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ABSTRACT

We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC

36724087, TOI-732, V = 13.07, Ks = 8.204, Rs=0.374 R�, Ms=0.401 M�, d=22 pc). The two planet

candidates are identified in a single TESS sector and are validated with reconnaissance spectroscopy,

ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods

of Pb = 0.77 days, Pc = 12.25 days and sizes rp,b = 1.33 ± 0.07 R⊕, rp,c = 2.30 ± 0.16 R⊕, the

two planets span the radius valley in period-radius space around low mass stars thus making the

system a laboratory to test competing theories of the emergence of the radius valley in that stellar

mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N,

we measure planet masses of mp,b = 2.62+0.48
−0.46 M⊕ and mp,c = 8.6+1.6

−1.3 M⊕, which indicates that

LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an

extended H/He envelope. We show that the recovered planetary masses are consistent with predictions

from both photoevaporation and from core-powered mass loss models. The brightness and small size
of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible

targets for atmospheric characterization of planets within the same planetary system and spanning the

radius valley.

1. INTRODUCTION

Since the commencement of its prime mission in July

2018, NASA’s Transiting Exoplanet Survey Satellite

(TESS ; Ricker et al. 2015) has unveiled many of the

closest transiting exoplanetary systems to our solar sys-

tem. The proximity of many of these systems make their

planets ideal targets for the detailed characterization

of their bulk compositions and atmospheric properties.

Systems of multiple transiting planets are of particular
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interest as they afford the unique opportunity for di-

rect comparative planetology, having formed within the

same protoplanetary disk and evolved around the same

host star.

The occurrence rate of close-in planets features a

dearth of planets between 1.7 − 2.0 R⊕ around Sun-

like stars and between 1.5 − 1.7 around low mass stars

(Fulton et al. 2017; Mayo et al. 2018; Cloutier & Menou

2020; Hardegree-Ullman et al. 2020). The so-called ra-

dius valley is likely a result of the existence of an or-

bital separation-dependent transition between primar-

ily rocky planets and non-rocky planets that host ex-

tended H/He envelopes. A number of physical pro-

cesses have been proposed to explain the existence of
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this rocky/non-rocky transition, including photoevapo-

ration, wherein XUV heating from the host star drives

thermal atmospheric escape preferentially on smaller,

low surface gravity planets during the first 100 Myrs

(Owen & Wu 2013; Jin et al. 2014; Lopez & Fortney

2014; Chen & Rogers 2016; Owen & Wu 2017; Jin &

Mordasini 2018; Lopez & Rice 2018; Wu 2019). Alterna-

tively, the core-powered mass loss mechanism, wherein

the dissipation of the planetary core’s primordial energy

from formation drives atmospheric mass loss over Gyr

timescales (Ginzburg et al. 2018; Gupta & Schlichting

2019, 2020). Rather than resulting from the dissipation

of primordial planetary atmospheres, the radius valley

may instead arise from the superposition of rocky and

non-rocky planet populations, with the former forming

in a gas-poor environment after the dissipation of the

gaseous protoplanetary disk (Lee et al. 2014; Lee & Chi-

ang 2016; Lopez & Rice 2018).

Each of the aforementioned mechanisms make explicit

predictions for the location of the rocky/non-rocky tran-

sition in the orbital period-radius space. Measurements

of planetary bulk compositions in systems of multi-

ple planets that span the radius valley therefore offer

an opportunities to resolve the precise location of the

rocky/non-rocky transition (Owen & Campos Estrada

2020) and distinguish between the model predictions.

Precise planetary bulk composition measurements for

systems around a range of host stellar masses will en-

able the dependence of the radius valley on stellar mass

to be resolved and consequently used to test competing

models of the emergence of the radius valley (Cloutier

& Menou 2020, hereafter CM20).

Here we present the discovery and confirmation of the

two-planet system around the nearby (d=22 pc) mid-M

dwarf LTT 3780 from the TESS mission. The plan-

ets LTT 3780b and c span the rocky/non-rocky transi-

tion such that the characterization of their bulk com-

positions can be used to constrain emergence models of

the radius valley by marginalizing over unknown sys-

tem parameters such as the star’s XUV luminosity his-

tory. The brightness of LTT 3780 (Ks = 8.204) and

the architecture of its planetary system also make it an

attractive target for the atmospheric characterization

of multiple planets within the same planetary system.

In Sect. 2 we present the properties of LTT 3780. In

Sect. 3 we present the TESS light curve along with our

suite of follow-up observations, including reconnaissance

spectroscopy, ground-based photometry, high-resolution

imaging, and precise radial-velocity measurements. In

Sect. 4 we present our two independent analyses of our

data, to ensure the robustness of our results, before con-

cluding with a discussion and summary of our results in

Sects. 5 and 6.

2. STELLAR CHARACTERIZATION

LTT 3780 (LP 729-54, TIC 36724087, TOI-732) is a

mid-M dwarf at a distance of 22 pc (Gaia Collaboration

et al. 2018; Lindegren et al. 2018). Astrometry, photom-

etry, and the LTT 3780 stellar parameters are reported

in Table 1. The stellar Teff = 3331 ± 157 K is taken

from the TESS Input Catalog (TIC v8; Stassun et al.

2019) and is consistent with the value derived from the

Stefan-Boltzmann equation (3343± 150 K). The stellar

metallicity is weakly constrained by its SED and MIST

isochrones (Dotter 2016). The LTT 3780 mass and ra-

dius are derived from the stellar parallax and Ks-band

magnitude, used to compute the absolute Ks-band mag-

nitude MKs
, and the empirically-derived M dwarf mass-

luminosity and radius-luminosity relations from Bene-

dict et al. (2016) and Mann et al. (2015) respectively.

LTT 3780’s surface gravity is computed from its mass

and radius. No photometric rotation period is appar-

ent in either the TESS or ground-based photometry.

However, the low value of logR′HK = −5.59 is indica-

tive of a chromospherically inactive star with likely a

long rotation period (estimated Prot = 104 ± 15 days;

Astudillo-Defru et al. 2017).

LTT 3780 is the primary component of a visual bi-

nary system with an angular separation of 16.1′′ from

the Gaia DR2 positions (Gaia Collaboration et al. 2018;

Lindegren et al. 2018). The binary was previously iden-

tified to be co-moving from measures of each stellar

component’s proper motion and spectroscopic distance

(Luyten 1979; Scholz et al. 2005). The common par-

allaxes and proper motions of LTT 3780 (alias LP 729-

54) and its stellar companion LP 729-55 (TIC 36724086)

were verified in Gaia DR2. Their angular separation of

16.1′′ implies a projected physical separation of 354 AU.

The fainter companion star has Ks = 10.223±0.021 (i.e.

∆Ks = 2.019 mag) which corresponds to a mass and ra-

dius of 0.136± 0.004 M� and 0.173± 0.005 R�. Given

the stellar mass ratio of q = 0.340 ± 0.014, the orbital

period of the stellar binary at their projected physical

separation is about 9100 years. Assuming a circular or-

bit, this corresponds to a negligible maximum radial ve-

locity (RV) variation of . 15 cm s−1 over the timescale

of our RV observations presented in Sect. 3.5. We also

calculated the secular acceleration of the binary system

given its large proper motion (Table 1) to be < 10 cm

s−1 year−1. This RV variation is also well below the

noise limit of our observations over our RV baseline.

The LTT 3780 planetary system may be an interesting

test case of planet formation models in a binary systems.
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Table 1. LTT 3780 stellar parameters.

Parameter Value Refs

LTT 3780, LP 729-54, TIC 36724087, TOI-732

Astrometry

Right ascension (J2000.0), α 10:18:34.78 1,2

Declination (J2000.0), δ -11:43:04.08 1,2

RA proper motion, µα [mas yr−1] −341.41± 0.11 1,2

Dec proper motion, µδ [mas yr−1] −247.87± 0.11 1,2

Parallax, $ [mas] 45.493± 0.083 1,2

Distance, d [pc] 21.981± 0.040 1,2

Photometry

V 13.07± 0.015 3

GBP 13.352± 0.004 1,4

G 11.8465± 0.0005 1,4

GRP 10.658± 0.002 1,4

T 10.585± 0.007 5

J 9.007± 0.030 6

H 8.439± 0.065 6

Ks 8.204± 0.021 6

W1 8.037± 0.022 7

W2 7.880± 0.019 7

W3 7.771± 0.019 7

W4 7.577± 0.166 7

Stellar parameters

Spectral type M4V 8

MV 11.36± 0.02 9

MKs 6.49± 0.02 9

Effective temperature, Teff [K] 3331± 157 5

Surface gravity, log g [dex] 4.896± 0.029 9

Metallicity, [Fe/H] [dex] 0.28+0.11
−0.13 9

Stellar radius, Rs [R�] 0.374± 0.011 9

Stellar mass, Ms [M�] 0.401± 0.012 9

Projected rotation velocity,
< 1.3 9

v sin i [km s−1]

logR′HK −5.59± 0.09 9

Estimated rotation period,
104± 15 9

Prot [days]

Note—References: 1) Gaia Collaboration et al. 2018 2) Lin-
degren et al. 2018 3) Reid et al. 2002 4) Evans et al. 2018 5)
Stassun et al. 2019 6) Cutri et al. 2003 7) Cutri & et al. 2014
8) Scholz et al. 2005 9) this work.

Although, the large physical separation of the stellar

components likely resulted in isolated planet formation

around LTT 3780.

3. OBSERVATIONS

3.1. TESS photometry

LTT 3780 was observed in TESS sector nine (i.e. or-

bits 25 and 26) for 27.26 days from UT February 28 to

March 26, 2019 with CCD 1 on Camera 1. As a member

of the Cool Dwarf target list (Muirhead et al. 2018), LTT

3780 was included in the TIC and in the Candidate Tar-

get List (CTL; Stassun et al. 2017) such that its light

curve was sampled at 2-minute cadence. These data

were processed by the NASA Ames Science Processing

Operations Center (SPOC; Jenkins et al. 2016). The

resulting Presearch Data Conditioning Simple Aperture

Photometry (PDCSAP; Smith et al. 2012; Stumpe et al.

2012, 2014) light curve of LTT 3780 was corrected for di-

lution by known contaminating sources within the pho-

tometric aperture with a dilution factor of 0.713. Ac-

cording to the sector nine data release notes1, the level

of scattered light from the Earth in Camera 1 CCD 1

at the start of each orbit was high and resulted in no

photometry or centroid positions being calculated dur-

ing the first 1.22 days of orbit 25 nor in the first 1.12

days of orbit 26. Data collection was also paused for

1.18 days for data downloading close to the spacecraft’s

time of perigee passage. Overall, a total of 24.08 days

of science data collection was performed in TESS sector

nine.

A sample image of the field surrounding LTT 3780

from the TESS target pixel files is shown in Figure 1.

The TESS photometric aperture used to produce the

PDCSAP light curve was selected to maximize photo-

metric signal-to-noise (Bryson et al. 2010) and is over-

laid in Figure 1. Blending in the TESS photometry

by nearby sources is unsurprising given the large (21′′)

TESS pixels and the 1′ FWHM of its point spread func-

tion, coupled with the large number density of 37 sources

within 2.5′ (Gaia Collaboration et al. 2018; Lindegren
et al. 2018). In Figure 1, the low-resolution TESS im-

age is compared with an example ground-based image

taken with the 1m telescope at the Cerro Tololo Inter-

American Observatory (CTIO) location of the Las Cum-

bres Observatory Global Telescope network (LCOGT).

The LCOGT zs-band image features a pixel scale of

0.39′′ which is equivalent to a spatial resolution that is 54

times higher than in the TESS images. The LCOGT im-

age clearly depicts the position of LTT 3780 within the

TESS aperture and the positions of 24 nearby sources

from the Gaia DR2. The relative positions of the neigh-

boring sources to the TESS photometric aperture re-

veals how the aperture was optimized to minimize con-

1 https://archive.stsci.edu/missions/tess/doc/tess drn/
tess sector 09 drn11 v04.pdf

https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_09_drn11_v04.pdf
https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_09_drn11_v04.pdf


4 Cloutier et al.

Figure 1. Upper panel : an example TESS target pixel file
image of LTT 3780 and the surrounding field. The TESS
pixel scale is 21′′. The position of LTT 3780 in Gaia DR2
is circled in black while the remaining Gaia sources out to
2.5′ are circled in yellow. The pixels highlighted in white
demarcate the TESS photometric aperture used to derive
the PDCSAP light curve of LTT 3780. Lower panel : an
example zs image of the same field taken with the LCOGT
1m telescope at CTIO with a much finer pixel scale of 0.39′′

pixel−1 enabling LTT 3780 and nearby sources to be spatially
resolved.

tamination by the nearby bright sources including the

binary companion star LP 729-55 at 16.1′′ east of LTT

3780’s position.

In the subsequent transit search conducted by the

SPOC using the Transiting Planet Search (TPS)

Pipeline Module (Jenkins 2002; Jenkins et al. 2010), two

transiting planet candidate signals were flagged and sub-

sequently passed a set of internal data validation tests

(Twicken et al. 2018; Li et al. 2019). The planet candi-

dates TOI-732.01 and 02 had reported periods of 0.768

days and 12.254 days, corresponding to 28 and 2 ob-

served transits respectively. However, focusing solely on

TESS measurements wherein the quality flag QUALITY

equals zero, indicating the reliability of those measure-

ments, the second transit of TOI-732.02 is only partially

resolved as its ingress is largely contaminated. Although

the SPOC does not make an identical cut based on the

QUALITY flag, the SPOC-reported orbital period of TOI-

732.02 is found to be underestimated by about three

minutes as we will learn from our follow-up transit light

curve analysis (Sect. 3.3).

The initially reported depth for each planet candidate

was 1253 ± 106 and 3417 ± 283 ppm corresponding to

preliminary planetary radii of 1.44±0.07 and 2.38±0.12

R⊕ using the stellar radius reported in Table 1. Note
that these planet parameters are preliminary and will

be refined in our analysis of the TESS light curve in

Sect. 4.1.

3.2. Reconnaissance spectroscopy

3.2.1. TRES spectroscopy

We obtained a single reconnaissance spectrum of LTT

3780 with the Tillinghast Reflector Échelle Spectrograph

(TRES), mounted on the 1.5m Tillinghast Reflector

telescope at Fred L. Whipple Observatory (FLWO) on

Mount Hopkins, AZ on UT January 30, 2020. TRES is a

fiber-fed, R = 44, 000 optical échelle spectrograph (310-

910 nm) whose typical limiting RV precision on slowly

rotating M dwarfs of 50 m s−1 is insufficient to measure

the masses of the LTT 3780 planet candidates. We ob-

tained the spectrum to assess the star’s level of chromo-

spheric activity, to potentially measure rotational broad-

ening, and to search for a double-lined spectrum that

could indicate the presence of a close-in stellar com-

panion to LTT 3780. We median-combined three 600

second exposures that were wavelength calibrated using

a ThAr lamp exposure. The resulting signal-to-noise

(S/N) per resolution element at 715 nm was 16. We

then cross-correlated the spectrum order-by-order with

an empirical template spectrum of Barnard’s star.

The reduced data revealed a single-lined spectrum.

We see Hα in absorption and do not resolve any rota-

tional broadening. With these data we place an upper

limit on v sin i at half the spectral resolution of TRES;

v sin i ≤ 3.4 km s−1. Note that this value will be re-

fined in Sect. 3.5 with our high resolution spectra from

HARPS. The lack of Hα in emission and lack of any sig-

nificant stellar rotation, combined with the low level of

stellar photometric variability in the TESS light curve

and the absence of flares, emphasizes the low levels of
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magnetic activity produced by LTT 3780. This fact will

have important implications for the precise RV char-

acterization of the TOI-732 planetary system and for

future atmospheric characterization efforts in which at-

mospheric feature detections may be degenerate with

signatures from magnetically active regions if not prop-

erly modeled in transmission spectra (Rackham et al.

2018).

3.3. Ground-based transit photometry

TESS ’s large pixels (21′′) result in significant blend-

ing of the LTT 3780 light curve with nearby sources,

including with its visual binary companion at 16.1′′ to

the east (with a TESS magnitude difference ∆T = 2.42,

see Figure 1). We obtained seeing-limited photometric

follow-up observations of the LTT 3780 field close to the

expected transit times of each planet candidate as part

of the TESS Follow-up Observing Program (TFOP).

The example image from this follow-up campaign in Fig-

ure 1 reveals how individual sources are resolved, which

enabled the confirmation of the transit events on-target,

and the scrutiny of nearby sources for nearby eclipsing

binaries (EBs). Follow-up efforts were scheduled using

the TESS Transit Finder, which is a customized version

of the Tapir software package (Jensen 2013). Unless

otherwise noted, the photometric data were extracted

and detrended using the AstroImageJ software package

(AIJ; Collins et al. 2017). The resulting light curves

were detrended with any combination of time (i.e. a

linear trend), airmass, and total background counts as

necessary in attempts to flatten the out-of-transit por-

tion of each light curve. Furthermore, the differential

light curves were derived using an optimal photometric

aperture and a set of comparison stars chosen by the

observer.

Numerous ground-based facilities conducted photo-

metric follow-up of the TOI-732 system. Their respec-

tive data acquisition and reduction strategies are de-

scribed in the following sections while their detrended

light curves are plotted in Figure 2. Differences in the

instrumental setups and nightly observing conditions

produce varying levels of photometric precision among

the light curves. Each detrended light curve, available

through TFOP, is fit with a Mandel & Agol (2002) tran-

sit model that we calculate using the batman software

package (Kreidberg 2015). The shallow transit depths

of both planet candidates produce low S/N transit light

curves that may only marginally improve the measure-

ment precision on most model parameters compared to

the values measured from the TESS light curve with

the exception being the planets’ orbital periods when

all light curves are fit simultaneously. As such, we fix

the orbital periods and impact parameters in the indi-

vidual light curve fits to the values obtained from the

SPOC Data Validation module (Pb = 0.76842 days,

Pc = 12.25422 days, bb = 0.69, bc = 0.35). We also de-

rive the scaled semimajor axes using the stellar param-

eters given in Table 1 (ab/Rs = 6.96, ac/Rs = 44.09).

Each planet’s orbit is also fixed to circular and the

quadratic limb darkening parameters in the correspond-

ing passband are interpolated from the Claret & Bloe-

men (2011) tables using the EXOFAST software (Eastman

et al. 2013) given LTT 3780’s Teff, log g, and [Fe/H]. We

fit the following parameters via non-linear least squares

optimization using scipy.curve fit: the baseline flux

f0, the time of mid-transit T0, and the planet-to-star

radius ratio rp/Rs. Measuring T0 relative to the ex-

pected transit time is used to refine the planet’s orbital

ephemeris while rp/Rs measurements in each passband

are required to investigate transit depth chromaticity as

a chromatically varying transit depth could be indicative

of a blended EB.

3.3.1. LCOGT photometry

We used three observatories as part of the Las Cum-

bres Observatory Global Telescope network (LCOGT;

Brown et al. 2013) to follow-up transits of both TOI-

732.01 and 02. Each 1m telescope is equipped with a

4096 × 4096 LCOGT SINISTRO camera whose pixel

scale is 389 mas pixel−1, resulting in a 26′ × 26′ field-

of-view (FOV). We calibrated all image sequences using

the standard LCOGT BANZAI pipeline (McCully et al.

2018). An example of one such image from the LCOGT

was shown in Figure 1.

We observed three full transits of TOI-732.01 between

UT June 9-17, 2019 from various LCOGT observatories.

These data include two zs-band light curves taken at
the LCOGT-Cerro Tololo Inter-American Observatory

(CTIO) on UT June 9 and 16 2019, and a third tran-

sit light curve obtained on UT June 17, 2019 in the zs
and g′-bands by the LCOGT-South African Astronom-

ical Observatory (SAAO). These four light curves are

shown in Figure 2. We searched for transit-like events

from nearby EBs (NEB) around 37 sources identified by

Gaia DR2 to be within 2.5′. The field was consequently

cleared of NEBs down to ∆zs = 7.686 as no transit-like

signals were detected on any off-target source. All three

expected transit events were shown to occur on-target

and arrived within 4 minutes of their expected transit

times.

We observed one full transit of TOI-732.02 on UT Jan-

uary 4, 2020 with the LCOGT-Siding Springs Observa-

tory (SSO) in the B-band. The light curve is included

in Figure 2. Similarly to our TOI-732.01 transit analy-
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Figure 2. Ground-based transit light curves of TOI-732.01
(upper panel) and 02 (lower panel) taken as part of TFOP.
Solid curves depict the optimized transit model fit with all
model parameters fixed other than the baseline flux, the mid-
transit time, and the planet-to-star radius ratio. Annotated
next to each light curve is the telescope facility, the passband,
and the UT observation date.

sis, the field was cleared of NEBs during the TOI-732.02

transit window. The expected transit event was shown

to occur on-target with a transit depth of 2.4 parts per

thousand (ppt). However, the transit arrived 60 min-

utes early indicating that the preliminary orbital period

of Pc = 12.254 days, derived from the TESS light curve

alone, is slightly underestimated if the period is con-

stant. The orbital period of LTT 3780c will be refined

in our global analysis in Sect. 4, which will include the

ground-based light curves.

3.3.2. OSN photometry

We observed one additional transit of TOI-732.02 on

UT December 10, 2019 with the Observatorio de Sierra

Nevada (OSN) 1.5m telescope near Granada, Spain.

The OSN 1.5m telescope is equipped with an Andor

ikon-L 2048 × 2048 CCD camera whose pixel scale is

232 mas pixel−1, resulting in a 7.9′ × 7.9′ FOV. We

observed the full transit simultaneously in both the V

and R-bands to check for chromaticity. Similarly to the

LCOGT-SSO transit observation of TOI-732.02, the ex-

pected transit event arrived 60 minutes early. The mea-

sured transit depths of 2.9 ppt and 3.2 ppt in the V and

R-bands respectively are consistent with each other and

with the LCO-SSO B-band transit at 1σ. TOI-732.02

therefore does not show any strong chromaticity. The

two transit light curves are included in Figure 2.

3.3.3. TRAPPIST-North photometry

The UT December 10, 2019 transit of TOI-732.02 ob-

served by OSN was also observed by the 60cm TRAn-

siting Planets and PlanetesImals Small Telescope-North

(TRAPPIST-North) located at the Oukäımden Obser-

vatory in Morocco (Jehin et al. 2011; Gillon et al. 2013;

Barkaoui et al. 2019). TRAPPIST-North employs a

2048×2048 pixel Andor IKONL BEX2 DD camera with
a pixel scale of 600 mas pixel−1 resulting in a 20.5′×20.5′

FOV. The photometry was analyzed using custom soft-

ware for TRAPPIST-North. We observed the full tran-

sit in the z-band, thus contributing to the four transit

light curves of TOI-732.02 from TFOP in the B, V , R,

and z-bands. The measured transit depth in the z-band

is 3.2 ppt, which is consistent with the measured tran-

sit depths in the aforementioned passbands thus con-

firming that no strong chromaticity is detected. The

TRAPPIST-North light curve is included in Figure 2.

3.3.4. MEarth-North photometry

We observed a partial transit of TOI-732.02 on UT

February 9, 2020 using seven of eight telescopes from

the MEarth-North telescope array located at FLWO

on Mount Hopkins, AZ. The MEarth-North array con-

sists of eight 40cm Ritchey-Chrétien telescopes, each
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equipped with a 2048× 2048 pixel Apogee U42 camera.

The 750 mas pixel scale results in a 25.6′ × 25.6′ FOV.

The light curve was obtained in the custom MEarth

passband centered in the red optical and is shown in

Figure 2. The observations include a three hour out-of-

transit baseline plus the transit ingress and 37 minutes

in-transit, equal to nearly half of the full transit dura-

tion. The measured transit depth of 3.3 ppt is consistent

with all other TFOP transits again confirming the lack

of transit depth chromaticity.

The collective photometric data from TFOP have ver-

ified the periodic nature of the transits of TOI-732.01

and 02 and that both of these planet candidates orbit

the target star LTT 3780. We do not detect any signifi-

cant depth discrepancies, indicating that the transits are

likely achromatic and thus consistent with being plan-

etary in origin. Furthermore, the early arrival of the

TOI-732.02 transits on December 10, 2019 and on Jan-

uary 4, 2020 allow us to estimate the true orbital period

of LTT 3780c, which shrinks from its SPOC-reported

value of 12.254 to 12.2519 days, assuming a constant pe-

riod. This refined period prior is used in our up-coming

analysis of the TESS light curve in Sect. 4.1.

3.4. High-resolution imaging

Very nearby stars that are not detected in Gaia DR2,

nor in any of the seeing-limited image sequences, and

that fall within the same 21′′ TESS pixel as the target

star, will result in photometric contamination that is

unaccounted for in the TESS light curve. This effect re-

duces the depth of the observed transits and can produce

a false positive transit signal from another astrophysical

source, such as a blended EB (Ciardi et al. 2015). We

used two independent sets of high-resolution follow-up

imaging sequences to search for any such close-in sources

as described in the following sections.

3.4.1. SOAR speckle imaging

We obtained SOAR speckle imaging (Tokovinin 2018)

of LTT 3780 on UT December 12, 2019 in the I-band, a

visible bandpass similar to that of TESS. Details of the

observations from the SOAR TESS survey are provided

in Ziegler et al. (2020). No bright nearby stars are de-

tected within 3′′ of LTT 3780 within the 5σ detection

sensitivity of the observations. The resulting 5σ con-

trast curve is plotted in Figure 3 along with the speckle

auto-correlation function.

3.4.2. NIRI AO imaging

We obtained adaptive-optics (AO) images with Gem-

ini/NIRI (Hodapp et al. 2003) on UT November 25,

2019 in the Brγ filter (2.17 µm). We collected nine

dithered images with integration times of 2.2 seconds.

Figure 3. Upper panel : I-band 5σ contrast curve from
SOAR speckle imaging of LTT 3780 (TIC 36724087). The
inset depicts the corresponding speckle auto-correlation func-
tion. Lower panel : Brγ 5σ contrast curve from Gemini/NIRI
AO imaging. A few bad pixels persist at 2′′ from the target
(blue diamond), but these have a minimal effect on the con-
trast. The inset depicts the central coadded image centered
on LTT 3780. No visual companions are detected in either
dataset at ≥ 5σ.

We followed a standard data reduction procedure in-

cluding corrections for bad pixels, flat-fielding, sky back-

ground subtraction, and image coaddition. No visual

companions are identified within 5′′ of LTT 3780 within

the 5σ sensitivity of the observations. These high qual-

ity data are sensitive to companions five magnitudes

fainter than the target at just 270 mas and 7.4 mag-

nitudes fainter at separations & 1′′. The 5σ contrast

curve and the coadded image centered on LTT 3780 are

included in Figure 3.

Due to the single-lined spectrum of LTT 3780, the ver-

ification of the expected transit events on-target from

ground-based photometry, and the lack of nearby con-
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taminating sources from high-resolution imaging, we

conclude that the planet candidates TOI-732.01 and 02

are verified planets. We will refer to these planets as

LTT 3780b and c for the remainder of this study.

3.5. Precise radial-velocities

3.5.1. HARPS radial velocities

We obtained 33 spectra of LTT 3780 with the High Ac-

curacy Radial velocity Planet Searcher (HARPS; Mayor

et al. 2003) échelle spectrograph mounted at the ESO

3.6m telescope at La Silla Observatory, Chile. The

HARPS optical spectrograph at R = 115, 000 is sta-

bilized in pressure and temperature, which enable it

to achieve sub-m s−1 accuracy. The observations were

taken between UT June 21, 2019 and February 24, 2020

as part of the ESO program 1102.C-0339. The exposure

time was set to 2400 seconds, which resulted in a median

S/N over all orders of 26 and a median measurement

uncertainty of 1.31 m s−1 following the RV extraction

described below. Similarly to the TRES reconnaissance

spectra at R = 44, 000, LTT 3780 does not exhibit any

rotational broadening in the HARPS spectra. The cor-

responding upper limit on stellar rotation is v sin i ≤ 1.3

km s−1.

We extracted the HARPS RV measurements using

the TERRA pipeline (Anglada-Escudé & Butler 2012).

TERRA employs a template-matching scheme that has

been shown to outperform the cross-correlation function

(CCF) technique on M dwarfs (Anglada-Escudé & But-

ler 2012). M dwarfs are particularly well-suited to RV

extraction via template-matching because the line lists

used to define the binary mask for the CCF technique

are incomplete. The resulting CCF template is often a

poor match for cool M dwarfs.

TERRA constructs a master template spectrum by

first shifting the individual spectra to the barycentric

frame using the barycentric corrections calculated by the

HARPS Data Reduction Software (DRS; Lovis & Pepe

2007). We masked portions of the wavelength-calibrated

spectra in which telluric absorption exceeds 1%. The

spectra are then coadded to build a high S/N spectral

template. We computed the RV of each spectrum by

least-squares matching the individual spectrum to the

master template. Throughout the extraction process, we

only consider orders redward of order 18 (428-689 nm)

such that the bluest orders at low S/N are ignored. Be-

cause the master spectrum is derived from the observed

spectra, template construction does not require any ad-

ditional assumptions about the stellar properties. Using

this method, we found that the median LTT 3780 RV

measurement precision was improved by a factor of two

compared to the standard CCF method utilized within

Table 2. Radial velocity time series of LTT 3780 from
HARPS & HARPS-N

Time RV σRV Instrument

[BJD - 2,457,000] [m s−1] [m s−1]

1821.837965 -0.959 1.310 HARPS

1831.760260 -10.056 1.330 HARPS-N

1836.858657 -5.946 1.403 HARPS

the HARPS DRS. The resulting RV time series is re-

ported in Table 2.

3.5.2. HARPS-N radial velocities

We obtained 30 spectra of LTT 3780 with the HARPS-

N optical échelle spectrograph at the TNG on La Palma

in the Canary Islands. The observations were taken as

part of the HARPS-N Collaboration Guaranteed Time

Observations program between UT December 14, 2019

and March 15, 2020. The exposure time was set to 1800

seconds, which resulted in a median S/N over all orders

of 20 and a median measurement uncertainty of 1.43 m

s−1.

Identically to the HARPS RVs, we extracted the

HARPS-N RVs using the TERRA template-matching al-

gorithm. The resulting RV time series is included in

Table 2.

4. DATA ANALYSIS & RESULTS

Here we conduct two independent analyses of our data

to test the robustness of the recovered planetary pa-

rameters. In our fiducial analysis (Sects. 4.1 and 4.2),

the TESS light curve is modeled separately with the

resulting planet parameters being used as priors in the

subsequent RV analysis. In Sect. 4.3 we describe an al-

ternative, global analysis using the EXOFASTv2 software

(Eastman et al. 2019).

4.1. TESS transit analysis

We begin by analyzing the TESS PDCSAP light curve

wherein the planet candidates TOI-732.01 and 02 were

initially detected. The majority of apparent signals from

non-random noise sources in the light curve have al-

ready been removed by the SPOC processing. However,

low frequency and small amplitude signals that do not

resemble planetary transits are seen to persist in the

PDCSAP light curve shown in Figure 4. The nature

of these signals as residual systematics or photometric

stellar variability is unclear so we proceed with modeling

the aforementioned noise signals as an untrained semi-

parametric Gaussian process (GP) regression model,
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simultaneously with the two transiting planet candi-

dates using the exoplanet software package (Foreman-

Mackey et al. 2019). exoplanet computes analytical

transit models using the STARRY package (Luger et al.

2019) and uses the celerite package (Foreman-Mackey

et al. 2017) to evaluate the marginalized likelihood un-

der a GP model. In this analysis, the covariance kernel

takes the form of a stochastically-driven, damped sim-

ple harmonic oscillator (SHO) whose Fourier transform

is known as the power spectral density (PSD) and is

given by

S(ω) =

√
2

π

S0 ω
4
0

(ω2 − ω0
2)2 + ω0

2 ω2/Q2
. (1)

The PSD of the SHO is parameterized by the frequency

of the undamped oscillator ω0, S0, which is propor-

tional to the power at the frequency ω0, and the qual-

ity factor Q, which is fixed to
√

0.5. We selected this

covariance kernel and parameterization because work-

ing in Fourier space is much more computationally effi-

cient for large datasets, such as our TESS light curve

(N = 15, 210), and because the underlying cause of

the photometric variations being modeled remains un-

known. In practice, we also fit for the baseline flux

f0 and an additive scalar jitter sTESS. We fit the

GP hyperparameters using the parameter combinations

{lnω0, lnS0ω
4
0 , f0, log s2

TESS} with uninformative priors.

The transit model within exoplanet fits the stel-

lar mass Ms, stellar radius Rs, and quadratic limb

darkening parameters {u1, u2} along with the following

planetary parameters: logarithmic orbital periods lnP ,

times of mid-transit T0, logarithmic planet radii ln rp,

impact parameters b, and the eccentricity and argument

of periastron of LTT 3780c only; {ec, ωc}. We assume

a circular orbit for the inner planet LTT 3780b be-

cause its ultra-short period of 0.77 days implies a very

short circularization timescale of� 1 Myr (Goldreich &

Soter 1966). Jointly fitting for the physical stellar and

planetary parameters enables us to derive the transit

observables a/Rs, rp/Rs, and inclination i. The joint

GP plus two-planet transit model therefore includes 18

model parameters: {f0, lnω0, lnS0ω
4
0 , ln s

2
TESS,Ms, Rs,

u1, u2, lnPb, T0,b, ln rp,b, bb, lnPc, T0,c, ln rp,c, bc, ec, ωc}.
Table 3 summarizes the TESS transit model parameter

priors used in this, our fiducial analysis.

Our full model is fit to the TESS PDCSAP light curve

using the PyMC3 Markov Chain Monte-Carlo (MCMC)

package (Salvatier et al. 2016) implemented within

exoplanet. We ran four simultaneous chains with 4000

tuning steps and 3000 draws in the final sample. PyMC3

produces the 18-dimensional joint posterior probability

density function (PDF) of the model parameters. Me-

dian point estimates from the marginalized posterior

PDFs of the GP hyperparameters are used to construct

the GP predictive distribution whose mean function is

shown in Figure 4 and is used to detrend the TESS

light curve for visualization purposes. Similarly, the

median point estimates of the transit model parame-

ters are used to compute the ‘best-fit’ transit models

shown in Figure 4. Table 6 reports the median values of

all model parameters from their marginalized posterior

PDFs along with their uncertainties from the 16th and

84th percentiles.

4.2. Precise radial-velocity analysis

In our fiducial analysis, we elected to fit the RVs

independently of the transit data but exploiting the

strong priors on the orbital periods and mid-transit

times established by our TESS light curve analysis

(Sect. 4.1). We note that the information content

within the TESS light curve and the RV measurements

with regards to their shared model parameters (i.e.

{Pb, T0,b, Pc, T0,c, ec, ωc}) is dominated by one dataset

or the other. In other words, the strongest constraints

on each planet’s orbital period and mid-transit time

are derived from the TESS and ground-based transit

light curves. Conversely, most of the information re-

garding the eccentricity and argument of periastron of

LTT 3780c is derived from the RVs since the planet’s

secondary eclipse is unresolved in the TESS light curve

and the eccentricity’s effect on the transit duration is

degenerate with a/Rs, rp/Rs, and b. Note that this is

only an approximation as global transit plus RV mod-

eling can help to mitigate the eccentricity degeneracy

(Eastman et al. 2019). We will also consider a global

model in Sect. 4.3.

Although LTT 3780 is known to be relatively inac-

tive, we do not expect its surface to be completely

static and homogeneous. As such, we expect some

temporally-correlated residual RV signals from magnetic

activity that we model with a quasi-periodic GP regres-

sion model for each spectrograph. The quasi-periodic

covariance kernel is

kij = a2 exp

[
− (ti − tj)2

2λ2
− Γ2 sin2

(
π|ti − tj |
PGP

)]
(2)

and features four hyperparameters: the covariance am-

plitude a, the exponential timescale λ, the coherence Γ,

and the periodic timescale PGP. We also fit an additive

scalar jitter sRV for each spectrograph to absorb any ex-

cess white noise. Due to the unique systematic noise

properties of each spectrograph, we fit a unique covari-

ance amplitude and scalar jitter to the data from each
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Table 3. TESS light curve and RV model parameter priors

Parameter Fiducial Model Priors EXOFASTv2 Model Priors

Stellar parameters

Teff, [K] N (3331, 157) N (3351, 150)

Ms, [M�] N (0.401, 0.012) N (0.401, 0.012)

Rs, [R�] N (0.374, 0.011) N (0.374, 0.011)

Light curve hyperparameters

f0 N (0, 10) U(− inf, inf)

lnω0, [days−1] N (0, 10) -

lnS0ω
4
0 N (ln var(fTESS), 10) -

ln s2
TESS N (ln var(fTESS), 10) -

u1 U(0, 1) U(0.225, 0.425)

u2 U(0, 1) U(0.232, 0.432)

Dilution - N (0, 0.1 δ)a

RV parameters

lnλ, [days] U(ln 1, ln 1000) -

ln Γ U(−3, 3) -

lnPGP, [days] N (ln 104, ln 30)b -

ln aHARPS, [m s−1] U(−5, 5) -

ln aHARPS-N, [m s−1] U(−5, 5) -

ln sHARPS, [m s−1] U(−5, 5) U(− inf, inf)

ln sHARPS-N, [m s−1] U(−5, 5) U(− inf, inf)

γHARPS, [m s−1] U(−185, 205) U(− inf, inf)

γHARPS-N, [m s−1] U(−185, 205) U(− inf, inf)

LTT 3780b parameters

lnPb, [days] N (ln 0.768, 0.5) -

Pb, [days] - U(− inf, inf)

T0,b, [BJD-2,457,000] N (1543.911, 0.5) U(1543.7, 1544.2)

ln rp,b, [R⊕] N (0.5 · ln(Zb) + lnRs, 1)c -

rp,b/Rs - U(− inf, inf)

bb U(0, 1 + rp,b/Rs) -

lnKb, [m s−1] U(−5, 5) -

Kb, [m s−1] - U(− inf, inf)

LTT 3780c parameters

lnPc, [days] N (ln 12.254, 0.5) -

Pc, [days] - U(− inf, inf)

T0,c, [BJD-2,457,000] N (1546.848, 0.5) U(1542.8, 1550.9)

ln rp,c, [R⊕] N (0.5 · ln(Zc) + lnRs, 1)d

rp,c/Rs - U(− inf, inf)

bc U(0, 1 + rp,c/Rs)

lnKc, [m s−1] U(−5, 5) -

Kc, [m s−1] - U(− inf, inf)

ec B(0.867, 3.03)e

ωc, [rad] U(−π, π)

Note—Gaussian distributions are denoted by N and are parameterized by mean
and standard deviation values. Uniform distributions are denoted by U and
bounded by the specified lower and upper limits. Beta distributions are denoted
by B and are parameterized by the shape parameters α and β.

adelta is the SPOC-derived dilution factor applied to the TESS light curve.

b PGP is constrained by the estimate of the stellar rotation period from logR′HK

whose uncertainty is artificially inflated.

cThe transit depth of TOI-732.01 reported by the SPOC: Zb = 1253 ppm.

dThe transit depth of TOI-732.02 reported by the SPOC: Zb = 3417 ppm.

eKipping 2013.
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Figure 4. Upper panel : the TESS PDCSAP light curve of LTT 3780 (black curve) along with the mean GP detrending model
(green curve) and its 3σ confidence interval in the surrounding shaded region which is narrow and hence difficult to discern.
The vertical red and blue ticks along the x-axis highlight the mid-transit times of the planets LTT 3780b and c respectively.
Middle panel : the detrended TESS light curve. Lower panels: phase-folded light curves of LTT 3780b (left) and c (right) along
with their best-fit transit models. White markers depict the temporally-binned phase-folded light curves to help visualize the
transit events.
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of the HARPS and HARPS-N spectrographs. Through-

out, the covariance parameters {λ,Γ, PGP}, which only

depend on signals originating from the star, are kept

fixed between the two spectrographs.

Our full RV model consists of a GP activity

model for each spectrograph plus independent Ke-

plerian orbital solutions for each planet with RV

semi-amplitudes Kb and Kc. We also fit for each

spectrograph’s systemic velocity γ to account for

any RV offset between the two instruments. Our

full RV model therefore features 17 model pa-

rameters: {ln aHARPS, ln aHARPS-N, lnλ, ln Γ, lnPGP,

ln sHARPS, ln sHARPS-N, γHARPS, γHARPS-N, Pb, T0,b, lnKb,

Pc, T0,c, lnKc, hc, kc} where hc =
√
ec cosωc and

kc =
√
ec sinωc. Note that the GP hyperparameters,

scalar jitter parameters, and planetary semi-amplitudes

are fit in logarithmic units. Table 3 includes each of the

RV model parameter priors.

Figure 5 shows the raw RVs and the individual model

components including the RV activity along with LTT

3780b and c. The Bayesian generalized Lomb-Scargle

periodogram (BGLS; Mortier et al. 2015) of each RV com-

ponent is also included in Figure 5. The BGLS of the

raw RVs exhibits a small number of significant peaks

(e.g. 3.1 days) that are not strictly at either planet’s

orbital period. We will see that the subtraction of the

individual Keplerian orbits effectively removes these pe-

riodicities such that they can be attributed to harmonics

of the planetary orbital periods. The median RV model

parameters from their marginalized posterior PDFs are

used to produce the models shown in Figure 5 and are

reported in Table 6 along with their 16th and 84th per-

centiles. The RV semi-amplitudes of LTT 3780b and c

are found to be 3.41+0.63
−0.63 and 4.44+0.82

−0.68 m s−1 and thus

are clearly detected at 5.4σ and 5.9σ respectively. The

resulting Keplerian RV signals are clearly discernible in

their phase-folded RV time series. The rms of the RV

residuals are found to be 1.55 and 1.74 m s−1 for HARPS

and HARPS-N respectively.

M dwarfs are known to commonly host 2-3 planets

per star out to 200 days (e.g. Dressing & Charbonneau

2015; Ballard & Johnson 2016; Cloutier & Menou 2020;

Hardegree-Ullman et al. 2019) such that the probabil-

ity that a third planet exists around LTT 3780 is non-

negligible. However, the BGLS of the RV residuals in

Figure 5 does not exhibit any strong periodic signals

that are statistically significant. This indicates that a

hypothetical third planet is unlikely to have been de-

tected. To confirm this robustly, we considered a three-

planet RV model, with fixed Keplerian parameters for

LTT 3780b and c, plus a third Keplerian component

‘d’ on a circular orbit. We separately tested two three-

planet models with differing priors on the orbital period

Pd: U(1.3, 2.1) and U(50, 150) days. The chosen period

limits approximately span the two highest peaks in the

BGLS of the RV residuals. We then ran two separate

MCMCs to sample the posteriors of the hypothetical

planet’s period, time of inferior conjunction (analogous

to the mid-transit time), and semi-amplitude. We find

that neither model settles onto a preferred period or

phase and each marginalized Pd posterior simply recov-

ers its uninformative prior. The lack of a well-defined

maximum a-posteriori Pd and T0,d prevents us from

searching the TESS light curve for any missed transit

signals from the hypothetical planet ‘d’ and from placing

a meaningful upper limit on the planet’s mass. We note

that the only threshold crossing events identified by the

TPS in the TESS light curve were those corresponding

to the confirmed planets LTT 3780b and c. Addition-

ally, the recovered semi-amplitudes Kd in both MCMCs

favored zero m s−1 with an upper limit of Kd ≤ 2.4

m s−1 at 95% confidence. Taken together, these find-

ings emphasize that the fiducial two-planet model for

the current dataset is likely complete as no third planet

is detected in our data.

4.3. An alternative global transit + RV analysis

To evaluate the robustness of the results derived in

our fiducial analysis (Sects. 4.1 and 4.2), we conducted

an independent analysis using the EXOFASTv2 exoplanet

transit plus RV fitting package (Eastman et al. 2019).

The methods of the EXOFASTv2 fitting routine are de-

tailed in Eastman et al. (2019) although we provide a

brief summary here.

To constrain the stellar-dependent parameters during

the transit fit, we feed EXOFASTv2 the Ms and Rs pa-

rameter priors as in our fiducial model. The routine also

takes as input the pre-detrended light curves from TESS

and from ground-based facilities, and performs a differ-

ential MCMC to evaluate the two-planet transit model

whose parameter priors are included in Table 3.

There are a few notable differences between our fidu-

cial analysis (Sects. 4.1 and 4.2) and the EXOFASTv2 ap-

proach. The exoplanet model simultaneously fits the

hyperparameters of the GP detrending model plus the

transiting planet parameters to achieve self-consistent

detrending and transit models wherein the uncertain-

ties in the recovered planet parameters are marginalized

over uncertainties in the detrending model. Conversely,

EXOFASTv2 uses pre-detrended light curves and so the

aforementioned marginalization of the planet parameter

uncertainties over the GP hyperparameters does not oc-

cur. Furthermore, the RV model in our fiducial analysis

includes the treatment of residual RV signals as a quasi-
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Figure 5. The RV data and individual model components from our analysis of the HARPS (gray circles) and HARPS-N (green
triangles) RV measurements. The data and models are depicted in the left column of the first five rows while their corresponding
Bayesian generalized Lomb-Scargle periodograms are depicted in the right column. The marginalized posteriors of the LTT
3780b and c orbital periods are depicted as vertical lines along with the estimated stellar rotation period using the M dwarf
activity-rotation relation from Astudillo-Defru et al. (2017) (Prot = 104 ± 15 days). First row : the raw RV measurements.
Second row : the RV activity signal modeled with a quasi-periodic GP for each spectrograph. Third row : the RV signal from
LTT 3780b at 0.77 days. Fourth row : the RV signal from LTT 3780c at 12.25 days. Fifth row : the RV residuals. Bottom row :
the phase-folded RV signals of LTT 3780b and c.
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periodic GP whereas, EXOFASTv2 assumes the RV resid-

uals to be well-represented by a Gaussian noise term

characterized by an additive jitter factor.

Our EXOFASTv2 modeling has the important advan-

tage of evaluating a global model that includes the TESS

light curve, ground-based transit light curves, and RV

measurements. The resulting planet parameters, in-

cluding the orbital periods, mid-transit times, eccen-

tricities, and argument of periastron, will therefore be

self-consistent between all input datasets. In particu-

lar, each planet’s ephemeris will be more precisely con-

strained by the inclusion of the ground-based transit

light curves and the eccentricity of LTT 3780c will be

jointly constrained by its transit duration, Keplerian RV

model, and the stellar density. EXOFASTv2 also fits a free

dilution parameter to model any discrepancies between

the dilution applied to the PDCSAP light curve and the

true dilution.

The results from our fiducial model in Table 6 are ac-

companied by the results from our alternative analysis

using EXOFASTv2. We find consistency between the two

models at < 1σ for nearly all model parameters. This

speaks to the robustness of the planetary model param-

eters inferred from our data. The only exceptions are

the 2σ and 2.8σ discrepant RV jitter parameters sHARPS

and sHARPS-N. However, this is not alarming as the RV

residuals, following the removal of the two Keplerian so-

lutions, are modeled with a GP in our fiducial model

whereas the EXOFASTv2 model treats the residuals with

a scalar jitter. Crucially, these approaches yield consis-

tent RV semi-amplitudes for LTT 3780b and c whose

agreement between the two models is 0.2σ and 0.7σ re-

spectively.

5. DISCUSSION

5.1. Fundamental planet parameters

From our analysis of the TESS transit light curve we

measure the planetary radii of LTT 3780b and c to be

rp,b = 1.332+0.072
−0.075 R⊕ and rp,c = 2.30+0.16

−0.15 R⊕. By com-

bining the TESS analysis with the mid-transit times

measured from transit follow-up observations, we mea-

sure orbital periods for LTT 3780b and c to be Pb =

0.7683881+0.0000084
−0.0000083 days and Pc = 12.252048+0.000060

−0.000059

days. This places LTT 3780b at 0.012 AU where it

receives 106 times Earth’s insolation. Assuming uni-

form heat redistribution and a Bond albedo of zero, LTT

3780b has an equilibrium temperature of Teq,b = 892 K.

Similarly, the orbital period of LTT 3780c places it at

0.077 AU where it receives 2.6 times Earth’s insolation

with a zero-albedo equilibrium temperature of 353 K.

From our RV analysis we measure planet masses of

mp,b = 2.62+0.48
−0.46 M⊕ and mp,c = 8.6+1.6

−1.3 M⊕, which rep-

resent 5.6σ and 5.9σ mass detections respectively. By

combining the planetary mass and radius measurements,

we derive bulk densities of ρp,b = 6.1+1.8
−1.5 g cm−3 and

ρp,c = 3.9+1.0
−0.9 g cm−3. Figure 6 details the mass-radius

diagram of exoplanets around M dwarfs with masses

measured at the level of ≥ 3σ, including the LTT 3780

planets. The LTT 3780 planet masses and radii are com-

pared to theoretical models of fully-differentiated plan-

etary interiors consisting of combinations of water, sili-

cate rock, and iron (Zeng & Sasselov 2013). In Figure 6

we see that LTT 3780b is consistent with an Earth-like

bulk composition of 33% iron plus 67% magnesium sil-

icate by mass. This composition is shared by the ma-

jority of planets in the . 1.5 R⊕ size regime. We also

consider models of Earth-like solid cores that include

1% H2 envelopes by mass, over a range of equilibrium

temperatures from 300-1000 K (Zeng et al. 2019). The

mass and radius of LTT 3780c appear consistent with a

water-dominated bulk composition but also with a pre-

dominantly Earth-like body that hosts an extended low

mean molecular weight atmosphere. Distinguishing be-

tween these two degenerate structure models will require

the extent of LTT 3780c’s atmosphere to be investigated

through transmission spectroscopy. Due to the depen-

dence of the atmospheric scale height on the planet’s

surface gravity, the accurate interpretation of forthcom-

ing transmission spectroscopy observations will be facil-

itated by the planetary mass measurements presented in

this study. The feasibility of targeting LTT 3780c with

transmission spectroscopy is discussed in Sect. 5.4.

The LTT 3780 two-planet system adds to the grow-

ing number of confirmed multi-planet systems around

nearby M dwarfs with at least one transiting planet

(e.g. GJ 1132; Berta-Thompson et al. 2015; Bonfils

et al. 2018, K2-3; Crossfield et al. 2015; Damasso et al.

2018, K2-18; Montet et al. 2015; Cloutier et al. 2019b,

L 98-59; Kostov et al. 2019; Cloutier et al. 2019a, LHS

1140; Dittmann et al. 2017; Ment et al. 2019, LP 791-

18; Crossfield et al. 2019, TOI-270; Günther et al.

2019, TOI-700; Gilbert et al. 2020; Rodriguez et al.

2020, TRAPPIST-1; Gillon et al. 2017). With their

sub-Neptune-sized radii and measured masses presented

herein, both LTT 3780b and c contribute directly to the

completion of the TESS level one science requirement

to obtain masses for fifty planets smaller than 4 R⊕.

5.2. Implications for the origin of the radius valley

around mid-M dwarfs

The occurrence rate distribution of close-in planet

radii around Sun-like stars features a bimodality with

a dearth of planets at 1.7 − 2.0 R⊕ known as the ra-

dius valley (Fulton et al. 2017; Mayo et al. 2018). This
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Figure 6. Planetary mass-radius diagram for small planets
orbiting M dwarfs including LTT 3780b and c (bold symbols).
The solid curves represent planetary internal structure mod-
els for bodies composed of 100% water, 100% silicate rock,
67% rock plus 33% iron (i.e. Earth-like), and 100% iron by
mass. The dashed curves represent models of planets with
Earth-like solid cores plus a 1% by mass gaseous H2 envelope
at 1 mbar surface pressure and with the equilibrium temper-
ature annotated next to each curve. Marker colors indicate
the planet’s insolation.

feature likely results from the existence of a transition

between predominantly rocky planets and larger plan-

ets that host significant H/He envelopes, as a function

of planet radius and orbital separation. The slope of the

radius valley in P − rp space marks the critical radius

separating rocky and non-rocky planets as a function of

orbital period. The empirical slope of the radius val-

ley around Sun-like stars is consistent with models of

thermally-driven atmospheric mass loss such as photoe-

vaporation and core-powered mass loss (Van Eylen et al.

2018; Martinez et al. 2019; Wu 2019). However for mid-

K to mid-M dwarfs, the radius valley slope flattens and

becomes increasingly favored by models of an alternative

formation pathway for terrestrial planets in a gas-poor

environment (CM20).

Figure 7 depicts the LTT 3780 planets in P−rp space,

along with the subset of M dwarf planets from Figure 6

with RV-derived masses. The planets in Figure 7 are

classified as having a bulk composition that is either

rocky, gaseous, or intermediate based on their mass and

radius. Rocky planets are defined as planets that are

consistent with having a bulk density greater than that

of 100% MgSiO3 given their size. Similarly, unambigu-

ously gaseous planets are defined as planets that are con-

sistent with having a bulk density less than that of 100%

H2O given their size. The remaining planets are flagged

as having bulk compositions that are intermediate be-

tween rocky and gaseous. LTT 3780b and c have rocky

and intermediate dispositions respectively (Figure 6).

In Figure 7, LTT 3780b and c are shown to span the

empirically-derived location of the radius valley around

low mass stars under the gas-poor formation and pho-

toevaporation models (CM20). The slope of the ra-

dius valley around low mass stars is considerably flat-

ter than around Sun-like stars, with the former slope

being consistent with gas-poor formation while the lat-

ter is more consistent with a thermally-driven atmo-

spheric mass loss process. To compare the compositions

of planets around low mass stars to the rocky/non-rocky

transition locations in Figure 7, we scale the transi-

tion measured around Sun-like stars down to the low

stellar mass regime under the photoevaporation model

(rp ∝ (Ms/M�)1/4; Wu 2019)2. The slope measured

around low mass stars is plotted verbatim in Figure 7.

Both models predict that LTT 3780b should have a

rocky bulk composition in which any residual gaseous

envelope only contributes marginally to the planet’s

mass and radius. Indeed these predictions are consis-

tent with our finding that LTT 3780b has an Earth-like

composition. Similarly, both models predict that LTT

3780c should be non-rocky in that it should have re-

tained a substantial gaseous envelope and therefore be

inconsistent with having a bulk rocky composition. Al-

though we cannot definitively identify the bulk compo-

sition of LTT 3780c with our data, due to internal struc-

ture model degeneracies, we confirm that LTT 3780c is

consistent with both model predictions. In other words,

the models correctly identify LTT 3780c as being incon-

sistent with an Earth-like composition and requires a

significant amount of volatile material or H/He gas to
explain its mass and radius.

5.2.1. Planetary mass limits from photoevaporation models

Stars such as LTT 3780 with multi-transiting planets

that span the radius valley provide valuable test cases

of radius valley emergence models. The virtue of these

systems is that limits on the planetary masses can be

derived by scaling the properties of one planet to the

other (Owen & Campos Estrada 2020). For example,

assuming that the initial H/He envelope of the rocky

2 The median stellar mass in the sample of Sun-like stars from
Martinez et al. (2019) is 1.01 M�. The median stellar mass
in the sample of low mass stars from CM20 is 0.65 M�. The
resulting scaling of the rocky/non-rocky transition from Sun-like
stars to the low stellar mass regime under photoevaporation is
(0.65/1.01)1/4 = 0.896 (Wu 2019).
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Figure 7. Period, radii, and bulk densities of M dwarf
planets with precise RV masses compared to the empirical
location of the radius valley around low mass stars versus
orbital period and planet radius. LTT 3780b and c are de-
picted with the bold symbols. Contours represent the plane-
tary occurrence rates around low mass stars (CM20). Planet
marker shapes depict the planet’s compositional disposition
as either rocky (circles), gaseous (triangles), or intermediate
(squares). Marker colors indicate the planet’s bulk density.
The dashed and solid lines depict the locations of the ra-
dius valley around low mass stars from model predictions of
thermally-driven atmospheric mass loss and from gas-poor
terrestrial planet formation respectively. The shaded regions
highlight where the model predictions of planetary bulk com-
positions are discrepant between the two models.

planet below the valley has been completely stripped by

some physical process, the theoretical minimum mass of

the non-rocky planet above the valley can be calculated

by scaling its properties to those of the rocky planet. An

equivalent principle can be used to derive the maximum

mass of the rocky planet. The power of this comparative

scaling of planets within the same planetary system is

that certain unobservable quantities that directly affect

final planet masses are scaled out. An example of this

is the host star’s XUV luminosity history in the photo-

evaporation scenario (Owen & Campos Estrada 2020).

A full derivation is presented in Appendix A but here

we simply state the condition for the consistency of the

gaseous (i.e. non-rocky) and rocky planet parameters

with the photoevaporation model. This requires that

the gaseous planet’s mass loss timescale exceeds the

maximum mass loss timescale of the rocky planet (Owen

& Campos Estrada 2020). This condition leads to

1 ≤
m0.64

core,gas

mcore,rock

(
agas

arock

)2/3

r
4/3
core,rock. (3)

where each planet’s core mass and radius are given in

units of the Earth. In the LTT 3780 system we define

LTT 3780b to be the rocky planet below the valley whose

H/He envelope has been photoevaporated away leaving

behind a solid core whose mass and radius are equal to

the planet’s total mass and radius: mcore,rock = mp,b =

2.62± 0.47 M⊕ and rcore,rock = rp,b = 1.332± 0.074 R⊕.

The gaseous planet above the valley is then LTT 3780c,

whose mass is assumed to be dominated by an Earth-

like core such that mcore,gas = mp,c = 8.6± 1.5 M⊕ and

whose core radius is approximated by the mass-radius

relation for Earth-like bodies (rp ∝ m
1/3.7
p ; Zeng et al.

2016). Lastly, the semimajor axes arock and agas are

ab = 0.01211± 0.00012 AU and ac = 0.07673± 0.00076

AU respectively.

Using Equation 3 and sampling the planetary parame-

ters Θ = {mp,b, ab, rp,b, ac} from their marginalized pos-

terior PDFs, we find that the mass of LTT 3780c must

be ≥ 0.49± 0.15 M⊕ in order to be consistent with the

photoevaporation model. In the same way, but by re-

placing mp,b with mp,c in the set Θ, we calculate that

the mass of LTT 3780b must be ≤ 19.6± 2.8 M⊕ to be

consistent with photoevaporation. Clearly the measured

masses mp,c = 8.6± 1.5 M⊕ and mp,b = 2.62± 0.47 M⊕
are both consistent with predictions from the photoe-

vaporation model, implying that photoevaporation is a

feasible process for sculpting the observed architecture

of the LTT 3780 system.

A few notable caveats exist with the planetary mass

limits imposed by the photoevaporation model in Equa-

tion 3 (Owen & Campos Estrada 2020). These are dis-

cussed in Appendix A.

5.2.2. Planetary mass limits from core-powered mass loss
models

Similarly to the photoevaporation model, we can com-

pare the mass loss timescales of the LTT 3780 planets

under the core-powered mass loss scenario (Ginzburg

et al. 2018; Gupta & Schlichting 2019, 2020) to constrain

their permissible planet masses under that model. In the

core-powered mass loss scenario, the lower atmosphere

is in thermal contact with the planetary core which con-

ducts energy from its formation into the atmosphere.

This heat flux drives convective heat transport radially

outwards to the radiative-convective boundary (RCB) of

the atmosphere, above which the atmosphere is isother-

mal at Teq and atmospheric cooling is radiative. The
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physical limit to the atmospheric mass loss rate is given

by the thermal velocity of the gas at the Bondi radius;

the radial distance at which the escape velocity equals

the thermal sound speed cs =
√
kBTeq/µ where kB is

the Boltzmann constant and µ is the atmospheric mean

molecular weight which we fix to 2 amu for H2.

The derivation of the mass loss timescale in the core-

powered mass loss model is presented in Appendix B.

As in the photoevaporation scenario, we require that

the mass loss timescale for the gaseous planet exceeds

that of the rocky planet which leads to the following

condition for consistency of the planetary parameters

with the core-powered mass loss model:

1 ≤
(
mcore,gas

mcore,rock

)(
Teq,gas

Teq,rock

)−3/2

exp

[
c′
(

mcore,gas

Teq,gas rp,gas
− mcore,rock

Teq,rock rp,rock

)]
, (4)

where the constant c′ = Gµ/kB ≈ 104 R⊕ K

M⊕
−1, Teq,gas = Teq,c = 323 ± 16 K, Teq,rock =

Teq,b = 816 ± 40 K, rp,gas = rp,c = 2.30 ± 0.16

R⊕, and rp,rock = rp,b = 1.332 ± 0.074 R⊕. The

inequality in Equation 4 has no analytic solution

so we solve for the limiting masses of mcore,gas and

mcore,rock by again sampling the planetary parameters

{mcore,rock, Teq,rock, rp,rock,mcore,gas, Teq,gas, rp,gas} from

their marginalized posterior PDFs and numerically solv-

ing for the limiting core masses. Recall that both planets

are assumed to have small envelope mass fractions such

that mcore ≈ mp.

Under the core-powered mass loss mechanism, we find

that the mass of LTT 3780c must be ≥ 2.1 ± 0.5 M⊕
to be consistent with the model. Similarly, by solving

for mcore,rock we calculate that the mass of LTT 3780b
must be ≤ 12.6 ± 2.9 M⊕. As with the photoevapora-

tion mass limits from Sect. 5.2.1, the measured masses

mp,c = 8.6 ± 1.5 M⊕ and mp,b = 2.62 ± 0.47 M⊕ are

both consistent with predictions from the core-powered

mass loss model.

The masses of LTT 3780b and c recovered in this study

from HARPS and HARPS-N RV measurements are both

consistent with radius valley emergence model predic-

tions from photoevaporation and core-powered mass

loss, two physical processes that thermally drive atmo-

spheric escape on close-in planets. Thus, the recov-

ered masses of LTT 3780b and c are unable to provide

strong evidence for the inapplicability of either mecha-

nism. However, the photoevaporation and core-powered

mass loss models do make distinct predictions for the

maximum mass of the rocky planet and the minimum

mass of the non-rocky in systems like LTT 3780 that

feature such planet pairs. Therefore, other systems with

multi-transiting planets that span the radius valley may

exist for which either photoevaporation or core-powered

mass loss may be ruled out by the planets’ masses. This

prospect is especially viable for increasingly compact

systems wherein the ratios agas/arock and Teq,gas/Teq,rock

approach unity.

5.2.3. Planetary mass limits from gas-poor terrestrial
planet formation models

Unlike the photoevaporation and core-powered mass

loss scenarios, it is not clear that analogous arguments

can be made within the gas-poor formation framework

to scale out unknown system parameters and place lim-

its on the permissible planet masses. This is because the

model invokes the formation of two planet populations

with distinct rocky and non-rocky bulk compositions

(Lee et al. 2014; Lee & Chiang 2016; Lopez & Rice 2018).

Both populations are thought to form cores of rock and

ice but only the non-rocky population subsequently ac-

cretes a gaseous envelope prior to disk dispersal after a

few Myrs (Haisch et al. 2001; Cloutier et al. 2014). Be-

cause the gas accretion term only impacts the non-rocky

planet population, unobservable quantities for the LTT

3780 system when it was just a few Myrs old, such as

the local density of the gaseous disk, the disk structure,

and the disk dynamics, cannot be scaled out by com-

paring the rocky and non-rocky planet parameters. As

such, we are not in a position to compare the LTT 3780

planet masses to constraints imposed by the gas-poor

terrestrial planet formation model.

5.3. TTV analysis

We used the TTV2Fast2Furious python package

(Hadden 2019) to predict the amplitudes of transit tim-

ing variations (TTVs) of the planets LTT 3780b and c.

We ran 103 realizations with the planetary masses being

sampled from their marginalized posterior PDFs from

our RV analysis (Sect. 4.2). The stellar mass, planet or-

bital periods, and times of mid-transit are drawn from

their respective priors used in our RV analysis. Recall

that the free eccentricity of LTT 3780b is assumed to be

zero because of its short circularization timescale. Fur-

thermore, due to their large period ratio (Pb = 0.768388

days, Pc = 12.252048 days, Pc/Pb = 15.945130), im-

posing a non-zero free eccentricity on either planet will

have a negligible effect on their TTV amplitudes so we

fix the input free eccentricities to zero. The forced ec-

centricities induced by the planets’ mutual interactions

are calculated within TTV2Fast2Furious. Arguments of

periastron are drawn from U(0, 2π).

In each realization, with its unique set of parameters,

we compute each planet’s maximum deviation from a
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linear ephemeris over a 2-year baseline beginning with

the commencement of the TESS sector 9 observations.

Over the 103 realizations we find maximum TTV am-

plitudes of 0.02 and 1 second for LTT 3780b and c re-

spectively. The small amplitude of the expected TTV

signals make the LTT 3780 system a poor candidate for

intensive transit follow-up to derive TTV masses of the

two known planets. However, ongoing transit observa-

tions of LTT 3780c may reveal TTVs induced by an

insofar unseen outer planet. For this purpose, we note

that LTT 3780 is scheduled to be observed in sector 35

of the TESS extended mission between UT February 9

and March 7, 2021.

5.4. Prospects for atmospheric characterization

The stellar and planetary parameters of the LTT 3780

system make the planets LTT 3780b and c accessible tar-

gets for atmospheric characterization via emission and

transmission spectroscopy respectively. Assuming uni-

form heat redistribution and a Bond albedo of zero, the

equilibrium temperature of LTT 3780c is Teq,c = 353 K.

The expected depth of its transmission features up to

two atmospheric scale heights (Stevenson 2016; Fu et al.

2017), in a cloud-free low mean molecular weight atmo-

sphere (µ = 2), is 79 ppm. Alternatively, it is expected

that some mini-Neptune atmospheres are metal enriched

(Fortney et al. 2013) which will partially suppress trans-

mission feature depths to 32 ppm in a 100x solar metal-

licity atmosphere (µ ≈ 5). Simulated transit observa-

tions with PandExo (Batalha et al. 2017) confirm that

molecular features in a clear, low mean molecular weight

atmosphere will be detectable at ≥ 5σ confidence from

a single transit observation with JWST/NIRISS slit-

less spectroscopy3 (Kreidberg et al. 2015). Four transits

would be required to reach a similar precision for a 100x

solar metallicity atmosphere. We also note the caveat

that if high altitude clouds are present on LTT 3780c,

as seen for many other planets in its size regime (Cross-

field & Kreidberg 2017), additional observing time will

be required.

For LTT 3780c, we can also consider the transmis-

sion spectroscopy metric (TSM; Kempton et al. 2018)

which is proportional to the expected S/N of trans-

mission features in a cloud-free atmosphere. Based on

the TSM, LTT 3780c is among the best warm mini-

Neptunes (P ∈ [10, 40] days, rp ∈ [2, 3] R⊕) for atmo-

spheric characterization via transmission spectroscopy

observations. To date, the best such planets are the

3 Note that LTT 3780’s J-band magnitude of 9.007 does not exceed
any imposed brightness limit in the NIRISS Single Object Slitless
Spectroscopy (SOSS) mode.

TESS -discovered planets TOI-700c (Gilbert et al. 2020;

Rodriguez et al. 2020), TOI-270d (Günther et al. 2019),

and LTT 3780c, whose TSM values are all within 17% of

each other and are at minimum 17% greater than that of

the next best potential target: HD 15337c (Dumusque

et al. 2019). The TSM values of favorable warm mini-

Neptunes are reported in Table 4 and are compared in

Figure 8.

The ultra-short period planet LTT 3780b has a zero-

albedo equilibrium temperature of Teq,b = 892 K. The

hot dayside of LTT 3780b makes it a very attractive tar-

get for atmospheric characterization via emission spec-

troscopy observations. In particular, eclipse observa-

tions can help to discern whether the planet has retained

a substantial atmosphere or if its emitting temperature

is consistent with that of pure rock. The distinction be-

tween a 1 bar atmosphere and a bare rocky surface on

LTT 3780b will be accessible with a single JWST/MIRI

eclipse observation (Koll et al. 2019).

Similarly to the TSM, the expected S/N of thermal

emission signatures at 7.5 µm is proportional to the

emission spectroscopy metric (ESM; Kempton et al.

2018). Computing the ESM for hot planets with likely

terrestrial compositions (rp < 1.5 R⊕), that are favor-

able targets for emission spectroscopy measurements, re-

veals that LTT 3780b is among the best such planets

(Table 5, Figure 8). The ESM for LTT 3780b is the third

highest among these planets and closely matches that of

GJ 1252b (Shporer et al. 2019). Both of these targets

have ESM values that are nearly half that of LHS 3844b

(Vanderspek et al. 2019), a rocky planet whose ther-

mal phase curve has been characterized by the Spitzer

Space Telescope and found to be consistent with a dark

basaltic surface that lacks any substantial atmosphere

(Kreidberg et al. 2019).

The favorable ESM and TSM values of LTT 3780b

and c respectively make them both accessible targets for

atmospheric characterization. Together they present a

unique opportunity to conduct direct comparative stud-

ies of exoplanet atmospheres among planets within the

same planetary system which is critical for informing our

understanding of the formation and evolution of close-in

planets at a range of sizes and equilibrium temperatures.

5.5. An independent analysis of the LTT 3780 system

by CARMENES

Following the announcement of the planet candidates

TOI-732.01 and 02 in May 2019, multiple PRV instru-

ment teams began working towards the mass charac-

terization of these potential planets. This study has

presented the subset of those efforts from HARPS and

HARPS-N but we acknowledge that the CARMENES
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Figure 8. Normalized atmospheric characterization metrics (Kempton et al. 2018) versus equilibrium temperature and host
star apparent magnitude. Left panel : the transmission spectroscopy metric (TSM) for warm mini-Neptunes around bright host
stars (J < 10) with P ∈ [10, 40] days and rp ∈ [2, 3] R⊕, including LTT 3780c. Marker colors depict the host star’s J-band
magnitude. Right panel : the emission spectroscopy metric (ESM) for favorable close-in rocky planets (rp < 1.5 R⊕) including
LTT 3780b. Marker colors depict the host star’s Ks-band magnitude. In both panels the marker sizes depict the primary transit
depths.

Table 4. Transmission spectroscopy metric values for warm mini-Neptunesa

Planet P rp mp Z Teq
b J Teff Rs Ms TSM TSM- Refs

name [days] [R⊕] [M⊕] [ppt] [K] mag [K] [R�] [M�] normalized

TOI-270d 11.38 2.13 5.48c 2.6 372 9.099 3386 0.38 0.40 86.8 1.00 1

TOI-700c 16.05 2.63 7.64c 3.3 356 9.469 3480 0.42 0.42 77.5 0.89 2,3

LTT 3780c 12.25 2.30 8.59 3.3 353 9.007 3331 0.37 0.40 71.5 0.82 4

HD 15337c 17.17 2.52 8.79 0.6 648 7.553 5125 0.87 0.90 60.6 0.70 5

GJ 143b 35.61 2.61 22.70 1.2 427 6.081 4640 0.70 0.73 53.0 0.61 6

K2-266d 14.70 2.93 8.90 1.5 538 9.611 4285 0.70 0.69 47.1 0.54 7

K2-18b 32.94 2.71 8.63 2.8 290 9.763 3505 0.47 0.50 42.8 0.49 8

Kepler-96b 15.24 2.67 8.46 0.6 798 9.260 5690 1.02 1.00 30.6 0.35 9

K2-266e 19.48 2.73 14.30 1.3 490 9.611 4285 0.70 0.69 21.3 0.24 7

Kepler-102e 16.15 2.22 8.93 0.7 604 9.984 4909 0.76 0.81 16.3 0.19 9

HD 119130b 16.98 2.63 24.50 0.5 801 8.730 5725 1.09 1.00 11.3 0.13 10

K2-38c 10.56 2.42 9.90 0.3 928 9.911 5757 1.38 2.24 9.2 0.11 11

Note—References: 1) Günther et al. 2019 2) Gilbert et al. 2020 3) Rodriguez et al. 2020 4) this work 5)
Dumusque et al. 2019 6) Dragomir et al. 2019 7) Rodriguez et al. 2018 8) Cloutier et al. 2019b 9) Marcy
et al. 2014 10) Luque et al. 2019 11) Sinukoff et al. 2016.

aHere we define warm mini-Neptunes as having P ∈ [10, 40] days and rp ∈ [2, 3] R⊕.

b Teq is calculated assuming zero albedo and full heat redistribution.

cPlanet masses are estimated using the mass-radius relation implemented in the forecaster code (Chen &
Kipping 2017).
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Table 5. Emission spectroscopy metric values for select close-in Earth-sized planetsa

Planet P rp Z Teq
b Tday

c Ks Teff Rs Ms ESM ESM- Refs

name [days] [R⊕] [ppt] [K] [K] mag [K] [R�] [M�] normalized

LHS 3844b 0.46 1.30 4.0 805 886 9.145 3036 0.19 0.15 29.0 1.00 1

GJ 1252b 0.52 1.19 0.8 1089 1198 7.915 3458 0.39 0.38 16.4 0.57 2

LTT 3780b 0.77 1.33 1.1 892 982 8.204 3331 0.37 0.40 13.4 0.46 3

L 168-9b 1.40 1.39 0.5 981 1079 7.082 3800 0.60 0.62 9.9 0.34 4

GJ 1132b 1.63 1.13 2.4 585 643 8.322 3270 0.21 0.18 9.5 0.33 5

L 98-59c 3.69 1.35 1.6 515 566 7.101 3412 0.31 0.31 6.9 0.24 6

LTT 1445Ab 5.36 1.38 2.0 435 478 6.500 3335 0.28 0.26 6.3 0.22 7

LP 791-18b 0.95 1.12 3.6 594 653 10.644 2949 0.17 0.14 5.9 0.20 8

L 98-59b 2.25 0.80 0.6 607 668 7.101 3412 0.31 0.31 4.1 0.14 6

TRAPPIST-1b 1.51 1.09 6.9 405 446 10.300 2559 0.12 0.08 4.0 0.14 9

LHS 1140c 3.78 1.28 3.1 434 477 8.821 3216 0.21 0.18 3.4 0.12 10

Note—References: 1) Vanderspek et al. 2019 2) Shporer et al. 2019 3) this work 4) Astudillo-Defru et al. 2020
5) Berta-Thompson et al. 2015 6) Kostov et al. 2019 7) Winters et al. 2019 8) Crossfield et al. 2019 9) Gillon
et al. 2017 10) Ment et al. 2019

aHere we define Earth-sized planets as those with rp < 1.5 R⊕.

b Teq is calulated assuming zero albedo and full heat redistribution.

cFor the purpose of calculating ESM values, we assume that Tday = 1.1Teq for all planets.
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team has also submitted a paper presenting their own

RV time series and analysis (Nowak et al. 2020). Al-

though the submissions of these complementary studies

were coordinated between the two groups, their respec-

tive data, analyses, and writeups were intentionally con-

ducted independently.

6. SUMMARY

In this study, we present the LTT 3780 multi-

transiting system from the TESS mission. The newly

discovered planets LTT 3780b and c are confirmed with

intensive follow-up observations that includes ground-

based transit photometry, reconnaissance spectroscopy,

high-resolution imaging, and 63 precise RV measure-

ments from HARPS and HARPS-N. Our main findings

are summarized below.

• LTT 3780 is a bright (V = 13.07, Ks = 8.204)

mid-M dwarf with Ms = 0.401 ± 0.012 M� and

Rs = 0.374± 0.011 R�, located at 22 pc.

• LTT 3780b is a hot rocky exoplanet with Pb = 0.77

days, rp,b = 1.33± 0.07 R⊕, and mp,b = 2.62+0.48
−0.46

M⊕, making its bulk composition consistent with

that of the Earth.

• LTT 3780c is a warm mini-Neptune with Pc =

12.25 days, rp,c = 2.30 ± 0.16 R⊕, and mp,c =

8.6+1.6
−1.3 M⊕. Its bulk composition is inconsistent

with being Earth-like and requires a significant

amount of volatile material or H/He gas to explain

its mass and radius.

• The two planets span the radius valley around

low mass stars which enables the comparison of

their planetary parameters to predictions from

models of the emergence of the radius valley.

Both planets’ physical and orbital properties are

shown to be consistent with predictions of atmo-

spheric escape from photoevaporation and from

core-powered mass loss.

• The brightness and small size of LTT 3780 make

the planets LTT 3780b and c accessible targets for

atmospheric characterization of a hot rocky planet

and a warm mini-Neptune via emission and trans-

mission spectroscopy observations respectively.
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Table 6. Point estimates of the LTT 3780 planetary system model parameters

Parameter Fiducial Model Valuesa EXOFASTv2 Model Valuesb

TESS light curve parameters

Baseline flux, f0 1.000072± 0.000070 1.000043± 0.000038

lnω0 1.64± 1.15 -

lnS0ω4
0 3.62+0.40

−0.39 -

ln s2TESS 1.21± 0.01 -

TESS limb darkening coefficient, u1 0.28+0.33
−0.20 0.30+0.07

−0.05

TESS limb darkening coefficient, u2 0.16+0.37
−0.28 0.32+0.07

−0.06

Dilution - 0.023+0.047
−0.048

RV parameters

lnλ/day 4.5+1.0
−0.4 -

ln Γ −0.1+1.3
−1.2 -

lnPGP/day 4.64+0.14
−0.16 -

ln aHARPS/m/s 0.52+0.69
−0.62 -

ln aHARPS-N/m/s 1.25+0.70
−0.74 -

Jitter, sHARPS [m s−1] 0.11+0.48
−0.09 1.41+0.70

−0.80

Jitter, sHARPS-N [m s−1] 1.24+0.36
−0.46 3.54+0.99

−0.75

Systemic velocity, γHARPS [m s−1] 195.5+1.4
−1.5 195.4+0.5

−0.5

Systemic velocity, γHARPS-N [m s−1] 196.8+4.6
−3.6 194.3+1.0

−1.0

LTT 3780b (TOI-732.01) parameters

Log orbital period, lnPb −0.26338± 0.00007 -

Orbital period, Pb [days] 0.768448+0.000055
−0.000053 0.7683881+0.0000084

−0.0000083

Time of mid-transit, T0,b [BJD - 2,457,000] 1543.9115± 0.0011 1543.91199+0.00059
−0.00051

Transit duration Db [hrs] 0.805+0.049
−0.072 0.786+0.024

−0.020

Transit depth, Zb [ppt] 1.087+0.098
−0.103 1.076+0.093

−0.089

Scaled semimajor axis, ab/Rs 7.03+0.23
−0.21 7.05+0.24

−0.22

Planet-to-star radius ratio, rp,b/Rs 0.0330+0.0014
−0.0016 0.0328+0.0014

−0.0014

Impact parameter, bb 0.35+0.20
−0.23 0.43+0.08

−0.12

Inclination, ib [deg] 87.1+1.8
−1.7 86.5+1.0

−0.7

Eccentricity, eb 0 (fixed) 0 (fixed)

Planet radius, rp,b [R⊕] 1.332+0.072
−0.075 1.321+0.074

−0.073

Log RV semi-amplitude, lnKb 1.23+0.14
−0.17 1.26+0.14

−0.17

RV semi-amplitude, Kb [m s−1] 3.41+0.63
−0.63 3.54+0.54

−0.55

Planet mass, mp,b [M⊕] 2.62+0.48
−0.46 2.77+0.43

−0.43

Bulk density, ρb [g cm−3] 6.1+1.8
−1.5 6.5+1.7

−1.4

Surface gravity, gb [m s−2] 14.4+3.7
−3.3 15.5+3.6

−3.4

Escape velocity, vesc,b [km s−1] 15.7+1.5
−1.5 16.2+1.3

−1.4

Semimajor axis, ab [AU] 0.01211+0.00012
−0.00012 0.01212+0.00012

−0.00012

Insolation, Fb [F⊕] 106+22
−19 106+23

−19

Equilibrium temperature, Teq,b [K]

Bond albedo = 0.0 892± 44 892± 44

Bond albedo = 0.3 816± 40 816± 40

Table 6 continued
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Table 6 (continued)

Parameter Fiducial Model Valuesa EXOFASTv2 Model Valuesb

LTT 3780c (TOI-732.02) parameters

Log orbital period, lnPc 2.50582± 0.00023 -

Orbital period, Pc [days] 12.2519+0.0028
−0.0030 12.252048+0.000060

−0.000059

Time of mid-transit, T0,c [BJD - 2,457,000] 1546.8484± 0.0014 1546.8481+0.0011
−0.0012

Transit duration Dc [hrs] 1.392+0.050
−0.049 1.404+0.048

−0.046

Transit depth, Zc [ppt] 3.24+0.41
−0.37 3.13+0.28

−0.28

Scaled semimajor axis, ac/Rs 44.6+1.5
−1.3 44.7+1.5

−1.4

Planet-to-star radius ratio, rp,c/Rs 0.0570+0.0035
−0.0033 0.0560+0.0024

−0.0025

Impact parameter, bc 0.65+0.15
−0.36 0.71+0.08

−0.15

Inclination, ic [deg] 89.18+0.47
−0.22 88.95+0.10

−0.09

ec cosωc - −0.05+0.07
−0.08

ec sinωc - 0.15+0.15
−0.13√

ec cosωc 0.13+0.12
−0.15 -

√
ec sinωc 0.07+0.17

−0.19 -

Eccentricity, ec 0.06+0.15
−0.14 0.18+0.14

−0.11

Argument of periastron, ωc [deg] 124+87
−147 111+39

−27

Planet radius, rp,c [R⊕] 2.30+0.16
−0.15 2.25+0.13

−0.13

Log RV semi-amplitude, lnKc 1.49+0.17
−0.17 1.60+0.13

−0.15

RV semi-amplitude, Kc [m s−1] 4.44+0.82
−0.68 4.94+0.68

−0.67

Planet mass, mp,c [M⊕] 8.6+1.6
−1.3 9.5+1.3

−1.3

Bulk density, ρc [g cm−3] 3.9+1.0
−0.9 4.6+1.1

−0.9

Surface gravity, gc [m s−2] 16.0+3.7
−3.3 18.3+3.5

−3.1

Escape velocity, vesc,c [km s−1] 21.7+2.1
−2.0 23.0+1.7

−1.7

Semimajor axis, ac [AU] 0.07673+0.00075
−0.00077 0.07678+0.00076

−0.00077

Insolation, Fc [F⊕] 2.63+0.56
−0.48 2.63+0.56

−0.48

Equilibrium temperature, Teq,c [K]

Bond albedo = 0.0 353± 18 354± 18

Bond albedo = 0.3 323± 16 324± 16

aOur fiducial model features sequential modeling of the TESS light curve, with a SHO GP detrending
component plus two transiting planets, followed by the RV analysis conditioned on the results of the
transit analysis. The fiducial RV model includes a quasi-periodic activity model plus two keplerian orbital
solutions. The LTT 3780b keplerian component is fixed to a circular orbit.

bOur alternative analysis is a global model of the TESS light curve, ground-based light curves, and RVs
using the EXOFASTv2 software. The input light curves have already been detrended and the residual RV
noise is treated as an additive scalar jitter. This global model produces self-consistent results between
the transit and RV dataset and improves the precision on each planet’s orbital ephemeris by including
the ground-based transit light curves.

APPENDIX

A. LIMITS ON THE PLANET MASSES FOR

CONSISTENCY WITH MODELS OF

PHOTOEVAPORATION

Here we present the formalism used to estimate mass

limits on planets spanning the radius valley within

a multi-transiting system under the photoevaporation

model (Owen & Campos Estrada 2020). This model

is adopted from Owen & Wu (2017) in which a pop-

ulation of non-rocky planets is formed with a distri-

bution of Earth-like core masses plus H/He envelopes.

The energy-limited atmospheric mass loss rate due to

XUV heating by the host star, and subsequent thermal

escape, is Ṁatm = ηpπr
3
coreLXUV/4πa

2Gmcore where

ηp, rcore, a,mcore are the planet’s mass-loss efficiency,

core radius, orbital separation, and core mass respec-

tively, LXUV is the XUV luminosity of the host star
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and G is the gravitational constant. By writing the at-

mospheric mass as the product of the planet mass and

envelope mass fraction (Matm = mp X2), the mass loss

timescale under photoevaporation (tloss = Matm/Ṁatm)

scales as

tloss ∝
m2
p a

2 X2

ηp r3
core LXUV

∝
m3
p a

2 X2

r4
core LXUV

(A1)

where we have adopted ηp ∝ v−2
esc ∝ m−1

corercore (Owen

& Wu 2017) and set mcore = mp by assuming that the

planet masses are dominated by their rocky core masses.

In this simple picture, Owen & Campos Estrada (2020)

set Equation A1 to the maximum mass loss timescale for

a rocky planet below the valley which is assumed to have

just lost the entirety of its initial H/He envelope. In or-

der to form the radius valley, this timescale must be less

than the maximum timescale for the gaseous (i.e. non-

rocky) planet to have retained its initial H/He envelope

with an atmospheric mass fraction of X2. This criterion

places the following constrains on the rocky and gaseous

planet parameters according to

tloss,gas

tloss,rock
≥ 1,(

mp,gas

mp,rock

)(
agas

arock

)2/3(
rcore,gas

rcore,rock

)−4/3

≥ 1. (A2)

The power of comparing planets within the same plan-

etary system is evidenced in Equation A2 in which the

unknown quantity LXUV is scaled out of the expression.

In the photoevaporation model, the stripped rocky

planet has been reduced to its Earth-like core such

that the core radius is equivalent to the planet’s radius;

rcore,rock = rp,rock. Noting that rcore ∝ m0.27
core for Earth-

like bodies (Zeng et al. 2016), we write rcore,gas = m0.27
p,gas

where the input radius and mass are each given in units

of the Earth. It follows from Equation A2 that the min-

imum mass of the gaseous planet under the photoevap-

oration model is

mp,gas

M⊕
≥

[(
mp,rock

M⊕

)(
arock

agas

)2/3 (
rp,rock

R⊕

)−4/3
]1.56

.

(A3)

The inequality in Equation A3 must be satisfied for the

planetary parameters to be consistent with the photoe-

vaporation model. Similarly,

mp,rock

M⊕
≤
(
mp,gas

M⊕

)0.64(
agas

arock

)2/3 (
rp,rock

R⊕

)4/3

(A4)

represents the maximum mass of the rocky planet for

the system to be consistent with the photoevaporation

model.

A few notable caveats exist with this simplified model

(Owen & Campos Estrada 2020). Specifically, these cal-

culations assumed that the envelope mass fraction X2

for which the mass loss timescales are maximized, is in-

dependent of the planet properties. Furthermore, indi-

vidual gaseous planets may have envelope mass fractions

that are greater than that which is required to maximize

tloss,gas. Lastly, this simplified model ignores the con-

traction of the H/He envelope over time. This poses a

critical limitation as gaseous envelopes are likely to have

been more extended at early times when photoevapora-

tion was actively ongoing, compared to their present day

values.

These issues are alleviated by the EvapMass software

Owen & Campos Estrada (2020) which calculates the

value of X2 that maximizes the mass loss timescale and

self-consistently models the gaseous envelope structure

from the typical Kelvin-Helmholtz time of the gaseous

envelope (τKH ∼ 100 Myrs) to the present. However, at-

tempting these numerical calculations on the LTT 3780

system resulted in a failure to solve for a lower limit on

the LTT 3780c core mass. By default, EvapMass only

considers mcore,gas ≥ 0.1 M⊕, which is itself a very weak

constraint, such that the EvapMass calculation does not

provide any new insight into the minimum mass of LTT

3780c.

B. LIMITS ON THE PLANET MASSES FOR

CONSISTENCY WITH MODELS OF

CORE-POWERED MASS LOSS

Here we derive the constraints on the planet masses

in order to be consistent with the core-powered mass

loss model for sculpting the radius valley. Analogously

to the formalism presented in Appendix A, we com-

pare the timescales for core-powered mass loss of planets

spanning the radius valley and within the same multi-

transiting system.

Core-powered mass loss is another mechanism for

driving thermal escape of a planet’s atmosphere due to

the planetary core’s own cooling luminosity (Ginzburg

et al. 2018; Gupta & Schlichting 2019). Similarly to

the initial conditions assumed in the photoevaporation
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model, here a population of non-rocky planets is formed

with a distribution of Earth-like core masses plus H/He

envelopes. Their atmospheres are described by a lower

convective region which is terminated at the radius of

the radiative-convective boundary (RCB), above which

the atmosphere becomes isothermal and heat is trans-

ported radiatively to the planet’s Bondi radius. The

Bondi radius is set by equating the planet’s escape veloc-

ity to its thermal sound speed and is RB = Gmcore/c
2
s,

where G is the gravitational constant, mcore is the core

mass, and the thermal sound speed is cs =
√
kBTeq/µ,

where kB is the Boltzmann constant, Teq is the equi-

librium temperature, and µ is the atmospheric mean

molecular weight, assumed to be 2 amu for H2. The

Bondi-limited regime represents the physical limit of the

atmospheric mass loss rate and is dictated by the gas

thermal velocity at RB.

The corresponding Bondi-limited mass loss rate is

Ṁatm = 4πR2
BcsρRCB exp (−Gmcore/c

2
sRRCB) where

ρRCB is the atmospheric density at the RCB whose ra-

dius is RRCB. The majority of the atmosphere’s mass

lies within its convective zone such that integrating an

adiabatic gas density profile over the convective zone

returns the approximate atmospheric mass

Matm ≈ 4πR3
RCBρRCB

(
γ − 1

γ

RB

RRCB

)1/(γ−1)

(B5)

where γ is the adiabatic index which is fixed to 4/3

(Ginzburg et al. 2016). The resulting mass loss timescale

(tloss = Matm/Ṁatm) scales as

tloss ∝
RB

cs
exp

(
Gmcore

c2sRRCB

)
,

∝ mp

T
3/2
eq

exp

(
c′mp

Teqrp

)
, (B6)

(B7)

where the constant c′ = Gµ/kB ∼ 104 R⊕ K M⊕
−1, the

planet’s envelope mass fraction is assumed to be small

such that mcore ≈ mp, and the RRCB is treated as the

planet’s effective radius; RRCB ≈ rp.
Analogously to the photoevaporation scenario, for the

planetary parameters within a multi-transiting system

and spanning the radius valley to be consistent with

the core-powered mass loss scenario, we require that

the mass loss timescale of the gaseous (i.e. non-rocky)

planet exceeds that of the rocky planet. This leads to

the following condition:

tloss,gas

tloss,rock
≥ 1,(

mp,gas

mp,rock

)(
Teq,gas

Teq,rock

)−3/2

exp

[
c′
(

mp,gas

Teq,gas rp,gas
− mp,rock

Teq,rock rp,rock

)]
≥ 1. (B8)

The appearance of the planet masses as both linear fac-

tors and in the exponential function means that Equa-

tion B8 belongs to the class of Lambert W functions

of the form f(m) ∝ mem. Such functions do not have

analytical solutions but the limiting planet masses un-

der the core-powered mass loss model can be solved for

numerically.
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