leaf level, before assessing their suitability for use at canopy scale and on airborne 
images at very high spatial resolution. This study was carried out under realistic field conditions, on naturally 
established vegetation.

Results and discussion
Soil and leaf HM contents. The analysis of soil samples revealed severe and heterogeneous HM pollution 
of the brownfield site. Cr, Cu, Ni and Zn were found at concentrations up to 3100, 130, 200 and 6100 mg  kg−1, 
respectively (Table 1), but these values strongly varied within the site (17% ≤ CV ≤ 42%). HM concentrations were 
largely higher than the local geochemical background values, and greatly exceeded those observed on the control 
soil, as well as the environmental recommendations of the European Union (EU) and the French National Insti-
tute for Industrial Environment and Risks (INERIS) (except for Ni; see the Supplementary Tables S2 and S4). 
Therefore, these concentrations were explained by the past industrial activity on the site. In comparison, previ-
ous studies involving bramble and HM-polluted soils depicted Cu, Ni and Zn concentrations ranging from 9.7 
to 2210, from 12.43 to 53.4, and from 4.87 to 2200 mg  kg−1, respectively, with maximum values reached on past 
urban and industrial  sites39–42. This highlights the strong level of pollution of the study site and the associated 
ecological risks for natural vegetation and wildlife.

Despite the fact that R. fruticosus L. typically grows on urban and industrial brownfields, its tolerance to 
pollution remains limited when exposed to mixtures of contaminants (HM, hydrocarbons, etc.)30,41,43. This 
was expressed visually on the site by a low development and ground cover, and symptoms of stress on leaves 
(Fig. 1c,d). The four HM contents of bramble leaves were consistent with previous observations made on the 
same species on other  locations39–42 (Table 1, see also the Supplementary Table S3). Their variations in leaves 
within the site ranged from 23.8 to 33.9%, which was favorable to the development of robust prediction models 
for airborne imaging.

HM uptake and translocation is usually low for  bramble39,40,42, so only a small fraction of root metal uptake 
from the soil accumulates in leaves. Therefore, the overall leaf bioconcentration factor (BCF) values were rela-
tively low on the brownfield in comparison to those described for bramble and other plant species in previous 
studies (Fig. 2a)2,4,44,45. Only Cu showed BCF values greater than 0.1 and up to 0.47. This highlighted that bramble 
is not an hyperaccumulator of HM as defined in recent  reviews2,13.

Numerous studies have aimed at identifying the mechanisms of HM uptake, translocation and accumulation 
in plants. These mechanisms have been reviewed  recently7,16, including those specific to Cr, Cu, Ni, and  Zn18,46–48. 
HM uptake involves adsorption on root surface and passive penetration in root tissue via water streams. Then, 
HM translocate to aerial plant parts through xylem vessels, and accumulate in leaves via symplastic and apoplastic 
 transport7. HM accumulation in leaves may also come from atmospheric deposition and uptake through stomata 
and  cuticles7, but the underlying mechanisms remain poorly documented and remain specific to a few metals 
and plant species. Authors point out that HM mobility and uptake by plant roots is influenced by many factors, 
especially metal speciation, soil properties, and the presence of other  contaminants16,49,50. For instances, Cr(VI) 
is much more mobile and toxic to plants than Cr(III)18,51. Changes in soil properties—especially pH—affect Cu 

Table 1.  Heavy metal contents observed in the soil and in the leaves of R. fruticosus L. on the brownfield site 
(CV coefficient of variation).

Range Mean (± SD) CV (%)

Soil (mg kg−1)

Cr 1600–3100 2022.5 (± 345.29) 17.07

Cu 56–130 72.9 (± 16.14) 22.14

Ni 55–200 92.55 (± 38.7) 41.82

Zn 3100–6100 4320 (± 836.11) 19.35

Leaves (mg kg−1)

Cr 1.14–3.04 2.14 (± 0.51) 23.83

Cu 10.13–27.91 17.44 (± 5.91) 33.89

Ni 0.53–2.64 1.71 (± 0.44) 25.73

Zn 45.21–149.12 86.91 (± 24.27) 27.93
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mobility and uptake by  plants52,53. Likewise, organic carbon and clay contents—which were very high in our study 
site—influence Zn and Ni mobility in soils and accumulation in  leaves47,54,55. In addition, Nie et al.56 showed that 
modifications in HM distribution and availability in soils occurs when mixed with petroleum hydrocarbons, 
such as on our study site. All these factors may account for the low BCF values observed here, explaining the 
strong tolerance of bramble to high pollution levels.

Although HM are essential to the plant metabolisms—except Cr, they become toxic above a certain concentra-
tion that depends mainly on the species and its growing stage, and on the metal type and  speciation5,16–18,30,56. The 
enrichment factor (EF) values confirmed that the metal contents of bramble leaves observed on the brownfield 
were above those normally observed on natural, uncontaminated sites, and thus probably exceed the physiologi-
cal needs of this species (Fig. 2b). Leaf Cr, Cu and Zn contents were up to 3.5 times higher on the brownfield 
than on the control site. Only Ni showed almost similar contents between the two sites (0.5 < EF < 1.5). These 
observations confirmed the suitability of bramble as a model species to develop the methodology of HM estima-
tion by remote sensing.

Correlation between single-band reflectance and HM. The reflectance of leaves and its single-band 
correlation with the four HM are presented in Fig. 3. The reflectance of bramble showed the highest variability 
in the regions of green (~ 550 nm), red-edge (~ 700 nm) and Near-Infrared (NIR) (750–1000 nm) bands. These 
regions were the most correlated to three out of the four HM contents in leaves—namely Cr, Cu and Ni. More 
precisely, the green and red-edge bands, which are negatively correlated to chlorophyll and carotenoid contents, 
were positively correlated to these metals (r ≥ 0.87, p < 0.001). This suggests the higher the metal uptake, the 
higher the reflectance and the lower the pigment content in the plant. Such relationship is steadily observed for 
bramble and other species growing on polluted  soils9,57–59. In our case, it might be explained by the effects of 
these three HM on plant metabolisms and biochemistry. Cr, Cu and Ni mostly affect plant pigment contents, 
involving various mechanisms, such as the replacement of  Mg2+ in chlorophyll by  Cu2+ and  Ni2+ ions, which 
totally inhibits  photosynthesis16,60. Cr also alters leaf chlorophyll and carotenoid contents through disorganiza-

Figure 1.  (a) Location of the study site on the airborne hyperspectral image acquired with the VNIR-1600 
HySpex sensor (R: 647.29 nm, G: 552.77 nm, B: 443.72 nm). This image was generated under Python 3.7.6 ( 
available at https ://www.pytho n.org/). (b) Zoom on the study site. The grey polygon shows the delineation of the 
brownfield obtained from GPS coordinates data. (c) The brownfield during the field sampling campaign. The site 
is mainly colonized by R. fruticosus L. (bramble), and bordered by tree vegetation. (d) Bramble leaves showing 
slight symptoms of discoloration and red pigmentation on margins.

Figure 2.  (a) Leaf bioconcentration factors (BCFs) and (b) enrichment factors (EFs) of R. fruticosus L. for the 
four heavy metals analyzed on the brownfield.

https://www.python.org/
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tion of chloroplast ultrastructure. In addition, synergistic, antagonistic and additive effects have been observed 
under exposure to realistic HM  mixtures30,60. All these metals also impact plant-water relations negatively at 
high concentration in soils, affecting leaf turgor and causing tissue  destructuring3,17. Additional effects on paren-
chyma structure are also due to the accumulation of these metals in  leaves5,61. Since leaf anatomy is closely linked 
to reflectance in the NIR, this probably explains its correlation with HM in this region.

Unlike the other metals, Zn content in leaves was correlated to the blue (400–500 nm) and red (650–670 nm) 
regions. An increase in reflectance around 650 nm is usually attributed to leaf redding, which comes from 
anthocyanin  synthesis62,63. Zn toxicity includes the alteration of photosynthetic pigments through the formation 
of [Zn]-chlorophyll, which—in contrast to Cu and Ni—still allows photosynthesis. There is also little evidence 
that Zn induces leaf redding, by enhancing anthocyanin production. This latter effect might prevail over that of 
other pigments in bramble, explaining the singular pattern of correlation between leaf reflectance and this metal.

HM estimation using optimized vegetation indices. The correlations described in “Correlation 
between single-band reflectance and HM” emphasized the potential of single-band reflectance to estimate leaf 
HM contents. The next step of the methodology relied on assessing the correlation between all possible two-
band combinations in Normalized Difference Vegetation Indices (NDVI-like indices) and each of the four metal 
contents, still at leaf level. These results are presented in Fig. 4. Generally, the combinations showing high cor-
relations (r ≤ − 0.8 or ≥ 0.8) were consistent with the trends observed in “Correlation between single-band reflec-
tance and HM”. The best indices involved bands linked to leaf anatomy (NIR), chlorophyll and carotenoids 
(green and red-edge) for Cr, Cu and Ni (Fig. 4a–c), and bands linked to the same pigments and also anthocya-
nins (red) for Zn (Fig. 4d). This was consistent with the study of Zhou et al.32, who linked Cu and Ni accumula-
tion in leaves to optimized vegetation indices for various species in the field. Likewise, Wang et al.37, Liu et al.38, 
and Zhang et al.35 found that the bands related to pigments perform well for estimating other metal contents in 
plant leaves.

Here, the best—optimized—indices were negatively correlated to Cr, Cu and Zn (r ≤ − 0.82), and positively 
to Zn (r = 0.89) at leaf scale, showing better correlations than using single-band reflectance (Fig. 3b). This high-
lighted the relevance of band combination to improve HM estimation. Another advantage of NDVI-like indices 
is their robustness to variations in measurement geometry, light conditions, and soil  influence30,64–67. Thus, they 
are well-suited for application at larger scale of monitoring. In our case, the same optimized indices computed 
on field canopy measurements performed and on the airborne image still exhibited high correlations with HM 
contents in leaves (r ≤ − 0.76 for Cr, Cu and Ni, and r ≥ 0.87 for Zn) (Table 2). Some of the index values underwent 
slight variations among acquisition levels (i.e. leaf, canopy and image), but their overall relationship with HM 
remained almost intact on the calibration dataset (Fig. 5a–d).

Once calibrated (step (2) of the methodology), the regression equations between each index and HM were 
applied for predicting metal contents, at all acquisition levels. This represented the step (3) of the methodology, 
the results of which are illustrated in Fig. 5e–h and detailed in Table 2. Each of the four HM were accurately 
retrieved at leaf, canopy and image pixel levels. This was highlighted by r values ≥ 0.75 and Residual Predic-
tive Deviation (RPD) values close to 2. As expected, the predictions were more precise in the field (leaf and 
canopy levels) than on the image pixels. The best prediction results were obtained for Cu and Zn (r ≥ 0.84 and 
RPD ≥ 2.06), which were also present at higher concentration in leaves than Cr and Ni. Hence, these results dem-
onstrate than HM uptake in leaves can be assessed accurately over industrial brownfields using field reflectance 
spectroscopy and airborne remote sensing.

Figure 3.  (a) Spectral signatures of the leaves sampled on the brownfield (n = 26), in the Visible Near-
Infrared domain (VNIR). These signatures were used to develop the optimized vegetation indices. (b) Pearson 
correlation coefficients (r) obtained between leaf reflectance measured at each VNIR wavelength and the four 
heavy metal contents analyzed in leaves.
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HM mapping over the brownfield. The final step of the methodology consisted in mapping HM contents 
over the entire brownfield site. For this purpose, we applied the calibrated regression equations on the optimized 
vegetation index maps computed from the airborne image, at 1 m spatial resolution. The resulting mappings are 
presented in Fig. 6. The overall concentrations were in the range of the calibrated regression models, indicating 
that the leaves sampled in the field were representative of the site. The central part of the brownfield, which com-
prised the most polluted soils, also revealed higher metal uptake by bramble. Some of the high metal contents 
observed at the margin of bramble patches (leaf Cr close to 4 mg  kg−1, and Cu and Zn contents > 28 and 143 mg 
 kg−1, respectively) may be linked to mixed bare soil and vegetation in pixels. As the proportion of bare soil in 
pixels increases, the values of vegetation indices decrease. Since the indices were negatively correlated to HM 
concentrations in leaves, lower index values caused by bare soil led to overestimating metal concentrations at the 
margins of bramble patches. Differences in the spatial distribution of HM within the site were also noticed. The 
distribution of Cr in bramble leaves was the most homogeneous, followed by Ni, Zn and Cu, which was consist-
ent with the variability of these metals in the soil (see the Supplementary Table S5).

Future application in ecological risk assessment and phytoextraction monitoring. Based on 
previous  work32,33, this study is the first to demonstrate that remote sensing can be used for mapping metal 
uptake in plants accurately, and thus for detecting hotspots of contamination with priority needs for remedia-
tion. These promising outcomes open perspectives of application in ecological risk assessment and phytoex-
traction monitoring. Field reflectance spectroscopy is recommenced for fast, non-destructive, and continuous 

Figure 4.  (a–d) Correlation maps obtained between all possible combination of wavelengths through the 
normalized vegetation indices and the four heavy metal contents in leaves (n = 26). For each combination of 
wavelength ρi and ρj, the normalized index was computed according to Eq. (3), and its correlation with the heavy 
metal contents was assessed through the Pearson coefficient of correlation (r) at the significance level of p < 0.05. 
The best—optimized—index obtained for the four heavy metals was then retained for prediction purposes. The 
deep blue and red regions show the highest correlations.
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monitoring of plant metal uptake. Canopy measurements offer a global view of the plant’s metal contents at 
different spatial scales (depending on the acquisition footprint), and do not require extensive data processing. 
Leaf measurements operate at very small scale (cm), providing a very precise assessment of metal uptake and 
translocation in leaves. It might be used also to determine the vertical distribution of HM in plants, which is a 
relevant information in phytoextraction. Another advantage of the leaf-clip device is to allow weather-independ-
ent measurements, so it can be used indifferently in greenhouse and field controlled trials and under natural 
 conditions30,58,68.

The most innovative aspect of our methodology is probably its application to airborne images. In a perspective 
of operational application, very high spatial resolution is an essential criterion that must be satisfied to ensure 
accurate mapping of HM. There is a growing demand in developing cost-saving solutions based on Unmanned 
Aerial Vehicles (UAVs) imaging by field operators and environmental managers in industry. In this respect, we 
are convinced that our methodology could be easily adapted to UAV-embedded sensors. Along with previous 
 work32, our study suggests that only few bands of the VNIR domain are needed to quantify leaf HM contents. 
These bands could serve for developing compact multispectral cameras devoted to monitor the uptake of metals 
by wild plant species and the effectiveness of phytoextraction trials from UAV. To achieve this, our methodology 
should be improved in order to fulfill the requirements of operational use. Since we focused on four common 
HM, one possible improvement would be to extend the mapping to other metals, especially As, Cd, Hg and Pb, 
which steadily persist in the soils of abandoned industrial  facilities1,30,69. Some HM are generally correlated to 
each other in soils. So, further study should focus on unravelling the respective contribution of the different HM 
to leaf reflectance to better quantify these metals individually. Due to unfavorable growing conditions, brown-
fields usually exhibit low species  richness4,9. In that sense, our study focused on a single species that predominates 
on urban and industrial sites under temperate regions. However, we encourage to extend our methodology to a 
wide range of plant species, especially  hyperaccumulators2,13, to promote the use of field reflectance spectroscopy 
and remote sensing for monitoring phytoextraction trials, as a complement to existing techniques. This could 
be achieved by developing metal- and species-specific vegetation indices that can be applied to both field and 
image reflectance data.

A single-date mapping provides a snapshot of pollution uptake. However, leaf HM content is likely to vary 
in time for wild plant species, because of seasonal changes in environmental conditions and plant phenological 
stages. Likewise, it is expected to decrease over successive crop cycles in controlled phytoextraction trials. In both 
situations, a multi-temporal mapping becomes necessary. This represents a major challenge, as many varying 
environmental factors influence plant reflectance, independently from pollution. For example, seasonal changes 
in reflectance can prevail from those induced by HM, affecting the accuracy of estimates, according to recent 
field  studies9,32. Thus, the performance of our methodology should be assessed on a multi-temporal basis, in a 
perspective of operational monitoring applications.

HM pollution is a current issue, and remote sensing offers a promising complement to existing techniques 
used in ecological risk assessment and phytoextraction monitoring. The development of compact and cost-saving 
cameras flourishes worldwide, and progressively draws the attention of field operators and environmental manag-
ers. Hence, although major improvements are yet required, remote sensing is intended to become an operational 
tool for monitoring soil pollution at large scale in the coming decades.

Table 2.  Summary of the performance of the optimized vegetation indices developed for predicting leaf heavy 
metal contents. For each of the four metals, the results obtained at leaf, canopy and image levels are presented 
on the calibration and prediction sets. r Pearson’s coefficient of correlation, RMSE root mean square error, RPD 
residual predictive deviation. **p < 0.01; ***p < 0.001.

Heavy metal Level

Calibration Prediction

Optimized index Equation r r RMSE RPD

Cr

Field leaf

(ρ847 − ρ724)/(ρ847 + ρ724)

y = − 11.48x + 3.83 − 0.82*** 0.81*** 0.27 2.02

Field canopy y = − 10.72x + 4.14 − 0.81*** 0.78*** 0.31 1.91

image pixels y = − 16.51x + 7 − 0.76*** 0.75** 0.4 1.5

Cu

Field leaf

(ρ719 − ρ532)/(ρ719 + ρ532)

y = − 85.07x + 62.34 − 0.9*** 0.89*** 2.53 2.56

Field canopy y = − 96.94x + 69.12 − 0.89*** 0.86*** 3.22 2.06

image pixels y = − 191.54x + 129.93 − 0.85*** 0.84*** 3.05 2.17

Ni

Field leaf

(ρ718 − ρ576)/(ρ718 + ρ576)

y = − 6.57x + 5.59 − 0.84*** 0.82*** 0.28 1.98

Field canopy y = − 9.76x + 7.3 − 0.8** 0.78** 0.29 1.92

image pixels y = − 10.43x + 7.34 − 0.78** 0.77** 0.31 1.8

Zn

Field leaf

(ρ646 − ρ553)/(ρ646 + ρ553)

y = 315.29x + 245.4 0.89*** 0.87*** 12.88 2.14

Field canopy y = 271.29x + 194.1 0.9*** 0.87*** 11.53 2.46

image pixels y = 281.44x + 145.87 0.87*** 0.85*** 13.54 2.09
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Figure 5.  (a–d) Relationship between the optimized vegetation indices computed at leaf, canopy and image levels, and the 
four heavy metal contents analyzed in leaves (n = 26 at each level). These data were used to calibrate coefficients of linear 
univariate regression equations, which were thereafter applied to the validation set for predicting heavy metal contents. (e–h) 
Comparison between the measured and predicted four heavy metal contents in leaves obtained with the optimized vegetation 
indices at leaf, canopy and image levels (n = 14 at each level). See Table 2 the for the detailed regression equations, correlation 
coefficients (r) and prediction assessment metrics (RMSE, RPD).
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Methods
Study site. An old industrial brownfield located under temperate region was selected for this study (Fig. 1a,b). 
This site served as mud deposit for over 20 years to the oil and gas industry, accumulating hydrocarbon and HM 
pollution. The characteristics of the brownfield soil are presented in the Supplementary Table S1. In addition to 
pollution, its clayey soil imposes unfavorable growing conditions to plants due to the poor nutrient availability; 
most of the organic carbon coming from heavy  C10–C40 hydrocarbon compounds, which are unavailable to 
plants. Only few species have established on the site, Rubus fruticosus L. (bramble), a shrubby and thorny plant 
being the predominant one. This species forms sparse but densely vegetated patches with limited development 

Figure 6.  (a–d) Mapping of the four heavy metal contents in leaves over the brownfield site. These maps were 
obtained by computing the optimized vegetation indices and the regression equations listed in Table 2 on the 
airborne hyperspectral image, at 1 m spatial resolution.
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(Fig. 1c), and shows stress symptoms such as leaf discoloration and margin red pigmentation (Fig. 1d), which 
have been linked to soil pollution in previous  studies30,70. R. fruticosus L. is a suitable model species for develop-
ing methodologies to monitor soil pollution from reflectance  data9,57. It is also capable of accumulating HM in 
 leaves40–42. Therefore, this species was selected for this study, which was carried out in July 2017.

Soil and leaf heavy metal analysis. A mesh of 40 plots, uniformly distributed and colonized by bramble, 
was defined to cover most of the site. On each plot center, the geographical coordinates were acquired using a 
differential GPS. The upper soil layer (0–20 cm) was sampled and analyzed for HM as described in Qian et al.4, 
especially Cr, Cu, Ni and Zn (Table 1). This soil also contained high levels of petroleum hydrocarbons  (see9). 
Young bramble leaves (n = 40) were also collected on the 40 brownfield plots. Cr, Cu, Ni and Zn contents from 
the leaves were analyzed by ICP-MS after acid digestion, as detailed  in71. The results of these analyses are pre-
sented in Table 1. For each metal, the bioconcentration factor were computed according to the equation:

where [Heavy  metal]leaves and [Heavy  metal]soil stand for the HM concentration in bramble leaves and in the 
brownfield soil,  respectively4. In addition, soil and leaf samples were collected and analyzed on an uncontami-
nated—control—site with similar soil characteristics (texture, pH, moisture, etc.) (see the Supplementary Table S2 
for the detailed analysis). These samples served for calculating the Enrichment Factor (EF) of bramble leaves 
for the four metals, defined as:

where [Heavy  metal]brownfield leaves and [Heavy  metal]control leaves are the HM contents in bramble leaves in the 
brownfield and the control site,  respectively40.

Field reflectance measurements. The spectral signatures of the leaves sampled on the brownfield were 
acquired in the [400:2500] nm domain using an ASD FieldSpec 4 Hi-Res spectroradiometer (Malvern Panalyti-
cal, Malvern, UK) attached with a leaf-clip. For this purpose, leaf radiance was measured on a black background 
panel using and internal light source, and converted to reflectance using a white reference calibration  panel58,72. 
These data were used to develop the optimized vegetation indices intended to predict leaf HM contents. In addi-
tion, the spectral signature of bramble was also measured at the canopy level on the 40 sampled brownfield plots, 
using the same spectroradiometer and radiance-to-reflectance conversion  procedure57. These measurements 
were performed between 11.30 am and 1.30 pm using a 25-mm wide fore optics fixed 45 cm above the canopy at 
nadir, resulting in a 20-cm acquisition  footprint30.

Image acquisition and preprocessing. On July 5, 2017, an airborne hyperspectral image was acquired 
over the brownfield at 1.15 pm, 2103 m above sea level under cloudless conditions (Fig. 1a,b), using a VNIR-1600 
HySpex sensor (Norsk Elektro Optikk AS, Lørenskog, Norway) with 1-m spatial resolution and 5.2 nm spectral 
resolution in the [414:992] nm VNIR domain. The image was radiometrically corrected using standard materi-
als with known reflectance. Then, the radiance image was atmospherically corrected using the Empirical Line 
 Method57,73,74 to obtain surface reflectance, owing to the lack of knowledge about the local industrial atmosphere 
composition. The pixels corresponding to the field plots were then extracted from the image. Finally, a Savitzky-
Golay smoothing was applied on all the reflectance data (field and image) to enhance the signal-to-noise  ratio75.

Leaf HM mapping. To achieve leaf HM mapping, the proposed methodology relied on four successive 
steps, namely (1) Development of optimized vegetation indices, (2) Calibration of index-HM regression equa-
tion, (3) Prediction and assessment, and (4) Mapping of leaf HM. The first step consisted in developing opti-
mized vegetation indices for each of the four metals (Cr, Cu, Ni and Zn). For this purpose, we selected two 
thirds of the leaf reflectance and HM data (n = 26) using the Kennard-Stone  algorithm9,76, and we focused on the 
VNIR domain (400–1000), which was common to all the datasets. First, the relationship between each single 
band (i.e. wavelength) and the four metal contents was evaluated through the Pearson correlation of coefficient 
(r), after verifying that the data followed normal distribution (Shapiro–Wilk test, p > 0.05). This helped identify-
ing the most relevant spectral regions for each metal. Then, we tested simple and normalized vegetation indices 
 (see26,77 for the index formulas). Here, we describe only the results for the Normalized Difference Vegetation 
Indices (NDVI-like indices), which describe the difference of reflectance between two wavelengths. These indi-
ces provided the best results regardless of the metal and the study level (field or image). Based on the traditional 
 NDVI78, the general equation for these indices is:

where ρi and ρj are the reflectance values at wavelength i and j, respectively. This index—which ranges from − 1 
to 1—originally exploits reflectance in the red and near-infrared  wavelengths79,80. It shifts toward lower values 
as vegetation becomes sparse or stressed and the soil influence increases. Here, we varied the red/near-infrared 
wavelengths to find the best combination. Based on Eq. (3), all the possible VNIR band combinations (ρi, ρi) were 

(1)BCF =

[

Heavy metal
]

leaves
[

Heavy metal
]

soil

(2)EF =

[

Heavy metal
]

brownfield leaves
[

Heavy metal
]

control leaves

(3)NDVI =
ρi − ρj

ρi + ρj
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computed and their correlation with the four metal contents was assessed at the significance level of p < 0.05. Sev-
eral regression equations were tested (e.g. linear, exponential, logarithmic) and, except for soil  contamination9,26, 
linear relationship provided the highest correlations. Finally, the best band combination (highest |r|, p < 0.05) 
was selected for each metal, and used in the following steps.

At the end of the first step, the coefficients of linear regression equations between indices and HM were 
obtained on the leaf dataset. So, in the second step, they were adjusted independently at canopy and image levels, 
using again two thirds of the data. Then, these equations were used to predict leaf HM contents on the remaining 
third of the dataset (n = 14), at leaf, canopy and image levels. This represented the third step of the methodology. 
The quality of predictions was assessed using the Pearson’s r, the Root Mean Square Error (RMSE):

where yj′ and yj denote the predicted and measured metal contents in leaves, and the Residual Predictive Devia-
tion (RPD), defined as follows:

where σ is the standard-deviation of leaf metal concentration in the dataset. The higher the RPD, the better the 
model performance. It is commonly accepted that RPD values above 2 indicate good predictions, especially in 
the context of pollution  monitoring27,57. Finally, the optimized indices were used to map the metal content of 
bramble leaves over the entire brownfield from the airborne image. To limit the mapping to the extent of the 
site, we created a shape of the brownfield from GPS measurements performed in the field. We also isolated the 
vegetation by applying a red-near-infrared NDVI threshold of 0.3. This procedure was applied to the four heavy 
metals. All the data processing was performed using Python 3.7.6 (https ://www.pytho n.org/) and  Statsmodels81, 
 Scipy82, Scikit-Learn83, and Rasterio packages.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request. Only the georeferenced airborne image is not available on request because of the confiden-
tiality of the site’s location.
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